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Abstract— The emerging technology of Vehicle-to-Vehicle
(V2V) communication aims to improve road safety by allowing
vehicles to share information about the world. However, infor-
mation design is in general a non-trivial problem, and is only
made more difficult by uncertainty about the world or agents.
In this work, using an existing model of V2V communication
with endogenous accident probability, we study an information
designer’s optimization problem under uncertainty about the
“danger level” (the sensitivity of accident probability to agent
behavior). First, we consider an information designer who does
not know the danger level designing for agents who do; second,
an informed designer designing for uninformed agents. In both
cases, we present a simple characterization of the worst-case (i.e.
largest accident probability) outcome that is possible under the
uncertainty. When an information designer is uncertain about
the world, the worst case occurs with the largest danger level.
By contrast, when agents are uninformed, the worst case is
caused by agents’ beliefs being the lowest danger level. Both
of these results simplify the optimization problem, allowing an
optimal signaling policy to be more easily determined.

I. INTRODUCTION

Technologies such as the Internet of Things (IoT) and
Vehicle-to-Vehicle (V2V) communication are being rapidly
developed and integrated into every aspect of human life.
This integration has benefits, but also brings with it new
challenges for the designers of these technologies. With the
expectation of an engineered product being used in and for
human society, engineers must carefully consider the effects
that their technologies and human behavior will have on each
other. These socio-technical systems take many forms, and
recent work has identified situations where they may actually
harm the population they are intended to help [1], [2].

An important context for this is road traffic, usually
modelled as a congestion game [3], [4]. In this context,
emergent outcomes resulting from selfish individual behavior
can be far from socially optimal [5], [6], so engineers attempt
to build systems to improve these outcomes. Attempted
solutions include modifying the road network to alleviate
congestion [7], incentivizing drivers to choose certain be-
haviors [8], [9], and strategically disclosing information to
drivers to influence their decisions [10] (this is known as
information design). However, in each of these cases, naively
implementing the given solution can make the population
worse off than before any intervention took place [11]-[13].

This problem is only made more complicated by con-
sidering scenarios where exact information may not be
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available. Particularly in information design, prior work as-
sumes that underlying probability distributions are perfectly
known [14]-[16]. However, it is also known that human
behavior can be irrational and difficult to model [17]-[20],
meaning technical systems must account for the fact that
the behavior of their users cannot be perfectly predicted.
Prior work in other domains has approached this problem
by investigating control policies robust to unknown environ-
ments [21], [22], unknown agent utility functions [12], [23],
[24], and even unknown agent decision making policies [25],
but it is still largely an open question in the V2V domain.
In this paper, we use a model of V2V communication from
our prior work [1] to ask how an information designer should
design for a world and agents when only partial information
is known. One unique aspect of our work is that road hazards
occur endogenously; the behaviors chosen by drivers affect
the probability of an accident occurring. This relationship is
complex and difficult to predict (as shown by the paradoxes
described in [1]), so it is likely unreasonable for information
designers to have perfect information about it. In particular,
there may be discrepancies between the accident-causing
mechanism predicted by the information designer and the
actual mechanism used by the world, or between the agents’
belief about what will happen and the real world truth.
This work initiates a study of how uncertainty about
endogenous accident causing mechanisms can affect the
optimal signaling policy. We parameterize uncertainty using
a new quantity we call the danger level, which describes
how sensitive the induced accident probability is to driver
behavior (higher danger levels imply higher accident proba-
bilities for given driver behavior). In Theorem 3.1, we show
that if a designer does not know the danger level of the
world, then the worst-case accident probability is caused by
the highest possible danger level. By contrast, we show in
Proposition 3.2 that if a designer knows the world’s danger
level, but not the agents’ beliefs about it, then the worst case
is caused by the agents believing the lowest feasible value.

