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Abstract—The search for neutrinoless double-beta decay remains today one of the most important areas
in particle and nuclear physics. Germanium detectors are an excellent technology for this search because
of their state-of-the-art energy resolution, but a dead layer in a germanium crystal can reduce the active
volume, which can affect both exposure and half-life sensitivity. In this work, we used machine learning
methods to study the dead layer in enriched germanium crystals. 1000 sets of events were simulated with
various combinations of dead layer parameters. A fully connected neural network was used to determine
these parameters from the energy spectra of a germanium detector exposed to a gamma calibration source
Barium-133.
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1. DOUBLE NEUTRINOLESS BETA-DECAY

Neutrinoless double-beta decay (Fig. 1) is a hypo-
thetical nuclear decay that has never been observed.
Its observation would signal that the lepton number
is not conserved and that the neutrinos are Majorana
particles. In addition, it could confirm the expected
absolute neutrino mass scale at the level of several
tens of meV [1].

2. LEGEND-200 EXPERIMENT

The LEGEND-200 [2] experiment will operate
200 kg of Ge detectors in a bath of liquid argon (LAr)
in an upgrade of the GERDA [3] infrastructure at
LNGS. The LEGEND-200 design combines the best
elements of GERDA and the Majorana Demonstrator
[4]. Until the experiment’s next phase—LEGEND-
1000 [5], LEGEND-200 will be one of the leading
experiments in the field, reaching a half-life sensitivity
of 1027 yr after five years of operation. Schematically,
the detector is shown in Fig. 2.
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3. HIGH PURITY GERMANIUM DETECTORS
Germanium detectors are used in the LEGEND

experiment for a number of reasons: Excellent en-
ergy resolution—0.1% at Qββ = 2039 keV, practi-
cally radio-pure, both a detector element and a source
and enrichment at the level > 90% is possible. The
innovative Inverted Coaxial Point Contact (ICPC)
design will be one of the main detector geometries
used for LEGEND since they possess a larger mass
(> 2 kg) than previous point contact detectors while
preserving good energy resolution. Figure 3 shows
several types of germanium detectors used in the
experiment, including BEGe and semi-coaxial detec-
tors. BEGe—Broad Energy Germanium Detector, is
good for pulse shape discrimination of signal against
background. The semi-coaxial detector is larger than
the BEGe, resulting in a larger active mass. P-type
point contact (PPC) detectors are not shown in the
figure, but they are also used in the experiment.

4. FULL CHARGE COLLECTION DEPTH
MODEL

The Full Charge Collection Depth (FCCD) is an
important characteristic of the detector, since it com-
pletely determines the active volume. It indicates the
distance from the edge of the detector through which
the charge collection efficiency is 1. In our study, we
used a simplified FCCD model (Fig. 4):

• Full Charge Collection Depth = Dead Layer +
Transition Layer.

• Dead Layer (DL) = region of no charge collec-
tion on surface of semiconductor detectors.
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Fig. 1. Feynman diagram of the neutrinoless double-beta decay process.
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Fig. 2. Schematic representation of the LEGEND-200 experiment. The germanium detectors are deployed into the LAr
cryostat in strings, surrounded by the LAr veto instrumentation. The cryostat itself is located inside the water tanker for
protection from muons.
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Fig. 3. Image of germanium detectors used in the experiment. BEGe—Broad Energy Germanium Detectors, the semi-coaxial
detector and ICPC—Inverted Coaxial Point Contact detector.

• Transition Layer (TL) = partial charge collec-
tion, here modelled with linear function, al-
though other functional forms are possible.

The determination of the FCCD is important be-
cause the half-life of 0νββ is dependent on the active
mass, as are the constraints on the mass of the neu-
trino. In addition, degraded events (where part of the

energy is deposited in the dead layer) can mimic the
0νββ signature and make event analysis even more
difficult.

5. NEURAL NETWORKS
A neural network is a machine learning model that

uses interconnected nodes or neurons in a layered
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Fig. 4. Graphical depiction of the used full charge collection depth model used in this work. The area where charge collection
is completely absent is the dead layer (DL). The region with partial charge collection is the transition layer (TL). The charge
collection efficiency increases linearly from 0 to 1 as it approaches the active volume (AV).
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Fig. 5. Visual representation of the used neural network. The network consists of several layers. The available information,
for example, the energy spectrum, is fed to the input layer. Then it enters the hidden layers, where it is transformed according
to the weights of the neurons. The resulting transformed data is sent to the output layer through the hidden layers. From the
output layer, we get the data we need.

structure that resembles the human brain. The basic
neural network contains three layers of connecting
artificial neurons: input layer, hidden layers and out-
put layer (Fig. 5). The input layer is fed with the
available data. The input nodes process the data,
analyze or classify it, and pass it on to the next layer.
As a rule, the data must first be prepared. Hidden
input layers receive data from the input layer or other
hidden layers. Artificial neural networks can have a
large number of hidden layers. Each hidden layer
parses the output of the layer collection, collects it,
and passes it on to the next layer. The output layer
is the secondary result of processing all the data of
the artificial neural network. It may have one or
more nodes. For example, when solving a binary
classification problem (yes/no), the output layer will
have one output node, which will give the result “1” or

“0”. However, in the case of multiple classifications,
the output layer may consist of more than one output
node.

There are also more complex variants of neural
networks [6], but in our work we decided to focus on
a fully connected neural network.

6. PROCEDURE

To determine the parameters of the dead layer, it
is necessary to prepare data for training the neural
network. Monte Carlo simulations of ICPC detector
exposed to Ba-133 in the HADES [7] underground
laboratory were prepared with a different set of values
for two determined parameters—FCCD and Dead
Layer Fraction (DLF), where DLF = DL/FCCD for
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Fig. 6. An example of input data for a neural network. The data is an energy spectrum of 133Ba in the range from 0 to 450 keV
with a bin width of 0.5 keV—an array of 900 values, where each value indicates the number of events that fell into this bin.
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Fig. 7. Plots of absolute error distribution in the determination of parameters. (a) for FCCD parameter, (b) for DLF parameter.
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Fig. 8. Distribution plots of predicted parameter values along with true values. (a) for FCCD parameter, (b) for DLF parameter.
Dark gray defines data, light gray—prediction, medium gray—their superposition.

a linear TL model. A total of 1000 random combi-
nations of FCCD and DLF were generated and the
training was carried out on 700 of these files. A fully
connected neural network with 4 layers was used.

The results of training the neural network were tested

on the remaining 300. Figure 6 shows a sample of the

data on which the neural network was trained.
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7. PRELIMINARY RESULTS

The resulting plots, in particular plots of absolute
errors in parameter determination (FCCD and DLF)
and distribution plots of predicted parameter values
along with true values are presented in Fig. 7 and
Fig. 8, respectively. The absolute error distribution for
both parameters was fitted with a Gaussian function.
The obtained distribution parameters are shown in
the plots. With the use of a simplified FCCD model
and a fully connected neural network, it was possible
to achieve an accuracy of about 0.1 mm in deter-
mining FCCD. The obtained accuracy coincides in
order of magnitude with the values obtained in the
study of the characteristics of germanium detectors
in other works [8, 9]. The next step is to use a more
complex neural network and increase accuracy and
eventually test the network on real data taken with the
germanium detector.
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