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On the Degree of Grothendieck Polynomials
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ABSTRACT A beautiful degree formula for Grothendieck polynomials was recently given by
Pechenik, Speyer, and Weigandt (2021). We provide an alternative proof of their degree for-
mula, utilizing the climbing chain model for Grothendieck polynomials introduced by Lenart,
Robinson, and Sottile (2006). Moreover for any term order satisfying z1 < z2 < -+ < Zp,
we present the leading monomial of each homogeneous component of the Grothendieck poly-
nomial &, (x), confirming a conjecture of Hafner (2022). We conclude with a conjecture for
the leading monomial of each homogeneous component of &, (x) in any term order satisfying
xT1 >Tg > > Tn.

1. INTRODUCTION

Schubert polynomials and Grothendieck polynomials are multivariate polynomials
associated to permutations in S,,. Schubert and Grothendieck polynomials were in-
troduced by Lascoux and Schiitzenberger [13, 14] in their study of the flag variety,
the parameter space of maximal sequences of nested vector spaces in C". The flag
variety admits a cell decomposition into Schubert varieties indexed by permutations
in S,.

Schubert (resp. Grothendieck) polynomials arise as a set of distinguished repre-
sentatives for the cohomology (resp. K-theoretic) classes of Schubert varieties in the
cohomology ring (resp. K-theory) of the flag variety. Schubert polynomials have a
rich and well-studied combinatorial structure, admitting a myriad of formulas such
as [1, 2, 6, 7, 12, 15, 25, 5]. Many formulas for Schubert polynomials generalize to
Grothendieck polynomials as well.

Schubert and Grothendieck polynomials are geometrically natural choices of class
representatives: Knutson and Miller [11] showed them to be the multidegrees and K-
polynomials respectively of matriz Schubert varieties, determinantal varieties obtained
by pulling the Schubert varieties in the flag variety back to n x n matrix space. See [19,
Chapter 15] for a thorough introduction.

In [22], it was noted that Grothendieck polynomials give a combinatorial approach
to studying the reqularity of matrix Schubert varieties, a measure of the complexity of
their defining ideals. The regularity is given by the difference between the degrees of
the Grothendieck and Schubert polynomial of w € S,,. The Schubert polynomial is ho-
mogeneous of degree ¢(w), the number of inversions. The degree of the Grothendieck
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polynomial was not well-understood at the time, and has since seen several develop-
ments.

An explicit degree formula for Grothendieck polynomials of Grassmannian per-
mutations was given in [22]. This was extended to vexillary permutations in [23] by
Rajchgot, Robichaux, and Weigandt; an alternate proof given by Hafner in [8]. A gen-
eral explicit degree formula for any Grothendieck polynomial was given by Pechenik,
Speyer, and Weigandt in [21], in the form of permutation statistics called the Rajchgot
code rajcode(w) and Rajchgot index raj(w):

THEOREM 1.1 ([21, Theorem 1.1]). For any w € S,
deg &, = raj(w).

Moreover in any term order satisfying r1 < xo < --- < Ty, the leading monomial of
the highest-degree homogeneous component &P of &,, is grajcode(w)

The proof of Theorem 1.1 does not provide an explicit combinatorial representa-
tive of the monomial &"¢d¢(®) in the Grothendieck polynomial, but instead gives a
complicated recursive algorithm to produce one.

We give a comparable recursive algorithm, furnishing an alternative proof of The-
orem 1.1. Our approach extends to yield the leading term of each homogeneous com-
ponent of any Grothendieck polynomial. Unlike [21] though, we restrict our attention
to Grothendieck polynomials in = variables only.

Our main tool is the climbing chain model for Schubert and Grothendieck polyno-
mials, introduced by Lenart, Robinson, and Sottile in [16]. The model expresses the
Schubert and Grothendieck polynomials in terms of certain saturated chains in the
Bruhat order on permutations. We introduce explicit chains representing the leading
monomials of &,, and G°P in term orders with z; < 3 < - -+ < z,,. We conjecturally
do the same for term orders with 1 > x5 > --- > x,, in Section 12.

We also investigate the leading monomials of the other homogeneous components
of Grothendieck polynomials, a question first posed by Weigandt [24]. A potential
answer was conjectured by Hafner:

CONJECTURE 1.2 ([8, Conjecture 4.1]). Fiz w € S,, and any term order with x1 <
Tg < o < Ty For f(w) < k < raj(w), let my(x) be the leading monomial of the
degree k homogeneous component of &,,. Then

mg(x) = xpmi—_1(x)

where p is the largest index such that x,my_1(x) divides xricode(w),

We address Hafner’s conjecture by first providing climbing chains for her conjec-
tured monomials (Definition 10.2 and Theorem 10.9). We use these chains to verify
Conjecture 1.2 (Theorem 11.3). We formulate an analogue of Conjecture 1.2 for term
orders with &1 > x9 > --- > x,, (Conjecture 12.8).

It would be interesting to investigate if there is a commutative algebra connection
for the leading monomials of homogeneous components of Grothendieck polynomials
— which are the subject of Conjecture 1.2 — that are not in the top degree; the latter is
related to the regularity of matrix Schubert varieties. Such an algebraic interpretation
is not immediately clear to the present authors. Nonetheless, the leading terms of the
homogeneous components of Grothendieck polynomials are of independent interest in
the study of the support of the Grothendieck polynomial. The latter has received a
lot of recent attention [9, 18, 8, 20, 4].
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ROADMAP OF THE PAPER. Section 2 contains general background. Section 3 is a
summary of the results of [21]. Section 4 is a presentation of the Lenart, Robinson, and
Sottile climbing chain model for Grothendieck polynomials ([16]) via Rothe diagrams.
Section 5 details the constructions of four climbing chains. One is studied in Section 6
and connected to the Lehmer code. One is examined in Section 7, and used to give an
alternative proof of Theorem 1.1 in Sections 8 and 9. The other two are considered in
Section 12, and related to leading terms of Schubert and Grothendieck polynomials
when z; > x5 > .-+ > x,. In Section 10 and 11, we prove Conjecture 1.2 and
conjecture a dual version.

2. BACKGROUND

2.1. COoNVENTIONS. For n € N, we write [n] to mean the set {1,2,...,n}. For two
indices 1 < 4 < j < n we write ¢;; for the transposition in the symmetric group S,
swapping ¢ and j. We write s; for the adjacent transposition t; jy1.

Throughout, we write permutations in one-line notation (as a string) w =
w(Dw(2)---w(n). We will take permutations as acting on the right — switching
positions, not values. For example ws; equals w with the numbers w(1) and w(2)
swapped.

For v € Z™, we write |v| for v1 +va+- - - +v,. We denote the standard basis vectors
of Z™ by ey, ea,...,e,. We use the notation v to denote the vector complement

T =n —k — vy, for each k € [n].
A term order on Z[xy,...,x,] is a total order < of all (monic) monomials such that
% < 2° implies 27 < 2817 for all v E Zgo.

The leading term of a polynomial f € Z[x1, ..., z,] is the term of the largest monomial
under < appearing in f. The leading monomial is the leading term divided by its
coefficient. For example if f(x1,72) = 23 + 22122 + 322 and 21 < z3, the leading term
of f is 3z3 and the leading monomial is 3.

2.2. SCHUBERT AND GROTHENDIECK POLYNOMIALS.

DEFINITION 2.1. Fiz any n > 0. The divided difference operators 9; for j € [n — 1]
are operators on the polynomial ring Z[x1, ..., z,] defined by
8(f) _ f — (Sj . f) _ f(.’)i‘l,...,l‘n) — f((El,...,.’L’j,l,l'j+17xj,$j+2,...,LL’n).
J Tj — Tj41 Tj— Tj+1

The K-divided difference operators 5]- are defined on the polynomial ring Z[z1, . .., xy]
by 0;(f) = 0;(f — x4 f)-

DEFINITION 2.2. The Schubert polynomial &, of w € S,, is defined recursively on the
weak Bruhat order. Let wg = nn—1--- 21 € S, the longest permutation in S,. If
w # wo then there is j € [n — 1] with w(j) < w(j + 1) (called an ascent of w). The
polynomial &, is defined by

S — 2Vl if w = wo,
R G if w(j) < w(j+1).

DEFINITION 2.3. The Grothendieck polynomial &, of w € S,, is defined analogously
to the Schubert polynomial, with

& — 33?71:6372 o1 i w = wo,
R TG ifw(j) < w(j+1).
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Recall that £(w) = #{(i,7) | 1 <14 < j < n with w(i) > w(j)} is the number of
inversions of w € S,. It can be seen from the recursive definitions above that &,,
is homogeneous of degree f(w), and equals the lowest-degree nonzero homogeneous
component of &,,. See [17] for a deeper introduction to Schubert polynomials.

Associated to each permutation w € S, is its Rothe diagram D(w).

DEFINITION 2.4. The Rothe diagram of a permutation w € S, is the set
D(w) ={(i,5) : 1 <i,j <n, w(i) > j, and w™'(j) > i}.

