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M-CONVEXITY OF VEXILLARY GROTHENDIECK POLYNOMIALS
VIA BUBBLING\ast 

ELENA S. HAFNER\dagger , KAROLA M\'ESZ\'AROS\dagger , LINUS SETIABRATA\ddagger , AND

AVERY ST. DIZIER\S 

Abstract. We introduce bubbling diagrams and show that they compute the support of the
Grothendieck polynomial of any vexillary permutation. Using these diagrams, we show that the
support of the top homogeneous component of such a Grothendieck polynomial coincides with the
support of the dual character of an explicit flagged Weyl module. We also show that the homogenized
Grothendieck polynomial of a vexillary permutation has M-convex support.

Key words. Grothendieck polynomial, M-convex, flagged Weyl module

MSC codes. 05E05, 05E10, 14M15

DOI. 10.1137/23M1599082

1. Introduction. Grothendieck polynomials \frakG w are multivariate polynomials
associated to permutations w \in Sn. Grothendieck polynomials were introduced by
Lascoux and Sch\"utzenberger [LS82] as representatives of the classes of Schubert va-
rieties in the K-theory of the flag manifold. They generalize Schubert polynomials,
which, in turn, generalize the classical Schur polynomials, a well-known basis of the
ring of symmetric functions.

There has been a flurry of research on the support of Grothendieck polynomials as
well as the distribution of their coefficients within their support [HMMSD22, Wei21,
PSW21, Haf22, MSS22, PS22, CCRMM22]. With Huh and Matherne, the second and
fourth author conjectured that homogenized Grothendieck polynomials are Lorentzian
(up to appropriate normalization). In particular, this conjecture would imply that
their support is M-convex, equivalently the set of integer points in a generalized per-
mutahedron. That the support is the set of integer points of a convex polytope was
previously conjectured by Monical, Tokcan, and Yong in [MTY19].

To date, it is known that homogenized Grothendieck polynomials are M-convex
for several families of permutations. These include permutations of the form 1\pi with \pi 
dominant on \{ 2,3 . . . , n\} [MSD20], Grassmannian permutations [EY17], and permuta-
tions whose Schubert polynomial has all nonzero coefficients equal to 1 [CCRMM22].
In the present paper, we prove M-convexity for homogenized Grothendieck polynomi-
als of vexillary permutations.

Our inspiration is the proof of the analogous result for all Schubert polynomials
[FMS18]. The latter relies heavily on the theory of dual Weyl characters which has no
K-theoretic counterpart. Mimicking the dual Weyl character approach, we introduce
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M-CONVEXITY VIA BUBBLING 2195

bubbling diagrams, which are diagrams (subsets of the n \times k grid) endowed with
additional data affecting the legality of certain local transformations (Definitions 3.3
and 3.5). These diagrams also bear strong similarities with ghost diagrams [RY15].
We show that bubbling diagrams compute the support of any vexillary Grothendieck
polynomial.

Theorem 1.1. If w \in Sn is a vexillary permutation, then supp(\frakG w) = \{ wt(\scrD ) : \scrD \in 
\scrB \scrD (w)\} .

We also provide a much simpler subset \scrS \scrB \scrD (w)\subseteq \scrB \scrD (w) in Definition 4.11 which
still realizes the conclusion of Theorem 1.1.

From the characterization of supp(\frakG w) afforded by Theorem 1.1, we derive two
interesting consequences. For a diagram D, let \chi D denote the dual character of the
flagged Weyl module of D (see section 2 for definitions). Denote the top degree
component of \frakG w by \frakG top

w .

Theorem 1.2. Let w \in Sn be a vexillary permutation. There is a diagram
Dtop(w) such that supp(\frakG top

w ) = supp(\chi D\mathrm{t}\mathrm{o}\mathrm{p}(w)).

For vexillary permutations, Theorem 1.2 implies that the Rajchgot polynomials
of [PSW21] are dual characters of flagged Weyl modules. Consequently, their New-
ton polytopes are Schubitopes, a subclass of generalized permutahedra introduced in
[MTY19] whose defining inequalities are derived from a diagram.

In a recent work, Pan and Yu [PY23] also construct a diagram whose weight is
the leading monomial of \frakG top

w . In general, their diagram is distinct from Dtop(w);
in particular, the dual character of their diagram does not have the same support as
\frakG top

w for vexillary permutations. Tianyi Yu communicated to us that the results of
[PY23] along with those in [Yu23] can be used to show that supp(\frakG top

w ) is the set of
integer points of a Schubitope.