II. MODEL
A. Game Setup

We consider a non-atomic population of drivers interacting
on a single road where accidents sometimes occur. Each
driver may choose between careful (C) and reckless (R)
driving behaviors. Reckless drivers reach their destination
slightly faster, but will “pile on” to any existing accidents
(A). Careful drivers avoid accidents, but incur a “regret” cost
for the needless care if no accidents are encountered. These
incentives are summarized in the following cost matrix:



Accident (A) No Accident (—A)
Careful (C) 0 1
Reckless (R) r 0

where 7 > 1 is the cost of an accident.

Intuitively, driver behavior can affect the probability of
an accident, and more drivers choosing reckless behaviors
cause accidents to be more likely. Therefore, we let the class
of functions p,(d) describe the probability of an accident
when the average mass of reckless drivers is d. Here, a
describes the sensitivity of accident probability to driver
recklessness, and is called the danger level. The danger level
parameter is a unique addition over similar models from prior
work, and allows us to model uncertainty about how drivers’
actions will affect the world. We assume that each p,(d) is
continuous and increasing in d, non-decreasing in a, and
Pay (0) = pa,(0) for any ay, as.

A fraction y of cars in the population are equipped with
Vehicle-to-Vehicle communication (V2V) technology, which
can autonomously detect accidents and broadcast warning
signals about them to other V2V cars. If an accident exists,
then with probability ¢(y) it is detected and a warning
signal is successfully broadcast. Otherwise, a “false-positive”
warning signal is broadcast with probability f(y). We assume
that whenever a signal is broadcast it is received by all V2V
cars, and that false positive signals are strictly less likely
than true positives (i.e. f(y) < t(y)).

Finally, we define a game as the tuple of danger level,
V2V mass, and crash cost: G = (a,y, 7).

B. Signaling Equilibria

Prior work has shown that full disclosure is not always
optimal in information design problems [5], [6]. For example,
V2V drivers could become accustomed to receiving a signal
whenever there is an accident, and falsely assume that the
lack of a signal implies the road is safe. This could increase
driver recklessness and therefore accident probability. To that
end, we consider the idea that V2V cars should sometimes
not notify their drivers when a signal is received.

Call 8 € [0, 1] the information quality. When a V2V car
receives a signal, it will display a warning to its driver with
probability 5. With probability 1 — 3, it will do nothing
(and ignore all future signals from the same accident). The
signaler aims to choose [ to minimize accident probability.

If an agent drives a car with V2V technology, we call them
a V2V driver (v), otherwise, a non-V2V driver (n). We further
differentiate V2V drivers by whether their car has displayed
a warning: if it has, they are signaled V2V drivers (vs),
otherwise they are unsignaled (vu). We write oy, Tys, Tyy tO
denote the mass of drivers in each group choosing to behave
recklessly, and a behavior profile as © = (xy, (Tyu, Tvs))-

Our model allows driver behavior to endogenously deter-
mine accident probability. However, drivers choose behaviors
based on accident probability, creating a recursive relation-
ship. This relationship is not present in standard Bayesian
games and significantly complicates model analysis. Non-
V2V drivers are unable to receive signals, and can choose
only one set of behaviors (x,). V2V drivers can condition

their behavior on the signal realization, meaning we must
specify their choices in both cases to fully describe their
behavior (z, and zs). The probability of a signal is

P[S] = B(P[AJt(y) + (1 — P[A]) f(y)), (D

and the habitual behavior of V2V drivers is the weighted
average of both behaviors: x, = P[=S]zyy + P[S]zys.

For convenience, we denote accident probability as
P(G,z, ) := P[A] and signal probability as Q(G, z, ) :=
P[S]. Then, accident probability is given by the choices of
non-V2V drivers and the habitual behavior of V2V drivers:

P(G7 x, ﬁ) :pa(l‘n + (1 - Q(G7 x, 6))xvu +Q(G7 x, ﬁ)xvs)-
2

This accident probability determines the cost of both
actions to a driver, given the information available to them:

. [1-PQA ifa=c,

Julaie) = {TP[A] if a =R, 2)
. [1-PARS] ifa=C,

Toulaiz) = {rP[AhS} if o =R, (30)
1Pl ifa=C,

Tusla2) = {TIP’[A|S] if o =R (3¢)

Our solution concept assumes that if any agent is choosing
an action, then its cost to them is minimal. This is true when:

T <1—y = Ju(C;z) < L(R;2), (4a)
>0 = Ju(Riz) < Ju(Cia), (4b)
Ty <y = Ju(Cr) < Jnu(R; ), (40)
Tyu >0 = Juu(R;2) < Jou(C;z), (4d)
Tys <Y = Jus(Ciz) < Jys(Rs 2), (4e)
Tys > 0 = Jus(Riz) < Jos(Cs ). (4f)

We define a signaling equilibrium as a behavior profile z
satisfying both the incentive conditions in (4a)—(4f) and the
consistency condition in (2). For any G and g, [1, Lemma
4.2] gives an equilibrium behavior profile; let £(G, ) rep-
resent this equilibrium.! We will sometimes write P(G, )
to mean P(G,z, 3) for x = E(G, ).

C. Research Goal: Design Under Uncertainty

Our prior work has considered similar contexts where it is
assumed that the value of a in the p,(d) function is known
by both agents and the signal designer [1]. However, this
assumption is likely unrealistic, as the exact mechanisms
causing accidents are complex and difficult to measure.
Therefore, we wish to study the effects of uncertainty on the
information design problem. We formally state this question
in the form of two optimization problems using (5) and (6).

We model uncertainty using the danger level parameter
a. Using an uncertainty radius § > 0 and uncertainty

'We prove in [1] that these equilibria are essentially unique. That is,
all equilibrium behavior tuples induce the same accident probability for
any game G. Therefore, our results hold even if £(G, ) is an arbitrary
equilibrium. We make this assumption to utilize the explicit form of these
behavior profiles in our proofs.



center a* € R, construct the range [a* — d,a* + §]. This
range represents e.g. a confidence interval on the danger
level that can be computed from historical data, providing
a computationally feasible way to estimate a. In this work,
we consider two different types of uncertainty.

First, we consider an information designer with uncer-
tainty about the world. This designer knows the true danger
level a lies in the interval [a* — §, a* + 4], but not its exact
value. By contrast, agents do know the exact danger level.
This case is motivated by the idea that drivers may have
experiential knowledge of their local road that is not available
to a signaler from out of town. We would like to find a
signaling policy that minimizes the worst-case equilibrium
crash probability. That is, we seek a value of 3 such that

/8 € argmin P((a,y,r),ﬂ). (5)

max
B€[0,1] a€la*—6,a*+4)
Second, we model a signaler who has uncertainty about
the agents, and cannot perfectly predict agent behavior.
Specifically, the signaler knows the true danger level a, while
agents believe the danger level has some different value a.
The signaler knows that @ € [a* — 0,a* + §], but not its
exact value. Given the believed danger level a, agents choose
behavior & = £((a,y, ), ). The signaler aims to minimize
accident probability induced by the true danger level a and
this behavior, again in the worst case:

f € arg min P((a,y,r),Z, B). (6)

max
Be[0,1] a€la*—d,a*+0]
III. RESULTS

Our results consist of an explicit solution to the opti-
mization problem posed in (5), and a characterization of (6)
allowing us to efficiently compute a nearly optimal signaling
policy. Surprisingly, under both types of uncertainty, equilib-
rium accident probability is monotonic with respect to danger
level, greatly simplifying the optimization problems.

In the case when the designer is uncertain about the
world, we show that the worst-case accident probability is
induced when the world has the largest possible danger level,
allowing the signaler to design only for the game with this
danger level. This simplifies the optimization problem in (5)
to exactly the one described and solved in [1], immediately
giving the optimal robust signaling policy.

Theorem 3.1: Let Gpax := (a*+96,y,r) denote the game
with the largest feasible danger level. This game induces the
worst-case crash probability under world uncertainty:

arg min max P(G, ) = argmin P(Gmax, 8). (7)

Be0,1] a€la*—d,a*+0] B€[0,1]

In other words, an information designer minimizing ac-
cident probability under uncertainty about the world may
assume that the real danger level is the largest feasible value.
See Appendix B for detailed proofs of Theorem 3.1.