We will make use of the following graphical interpretation of D(w). Start with an
n x n grid of boxes with the usual matrix indexing. Place a dot in box (4, w(4)) for
each ¢ € [n]. Draw rays emanating south and east of each dot, called hooks. Remove
any boxes hit by a hook. The remaining boxes lie exactly in the positions D(w).
DEFINITION 2.5. The Lehmer code of w € S, is the vector

invcode(w) = (invcode(w)y, . . ., inveode(w)y,),

where invcode(w); equals the number of boxzes in row i of D(w). Symbolically,

invcode(w); = #{j | i < j and w(j) < w(i)}.
(

EXAMPLE 2.6. If w = 31452, then D(w) = {(1,1), (1,2), (3,2), (4,2)}. We draw D(w)
by placing east and south hooks at each point (7, w(¢)) in the 5 x 5 grid and coloring
all boxes not hit by any hook:

D(w) =

1
The Lehmer code of w is inveode(w) = (2,0, 1,1, 0).

3. DEGREE OF GROTHENDIECK POLYNOMIALS

We recall the results of Pechenik, Speyer, and Weigandt [21] giving the leading mono-
mial of the highest degree component of &,, in any term order satisfying r; < xo <
< Tp.

DEFINITION 3.1. An increasing subsequence of a permutation w € S, starting from
position q € [n] is a vector a = (o, ..., 0y) such that

g=ap << - <anp<n and wlog) <wlag) < - < w(om).

An increasing subsequence of a permutation w starting from position q is called longest
if there is no longer such sequence, i.e. m is maximal. We refer to m as the length
of . We denote by LIS(w, q) the set of all longest increasing subsequences of w starting
from position q.

Graphically, increasing subsequences starting from position ¢ of a permutation w
are exactly sequences of nested hooks in the Rothe diagram D(w) starting with the
hook in row q.

DEFINITION 3.2. To each w € S, associate the vector

rajcode(w) = (rajcode(w)s, ..., rajcode(w),) € Z",

where for each i, rajcode(w); equals the length of any « € LIS(w, ) minus one.
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DEFINITION 3.3 ([21]). The Rajchgot code of w € S, is the vector rajcode(w) € Z"
with
rajcode(w)r, = n — k — rajcode(w)y,  for each k € [n].
Observe that the entries of rajcode(w) count the complement of longest increasing

sequences: for any fixed a € LIS(w, k), rajcode(w)y equals the number of elements in
{k,k+1,...,n} that did not appear in a.

DEFINITION 3.4. The Rajchgot index of w € S, is

n
raj(w) = | rajcode(w Z rajcode(w
k=1

Similarly, let raj(w) = |rajcode(w)].
ExAMPLE 3.5. Consider w = 48513726, with Rothe diagram

1
The longest increasing sequences in w are
LIS(w, 1)={(1,3,6), (1,3,8)}, LIS(w,2) = {(2)},
LIS(w, 3)={(3,6), (3.8)}, LIS(w, 4) = {(4,5,6),(4,5,8),(4,7,8)},
LIS(w, 5)={(5,6), (5,8)}, LIS(w,6) = {(6)}.
LIS(w, 7)={(7,8)}, LIS(w,8) = {(8)}.

Observe that these sequences show up graphically as the longest sequences of (row
indices of) nested hooks in D(w). One computes

rajcode(w) = (2,0,1,2,1,0,1,0),
raj(w) =24+0+1+4+2+1404+1+0=7,
rajcode(w) = (7,6,5,4,3,2,1,0) — rajcode(w) = (5,6,4,2,2,2,0,0), and
(w)

raj(lw) =5+6+4+2+2+2+0+0=21.

In general, note that rajcode(w), > invcode(w)y for all k € [n]. This follows
since invcode(w)y counts the number of inversions of the form (k,x) in w, and
rajcode(w);, counts the number of entries in [k + 1,n] excluded in any (fixed) se-
quence « € LIS(w, k).

4. CLIMBING CHAINS AND MARKINGS

We recall climbing chains, a combinatorial model for Schubert and Grothendieck
polynomials due to Lenart, Robinson, and Sottile in [16]. We depict their construction
in terms of the Rothe diagrams; this diverges from their exposition, but we find this
rendering of climbing chains particularly helpful.
The (strong) Bruhat order is the partial order < on S,, defined as the transitive
closure of the relations
w g wtij
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for any ¢ < j such that w(i) < w(j). We write w < v to denote a cover relation in
the Bruhat order. The following well-known lemma describes all cover relations of the
Bruhat order. See for instance [3, Lemma 2.1.4] for a proof.

LEMMA 4.1. For v,w € Sy, w<wv if and only if there isi,j € [n] with i < j such that:

o v = wi;j,
o w(i) <w(j),
o {kli<k<jin{k|w@) <w(k)<w(l)}=2.

Lemma 4.1 can be interpreted graphically as follows. For ¢ < j, w < wt;; if and
only if inside D(w):

e The dot at (i,w(i)) lies north and west of the dot at (j,w(j)),
e No other dot lies in the region bounded by the hooks at (i, w(4)) and (4, w(j)).

EXAMPLE 4.2. If w = 31452 (continuing Example 2.6), then w < wt;; exactly when

(1,5) € {(1,3),(2,3),(2,5), (3,4)}.

DEFINITION 4.3. A climbing chain of w € S, is a sequence C of pairs

(ilajl)a R (imy.jm)

called links, such that

ip < jp for each p € [m],

i1 i <0 Ky,

Wiy gy + iy, = Wo,
Wiy gy - tiyg, < Whiygy oot
on Sy).

We call £(C) = m the length of C, and will write C, to indicate the link (ip, j,) for
each p € [m].

for each p € [m] (in the Bruhat order

ip+1Jp+1

Climbing chains encode special saturated chains in the Bruhat order on .S, from a
given permutation w to wy.

EXAMPLE 4.4. Let w = 256341, so

?

We construct a climbing chain of w. Since w(1) # 6, the first link of any climbing
chain of w will be of the form (1,7;), where the hook in row j; of D(w) sits south
and east of the hook in row 1, and no hook sits between them. The available choices
are ji € {2,4}. We will choose j; = 4.

Observe that D(wt14) = D(356241) is obtained from D(w) by swapping the column
indices of the dots in rows 1 and 4. That is,
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D(wt14) =

1

Since wt14(1) # 6, the next link of the chain must be of the form (1, j2) where the
hook in row jo of D(wty4) sits south and east of the hook in row 1, and no hook sits
between them. The available choices are jo € {2,5}. We will choose j; = 2.

Note wty4t12 = 536241, and has Rothe diagram

D(wt14t12) =

1

Since wti4t12(1) # 6, the next link of this chain has to be of the form (1, j3), and
the only available choice is j3 = 3. Then the next permutation is wti4t12t13 = 635241,
with diagram

D(wtyatiat13) =

1

Finally, wt14t12t13(1) = 6. Since wt14t12t13(2) §£ 5, the next link of the chain must
be of the form (2, j4). The available choices are j4 € {3,5}. Continuing in this fashion,
one may obtain either of the chains

CM =((1,4),(1,2),(1,3),(2,3), (3,5), (4,5)),
0(2) - ((1,4)7 (17 2)a (L 3)7 (2’ 5)) (273)’ (47 5))

With different earlier choices, one can obtain any of the chains

C® = ((1,2),(1,3),(2,3),(3,4), (3,5), (4,5)),
CW =((1,2),(1,3),(2,4),(2,3),(3,5), (4,5)),
C® = ((1,2),(1,3),(2,4),(2,5),(2,3),(4,5)),
C® = ((1,4),(1,5),(1,2), (1,3),(2,3), (4,5)).

These are the six climbing chains of w = 256341.

Observe that all climbing chains of a given permutation w have the same length

L(wo) — £(w).
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DEFINITION 4.5. Associated to each climbing chain C of a permutation w € S, is a
set of special links M(C) called the minimal markings of C. As C is a sequence of
distinct pairs (ip, jp), we will abuse notation slightly and write M (C) C C'. If the links
of C are Cp = (ip, jp) for each p € [{(C)], then (taking ic =0)

M(C) ={Cyp | ip—1 < ip orip_1 =1ip and jp—1 < jp}.

Observe that in the trivial case w = wyp, the only climbing chain is the empty
sequence. We take the empty sequence to have minimal markings &.

ExXAMPLE 4.6. Continuing Example 4.4, let w = 256341. Using overlines to denote
markings, the climbing chains of w together with their minimal markings are

DEFINITION 4.7. For w € S,,, a marked climbing chain of w is a pair (C,U) where C

1s a climbing chain of w and U is a superset of the minimal markings of C, that is
M(C)CUCC.

DEFINITION 4.8. The dual weight of a marked climbing chain & = (C,U) of w € Sy,
is the vector

wt(§) = (WH(&)1, ..., WEt(£)n)
where wt(&)x equals the number of links (k,x) € U.

DEFINITION 4.9. The weight of a marked climbing chain £ = (C,U) of w € S,, is the
vector

wt(€) = (Wt()1, - .., wt(§))
whose kth component equals n — k — wt(&).
THEOREM 4.10 ([16, Theorem 5.6]). For any w € Sy,

Gy
(E)

Gz, ., 20) = Zsign(f)w‘”t(&) = Zsign(g)
€ 3

where the sum is over all marked climbing chains & = (C,U) of w, and sign(§) =
(_1)£(C)—#U.