Theorem 1.3. Let w \in Sn be a vexillary permutation. Then the homogenized
Grothendieck polynomial \widetilde \frakG w has M-convex support. In particular, each homogeneous
component of \frakG w has M-convex support.

The lowest-degree homogeneous component of \frakG w, the Schubert polynomial,
equals an integer multiple of some \chi D for any permutation. As a consequence of
Theorem 1.2, one might wonder whether this is the case for \frakG top

w or for other homo-
geneous components of \frakG w.

We can use the following result to verify whether or not the Newton polytopes
of the homogeneous components of \frakG w are Schubitopes, the Newton polytopes of the
polynomials \chi D.

Theorem 1.4. Fix n\geq 1. The rank functions rSMn(I) of Schubert matroids form
a basis of the vector space of functions f : 2[n] \rightarrow \BbbR satisfying f(\emptyset ) = 0. In particular,
we have the following:

\bullet A generalized permutahedron is a Schubitope if and only if its associated sub-
modular function is a \BbbZ \geq 0-linear combination of rank functions of Schubert
matroids, and

\bullet two Schubitopes \scrS D and \scrS D\prime are equal if and only if D can be obtained from
D\prime by a permutation of columns.

Using Theorem 1.4, we exhibit two interesting counterexamples:
(1) Example 6.11 provides a vexillary permutation w and a (not top-degree)

homogeneous component of \frakG w whose Newton polytope is not a Schubitope. This
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2196 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

suggests focusing attention only on \frakG top
w when looking for Schubitopes among the

homogeneous components of \frakG w.
(2) Example 6.10 gives a nonvexillary permutation w where Newton(\frakG top

w ) is not
a Schubitope and so is not a multiple of any \chi D. This suggests restricting attention
to vexillary permutations when relating \frakG top

w to \chi D. We conjecture the following
strengthening of Theorem 1.2 (tested for all vexillary w \in Sn, n\leq 9).

Conjecture 1.5. If w \in Sn is vexillary, then \frakG top
w is an integer multiple of

\chi D\mathrm{t}\mathrm{o}\mathrm{p}(w).

Outline of this paper. In section 2, we recall some relevant background. In
section 3, we establish basic properties of bubbling diagrams, including a nonrecursive
characterization of the set of bubbling diagrams (Lemma 3.19) and prove Theorem 1.1
by constructing weight preserving maps between the set of bubbling diagrams and
the set of marked bumpless pipe dreams. In section 4, we prove Theorem 1.2 by
showing that bubbling diagrams can be systematically padded to obtain a top-degree
diagram which is necessarily in supp(\chi D\mathrm{t}\mathrm{o}\mathrm{p}(w)) (Theorem 4.6), and we also show that
divisibility relations among monomials in \frakG w can be realized by inclusion relations
among bubbling diagrams in a strong sense (Theorem 4.10). In section 5, we deduce
Theorem 1.3 from a ``one-column version"" of the result (Proposition 5.6). In section 6,
we prove Theorem 1.4 and use it to show that our results are sharp.

2. Background.

Conventions. We will write permutations w \in Sn in one-line notation as words
with the letters \{ 1,2, . . . , n\} . For example, w= 312\in S3 is the permutation that sends
1 \mapsto \rightarrow 3, 2 \mapsto \rightarrow 1, and 3 \mapsto \rightarrow 2. Throughout, permutations will act on the right (switching
positions, not values). For j \in [n - 1], let sj denote the adjacent transposition swapping
positions j and j + 1, so, for example, ws1 is the permutation w with the numbers
w(1) and w(2) swapped. We write \ell (w) for the number of inversions of w.

Grothendieck polynomials.
Definition 2.1. Fix n \geq 1 and j \in [n - 1]. The divided difference operators \partial j

are operators on the polynomial ring \BbbZ [x1, . . . , xn] defined by

\partial j(f)
def
=

f  - sj \cdot f
xj  - xj+1

=
f(x1, . . . , xn) - f(x1, . . . , xj - 1, xj+1, xj , xj+2, . . . , xn)

xj  - xj - 1
.

The isobaric divided difference operators \partial j are defined on \BbbZ [x1, . . . , xn] by

\partial j(f)
def
= \partial j(f  - xj+1f).