Figure 1 shows the “cost of world uncertainty” Cy; that
is, when the unknown danger level is actually at the center
of the uncertainty window, the difference in crash probability
induced by a signaling policy that optimizes the worst case
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Fig. 1. Increase in accident probability due to uncertainty about the world.
For sufficiently low danger levels, it is optimal to choose 3 = 0. Otherwise,
it is optimal to choose 8 = 1. When the true danger level a is sufficiently
small (so that a signaler with perfect information chooses 3 = 0), but the
worst case danger level a™ + ¢ is large (so that a signaler with uncertainty
chooses 5 = 1), uncertainty can cause extra accidents. In other words,
uncertainty causes additional accidents by making signalers overuse V2V
technology. The example depicted has ps(d) = 0.1+ ad, y = 0.9, r = 3,
t(y) = 0.8y, and f(y) = 0.1y.

and one that optimizes with full knowledge. If Bis a sig-
naling policy minimizing accident probability under uncer-
tainty (i.e. 8 € argmingc, ;; P((a” +6,y,7),3)), and 3 is
the same with certainty (8 € arg mingeo 17 P((a*,y,7), B)),
then Cy = P((a*,y,7),B) — P((a*,y,7), ). Each point
with a positive value in Figure 1 represents a parameter
combination where [ differs from 3.

Next, we consider the optimization problem in (6), and ask
how an information designer can minimize accidents while
uncertain about agents’ belief about the world. We show that
when the signaler is uncertain about agents, it is the lowest
feasible danger level that induces the worst-case accident
probability. Interestingly, this is exactly the opposite of the
case when the signaler is uncertain about the world.

Proposition 3.2: Consider the game with the danger level
believed by agents G = (@,y,r) and the game with the
smallest feasible danger level G, = (a* — 6, y, 7). Then,
Gmin induces the worst-case equilibrium accident probability
under uncertainty about agent beliefs:

P(Gag(éa 6)76) = P(Gag(GnlinaB)7ﬂ)~
3

Intuitively, Proposition 3.2 shows that an information
designer aiming to reduce accidents for a population of
drivers who are uncertain about the world should assume
the agents’ belief about the danger level is minimal. Formal
proofs of this statement are provided in Appendix C.

This simplifies the optimization problem from (6) to

max
a€la*—6,a*+0]

arg min P(G, £(Gmin, 3), ). ©)
B€[0,1]

Unfortunately, this simplification is not in a form that directly
gives an optimal signaling policy. Due to their uncertainty



about the world, the behavior chosen by agents is not nec-
essarily a signaling equilibrium for the real game, meaning
we cannot reuse results from [1] in the same way as we did
to solve (7). However, a nearly-optimal policy may be found
by a grid search between 8 = 0 and § = 1, using tech-
niques from [1] to efficiently compute P(G, E(Gmin, 8), B)-
Proposition 3.2 is useful in this approach because it removes
a potential dimension from the search by guaranteeing that
the worst case along the a axis is a* — d, saving significant
computational effort.

We use this technique to depict the “cost of agent uncer-
tainty” C, in Figure 2. Analogously to C\,, C, is defined
as the difference between the crash probability induced
by a signaling policy minimizing for the worst case, and
that of one created with full knowledge of the danger
level: C, = P(G*,£(G*, 5), ) — P(G*,E(G*, B), B), with
G* = (a*,y,r), f € argmin P(G*,&£(G*,5),8), and

Bel0,1]
B € arg min P((a* - 63 Y, 7’), 5(((1* - 57 Y, T)a B)a B)
Belo,1]
IV. CONCLUSION

This work considered how V2V communication can be
used to minimize accident probability under two different
kinds of uncertainty. We showed that when an information
designer is uncertain about the danger levels on a road,
the worst-case accident probability is caused by the highest
danger level. Furthermore, when this sensitivity is unknown
to agents that are being designed for, the worst case is
caused when agents believe that the sensitivity is the lowest
possible. Building on techniques from prior work, each of
these results provide criteria to efficiently determine the
accident-minimizing signaling policy for use by a V2V
communication system. This work could be extended in the
future to include an analytical solution to the simplified
optimization problem under agent uncertainty (presented
in Proposition 3.2), contexts where both the information
designer and agents are unsure of the world’s danger level, or
consider alternative ways to model uncertainty (e.g. explicitly
assigning a probability distribution to belief).