COROLLARY 4.11 ([16]). For any w € S,,

W 6“’
61_[)(3517«..,1’77,):2(3 £(€) :Zwm((]f)’
3 3

where the sum is over all marked climbing chains € = (C,U) of w with U = C.
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ExAMPLE 4.12. Continuing Example 4.6, let w = 256341. Then the Schubert and
Grothendieck polynomials of w are given by

504 .3 .2 5.4 .3 .2 5.4 .32 5.4 ,.3 .2
6 _ 31‘1.%‘2.%‘31}4.%‘5 .’L‘1$2I3.’L‘4x5 $11‘2x3$4l‘5 $1x2$3.’£4$5
v $?$2I3$4 Ii’l‘%l’;l I%IQCE%I4 l’%fﬂ%l‘gl’;}
504 0.3 .2 5,43 .2
1‘11‘233331‘4.%‘5 x1$2$3.’£41’5
I%I§)$4 SC%IQI;;
6,y =6y
5.4 1.3 ,.2 5.4 ,.3,.2 5.4 .3 .2 5.4 .3 .2
. T1ToX3T4T5 _ TIToX3TYT5 _ TIToX3T 4 T5 _ TITHT3TY Ty
3397374 v2r3y T3ToT4 T3w0T3T4
5,04 .3 ,.2 5.4 ,.3,.2 5.4 .3 ,.2
. T1ToX3T4T5 _ TITX 3Ty Ts TIToX3T 4 T5
r3w314 T3Tomy 33074

From their definition, climbing chains are clearly recursive. We will make frequent
of the relation between the minimal markings on a climbing chain and those on its
truncation by one link. We illustrate this relationship in the following example, and
record the observations in the subsequent lemma.

ExAMPLE 4.13. Consider the two climbing chains

(1,2) (1,3) (2,3) (3,4)

CW . w=1342 3142 4132 4312 4321

(1,4) (1,3) (2,3) (3,4)

C® .y =2143 3142 4132 4312 4321

in S4. Truncating the first link in either gives the climbing chain

(1,3) (3,4)

C® .y = 31425541322 4319 D 4301

with minimal markings M (Cs)

M(Ch)
M(Cs)

{(1,3),(2,3),(3,4)}. Compare this with
(1,2),(1,3),(2,3),(3,4)},
(1,4),(2,3),(3,4)}.

The first link in the truncation C5 is always marked in C3, but whether it is marked
or not in Cq, Cs is determined by their first link.

{
{

LEMMA 4.14. Fiz w € S, with w # wg. Let C be any climbing chain of w. Suppose
Cp = (ip,Jp) for p € [€(C)], and set w' = wt;,j,. Define C' to equal C with Cy
removed. Then C' is a climbing chain for w' and

(M(C")~ {C)) U{C1} if €(C) > 1 and Cy ¢ M(C),

M(e) = {M(C”) u{Ci} otherwise.

Consequently,

T(C, M(C)) = {wt(C’,M(C”)) i UC) > 1 and Gy & M(O),

wt(C', M(C")) + e;,  otherwise.
Proof. Tt is straightforward to see from the definition that C’ is a climbing chain
for w’. The first equality follows immediately from the local restrictions defining the
minimal markings of a climbing chain. The second equality follows from the first by
counting markings. O
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5. FOUR SPECIAL CLIMBING CHAINS

We define four climbing chains that represent leading terms of Schubert and
Grothendieck polynomials. We give examples clarifying each and explain their dif-
ferences. This section is intended to be a convenient reference for these four similar
definitions.

5.1. GREEDY CHAIN. We show in Theorem 6.1 that the greedy chain defined below
yields the monomial a"ve°de(®) the leading term of the Schubert polynomial in any
term order with 21 < zo < - -+ < z,.

DEFINITION 5.1. To each permutation w € S,, with w # wg, we associate a pair of
integers greedy(w) = (a,b), where

a=min{k|wk)#n+1—-k} and b=w '(w(a)+1).

DEFINITION 5.2. Define the greedy chain C%(w) of w € S, as follows. If w = wy,
then C%(w) is the empty sequence. Otherwise, define CE(w) inductively by prepending
greedy(w) to C%(wtp).

In each iteration, the greedy chain tries to move a hook in D(w) right as little as
possible. We illustrate this construction with an example.

EXAMPLE 5.3. Continuing Example 4.6 with w = 256341, we compute C¢(w). Recall
the Rothe diagram of w is

?
Let greedy(w) = (i1,j1). Since w(1) # 6, i1 = 1. The definition of greedy(w) says
that

j1=w(w(iy) + 1),
that is j; is the row index of the dot in column w(iy) 4+ 1. Graphically, j; is the row
index of the leftmost dot inside the region south and east of the hook in row ¢;. Thus,
J1=4.
The Rothe diagram of wt4 is

D(wt14) =

1

From the Rothe diagram, we observe that greedy(wti4) = (1,5). Continuing in this
fashion yields

C%(w) = ((1,4),(1,5),(1,2),(1,3),(2,3), (4,5)).
This is the chain C(®) in Example 4.4.
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5.2. NESTED CHAIN. We show in Section 9 that the nested chain defined below yields
the monomial x'c°de(®) the leading monomial of BP in any term order with x; <
To < -+ < Tp.

DEFINITION 5.4. To each permutation w € S,, with w # wqy, we associate a pair of
integers nested(w) as follows. Set ¢ = min{j | w(j) # n+ 1 — j}, and let « be the
lezicographically last element of LIS(w, q). Then nested(w) = (ay, ).

DEFINITION 5.5. Define the nested chain CN(w) of w € S, as follows. If w = wy,
then CN (w) is the empty sequence. Otherwise, define CN (w) inductively by prepending
nested(w) to CN (wtyy).

The nested chain acts similar to the greedy chain, trying to move a hook right as
little as possible. The difference is that the nested chain only allow moves that belong
to maximum-length sequences of nested hooks.

EXAMPLE 5.6. Continuing Example 4.6 with w = 256341, we compute CV(w),
M(CHN (w)), and rajcode(w). For reference, the Rothe diagram of w is

1
We have LIS(w,1) = {(1,2,3),(1,4,5)}, so nested(w) = (1,4). Graphically, this
amounts to finding the southmost sequence among all longest sequences of hooks
nested under (1,w(1)). This is the first link of the nested chain CV (w).

Next, wtyy = 356241, so LIS(wt14,1) = {(1,2,3)} and nested(wt14) = (1,2). An-
other iteration: wti4t1o = 536241, so LIS(wt14t12,1) = {(1,3)} and nested(wti4t12) =
(1,3).

Continuing in this fashion yields

CN(w) = ((1,4), (1,2), (1,3),(2,5),(2,3), (4,5)).
This is exactly the chain C? from Example 4.4. One also observes
M(C™ (w)) ={(1,4),(1,3),(2,5),(4,5)}, and
rajcode(w) = (2,1,0,1,0,0) = wt(CV (w), M(C™ (w))).
5.3. LEAPING CHAIN. We show in Theorem 12.1 that the leaping chain defined below
is “dual” to the greedy chain, yielding the leading term of the Schubert polynomial
in any term order with 1 > x2 > --- > z,. Instead of trying to move a hook right

as little as possible in each iteration like the greedy chain, the leaping chain tries to
move it right as much as possible.

DEFINITION 5.7. To each permutation w € S,, with w # wy, we associate a pair of
integers leap(w) = (a,b), where

a=min{k |w(k)#n+1—k} and b=min{k |k >a and w < wiyy}.

DEFINITION 5.8. Define the leaping chain CL(w) of w € S,, as follows. If w = wy,
then CL(w) is the empty sequence. Otherwise, define CL(w) inductively by prepending
leap(w) to CE(wtyy).

EXAMPLE 5.9. Continuing Example 4.6 with w = 256341, we compute CL(w). Recall
the Rothe diagram of w is
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1

Let leap(w) = (i1, j1). Since w(1) # 6, i3 = 1. The definition of the leaping pair says
that

J1=min{k | k > a and w < wiy,} = 2.
Graphically, j; is the row index of the northmost dot inside the region south and east

of the hook in row ;.
The Rothe diagram of wt15 = 526341 is

D(wty2) =

?
From the Rothe diagram, we observe that leap(wti2) = (1,3). Continuing in this
fashion yields

CL(w) = ((17 2)’ (la 3), (2, 3)5 (37 4)v (37 5)7 (4,5)).
This is the chain C®) in Example 4.4.
5.4. STAIRCASE CHAIN. We conjecture in Section 12 that the staircase chain defined

below is “dual” to the nested chain, yielding the leading monomial of &P in any
term order with 21 > zo > -+ > z,.

DEFINITION 5.10. To each permutation w € S, we associate a sequence of pairs
stair(w), called the staircase of w, as follows. The staircase of wg is undefined. If
w # wo, let a = min{k | w(k) # n+1—k} and consider K = {k | k > a and w<wt,y}.
Let K1 be the set of elements k € K with

rajcode(w) = max({rajcode(w) | k' € K}).
Iteratively, let K, be the set of elements k € K with k < min(K,_1) and

p—1
rajcode(w)) = max {rajcode(w)k/ KeK- U Kq} .
=1

q=

Suppose this process results in sets K1, Ko, ..., K,. Then stair(w) is obtained by or-

dering the pairs
q
{(aak) | ke U KZD}
p=1

so their second components are decreasing.

DEFINITION 5.11. Define the staircase chain C°(w) of w € S, as follows. If w = wo,
then C®(w) is the empty sequence. Otherwise, let

stair(w) = ((a, b1), (a,b2), ..., (a,bg)).
Define C*(w) inductively by concatenating stair(w) and C®(wtap, - - - tap,, )-
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ExAMPLE 5.12. Consider the permutation w = 1764352. Below we draw the Rothe
diagram of w and label the hook in each relevant row with the corresponding value
of rajcode(w), the length of the longest hook nesting below itself.