Definition 2.2. The Grothendieck polynomial \frakG w of w \in Sn is defined recursively
on the weak Bruhat order. Let w0 denote the longest permutation in Sn. If w \not = w0,
then there is j \in [n - 1] with w(j)<w(j + 1). The polynomial \frakG w is defined by

\frakG w
def
=

\Biggl\{ 
xn - 1
1 xn - 2

2 . . . xn - 1 ifw=w0,

\partial j\frakG wsj ifw(j)<w(j + 1).

Recall that a permutation w \in Sn is vexillary if it is 2143-avoiding, that is, if
there do not exist i < j < k < \ell with w(j)<w(i)<w(\ell )<w(k).
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M-CONVEXITY VIA BUBBLING 2197

Theorem 2.3 (see [Haf22, Theorem 3.4]). Let w \in Sn be a vexillary permutation,
and let \alpha ,\gamma \in supp(\frakG w) be such that x\alpha | x\gamma . Then, any \beta \in \BbbZ n such that x\alpha | x\beta | x\gamma 
is also in supp(\frakG w).

Marked bumpless pipe dreams. A bumpless pipe dream (BPD) is a tiling of
the n\times n grid with the tiles

that form a network of n pipes running from the bottom edge of the grid to the right
edge [LLS21, Wei21]. A BPD is reduced if each pair of pipes crosses at most once.

Given a BPD, one can define a permutation given by labeling the pipes 1 through
n along the bottom edge and then reading off the labels on the right edge, ignoring
any crossings after the first, i.e., replacing redundant crossing tiles with bump tiles
. The set of all BPDs associated to a permutation w is denoted BPD(w) and the

set of all reduced BPDs associated to w is denoted RBPD(w).
Given a reduced BPD, we label the pipes 1 through n along the bottom edge.
For any permutation w \in Sn, the Rothe bumpless pipe dream is the unique BPD

P (w) \in BPD(w) which has no up-elbow tiles ; each pipe has one down-elbow tile

at (i,w(i)).
Given P \in BPD(w), let D(P ) denote the set of blank tiles and U(P ) denote

the up-elbow tiles. A marked bumpless pipe dream (MBPD) is a pair (P,S) where
P \in BPD(w) and S \subseteq U(P ). The set of MBPDs is denoted MBPD(w).

Proposition 2.4 (see [Wei21, Corollary 1.5]). We have

\frakG w =
\sum 

(P,S)\in MBPD(w)

( - 1)| D(P )| +| S|  - \ell (w)

\left( 
 \prod 

(i,j)\in D(P )\cup S

xi

\right) 
 .

Given an MPBD (P,S), the weight of (P,S) is the vector wt(P,S) \in \BbbZ n whose
ith component is the number of tiles in the ith row that are blank or up-elbows.

Corollary 2.5. We have

supp(\frakG w) = \{ wt(P,S) : (P,S)\in MBPD(w)\} .

The rank of a tile (i, j)\in D(P ) is the number of pipes northwest of (i, j).

Lemma 2.6 (see [Wei21]). A permutation w \in Sn is vexillary if and only if every
P \in BPD(w) is reduced.

Lemma 2.6 guarantees that, for vexillary w, the pipes in any P \in BPD(w) are
labelled.

A local move is any of the following local transformations of BPDs:

Lemma 2.7 (see [Wei21, Lemma 7.4], [Haf22, Lemma 2.3]). Let w \in Sn be a
vexillary permutation, and let P \in BPD(w). Then P can be obtained from the Rothe
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2198 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

BPD by using local moves to position the pipe labelled w(n), then to position the pipe
labelled w(n - 1), and so on through the pipe labelled w(1). Alternatively, P can be
obtained from the Rothe BPD by using local moves to position the pipe labelled n, then
to position the pipe labelled n - 1, and so on through the pipe labelled 1.

Supports and Newton polytopes of polynomials. Let f =
\sum 

\alpha c\alpha x
\alpha \in 

\BbbR [x1, . . . , xn] be a polynomial. The support of f is the set

supp(f) = \{ \alpha : c\alpha \not = 0\} \subset \BbbZ n.

The Newton polytope of f is the convex hull of supp(f). We denote the Newton
polytope by Newton(f), and we say f has saturated Newton polytope (abbreviated
SNP) if

supp(f) =Newton(f)\cap \BbbZ n.

Diagrams. As stated in the introduction, a diagram is a subset D \subseteq [n]\times [k].
When we draw diagrams, we read the indices as in a matrix.

Associated to any permutation w \in Sn is the Rothe diagram D(w) \subseteq [n] \times [n],
defined by

D(w)
def
= \{ (i, j)\in [n]\times [n] : i < w - 1(j) and j <w(i)\} .