APPENDIX

We now present formal proofs of our claimed results.
First, in Appendix A, we state useful results from [1] that
establish necessary characteristics of signaling equilibria.
These characteristics are then used to prove the desired
claims. In Appendix B, we prove Theorem 3.1, and in
Appendix C we prove Proposition 3.2.

A. Calculating an Equilibrium

The following equations ((10)-(15)) are tools borrowed
from [1], which we use to describe equilibrium behavior.
We calculate two sets of thresholds ((10) and (12)), and
determine their ordering. Each possible ordering uniquely
selects a “family” of possible equilibria in (13), and all
equilibria in a family share similar characteristics. For each
family, (14) describes the equilibrium behavior tuple and (15)
describes accident probability.
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Fig. 2. Increase in accident probability due to uncertainty about agent
beliefs. This occurs when agents believe that the danger level is large, and
the uncertainty radius is at least as large as a minimum threshold. The
example depicted has pa(d) = 0.1 + ad, y = 0.9, r = 3, t(y) = 0.8y,
and f(y) = 0.1y.

The first set of thresholds is:

fy)

Ppi= — 22 10
i) + 1) (102
1
Pui= o (10b)
1—Bf(y)

P, = , 10

T+ (1 pt(y)) — BI() (10
where it holds that

Py < Py < Py (11)

Each of these is a prior accident probability that causes a

group of drivers to be indifferent between careful and reck-

less behavior. By Bayes’ Theorem, P(G,x, ) = Pys —

Jys(Cyz) = Jys(R;z), and similarly for the other two

groups of drivers. For each accident probability threshold, let

Qvss Qn, and @y, be the corresponding signal probabilities.
The second set of thresholds is:

Eip(a) :=pa.(0), (12a)
Esu(a) = pa((1 = BPuu(t(y) — f(y)) — Bf(y))y), (12b)
Esu(a) = pa((1 = BPu(t(y) — f(v)) — Bf(y))y), (12¢)
Eyv(a) = pa(1 — (BPa(t(y) — f(y)) + Bf(y))y), (12d)
Esy(a) == pa(1 — (BPus(t(y) — f(y) + Bf(y)y), (12e)
Egy(a) :=pa(1) (12f)

Ey = {(a,y,7) : P < Erv(a)}, (13a)
By = {(a,y,7) : Ery(a) < Pyy < Eay(a)}, (13b)
Es = {(a,y,7) : Eav(a) < Pou A Py < Ezp(a)}, (13¢)
Ey:={(a,y,7): Esy(a) < Py, < Eyy(a)}, (13d)
Es:={(a,y,7) : Eay(a) < Py A Pys < Esp(a)}, (13e)
Es :={(a,y,7) : Esy(a) < Pus < Egy(a)}, (13f)
E;:={(a,y,7) : Fgu(a) < Py} (13g)



Now, we describe equilibrium behavior and accident
probability in each of the “families” defined in (13). This
simplifies much of the analysis to determining which family
a parameter combination belongs to. With uncertainty about
the world, any particular value of the danger level will
immediately determine agent behavior through (14) and
accident probability using (15). Even with uncertainty about
agent beliefs, where the chosen behavior may not be an
equilibrium, (14) and a value for the danger level believed
by agents will determine the behaviors they choose.