0=

Ot

We have K = {7,5,4,3,2}, with K; = {5,4} and K5 = {3,2}. Thus,
stair(w) = ((1,5), (1,4), (1, 3), (1,2)).
Continuing in this fashion with wty5t14t13t120 = 7643152, one obtains
C%(w) = ((1,5),(1,4),(L,3), (1,2), (3,6), (4,6), (5, 7), (5,6)).

The definition of the staircase chain is quite different from the other three chains.
It does not add a single link at a time, but a whole sequence of links. The following
example shows that this feature is unavoidable.

ExAMPLE 5.13. Consider w = 1423, which has

By = (22 + 2129 + 23) — (2123 + 2313), and D(w) =

!
The staircase chain is C*(w) = ((1,3), (1,2), (2,4), (3,4)) with weight (2, 1). It is the
only climbing chain of w to achieve this weight.

The first link in C(w) is to v = wt 3 = 2413, which has

&, = (2329 + 1123) — (2323), and D(v) =

1

The staircase chain of v is C%(v) = ((1,4), (1,2), (3,4)) with weight (2,2). It is again
the only climbing chain of v achieving this weight. However observe that C*°(v) is not
the truncation of C¥(w), as was the case for the other three named chains in this
section.

LEMMA 5.14. For each w € S,, each of the constructions C%(w), CN(w), CF(w),
and C%(w) is a climbing chains of w.

Proof. We prove the lemma for C (w). The other constructions are all argued anal-
ogously. Work by induction on ¢(wg) — £(w), the base case w = wq being trivial. Let

Algebraic Combinatorics, Vol. 7 #3 (2024) 639



M. DREYER, K. MESzZAROS & A. ST. DIZIER

CN(w), = (ip,jp) for each p and set w’ = wt;,;,. Then CV(w’) is a truncation of
CN (w), and is a climbing chain by induction.

It then remains to verify that w < w’ and i; < i5. The latter is clear from the
definition of CV(w). If the former fails, length considerations imply it fails because
w £ w'. Then there is ¢ such that i1 < ¢ < j; and w(i1) < w(q) < w(j1). However,
this contradicts the choice of j; in CV (w). O

6. THE GREEDY CHAIN

We verify the greedy chain C¢ (w) (Definition 5.2) realizes the leading term ai»veede(w)
of &, in term orders where z; < -+ < x,. We do so by exploiting the connection
between climbing chains and cotransition. As explained in Proposition 6.10 of [16],
climbing chains of w are in bijection to pipe dreams of w. Specifically fix a reduced
pipe dream P of w and replace each elbow tile in P with a cross one-by-one in each
row left-to-right, starting with the topmost row and working downwards. With each
replacement, record the left-edge exit row numbers ¢ < j of the newly crossed strands.
Then the list of pairs (i,j) in the order they were encountered is a climbing chain
of w. This bijection is realized inductively by the cotransition formula on Schubert
polynomials (see Knutson’s work [10]). We show an example of this bijection in Fig-
ure 1.

THEOREM 6.1. Fiz any w € S,,. Set £(w) to be the chain O (w) with all links marked,
that is

E(w) = (C%(w), C%(w)).
Then

wt(€(w)) = inveode(w).

Proof. 1t is straightforward to see that the greedy chain corresponds to the bottom-
reduced pipe dream under the cotransition bijection. O

7. THE NESTED CHAIN

We show that the nested chain C(w) (Definition 5.5) yields the monomial gr2icode(w)
in &,,. We prove in Section 9 that this monomial is the leading monomial of &P in
any term order satisfying z; < x9 < - -+ < x, giving an alternate proof of Theorem 1.1.

We begin with a recursive formula for the vector rajcode(w). In Figure 2, we offer
a visual aid for the technical arguments used to prove the recursion.

THEOREM 7.1. Fiz w € S, with w # wq. Suppose CN(w), = (ip,jp) for p €
[L(CN(w))], and set w' = wt;, j,. Then

rajcode(w’) if 6(CN (w)) > 1 and (ia, j2) ¢ M(CN (w)),

rajcode(w’) + e;,  otherwise.

rajcode(w) = {

Proof. By the definition of climbing chains, i, is the earliest position in which w differs
from wg. Then for k < 41, we have w(k) = w'(k) = n+ 1 — k. Thus, rajcode(w); =
0 = rajcode(w’)r whenever k < i;. Additionally, since w and w’ agree after position
Jj1, rajcode(w) = rajcode(w’)y whenever k > j;.

To show rajcode(w);, = rajcode(w’);,, we argue by contradiction.

Clearly rajcode(w);, < rajcode(w’);,, so necessarily rajcode(w);, < rajcode(w’);,.
Since 4; and j; occur consecutively in an element of LIS(w,i;), it must be that
rajcode(w);, = rajcode(w);, + 1. Thus, rajcode(w);, < rajcode(w’);,.

On the other hand, take a € LIS(w’, j1). Replacing a; = j1 by 41 in « yields an
increasing sequence [ in w that starts from 4; and has length rajcode(w’);, +1. Hence,
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rajcode(w);, + 1 > rajcode(w’);, + 1. Thus we have rajcode(w);, = rajcode(w’);, .
Consequently 8 € LIS(w,i1). However 2 = as > j1, which contradicts the choice
of (i1,71) as lexicographically last among LIS(w,i;). This contradiction shows
rajcode(w);, = rajcode(w’);, .

Now, fix any k such that i1 < k < j1. As w<w’, it follows that either w(k) < w(i1)
or w(k) > w(j1). Take a € LIS(w, k). If w(k) > w(j1) then o does not include ji, so
a € LIS(w', k) as well. In this case, rajcode(w); = rajcode(w’).

Otherwise, suppose w(k) < w(iy). Clearly, rajcode(w); < rajcode(w’)g. To
reach a contradiction, suppose rajcode(w); < rajcode(w’)y. It follows that every
a € LIS(w',k) includes j;. Fix any o € LIS(w’, k), and suppose «, = j;. Since
rajcode(w),, = rajcode(w’);,, we can find an element 8 € LIS(w, 1) N LIS(w’, j1).

1 J2 3 4 J5 6 1 2 3 4 J5 6 1 2 3 4 J5 6
2 rjr A | sH jr JrJ . JrJ
5 (JrJ 5 (Jr (Jr
6 J 6 J 6 J

— —
y, y, y,
3 rJ rJ 2 rJ
4 4 A
1V 1V 1V
(1,4) (1,2)
1 23 45 6 1 23 45 6
J 6 ] J
3 e J
J 5 J
— —
y, y,
2 rJ 9 rJ
4 J J
1V 1V
(1,3) (2,5)
1 2 3 45 6 1 2 3 45 6
6 | J 6 J
L/ 5 J/
J 4 J
— —
y,
2) rJ I
3 J J
17 17
(2,3) (4,5)

F1GURE 1. The bijection between climbing chains and reduced pipe
dreams. The modified cross and strand numbers at each step is shown
in orange. Note the result is the nested chain of w = 256341 from
Example 5.6.
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Construct a sequence v by letting v, = «a, for r € [p], and 7, = B, for r > p. It
follows that v has the same length as a and that -y is an increasing subsequence of w.
Consequently, rajcode(w’); + 1 < rajcode(w)y + 1, a contradiction to our assumption
that rajcode(w)y < rajcode(w’)y. Hence, rajcode(w)y = rajcode(w’)y.

We now address the remaining case k = i;. Suppose first that ¢(CY (w)) > 1 and
(i2,42) ¢ M(CN(w)). It follows that i; = 5 and j; > j2. Then from the construction
of CN(w), we see i1 < jo < j1 with w(iy) < w(j1) < w(j2)-

Clearly rajcode(w);, > rajcode(w’);,. Take @ € LIS(w, i1), with ag = j1. Let § be
a with ag = j; dropped. Then § is an increasing sequence in w’, so rajcode(w’);, >
rajcode(w);, — 1. Thus, rajcode(w);, > rajcode(w’);, > rajcode(w);, — 1. To reach a
contradiction, suppose that rajcode(w’);, = rajcode(w);, — 1. Then it must be that
B € LIS(w’,i1). The choice of js requires that 8y < jo. However, 83 = a3 > ji. Thus,
Jj2 > j1, a contradiction. Hence rajcode(w);, = rajcode(w’);,.

It remains to show that whenever ¢(C™ (w)) = 1 or (ia, ja) € M(CN(w)), we have
rajcode(w);, = rajcode(w’);, +1. When £(C™ (w)) = 1, we have w’ = wy. In this case,
it is easy to see that rajcode(w);, = 1 as needed. Suppose then that £(CN(w)) > 1
and (ig, jo) € M(CY (w)). This implies that either i; < iz, or i; = iy with j; < ja.

Assume first that iy = i3 and j; < js. From the construction of C’N(w), we see
i1 < J1 < jo with w(i;) < w(j1) < w(jz2). The choice of j; asserts that exists
a € LIS(w,i1) with as = j;. Hence rajcode(w);, < rajcode(w’);, + 1. We prove the
reverse inequality. The choice of j; asserts that exists 8 € LIS(w’,41) with B3 = Jo.
Inserting j; into 5 produces an increasing subsequence of w starting from i; of length
rajecode(w’);, + 2, so rajcode(w);, + 1 > rajcode(w’);, + 2. This concludes the case
i1 = 1o and 71 < Jo.

Now, assume i; < 4. The construction of CV(w) then implies that

w(j1) = max{w(ir), w(jp +1),...,w(n)}.

