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Figure 1  a Top and side views of the  MoS2 structure, illustrat-
ing its layered configuration. b Side views of the  CrxMo1-xS2 
alloys with a range of Cr concentrations. The images depict: 
1)  Cr0.125Mo0.875S2 2)  Cr0.250Mo0.750S2 3)  Cr0.375Mo0.625S2 4) 
 Cr0.500Mo0.500S2 5)  Cr0.625Mo0.375S2 6)  Cr0.750Mo0.250S2 and 7) 

 Cr0.875Mo0.125S2 alloys. c Top and side views of the  CrS2 struc-
ture. Mo atoms are represented by green spheres, Cr atoms by red 
spheres, and S atoms by yellow spheres. The unit cells are deline-
ated with fine lines for clear demarcation.

Table 1  Comparative 
analysis of theoretical 
and experimental lattice 
parameters, crystalline 
volume, and cohesive 
energy for pristine  MoS2, 
 CrS2, and  CrxMo1-xS2 alloys 
across various chromium 
concentrations

a Ref. [80], bRef. [81], cRef [82]

Structure Method a (Å) c (Å) Others report Cohesive 
energy (eV/
atom)

MoS2 GGA 6.24 13.31 6.36a, 12.27a

6.32b, 12.29b
− 7.25

Cr0.125Mo0.875S2 GGA 6.22 13.37 − 7.10

Cr0.250Mo0.750S2 GGA 6.29 13.13 − 7.06

Cr0.375Mo0.625S2 GGA 6.27 13.21 − 6.95

Cr0.500Mo0.500S2 GGA 6.26 13.25 − 6.85

Cr0.625Mo0.375S2 GGA 6.19 13.34 − 6.74

Cr0.750Mo0.250S2 GGA 6.15 13.41 − 6.63

Cr0.875Mo0.125S2 GGA 6.13 13.09 − 6.51

CrS2 GGA 6.24 13.20 6.04c, 12.15c − 6.40
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Table 2  Elastic constants  (Cij) in GPa for  CrxMo1-xS2 alloys: a comparative study with previous calculations

a Ref. [52], bRef. [54], cRef. [55]

C11 C22 C33 C44 C55 C66 C12 C13 C23 C15 C25 C35 C46

MoS2 194.1
191a

211b

194.1
191a

211b

11.4
15a

37b

3.7
7a

30b

3.7
7a

30b

72.3
72a

81b

49.3
46a

49b

2.9
−  5a

3b

2.9
−  5a

3b

Cr0.125Mo0.875S2 199.3 19.4 203.1 4.8 74.0 4.7 3.4 49.1 4.4 − 0.02 0.04 − 0.02 0.18

Cr0.250Mo0.750S2 197.6 18.2 207.4 4.2 72.9 4.2 4.6 48.2 4.2 − 0.04 0.05 − 0.02 0.17

Cr0.375Mo0.625S2 181.4 4.6 177.7 0.7 67 0.9 0.7 47.1 1.2 − 1.2 0.05 − 0.06 − 0.14

Cr0.500Mo0.500S2 176.5 5.4 179.9 1.3 63.6 1.1 1.3 45.8 1.2 − 1.3 − 0.05 − 0.2 − 0.11

Cr0.625Mo0.375S2 180.1 4.5 177 0.5 66.8 0.9 0.6 46.8 0.8 − 1.3 − 0.1 − 0.4 − 0.1

Cr0.750Mo0.250S2 207.8 11.8 211.2 3.09 78.4 3 2.9 48.7 2.9 0.2 − 0.1 − 0.01 − 0.1

Cr0.875Mo0.125S2 209.1 13.1 205.5 4.2 79.8 3.5 1.6 49.5 2.1 − 0.04 − 0.05 − 0.02 − 0.01

CrS2 121.07
120c

121.07
120c

17.7 7.7 7.7 41.2
44c

38.6
31c

6.06 6.06
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Table 3  Calculated bulk moduli (GPa)  BV,  BR, and 
 BH =  (BV +  BR)/2, shear moduli (GPa)  GV,  GR, and 
 GH =  (GV +  GR)/2, young moduli (GPa)  EV,  ER, and 

 EH =  (EV +  ER)/2, Poisson’s ratio, 𝜈
V
 , 𝜈

R
 , and 𝜈

H
 = ( 𝜈

V
 + 𝜈

R
)/2, the 

universal elastic anisotropy index  AU, pugh rule B/G, microhard-
ness H, and machinability index μ, for  CrxMo1-xS2

BV BR BH GV GR GH EV ER EH vR vR vH AU B/G H μ

MoS2 56.6 10.8 33.7 38.9 7.3 23.1 95.0 17.9 56.5 0.22 0.22 0.22 25.7 1.45 4.3 9.1

Cr0.125Mo0.875S2 59.4 19.3 39.3 41.1 9.8 25.4 100.1 25.1 62.6 0.21 0.28 0.23 17.5 1.54 4.5 8.1

Cr0.250Mo0.750S2 59.6 16.7 38.2 40.7 8.6 24.6 99.4 22.1 60.8 0.22 0.28 0.25 21.0 1.55 4.0 9.0

Cr0.375Mo0.625S2 51.34 4.5 27.9 34.7 1.7 18.2 84.9 4.6 44.8 0.22 0.32 0.27 104.1 1.53 2.7 39.8