By [1, Lemma 4.2], we know the form of equilibrium
behavior tuples. For any game G, any of its signaling
equilibria is essentially identical to the following behavior
tuple z:

GeFE = 2=(0,(0 (14a)
GeFBy, = 2= (0, ( I—Qvu 0)) (14b)
GeE; = z= (0, )) (14c)
GeBy = z=(p; (1—Qn)y, (y,0)), (14d)
G e E5 = T = (1 - Y (yvo))7 (146)
—1 _

GeBy — o (1 . (y D (va)Q 1+sty>) )

VS (14f)
GeEr = z=(1-y,(y,9)). (14g)

Finally, by [1, Lemma 4.1], we know that each equilibrium
family restricts the accident probability in a specific way:

Ge Ey, = P(G,B) =p.(0), (15a)
G e Ey = P(G,B) = Py, (15b)
G € E3s = P, < P(G,8) < Py, (15¢)
GeEy, = PGB =P (15d)
GeE; = P, < P(G,p) < Py, (15¢)
G € Es = P(G,B) = P, (151)
G € E; = P(G,B) =pa(1). (159)

B. Proofs of Theorem 3.1

An outline of the proof of Theorem 3.1 is as follows:
First, we show that the equilibrium families are ordered by
danger level — if two games are identical except for their
values of a, the one with the larger danger level can only have
equilibria with a lower mass of reckless drivers (Lemma 1.1).
This makes intuitive sense: as accidents become more likely,
we expect that more agents will want to drive carefully in
response. Next, we use the ordering on equilibrium families
to establish the monotonicity of accident probability with
respect to danger level (Lemma 1.2). Showing that equilib-
rium accident probability is non-decreasing in a immediately
implies the desired result.

Lemma 1.1: Let a1 < ay. Further, let G; = (a1,y,7),
and G2 = (ag,y,r). Forany i € {1,...,7}, G; € E; =
Go € E; for some j < i.

Proof: We prove this in cases. First note that if ¢ =7,
the statement is vacuously true since every game belongs to
some equilibrium family by [1, Theorem 3.1].

Consider the case where ¢ = 1, and assume by way of
contradiction that Go ¢ FE;. Since G; € E7, we have that
P,y < Ejy(ay) by (13a). Additionally, Eiy(as) < Py,
lest Go € E;. But then since E1y(a1) = pa, (0) = pa,(0) =
Eiv(ag), this implies P, < Eijy < Py, which is a clear
contradiction.

Now, let ¢ = 2 and assume by contradiction that G5 ¢
Eq1 U Es. In the same way as above, we immediately have
that Fopy(ag) < Pyy and Py, < Earr(aq). Note that p,(d) is
non-decreasing in a, so Eoy(ar) < Eay(az) by (12b). But
again, this implies that P,, < Py, a clear contradiction.

The remaining cases can be shown in a very similar
manner, completing the proof. [ ]

Now, we show that accident probability is increasing with
respect to danger level.

Lemma 1.2: Let a1 < as, and define G; =
Gy = (ag,y,r). For any signaling policy [,
P(Gs, ).

Proof: We prove this in cases. First, assume that G; €
E7;. By Lemma 1.1, G4 € UZ:I E;.

If Gy € Eg, then P(Ga,x,3) = Py by (15f). Similarly
using (15g), since G1 € Er, P(Ga,z,8) < P,s. But then
P(G1,z,8) < P(Ga,x,3), which is the desired result.

If Gy € U?:z E;, then a very similar technique suffices.
Furthermore, it is impossible that G2 € E;. Assume by
way of contradiction that it is. Then, by (13a) we have that
P, < EIU(GQ) = paz(o)' Slmllarl}/, b)’ (13g)’ EGU(al) =
Pa, (1) < Pys. But then we have

Pvu < Pa, (0)

which clearly contradicts (11). Thus, we are finished in the
case that G € Er.

The above techniques suffice in any of the remaining cases
where G € Uf:l E;, completing the proof. [ ]

This lets us immediately derive the signaling policy mini-
mizing crash probability in the worst case. Since increasing
danger level cannot decrease accident probability, the game
with the largest danger level must also have the largest
accident probability.