Since there must be some « € LIS(w, i1) that includes ji, it follows that a = (i1, j1) is
the only such sequence. Hence rajcode(w);, = 1 and rajcode(w’);, = 0 as needed. O

THEOREM 7.2. Fiz any w € S,, and let {(w) = (CN (w), M(CN (w))). Then

wt(&(w)) = rajeode(w).

D(w) D(w')

51 51

J1 J1

FIGURE 2. A visual aid for the structure of w and w’ in the proof of Theorem 7.1.

Algebraic Combinatorics, Vol. 7 #3 (2024) 642



On the Degree of Grothendieck Polynomials

Proof. We work by induction on m = ¢(wg) — £(w). If m = 0, then w = wg. Then
CN (wp) is empty, and both rajcode(wy) and wt(&(w)) are the zero vector.

Assume the result holds for all m’ < m. Suppose £(w) = £(wg) —m. Let CN (w), =
(ip,jp) for p € [U(CN(w))] and w' = wt;j,, so &(w') = (CN(w'), M(CN(w))).
By induction, wt(£(w’)) = rajcode(w’). The theorem now follows immediately from
Lemma 4.14 and Theorem 7.1. O

COROLLARY 7.3. For any w € S,,, #M (CN (w)) = raj(w).
COROLLARY 7.4. The degree of &, is at least raj(w).

Proof. By Theorem 7.2, the monomial a"€d¢(®) has degree raj (w) and lies in the
support of &,,. Thus, deg &,, > raj(w). O

8. THE DEGREE OF &,, EQUALS raj(w)

We showed in Corollary 7.4 that deg &,, > raj(w). In Corollary 8.10 we show that
deg &, = raj(w). This yields an alternate proof of part of Theorem 1.1.
Let C be a climbing chain of w € S,,. Suppose C' consists of

C1=(i1,51) w(l) Ca=(i2,j2) w(z) C3=(i3,53) Cm=(tm Jm)

C:w=uw® w™) = .

Using Algorithm 1 below, we associate to C' two sequences of sets: ¥g, Uy,...,¥,,
and Qo, Ql, ey Qm

Algorithm 1

input w € S,
input a climbing chain C' of w with components

C:w=w® C1=(i1,51) w® Ca=(i2,j2) w® Cs=(i3,j3),  Cm=(im.jm) wm) — wo

for g € [n —1] do
compute the lexicographically last element a? = (o, ..., O‘Zq) of LIS(w, q)
end for
initialize ¥( = UZ;ll {(q, ad), ..., (q, azq)}
initialize Qg = @

for k=1,2,...,m do
if Cy € ¥i_1 then
set U = Wr_ 1\ {Ck}
set Qp = Qp_1 U {Ck}
else if w*) (a’') > w* (V) for some (a’,b') € ¥),_; then
set Wy = {(tikjlc (a)vb) | (a,b) € \Ijkfl}

set Qp = Qp_1
else
set \I/k = \I/k—l
set Qk = Qk—l
end if
end for

return Vg,..., ¥, and Qp,...,Q,
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DEFINITION 8.1. Observe that Algorithm 1 builds Qi and Uy by performing exactly
one of three available transformations on Qx_1 and Vi_q1: the “if”, “else if”, and
“else” blocks. We will (respectively) name these three operations transfer, adjust, and
pass.

ExAMPLE 8.2. Let w = 265143. The Rothe diagram of w is

.-
D(w) =
¢
Consider the chain
C - 265143- 22562143 22,652143- 265314232, 654132 2 6543125 654321,

We first initialize ¥ and € following Algorithm 1. For each g € [5], the sets LIS(w, q)
are

LIS(w,1) ={(1,2),(1,3),(1,5),(1,6)}
LIS(w,2) = {(2)}
LIS(w,3) = {(3)}
LIS(w,4) = {(4,5), (4,6)}
LIS(w,5) = {(5)}
The lexicographically last elements of LIS(w, q) for ¢ = 1,2,3,4,5 are

(L 6)7 (Q)v (3)) (47 6)’ (5)7 so Wy = {(lv 6), (47 6)}

We also start with Qy = @.
The algorithm terminates after the six steps shown in Figure 3.

(1,3) (1,2) (3,6) (3,5) (4,5) (5,6)

w = 265143 562143 652143 653142 654132 654312——654321
T it F F I HY i F ik I &
MIEeH e O s O — =
[T et [T e+ [TTeH [TeHHH [TeH [TeH oHHH

adjust pass transfer pass adjust transfer
\I/() \Ifl \112 \1/3 \1’4 \115 \Ijﬁ

{(1,6),  {(36), {36, {46} {46} {(,6)} 0
(4,6)} (4,6)} (4,6)}

QO Ql QQ Qg Q4 Q5 Qﬁ
0 0 0 {36}  {B.6} {B,6} {B,6),
(5,6)}

F1GURE 3. Execution of Algorithm 1 on a climbing chain of w = 265143.

The following lemma describes a key property of the sets Wy from Algorithm 1.
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LEMMA 8.3. Let w € S,, and C be a climbing chain of w. Assume the notation of
Algorithm 1. Fiz k with 0 < k < £(C). For each q € [n—1], let the elements of ¥y, of
the form (q,x) be (¢, B%),..., (q,,@qu), labeled so 1 < --- < ﬁqu. Then

g< Bl and wP(q) <w®(BH <. < w(k)(ﬁqu).

Proof. We work by induction on k. When k = 0, the lemma follows from the definition
of ¥y. Suppose the lemma holds for £ — 1.

Suppose first that ¥ is obtained from W;_; by a transfer operation. Then ¥, =
U—1 ~ {(ik, jx)}. Since (ig, ji) is a link in C, this means it must be the lexicograph-
ically first element of Wj_; (by the induction assumption). The statement of the
lemma follows easily in this case.

Next, suppose that ¥y, is obtained from Wj_; by an adjust operation (see Figure 4
for a visual representation of this case). It follows (i, jr) € ¥i_1, w® (a’) > w* (¥')
for some (a/,V’) € ¥y, and

Uy = {(tikjk, (a)vb) | (a,b) € \I}kfl}'

Observe that all such (a’,b’) must satisfy a’ = ig, V' > jg, and wY(iy) <
w1 () < w1V (j;). The adjust operation then guarantees the conditions of the

lemma are met.
Lastly, consider the case of a pass operation. This means that (ig,jr) ¢ Yr—1 and
w* (a) < w*)(b) for all (a,b) € ¥)_1. The conditions of the lemma are immediate.
d

For later use, we separately record an observation made in the “adjust” case of the
proof of Lemma 8.3.

LEMMA 8.4. Let w € S;, and C be a climbing chain of w. Assume the notation of
Algorithm 1. Suppose step k in the execution of Algorithm 1 is an adjust operation
caused by (a’',0') € Up_1. Then o’ =iy and b’ > ji.

ik ik
Tk Tk
v v
1 1
(i, V') € Upq (Ji, 0') € Wy,

FI1GURE 4. Visual representations of the “adjust” case in Lemma 8.3
. The two hooks moved are indicated in blue.

The following lemma records basic properties of Algorithm 1.
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LEMMA 8.5. Let w € S,, and C be a climbing chain of w. Assume the notation of
Algorithm 1. Then
(ii) For each 0 < k < m, one has Q C {C4,...,Ci}.
(ili) If (ip,jp) € Qi for some k, then Qp = Q1 U {(ip,jp)} and ¥, = ¥p_q \
(e )} B
(iv) For each 0 < k < m, one has #Qy, + #¥, = raj(w).
(v) U, =@ and #Q, = raj(w).

Proof. We first address (i) and (ii). Initially, 29 = @. Only the transfer operation
causes Q # Qi_1, specifically by adding the element Cj = (ig, jx) to Qk—1. Thus (i)
and (ii) hold. For (iii), note that (ip,j,) € Q implies step p of Algorithm 1 was a
transfer operation. Claim (iv) holds by an argument analogous to that of (ii). The
claim that ¥,, = @ in (v) follows from Lemma 8.3. That #£2,,, = raj(w) then follows
from (iv). O
DEFINITION 8.6. Let C' be a climbing chain of w € S,,. Suppose the minimal markings
M(C) are

{Ckl,CkQ,...,Ckp} with 1<k1<k2<--~<kp<£(0).
Define the runs of C' to be the (disjoint) subsequences of C consisting of links k,
through kyy1 — 1 for each q € [p] (taking kpy1 = ¢(C) +1).
EXAMPLE 8.7. Continuing Example 8.2, let w = 265143 and

C=((1,3),(1,2),(3,6),(3,5), (4,5), (5,6)).

Indicating the minimal markings M (C) by overlines and separating runs by “|”, the
runs of C are

(1,3),(1,2) | (3,6),(3,5) | (4,5) | (5,6).
LEMMA 8.8. Let w € Sy, and C be a climbing chain of w with length m. Construct the
sets g, ..., Ly and Vo, ..., U, using Algorithm 1. Then each run of C' contains at

most one element of Qy,.

Proof. Consider a run Cp, Cp41,...,Cy of C containing at least two elements of €2,,.
The definition of run forces {C)p, Cpy1,...,Cq} N M(C) = {C,}. It follows that i, =
ipr1 = =igand jp > jpp1 > o > jg > ip.

First, suppose that Cy,Coy1 € Q,, for some p < a < ¢. By Lemma 8.5(iii),
Co,Cot1 € Yy 1. But iy, =i441 and jg, > jat1, so Lemma 8.3 implies

w V(i) < 0@ (jarr) < 0@ (fa).

This contradicts the climbing chain condition w1 < w(®) = w(“_l)tiaja (see
Lemma 4.1).