The Rothe diagram comes equipped with a rank function rD(w) : D(w)\rightarrow \BbbZ \geq 0 defined
by

rD(w)(i, j) = | \{ (k,w(k)) : k < i and w(k)< j\} | .

For R,S \subseteq [n], we say R\leq S if \#R=\#S and the kth smallest element of R does
not exceed the kth smallest element of S for every k. For diagrams C = (C1, . . . ,Ck)
and D= (D1, . . . ,Dk), we say C \leq D if Cj \leq Dj for every j \in [k].

Flagged Weyl modules. Let Y denote a matrix with indeterminates yij in the
upper triangular positions i \leq j and zeroes elsewhere. Given a matrix M \in Mn(\BbbC )
and R,S \subseteq [n], let MS

R denote the submatrix of M obtained by restricting to rows S
and columns R.

Let B denote the set of upper triangular matrices in GLn(\BbbC ), and let b denote the
set of upper triangular matrices in Mn(\BbbC ). The coordinate ring \BbbC [b] is a polynomial
ring in the variables \{ yij : i\leq j\} . The action of B on b by left multiplication induces
an action of B on \BbbC [b] on the right via f(Y ) \cdot b := f(b - 1Y ).

The flagged Weyl module of a diagram D\subseteq [n]\times [k] is the subrepresentation

\scrM D
def
= Span\BbbC 

\left\{ 
 
 

k\prod 

j=1

det
\Bigl( 
Y

Cj

Dj

\Bigr) 
: C \leq D

\right\} 
 
 

of \BbbC [b].
The dual character of a representation M of B is the function char\ast M : T \rightarrow \BbbC 

given by

char\ast M (diag(x1, . . . , xn)) = tr(diag(x - 1
1 , . . . , x - 1

n ) : M \rightarrow M).

We will write \chi D := char\ast \scrM D
for the dual character of \scrM D.
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M-CONVEXITY VIA BUBBLING 2199

Proposition 2.8 (cf. [FMS18, Theorem 7]). The function \chi D equals a polyno-
mial in \BbbZ [x1, . . . , xn] whose support is \{ wt(C) : C \leq D\} .

Proof. The elements
\prod 

j det(Y
Cj

Dj
)\in \scrM D are simultaneous eigenvectors for the ac-

tion of T with eigenvalue x - wt(C). Since these elements span \scrM D, the dual character
is a sum of monomials of the form xwt(C) for C \leq D.

Generalized permutahedra and M-convexity. A function z : 2[n] \rightarrow \BbbR is
called submodular if

z(I) + z(J)\geq z(I \cup J) + z(I \cap J) for all I, J \subseteq [n].

Definition 2.9. A polytope P \subset \BbbR n is a generalized permutahedron if there is a
submodular function z : 2[n] \rightarrow \BbbR such that z(\emptyset ) = 0 and

P =

\Biggl\{ 
t\in \BbbR n :

\sum 

i\in I

ti \leq z(I) for all I \subseteq [n] and

n\sum 

i=1

ti = z([n])

\Biggr\} 
.

Lemma 2.10 (see [Fra11, Theorem 14.2.8]). Let P \subseteq \BbbR n be a generalized permu-
tahedron defined by a submodular function z with z(\emptyset ) = 0. Then

z(I) =max

\Biggl\{ \sum 

i\in I

pi : p\in P
\Biggr\} 
.

A set S \subseteq \BbbZ n is M-convex if for any x, y \in S and any i \in [n] for which xi > yi,
there is an index j \in [n] satisfying xj < yj and x - ei + ej \in S and y - ej + ei \in S.

Note that the convex hull of an M-convex set is a generalized permutahedron, and
the set of integer points of an integer generalized permutahedron is an M-convex set.

Schubert matroid polytopes. A matroid is a pair (E,\scrB ) consisting of a finite
set E and a nonempty collection of subsets \scrB of E, called the bases of M . The set \scrB 
is required to satisfy the basis exchange axiom: If B1,B2 \in \scrB and b1 \in B1 \setminus B2, then
there is b2 \in B2 \setminus B1 such that B1 \setminus b1 \cup b2 \in \scrB .

Definition 2.11. Fix positive integers 1 \leq s1 < \cdot \cdot \cdot < sr \leq n. The Schubert
matroid SMn(s1, . . . , sr) is the matroid whose ground set is [n] and whose bases are
the sets \{ a1, . . . , ar\} with a1 < . . . < ar such that a1 \leq s1, . . . , ar \leq sr.