Proof of Theorem 3.1: Immediately from Lemma 1.2, we
have that

(alvyar) and
P(leﬂ) S

= pal(o) < p(ll(l) < Pv$7 (16)

max
a€la*—6,a*+0)

P(Gaﬁ) = P(Gma)mB)- (17)
Since the optimization problems are identical, the set of

optimizers must also be, completing the proof. [ ]

C. Proofs of Proposition 3.2

We now provide a complete proof of Proposition 3.2.
To do this, we first show that agents who believe that
accident probability is less sensitive to the mass of reckless
drivers (i.e. that a is lower) are necessarily more reckless
(Lemma 1.3). Next, in Lemma 1.4, we show that a larger
mass of reckless drivers causes more accidents at equilibrium
with all else held constant. Together, these imply that if
agents believe the true danger level is lower, then more
accidents will occur at equilibrium, as claimed.



Lemma 1.3: Consider any a1 < a2. Let G = (a1,y,7r)
and G2 = (ag,y, ). Further let 1 = £(G1,5) and x5 =
E(G4, B) for any . Then, 1 is more reckless than x4, i.e.
Tnl 2 Tngs Tyul = Tyuzs ANd Tygy > Tyso.

Proof: We prove this in cases. First, assume that G; €
E;. By Lemma 1.1, G; € Ui7=1 F;. Then, the desired result
is obvious from equations (14a)—(14g).

Now, assume G5 € Fg. Lemma 1.1 implies that Go €
U?:l E;. Unless G5 € Fg, (14a)-(14g) are again sufficient
for the claimed result. If it is, then it remains to show that
p‘:l(PV%%HQ”y is decreasing with a.

By definition of p, we have that p,, (0) = pa,(0) <
Pa, () < pa,(x) for any x. Since p is continuous, there
exists some z € [0, ] such that p,,(z) = pa,(z); call this
shared quantity n. But then p_'(n) = z, p,(n) = z, and
z < w. Therefore, p, '(z) > p,.!(z) for any x. Since every

other term of Pa (Pes) =14 Quay

this is the desired reguvft.

The remaining cases can be shown in a similar manner,
completing the proof. [ ]

It remains to show how the increased recklessness es-
tablished in the above result affects equilibrium accident
probability.

Lemma 1.4: Consider two behavior tuples z; =
(xnla (xvuly xvsl)) and o = (xn27 (xvu27 xvs2)) with 2,4
Tnas Tyvul < Tyug, and Tyg; < Tyge. For constant G and S,
we have that P(G,z1,8) < P(G, 2, 8).

Proof: Assume by way of contradiction that
P(G,z1,8) > P(G,xz2,3). This immediately implies that
Q(G,z1,8) > Q(G,x2,0) by (1), and therefore (1 —
Q(G’ L1, B))xl < (1 - Q(G7 L2, 5))1‘2

We consider two cases. First, assume that xy,; < Zyua,
meaning T, < y. By (14a) — (14g), we have x,1 = xys; =
0. Therefore, 0 = Q(G,z1,8)xvs1 < Q(G, 2, )Tyss.
Additionally, z,,; < x,, by assumption. Therefore, by equa-
tion (2), P(G,z1,8) < P(G,x2, /), which is an obvious
contradiction, so we are finished in this case.

Otherwise, we must have x,,; = Zyyup. Simple algebra
starting from (2) gives

P(G,z,B) = pa(tn + 2yu — Q(G, 2, B)(Tyy — Tvs)). (18)

By assumption, x,; < apg and Tys; < Tyso.
But then (Zyu; Tys1) > (@Tvue Tysa), Mmean-
il’lg 7Q(G,x1,ﬂ)(l‘vu1 - xvsl) < 7Q(Gax27ﬂ)(xvu2 -
Zysa). But by equation (18), this immediately implies that
P(G,z1,8) < P(G,z2,0), a clear contradiction, complet-
ing the proof. n

Finally, we are equipped to prove Proposition 3.2.

Proof of Proposition 3.2: By definition of the uncertainty
window, a* — § < . But then, by Lemma 1.3, for any = =

E(Gumin, B) and 2’ = (G, ),

/ / ’
Tni > Tngy Tyvul > Tyugs and Tys] = Tyso-

is constant with respect to a,

IA

This result allows us to apply Lemma 1.4, forcing that
P(G,2',8) < P(G,z,3). But since a was arbitrary, this
means a* — § must maximize accident probability, which is
the desired result. [ ]
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