Now suppose C,,Cy € €,, for some a,b with p < a <b—1,b< gand b —a
minimal. Additionally, suppose there are no adjust operations between steps a and b
in the execution of Algorithm 1. This implies ¥, = W y; = --- = ¥p_;. Thus
C,,Cy € ¥,_1, again contradicting the Bruhat cover condition on climbing chains.

Lastly, suppose there was an adjust operation between steps a and b in the execu-
tion of Algorithm 1. Say the first such adjust operation occurs at step k. Recall that
iq =lQq41 = -+ =1k = -+ = ip. Suppose first that there are no elements (ix, q) € V.
Then by Lemma 8.4, no further adjust operations occur prior to step b. Thus there
are no elements (ix,q) € ¥,_1. By Lemma 8.5, this contradicts that Cj, € €Q,,.

Hence we may assume that there is an element of the form (ig,q) € ¥y. Then
(Jk,q) € ¥i_1, so Lemma 8.3 implies ¢ > ji. Hence ¢ > ji > jry1 > -+ > Jb, SO
(ik,q) §§ {Ok-, Ck+1a ey Cb}.
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If there is only a single adjust operation between steps a and b, this contradicts
that C, € Q,,. If there is more than one adjust operation between steps a and b,
the same contradiction is reached by repeating the previous argument for each adjust

operation. O
D(w*D) D(w®)
ik ik
Jk Jk
q/ q/
q ! q !
(i, q') € Wi (Jrq") € Wy,
(Jr,q) € Vi1 (ix,q) € ¥y,

FIGURE 5. Visual aids for the “adjust” case in the proof of Lemma 8.8.

THEOREM 8.9. For any w € S,, and any climbing chain C of w,
raj(w) < #M(C).

Proof. Use Algorithm 1 on C to produce £2,,,. Decompose C' into runs. By definition,
the number of runs equals #M (C). Lemma 8.8 shows there is at most one element
of Q,, in each run. Lemma 8.5(v) implies #,,, = raj(w). Putting this all together,

HM(C) > #Qy, = Taj(w). O

We are now ready to provide the alternative proof of the degree statement in
Theorem 1.1:

COROLLARY 8.10 ([21, Theorem 1.1]). The degree of &,, equals raj(w).

Proof. By Theorem 7.2 and Corollary 7.4, raj(w) is a lower bound on deg &,, that is
attained by the nested chain. Theorem 8.9 implies no climbing chain of w contributes
a monomial of degree larger than raj(w). Thus, deg &,, = raj(w). O

9. LEADING TERM OF &,, IN TERM ORDERS WITH 71 < --- < Tp,

We complete the alternative proof of Theorem 1.1. In Corollary 8.10 we showed the
degree statement; below we show that x'2°°4¢(*) is the leading monomial of BLoP in
any term order satisfying x7 < -+ < x,.

LEMMA 9.1. Let C be a climbing chain of w € S, with w # wy. Suppose Cp = (ip, jp)
forp € [¢(C)], and set v = wt;, j,. Then

(i) rajcode(w), = 0 = rajcode(v), for p € [i1 — 1],

(ii) rajcode(w);, > rajcode(v);,,
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(iii) rajcode(w), < rajcode(v), fori; +1 < p < n.

Proof. Claim (i) is immediate since 41 since w(k) = v(k) = n—k+1 for k € [i;]. Since
v(i1) > w(iy), any a € LIS(v,4;) is also an increasing sequence in w. This shows (ii).

Consider claim (iii). When p > j;, (iii) follows since w and v agree after position
J1. Since v(j1) < w(j1), (iii) holds when p = j;. It remains to consider i1 < p < j;.
Since w < v, either w(p) < w(iy1) or w(p) > w(j1). In either case, any a € LIS(w, p) is
also an increasing sequence in v. This proves (iii). O

DEFINITION 9.2. We call a climbing chain C' of w € S,, heavy if #M(C) = raj(w).

We choose the name “heavy” since such chains C' will have maximal total weight:
| wt(C)| = raj(w).

LEMMA 9.3. Let C be a climbing chain of w € S,,, and assume the notation of Algo-
rithm 1. Suppose Cy, is the last link in C of the form (i1,x). Then

e rajcode(w), = 0 = rajcode(w'®), for p € [i; — 1],
e rajcode(w);, > rajcode(w®);, =0,
e rajcode(w), < rajcode(w(k))p forip+1<p<n.

whenever i1 + 1 < p < n. Additionally if C is heavy, then the truncation C' =
(Chits- -+, Cm) is heavy (as a climbing chain of w*) ).

Proof. The itemized claims follow from repeated applications of Lemma 9.1. To see
the final claim, suppose C’ is not heavy. Concatenating (C1,...,C) with a heavy
chain for (w®) yields a climbing chain of w with fewer minimal marking than C,
implying that C is not heavy. O

LEMMA 9.4. Let C' be a heavy climbing chain of w € S,,. Then
wt(C, M(C));, < rajcode(w);, .

Proof. Assume the notation of Algorithm 1. Suppose k is the index of the last link
in C of the form (i1,*) and C' = (Ck1,...,Cy). By the choice of k, we have

WEH(C, M(C)), = WEH(C", M(C")), = 0 for p < iy,
wi(C, M(C));, >0,

wt(C’, M(C"));, =0,

WH(C, M(C)), = WE(C", M(C")), for p > i1.

Observe that the choice of k implies rajcode(w(k))p = 0 for p < 4. Applying
Lemma 9.3,

[WE(C, M(C))| = WH(C, M(C)),

SHCMO) + Y WHC M),

p=i1+1

WO MO+ Y W, M),
p=i1+1
WH(C, M(C))i, + |W(C", M(C"))]

— WH(C, M(C))i, + taj(w®)

=wt(C, M(C));, + rajecode(w™);, 41 + - - - + rajcode(w™),,.
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On the other hand, C being heavy implies
[wE(C, M(C))| = Taj ()
= rajcode(w);, + - - - + rajecode(w),.

Hence,
(1)
n
(wt(C’, M(C))i, — rajcode(w)il) + Z <rajcode(w(k))p — rajcode(w),,) =0.
p=ii1+1
By Lemma 9.1, each term in the summation is nonnegative, so the leftmost term must

be nonpositive. Thus,
wt(C, M(C));, < rajcode(w);, . O
LEMMA 9.5. Let C be a heavy climbing chain of w € S,. Assume the notation of
Algorithm 1. Suppose that k is the index of the last link in C of the form (i1,x), and
ﬁ(oa M(C))zl = ra‘jCOde(w)il :
Then
rajcode(w®), = rajcode(w), forp =iy + 1.

Proof. This is an immediate consequence of (1). O
THEOREM 9.6. For w € S, and any term order satisfying x1 < xo < -+ < Tp,

graicode(w) — pip {mm(C’M(C)) | C is a heavy climbing chain of w} .
Equivalently,

grajcode(w) — gy {th(C’M(C)) | C is a heavy climbing chain of w} .

Proof. 1t is immediate from the definition of wt that the two assertions of the theorem
are equivalent. We focus on the first. Since all heavy climbing chains have the same
number of minimal markings, the theorem is equivalent to proving

grajcode(w) — max {wm(C’M(C)) | C is a heavy climbing chain of w} .

in any term order with z1 > x2 > --+ > z,. For each p € [n], let k, be the index
of the last link in C' of the form (p,*). The theorem follows by applying Lemmas 9.4
and 9.5 (sequentially) to each of w(F1) w*2)  qkn-1), O

Alternate Proof of Theorem 1.1. Combine Theorem 9.6 and Theorem 4.10. O

10. INTERPOLATING CHAINS

We define climbing chains that interpolate between the greedy and nested chains.
We show that the monomials predicted by Hafner (Conjecture 1.2) to be the leading
monomials of the homogeneous components of the Grothendieck polynomial &,, in
any term order satisfying x; < --- < x, arise from these interpolating chains. In
the next section we show that they are indeed the leading monomials (confirming
Conjecture 1.2).

DEFINITION 10.1. Let w € S, and C be a climbing chain of w. A link Cp, = (ip, jp)
is called greedy if greedy(wt; j, ---ti, ,j,_,) = (ip,jp), and is called nested if
neSted(Wtilﬁ o .tipfljpfl) = (ip’jp)'

Clearly C%(w) is the unique climbing chain of w such that every link is greedy,
and analogously for OV (w). Note that a given link can be both greedy and nested.
We now define a family of chains that interpolate between C%(w) and CV (w).

Algebraic Combinatorics, Vol. 7 #3 (2024) 649



M. DREYER, K. MESzZAROS & A. ST. DIZIER

DEFINITION 10.2. Fiz w € S, and let m be the length of any climbing chain of w.
We define the interpolating chains of w to be the climbing chains I°(w),. .., I™(w)
constructed as follows. For 0 < k < m, define I*(w) to be the unique climbing chain
of w consisting of m — k greedy links followed by k nested links.