Given a matroid M = ([n],\scrB ) and a basis B \in \scrB , let \zeta B = (\zeta B1 , . . . , \zeta 
B
n ) be the

vector with \zeta Bi = 1 if i\in B and \zeta Bi = 0 if i \not \in B. Thematroid polytope P (M) ofM is the
convex hull conv\{ \zeta B : B \in \scrB \} . The rank function of M is the function rM : 2E \rightarrow \BbbZ \geq 0

defined by rM (S) = max\{ \#(S \cap B) : B \in \scrB \} . The function rM is submodular and
rM (\emptyset ) = 0. The matroid polytope P (M) is a generalized permutahedron, defined by
the submodular function rM .

3. Bubbling and supports of Grothendieck polynomials. We establish
basic properties of bubbling diagrams, including a nonrecursive characterization of the
set of bubbling diagrams (Lemma 3.19), and we prove Theorem 1.1 by constructing
weight preserving maps between the set of bubbling diagrams and the set of marked
BPDs.

Definition 3.1. A bubbling diagram is a triple (D,r,F ) where D \subseteq [n]\times [k] is
a diagram, r : D \rightarrow \BbbZ \geq 0 is a function, and F \subseteq D is a collection of squares in D
satisfying the following properties:
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2200 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

\bullet If (i, j)\in F , then there exists (i\prime , j)\in D\setminus F with i\prime < i. For the maximal i\prime < i
with (i\prime , j)\in D \setminus F , the equality r(i, j) - r(i\prime , j) = i - i\prime holds.

\bullet If (i, j)\in F and (i, k)\in F , then r(i, j) \not = r(i, k).
We refer to the squares (i, j) \in D \setminus F as live squares, to the squares (i, j) \in F as

dead squares, and to the squares (i, j) \not \in D as empty squares.
When we draw a bubbling diagram, the live squares D \setminus F will be colored green,

the dead squares F will be colored grey, and each square (i, j) \in D will be labelled by
the value of r(i, j). See Figure 1.

The rank of a square (i, j) \in D is the value r(i, j). The weight of a bubbling

diagram \scrD = (D,r,F ) is wt(\scrD )
def
= wt(D).

Example 3.2. The Rothe bubbling diagram of a permutation w is the bubbling
diagram \scrD (w) := (D(w), rD(w),\emptyset ).

For example, the Rothe bubbling diagram for w= 1423 is shown in Figure 1.

Definition 3.3 (bubbling move). Let \scrD = (D,r,F ) be a bubbling diagram. Sup-
pose that (i, j) is a live square and that (i - 1, j) is an empty square.

Then, a bubbling move at (i, j) produces the bubbling diagram \scrD \prime = (D\prime , r\prime , F \prime )
where

D\prime :=D \setminus (i, j)\cup (i - 1, j),

r\prime (x, y) :=

\Biggl\{ 
r(x, y) if (x, y) \not = (i - 1, j),

r(i, j) - 1 if (x, y) = (i - 1, j),

F \prime := F.

In other words, we ``bubble up"" a live square (i, j) to (i - 1, j), decreasing the rank of
the square by 1 in the process.

Example 3.4. Let w = 1423. The bubbling diagram obtained from \scrD (w) by
applying a bubbling move at (2,3)\in D(w) is shown in Figure 2.

Definition 3.5 (K-bubbling move). Let \scrD = (D,r,F ) be a bubbling diagram.
Suppose that (i, j) is a live square and that (i  - 1, j) is an empty square. Assume,
furthermore, that there are no dead squares (i, k)\in F for which r(i, j) = r(i, k).

1 1

Fig. 1. The Rothe bubbling diagram for w= 1423. All squares in D(w) are live.

1

0

Fig. 2. A bubbling move applied to (2,3)\in D(w), w= 1423.
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M-CONVEXITY VIA BUBBLING 2201

Then, a K-bubbling move at (i, j) produces the bubbling diagram \scrD \prime = (D\prime , r\prime , F \prime )
where

D\prime :=D \cup (i - 1, j),

r\prime (x, y) :=

\Biggl\{ 
r(x, y) if (x, y) \not = (i - 1, j),

r(i, j) - 1 if (x, y) = (i - 1, j),

F \prime := F \cup (i, j).

In other words, we ``bubble up"" a live square (i, j) to (i - 1, j), decreasing the rank of
the square by 1 in the process, while also ``leaving behind"" a dead copy of the original
square (i, j).