Cr0.500Mo0.500S2 50.98 5.3 28.1 34.1 2.6 18.3 83.6 6.8 45.2 0.22 0.28 0.25 68.0 1.53 3.0 21.6

Cr0.625Mo0.375S2 50.9 4.4 27.7 34.5 1.5 18.0 84.5 4.0 44.3 0.22 0.34 0.28 120.3 1.53 2.5 55.4

Cr0.750Mo0.250S2 60.0 11.2 35.6 41.9 6.2 24.1 102.1 15.7 58.9 0.21 0.26 0.24 33.0 1.47 4.1 11.5

Cr0.875Mo0.125S2 59.3 12.1 35.7 42.5 8.7 25.6 102.9 21.0 61.9 0.21 0.21 0.21 22.9 1.39 4.9 8.5

CrS2 40.1 16.1 28.1 25.3 12.7 19.0 62.7 30.2 46.4 0.24 0.18 0.21 6.4 1.47 3.7 3.6
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Figure  2  Variation of bulk moduli (B), shear moduli (G), and 
Young’s moduli (E) in  CrxMo1-xS2 alloys as a function of Cr 
concentration. Purple dashed lines (Reuss approximation), red 
dashed lines (Hill approximation), and blue dashed lines (Voigt 
approximation) are included to aid visual interpretation.
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Figure  3  Band structure of a  MoS2 b  Cr0.125Mo0.875S2 
c  Cr0.250Mo0.750S2 d  Cr0.375Mo0.625S2 e  Cr0.500Mo0.500S2 f 
 Cr0.625Mo0.375S2 g  Cr0.750Mo0.250S2 h  Cr0.875Mo0.125S2 alloys and 

i  CrS2. Vertical lines indicate high-symmetry points in the first 
Brillouin zone. Orange lines show minimum energy bandgap and 
the horizontal lines at zero energy show the Fermi energy level.
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Figure  4  Variation of minimum bandgaps  (Eg) in  CrxMo1-xS2 
alloys as a function of chromium concentration (x), with the 
trend line represented by a dashed line indicating a fitted fourth-
order polynomial function.
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Table 4  Energy bandgaps 
of pristine  MoS2,  CrS2, and 
 MoS2 alloys with varying Cr 
concentrations: comparison 
of values obtained using 
GGA with SO, GGA without 
SO, and mBJ_GGA with 
SO, alongside experimental 
results

Bandgap energy GGA with 
SO (eV)

GGA without 
SO (eV)

mBJ_GGA With 
SO (eV)

Previous results Ref

MoS2 1.33 1.33 1.54 1.42
Exp. 1.23

[82]
[83]

Cr0.125Mo0.875S2 0.82 0.83 0.92

Cr0.250Mo0.750S2 0.67 0.64 0.75

Cr0.375Mo0.625S2 0.75 0.73 0.83

Cr0.500Mo0.500S2 0.76 0.76 0.85

Cr0.625Mo0.375S2 0.65 0.65 0.73

Cr0.750Mo0.250S2 0.53 0.53 0.58

Cr0.875Mo0.125S2 0.46 0.46 0.54

CrS2 0.63 0.63 0.68 0.58, 0.60 [82]
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Figure 5  Density of states 
(DOS) for pristine  MoS2, 
 CrS2, and  MoS2 alloys at 
varying Cr concentrations, 
illustrated with red lines 
and light blue shadows. The 
blue and gray lines repre-
sent the total (total-Mo) and 
d-orbitals (Mo-d) DOS of 
Mo atoms, respectively. The 
orange lines, green dashed 
lines, and purple lines depict 
the total (total-Cr), d-orbitals 
(Cr-d), and  z2 component 
of d-orbitals (Cr-dz2 ) in Cr 
atoms, respectively. Dashed 
vertical lines mark the Fermi 
level.
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1Z
(𝜔) ) and imag-
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(𝜔) )) 

parts of the dielectric func-
tion for  CrxMo1-xS2 alloys 
across varying Cr concentra-
tions (x). Insets with gray 
backgrounds depict the static 
real part of the dielectric 
function as a function of Cr 
concentration. Red dashed 
lines are included to aid 
visual interpretation.
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Figure 7  Refractive index 
profiles of  CrxMo1-xS2 alloys 
in X ( nX(𝜔) ) and Z ( nZ(𝜔) ) 
directions across different Cr 
concentrations (x). Insets on 
gray backgrounds depict the 
static refractive index as a 
function of Cr concentration. 
Red dashed lines are included 
to aid visual interpretation.

Figure 8  Reflection coef-
ficients of  CrxMo1-xS2 alloys 
for varying chromium con-
centrations (x) in X ( RX(𝜔) ) 
and Z ( RZ(𝜔) ) directions. 
Insets with gray backgrounds 
illustrate the static reflection 
index as a function of Cr con-
centration. Red dashed lines 
are included to aid visual 
interpretation.
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energy loss function for 
 CrxMo1-xS2 alloys across var-
ying Cr concentrations (x), 
shown in X direction ( LX(𝜔) ) 
and Z direction ( LZ(𝜔) ). 
Insets with gray backgrounds 
illustrate the electron energy 
loss function as a function of 
Cr concentration. Red dashed 
lines are included to aid 
visual interpretation.
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