Observe that CN(w) = I"™(w) and C%(w) = I°(w) = I*(w), since the final link in
a chain must be both nested and greedy.
EXAMPLE 10.3. Let w = 5721463. The distinct interpolating chains of w together with
their underlying permutations are (with nested steps blue and greedy steps red)

19(w) : 5721463 56721453 127621453 © 7 7631452 U7 7641352 4 7651342

B0, 765234147, 76532411, 7654231 2 7654321,

I(w) : 5721463 6721453 % 7621453 P 7631452 27 7641352 P 7651342

B9, 765314249, 765413227, 76542312 7654321,

I (w) : 5721463 56721453 127621453 227641253 %% 7651243 ) 7652143
@) (4.6) (5,7) (5.6)

—57653142—>7654132——=7654231———, 7654321.
The full collection of interpolating chains is
10(w) = I'(w) = I2(w) = }(w),
I'(w) = I’ (w) = I°(w),
I"(w) = I¥(w) = I°(w).
DEFINITION 10.4. To each permutation w € S, , we associate a sequence of vectors
leads(w) = (Ly(0), ..., Ly(d)),

where d = raj(w) — inv(w). Set L, (0) = inveode(w). Define L., (i) for i € [d] as
follows: set j € [n] to be the largest index such that L, (i —1); < rajcode(w);, and
define L, (i) = L, (i — 1) +e;.

Recall that rajcode(w)y > invcode(w)y for all k € [n], so L, (d) = rajcode(w).
ExaMpPLE 10.5. Continuing Example 10.3, when w = 5721463 we compute
invcode(w) = (4,5,1,0,1,1,0),
rajcode(w) = (5,5,2,1,1,1,0).
Thus leads(w) = (L, (0), Lw(l), L.,,(2), L, (3)), where

L,(0)=(4,5,1,0,1,1,0),
L,(1)=(4,51,1,1,1,0),
w(2) (4,5,2,1,1,1,0),
L,(3)=(5,5,2,1,1,1,0).

We now prove that the monomials (%) appear with nonzero coefficient in &,,.
We illustrate the key idea in the following example.

ExAMPLE 10.6. Continuing Examples 10.3 and 10.5, let w = 5721463. We mark each
interpolating chain I*(w) by
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e completely marking the initial string of greedy links plus the first nested link,
and
e minimally marking the remaining links.

Indicating markings with overlines and greedy/nested with red/blue respectively, we
obtain the chains and exponents shown in Figure 6.

Marked Interpolating Chain Weight Exponent
I°(w) = ((1,6),(1,2), (3,7), (3,5), (3,6), (4,7), (4,5), (4,6), (5,6)) | L,(0) = (4,5,1,0,1,1,0)
I'(w) = ((1,6),(1,2), (3,7), (3,5), (3,6), (4,7), (4,5), (4,6), (5,6)) | L,(0) = (4,5,1,0,1,1,0)
I2(w) = ((1,6), (1,2), (3,7),(3,5), (3,6), (4,7), (4,5), (4,6), (5,6)) | L,(0) = (4,5,1,0,1,1,0)
I(w) = ((1,6), (1,2), (3,7),(3,5), (3,6), (4,7), (4,5), (4,6), (5,6)) | L,(0) = (4,5,1,0,1,1,0)
I(w) = ((1,6), (1,2), (3,7),(3,5), (3,6),(4,5), (4,6), (5,7), (5,6)) | L,(1) = (4,5,1,1,1,1,0)
I5(w) = ((1,6), (1,2), (3,7),(3,5), (3,6), (4,5), (4,6), (5,7), (5,6)) | L,(1) = (4,5,1,1,1,1,0)
I%(w) = ((1,6), (1,2), (3,7),(3,5), (3,6), (4,5), (4,6), (5,7), (5,6)) | L,(1) = (4,5,1,1,1,1,0)
I'(w) = ((1,6), (1,2), (3,5), (3,6), (4,5),(4,7), (4,6), (5,7), (5,6)) | L,(2) = (4,5,2,1,1,1,0)
I3(w) = ((1,6), (1,2), (3,5), (3,6), (4,5), (4, 7), (4,6), (5,7), (5,6)) | L,(2) = (4,5,2,1,1,1,0)
I°(w) = ((1,6), (1,2), (3,5), (3,6), (4,5),(4,7), (4,6), (5,7), (5,6)) | L,(3) = (5,5,2,1,1,1,0)

FIGURE 6.

LEMMA 10.7. Fiz w € S,,. Let greedy(w) = (4, j) and v = wt;;. Then either

rajcode(w) = rajcode(v) or rajcode(w) = rajcode(v) + e;.
Equivalently, either rajcode(w) = rajcode(v) or rajcode(w) = rajcode(v) — e;.
Proof. By definition, i = min{k | w(k) #n+1—k}, and j = w1 (w(i)+1). Thus v is
obtained from w by swapping the numbers w(i) and w(i) + 1. It is straightforward to

check that rajcode(w) = rajcode(v) unless every sequence o € LIS(w, ) has ag = j.
In this case, rajcode(w) = rajcode(v) + e;. O

LEMMA 10.8. Fiz w € S,,. Let greedy(w) = (4, j) and v = wt;;. Set leads(v) to denote
the list of vectors (Ly(0),. .., Ly(d)). Then:

(a) If rajecode(w) = rajcode(v), then
leads(w) = (L., (0) —
(b) If rajcode(w) = rajcode(v) — e;, then
leads(w) = (L (0) — €4, ..., Ly (d) — ;)

€iy- -y Ly(d) — e;, rajecode(w)).

Proof. The lemma follows from Lemma 10.7 and invcode(w) = invcode(v) —e;. O

THEOREM 10.9. Fiz w € S,, and let m be the length of any climbing chain of w. Let
leads(w) = (L (0), ..., Ly (d)).
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For 0 < p < m, let &,(p) = (IP(w), UP(w)) where U%(w) = I°(w), and
UP(w) = M(IP(w)) U{IP(w)1, IP(w)2, ..., IP(W)m—pt1} for p € [m].
Then
{Lw(0),..., Ly(d)} = {wt (£, (0)), ..., wt(&w(m))}.
Proof. We work by induction on ¢(w). When w = wy we have d = m = 0 and
&w(0) = (@, @). Thus
{Lw(0)} ={(n—1,n—=2,...,1,0)} = {wt(£(0))} .

Fix w € S,, and suppose the theorem holds for all permutations v with £(v) > ¢(w).
Set greedy(w) = (4, j) and v = wt;;. By definition, invcode(w) = invcode(v) — e;. By
Lemma 10.7, either rajcode(w) = rajcode(v) or rajcode(w) = rajcode(v) — e;.

Suppose first that rajcode(w) = rajcode(v). By Lemma 10.8, leads(w) is obtained
by subtracting e; from each element of leads(v), then appending rajcode(w). Thus,

{Lw(0),...,Ly(d)} ={L,(0) —€;,...,Ly(d — 1) — e;,rajcode(w)} .
On the other hand, prepending and marking (4, j) to all of the interpolating chains
£,(0),...,&(m—1) of v yields &,(0),...,&,(m —1). The final chain &, (m) is simply
the nested chain of w with its minimal markings. Thus

{wt(€w(0)), -, wt(§w(m))} = {wt(§u(0)) — €, .., wt(§y(m — 1)) — ej, rajeode(w)} .

Applying the induction assumption to v completes the proof.
The proof in the case that rajcode(w) = rajcode(v) — e; is almost identical. It is
still true that

{wt(£4,(0)), ..., wt(Ew(m))} = {wt(&(0)) — €4y ..., wt(&(m — 1)) — e;, rajeode(w)} .
However, Lemma 10.8 shows one instead obtains

{L(0),...,Ly(d)} = {Ly(0) — €4,...,Ly(d) — e;}.
In this case, one completes the proof by noting rajcode(w) = rajcode(v) — e; =

wt(&y(m — 1)) —e;. O

COROLLARY 10.10. The monomials appearing in Conjecture 1.2 lie in the support
of &, .

11. PROOF OF CONJECTURE 1.2

In Corollary 10.10 we showed that the monomials named in Conjecture 1.2 are in the
support of &,,. We show that these monomials are actually the leading monomials of
the homogeneous components of &,,.

LEMMA 11.1. Let (C,U) be any marked climbing chain of w € Sy, and C1 = (i1, j1).
Then

wt(C,U);, < invcode(w);, .
If equality holds, then
(C1,Ca,....Cx) = (CT,...,CP),
where Cy, s the last link in C of the form (i1, *).
Proof. From the definition of a climbing chain, we see that all links of the form (iy, )
in C' are noninversions of w, pairs (a, b) with a < b and w(a) < w(b). There are exactly

n — i1 — invcode(w);, = inveode(w);, of these noninversions with a = ¢;. The second
assertion follows from the nested hook interpretation of climbing chain links. O
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LEMMA 11.2. Let (C,U) be a marked climbing chain of w € S, with C given by

C:w=w® Ci=(i1,j1) w Ca=(i2,j2) w? Ca=(iz,ja)  Cm=(im,jm) 0™ — wo.

Then
wt(C,U);, < Loy(m — #U);,

Proof. Suppose CY, is the last link in C of the form (i1, ). By Theorem 8.9,

U =|Wt(C,U)| = Wt(C,U)i, + Y Wi(C,U), = Wt(C,U);, + raj(w™),

p=i1+1
On the other hand, Lemma 9.3 implies
raj(w) < rajode(w);, + raj(uw®),
so that
HU = Taj(w) + (AU - Taj(w)) < rajeode(w)s, + taj(w®™) + (U — taj(w)).

Hence
wt(C,U);, < rajcode(w);, + (#U — raj(w)).

To conclude the proof, we will analyze rajcode(w);, + (#U — raj(w)). Let d =
m — #U. See Figure 7 for a visual representation of the following argument. Re-
call that L, (d) is obtained from invcode(w) by iteratively increasing components d
times, moving right-to-left so entries stay weakly below the corresponding entries of
rajcode(w). Then L., (d) is obtained from invcode(w) by iteratively decreasing com-
ponents d times, moving right-to-left so entries stay weakly above the corresponding
entries of rajcode(w).