Example 3.6. Let w = 1423. The bubbling diagram obtained from \scrD (w) by
applying a K-bubbling move at (2,3)\in D(w) is shown in Figure 3.

We remark that a dead square cannot be bubbled or K-bubbled, but impacts the
K-bubbleability of certain other squares.

Definition 3.7. Let \scrD be a bubbling diagram. Define \scrB \scrD (\scrD ) to be the set of
all bubbling diagrams generated from \scrD by a series of bubbling moves and K-bubbling
moves. For w \in Sn, let \scrB \scrD (w) :=\scrB \scrD (\scrD (w)).

Example 3.8. Let w = 1423. Then \scrB \scrD (w) consists of the bubbling diagrams in
Figure 4. Note that the two squares in D(w) cannot both be K-bubbled.

Definition 3.9. Let \scrD = (D,r,F ) be a bubbling diagram where D\subseteq [n]\times [k]. For
j \in [k], define \scrD j to be the jth column of \scrD , i.e., \scrD j := (Dj , r| Dj , Fj).

1

0

1

Fig. 3. A K-bubbling move applied to (2,3)\in D(w), w= 1423.

1 1 1

0

1

0 0

1 1

0

1 1 1 1

0

0 0 000

Fig. 4. The set \scrB \scrD (w) for w= 1423.
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2202 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

1 1 1 1 1

1 1 1

1 1 1

1 1

1 1

2

3

2

22

Fig. 5. The squares in the linking class \{ (6,3), (6,4), (7,6)\} are shaded blue. (Figure in color
online.)

Definition 3.10. Let D be a diagram, and let r : D \rightarrow \BbbZ \geq 0 be a function. We
say that two squares (i, j), (i\prime , j\prime ) \in D are linked if i - i\prime = r(i, j) - r(i\prime , j\prime ). A linking
class is an equivalence class of linked squares.

Example 3.11. Let w = 178925(10)346. Then, \{ (6,3), (6,4), (7,6)\} is a linking
class in \scrD (w). See Figure 5.

Lemma 3.12. Fix \scrD = (D,r,F ), and let \scrD \prime = (D\prime , r\prime , F \prime ) \in \scrB \scrD (\scrD ). If the ajth
highest live square in D\prime 

j is linked to the ak-th highest live square in D\prime 
k, then the ajth

highest live square in Dj is linked to the akth highest live square in Dk.

Proof. Let i\prime j and ij denote the ajth highest live squares in D\prime 
j and Dj , re-

spectively, and let i\prime k and ik denote the akth highest live squares in D\prime 
k and Dk,,

respectively. By assumption,

r\prime (i\prime j , j) - r\prime (i\prime k, k) = i\prime j  - i\prime k.

Since \scrD \prime \in \scrB \scrD (\scrD ), the equalities

r\prime (i\prime j , j) - r(ij , j) = i\prime j  - ij and r\prime (i\prime k, k) - r(ik, k) = i\prime k  - ik

hold. It follows that

r(ij , j) - r(ik, k) = ij  - ik.

Lemma 3.13. Let w \in Sn be a vexillary permutation. Let (i1, j1), (i2, j2) \in D(w)
be two linked squares, and suppose that j1 < j2. Then,

(1) i1 \leq i2, and
(2) if (i1 - 1, j1), (i2 - 1, j2) \not \in D(w), then the j1th and j2th columns of D(w) agree

above the (i1  - 1)th row, that is, (i, j1) \in D(w) if and only if (i, j2) \in D(w)
for all i\leq i1  - 1 and rD(w)(i, j1) = rD(w)(i, j2).

Proof. We first show item (1). Suppose that i1 > i2. Since j1 < j2, we know that

rD(w)(i2, j2)\geq | \{ (k,w(k)) : k < i2 andw(k)< j1\} | .
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M-CONVEXITY VIA BUBBLING 2203

Thus

rD(w)(i2, j2) - rD(w)(i1, j1)\geq | \{ (k,w(k)) : k < i2 andw(k)< j1\} | 
 - | \{ (k,w(k)) : k < i1 andw(k)< j1\} | 

= - | \{ (k,w(k)) : i2 \leq k < i1 andw(k)< j1\} | 
\geq i2  - i1.

If equality occurs, then w(k) < j1 for all i2 \leq k < i1; in particular, w(i2) < j1 < j2.
This contradicts the fact that (i2, j2)\in D(w).