Equivalently, L, (d) is obtained from rajcode(w) by iteratively increasing compo-
nents m — raj(w) — d times, moving left-to-right so entries stay weakly below the
corresponding entries of invcode(w). Note that

m —Taj(w) — d = #U - Taj(w).

If rajcode(w);, + (#U — raj(w)) > invcode(w);,, then L, (d);, = invcode(w);, and
Lemma 11.1 completes the proof.
Otherwise, rajcode(w);, + (#U — raj(w)) < invcode(w);, , so

zw(m - #U)H = rajCOde(w)il + (#U - ﬁ(w)) > R(C7 U)h

as shown above, so we are done. O
rajcode(w) rajcode(w)
decrease increase increase decrease
left-to-right l T right-to-left left-to-right l T rlght to left
—[F(w)| —d m—[F(w)| —d m—[r(w)| —d
times times times tlmes
L’lU (d)
decrease increase increase decrease
left-to-right right-to-left left-to-right right-to-left
d times . d times d times . d times
inveode(w) inveode(w)

FIGURE 7.
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THEOREM 11.3. Fiz w € S,,, and let Z,, denote the set of marked climbing chains of
w. For each d with 1 < d < raj(w) — inv(w) and any term order satisfying x1 < xo <
e xn’

al(@ = min {mWCW | (C,U) € 2, with #U = ((C) — d} .
Equivalently,
2l (@ = max {th(C’U) | (C,U) € 2, with #£U = ((C) — d} .

Proof. Tt is immediate from the definition of wt that the two assertions of the theorem
are equivalent. We focus on the first. Since we are considering marked climbing chains
with a fixed number of marks, the theorem is equivalent to proving

2@ = max {xWC’MW | (C,U) € 2, with #U = £(C) — d} .

in any term order with 1 > zo > -+ > x,,.

Assume the notation of Algorithm 1. By definition, L,,(d), = wt(C,U),, for p < iy.
Lemma 11.2 shows that L,,(d);, = wt(C,U);,. If the inequality is strict, then there is
nothing to prove.

Suppose first that Ly, (d);, = wt(C,U);, < invcode(w);,. Then for p > iy, Ly(d), =
rajcode(w),. Let C be the last link in C' of the form (i1, ). Let C' = (Cy41,...,Cm)
and U'=UNC".

By Theorem 8.9,

Y. WHC,U), = [Wi(C,U")] = raj(w®).
p=i1+1
For p > i, Lemma 9.3 shows rajcode(w®)), > rajcode(w),. Then
@ 3 WOV, zme®) > Y meodw), = Y Tuld),
p=i1+1 p=i1+1 p=t1+1

Since |Ly(d)| = |wt(C,U)| and L, (d), = wt(C,U), for p < i, it follows that
equality holds throughout in (2). Thus C’ is heavy for w*), so the theorem now
follows from Theorem 9.6.

It remains to consider the case that L, (d);, = wt(C,U);, = invcode(w);,. In this
case, we may pass to w®) and repeat the above arguments and iterate. The iteration
will terminate at worst with wp, for which the theorem is trivial. O

12. ON LEADING MONOMIALS IN TERM ORDERS SATISFYING 1 > -+ > Tp,

We consider the leading monomials of the homogeneous components of &, in any term
order satisfying 7 > xo2 > -+ > x,. The lowest degree component, the Schubert
polynomial &,,, is well-known to have leading term coming from the top-reduced
pipe dream of the permutation [1]. We verify the leaping chain C*(w) (Definition 5.8)
realizes this monomial. We prove the staircase chain C**(w) (Definition 5.11) is heavy,
and conjecture it yields the leading monomial of &P in any term order satisfying
x1 > To > - > x,. We conclude with an analogue of Conjecture 1.2.

12.1. LEAPING CHAIN.

THEOREM 12.1. In any term order with x1 > xo > -+ > x,,, the leading monomial of
the Schubert polynomial &, is V(€ W).C* (W),

Proof. Tt is straightforward to check that the leaping chain corresponds to the top-
reduced pipe dream under the cotransition bijection. O
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12.2. STAIRCASE CHAIN.
THEOREM 12.2. For any w € S,,, C°(w) is a heavy climbing chain.

Proof. Recall that C°(w) is the concatenation of stair(w) and another staircase chain
CS(w'). Observe that the sequence stair(w) will contribute only its first element to
M(C*®(w)) by definition. If we can show that raj(w) = raj(w’) + 1, then we are done
by induction.

We show that raj(w) = raj(w’) + 1 by tracking how raj(-) changes as the transpo-
sitions corresponding to the links in stair(w) are applied iteratively to w. Recall the
sets K1,. .., K, used to define stair(w).

To see the following claims, refer to the visual aid in Figure 8. Each link from K3
other than the last such link does not change the previous value raj(-). The last link
from K decreases the previous value raj(-) by 1. For links from each subsequent set
K

P

e the first such link increases raj(-) by 1;

e intermediate such links do not change raj(-);
e the final such link decreases raj(-) by 1.

Any singleton K, acts as both the first and final link, leaving raj(-) unchanged. Thus,
rai(w) = raj(w’) + 1. O

Oe—

t

FIGURE 8. A visual aid for the proof of Theorem 12.2. The sets used
to define stair(w) here are K = {12,8,7,6,4, 3,2} (indicated in blue),
K; ={12,8,7}, K ={6,4,3}, and K3 = {2}.

DEFINITION 12.3. Fiz w € S,,. Define the highest nesting length h(w) as follows. If
w = wy, set h(w) = 0. Otherwise, set (qo,q1) = leap(w). Iteratively define

qk = min{p | P> qp—1 and wt%’ll e tQOQk'—l < wtth U tQOQk—ltqop}

Algebraic Combinatorics, Vol. 7 #3 (2024) 655



M. DREYER, K. MESzZAROS & A. ST. DIZIER

until the set on the right side is empty. Let the h(w) = #{q1,q2,...} be the number
of steps taken.

Graphically, the quantity h(w) counts the sequence of highest nested hooks south
and east of the dot in row gg of D(w).

EXAMPLE 12.4. For the w = 1465273, h(w) = 3 counts the hooks indicated in blue in
Figure 9.

qo
q1
q2
qds *—
?
FIGURE 9.

LEMMA 12.5. For any w € S,, and marked climbing chain (C,U) of w,
m(cv U)’h = h(w)
Proof. f w = wy, the lemma reduces to 0 > 0. Otherwise, let ¢ = min{j | w(j) #
n+1—j}. We work by induction. Let C), = (i, j,) for all p, so ¢ = i1. Set w’ = wt;, ;,
and (C’,U’) be the corresponding truncation of (C,U). Suppose leap(w) = (i1,b) If
J1 # b, then j; > b, so h(w') = h(w). In this case, induction implies
wt(C,U);, = wt(C',U");, = h(w') = h(w).

Hence we may suppose that j; = b. If w’(i1) = n—1i1+1, then wt(C,U);, = 1 = h(w).
Otherwise, i1, = i2 and the definition of leap(w) forces jo > j1. Then (ig,j2) € U, so
by induction,

wt(C,U);y, = wt(C',U");, +1 = h(w') + 1 = h(w). O
LEMMA 12.6. Let C be a heavy climbing chain of w € S,,. Then
wt(C, M(C))i, = Wi(C (w), M(C®(w)))i,
Proof. By Lemma 12.5, it is enough to show that
wWt(CF (w), O (w))s, = h(w).

The chain C*®(w) is constructed iteratively by adding chunks of the form stair(v) for
v € S,. Within a chunk stair(v), the first components are all the same and the second
components are decreasing. The last element (a,b) in stair(v) will exactly be the
highest hook nested under the hook in row a of D(v). The first link of the next chunk
will either have first component a’ > a, or first component a and second component
b > b. Thus, the links in M(C®(w)) are exactly the first elements in each chunk
stair(v) used in constructing C*°(w). The last links of the chunks are exactly the row
indices of the hooks in D(w) counted by h(w). O
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CONJECTURE 12.7. Fiz w € S,, and pick any term order satisfying x1 > xo > --+ >
T,. Let &€ = (C%(w), M(C®(w))). Then

') = min {wm(c’M(C)) | C is a heavy climbing chain of w} .
Equivalently,
") = max {:I:Wt(C’M(C)) | C is a heavy climbing chain of w} .

By Theorem 12.1, the leading monomial of &,, in any term order with z; > x5 >
.-+ > x, is witnessed by C*(w). The following conjecture is an analogue of Conjec-
ture 1.2/Theorem 9.6. We have tested it for all permutations in Ss.

CONJECTURE 12.8. Fix w € S, and any term order with 1 > x9 > -+ > x,. For
lw) < k < raj(w), let mi(x) be the leading monomial of the degree k homogeneous
component of &,,. Then

my(x) = zpmi_1(x)
where p is the smallest index such that x,mp_1(x) divides VO (W), M(C® (W)
ExAMPLE 12.9. Mirroring Example 10.5, let w = 5721463. Then
wt(CF(w), CH(w)) = (5,4,2,1,0,0,0),
wt(C®(w), M(C®(w))) = (5,5,2,1,1,1,0).

Then the conjectured leading monomials of the homogeneous components of &,, have
exponents

(5,4,2,1,0,0,0),
(5,5,2,1,0,0,0),
(5,5,2,1,1,0,0),
(5,5,2,1,1,1,0).
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