We now show item (2). Because (i1, j1) \in D(w), we know that (i, j2) \in D(w)
implies (i, j1) \in D(w) for all i < i1. If (i, j1) \in D(w) and (i, j2) \not \in D(w), then
i < i1  - 1< i2 <w

 - 1(j2) forms a 2143 pattern.

Example 3.14. Let w= 178925(10)346, as in Figure 5. The live squares (6,4) and
(7,6) are linked, with (6,4) to the right of (7,6). Then, as Lemma 3.13 predicts, (1)
the square (6,4) is above the square (7,6), and (2) because (5,4) and (6,6) are empty,
the 4th and 6th columns agree above the 5th row: both columns have live squares in
exactly rows 2,3,4.

Our next goal is to give a nonrecursive characterization of the elements in \scrB \scrD (\scrD ).
In Lemma 3.19, we will show that the axioms below are equivalent to membership in
\scrB \scrD (\scrD ).

Definition 3.15. Fix a bubbling diagram \scrD = (D,r,F ). Let F \prime \subseteq D\prime be diagrams.
We say that (D\prime , F \prime ) is \bfscrD -admissible if the following occur:

(1) F \prime \supseteq F .
(2) D\prime \setminus F \prime \leq D \setminus F .
(3) For any (i, j) \in F \prime \setminus F , there is (i\prime , j) \in D\prime \setminus F \prime with i\prime < i. Furthermore,

suppose that there are m live squares above row i in D\prime 
j. Then the mth

highest live square in Dj \setminus Fj is below row i,
(4) Suppose that (i, j)\in F and that there are a live squares in Dj above row i and

b live squares in Dj below row i. Then there are a live squares in D\prime 
j above

row i and b live squares in D\prime 
j below row i,

(5) Let (i, j), (i, k) \in F \prime be dead squares in the same row. Suppose that the mjth
highest square in D\prime 

j \setminus F \prime 
j is the live square immediately above (i, j) and that

the mkth highest square in D\prime 
k \setminus F \prime 

k is the live square immediately above (i, k).
Then the mjth highest square in Dj and the mkth highest square in Dk are
not linked.

To prove Lemma 3.19, we describe a systematic way to generate a given bubbling
diagram \scrD \prime \in \scrB \scrD (\scrD ) (Definition 3.17); the legality of the construction is the content
of Lemma 3.18.

Definition 3.16. Let \scrD = (D,r,F ) be a bubbling diagram, and let F \prime \subseteq D\prime be a
pair of diagrams. Let \scrD \prime = (D\prime , F \prime ) and \scrD \prime 

j = (D\prime 
j , F

\prime 
j). We say that \scrD j and \scrD \prime 

j weakly
agree below row s if the following occur:

\bullet Dj \cap \{ s, . . . , n\} =D\prime 
j \cap \{ s, . . . , n\} , and

\bullet Fj \cap \{ s, . . . , n\} = F \prime 
j \cap \{ s, . . . , n\} .

We write s(\scrD j ,\scrD \prime 
j) to mean the minimal integer s so that \scrD j and \scrD \prime 

j weakly agree
below row s. If no such row exists, then we set s(\scrD j ,\scrD \prime 

j) := n+ 1.

Definition 3.17. Let \scrD = (D,r,F ) be a bubbling diagram. Suppose that F \prime \subseteq D\prime 

are \scrD -admissible. The canonical bubbling sequence of (D\prime , F \prime ) with respect to \scrD is the
sequence (\scrD n, . . . ,\scrD 0) defined by the following:
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2204 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

\bullet \scrD n :=\scrD .
\bullet For m \geq 1, \scrD m - 1 is obtained from \scrD m = (Dm, rm, Fm) by applying the
following bubbling and K-bubbling moves. For each column j with an empty
square in row m directly above a live square in row m+1, let kj := s(\scrD m

j ,\scrD \prime 
j).

If kj > m + 1 and kj  - 1 \not \in D\prime 
j, then apply bubbling moves at m + 1,m +

2, . . . , kj  - 1; if kj > m + 1 and kj  - 1 \in F \prime 
j, then apply bubbling moves at

m+ 1,m+ 2, . . . , kj  - 2 and then a K-bubbling move at kj  - 1.
See Figure 6 for an example.

To ensure the legality of the bubbling moves in Definition 3.17, we use the fol-
lowing lemma.

Lemma 3.18. Let \scrD = (D,r,F ) be a bubbling diagram. Suppose that F \prime \subseteq D\prime 

is \scrD -admissible, and let (\scrD n, . . . ,\scrD 0) denote the canonical bubbling sequence. Write
\scrD m = (Dm, rm, Fm). Suppose that for some m and j, we have (m,j) \not \in Dm and
(m+ 1, j) \in Dm \setminus Fm. Let \ell j,m \geq m+ 1 be maximal so that (m+ 1, j), . . . , (\ell j,m, j) \in 
Dm \setminus Fm. Let kj,m := s(\scrD m

j ,\scrD \prime 
j). Then,

(1) \ell j,m \geq kj,m  - 1.
(2) Suppose that kj,m  - 1 \in F \prime 

j and that for some h \not = j, either kj,m  - 1 \in Fm
h or

m \not \in Dm
h , m+1\in Dm

h , kh,m = kj,m, and kh,m - 1\in F \prime 
h. Then r

m(kj,m - 1, j) \not =
rm(kh,m  - 1, h).

Furthermore, D0 =D\prime and F 0 = F \prime .

Proof. We first show item (1) using induction. Let m1 > \cdot \cdot \cdot >mh be the integers
for which \scrD mi

j \not =\scrD mi - 1
j . Thus, m1 is maximal so that m1 \not \in Dj and m1+1\in Dj \setminus Fj .

It follows that if i > \ell j,m1
and i \in Dj \setminus Fj , then there is m\prime < i with m\prime \in Fj and

m\prime +1,m\prime +2, . . . , i\in Dj \setminus Fj . Condition (1) implies that m\prime \in F \prime 
j , and conditions (2)

and (4) together imply

(Dj \setminus Fj)\cap \{ \ell j,m1
+ 1, . . . , n\} = (D\prime 

j \setminus F \prime 
j)\cap \{ \ell j,m1

+ 1, . . . , n\} .

1 1 1 1 1

1 1 1

1 1 1

1 1

1 1

2

3

2

22

2

1 1 1 1 1

1 1 1

1 1 1

1 1

1 1

2

3

2

22

D(w) = D6 D5

1 1

1 1 1

1 1 1

1

1 1

2

3

2

22

2

1

1

0

1

0 0

01 1 1 1 1

1 1 1

1 1 1

1 1

1 1

2

3

2

22

2

1

D0 = DD4 = D1

1 1

1 1 1

1 1 1

1

1 1

2

3

2

22

2

1

1

0

1

0 0

0

D

Fig. 6. The canonical bubbling sequence for a bubbling diagram \scrD \in \scrB \scrD (w) with w =
178925(10)346. The squares which are bubbled or K-bubbled are shaded blue. (Figure in color
online.)
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M-CONVEXITY VIA BUBBLING 2205

Then condition (3) implies that (F \prime \setminus F ) \cap \{ \ell j,m1 + 1, . . . , n\} = \emptyset . We conclude that
\ell j,m1 \geq kj,m1  - 1.

Now assume that \ell j,mi
\geq kj,mi

 - 1. By construction of the canonical bubbling
sequence, \scrD mi+1 =\scrD mi - 1

j weakly agrees with \scrD \prime 
j below row kj,mi

 - 1. Furthermore,
kj,mi

 - 1 \not \in D\prime 
j \setminus F \prime 

j , so \ell j,mi+1
\leq kj,mi

 - 2. Thus

kj,mi+1  - 1\leq kj,mi  - 2\leq \ell j,mi+1 .

We now show item (2). By induction, we may assume that \scrD m \in \scrB \scrD (\scrD ). Suppose
that kj,m \in Dm

j \setminus Fm
j is the ajth highest live square in its column. Define ah as follows:

if (kj,m - 1, h)\in Fm, then suppose that the ahth highest square in Dm
h \setminus Fm

h is the live
square immediately above (kj,m - 1, h); if kj,m - 1\in Dm

h \setminus Fm
h , then suppose that kj,m - 1

is the ahth highest live square in its column. If rm(kj,m - 1, j) \not = rm(kh,m - 1, h), then
the ajth highest live square in Dm

j and the ahth highest live square in Dm
h are linked.

Lemma 3.12 implies that the aj-th highest live square in Dj and the ahth highest live
square in Dh are linked, contrary to condition (5) in Lemma 3.19.

We now show that D0 =D\prime and F 0 = F \prime . We claim that F \prime \subseteq D\prime is \scrD 0
j -admissible,

that is,
(1) The canonical bubbling sequence introduces a dead square (i, j)\in F 0\setminus F only

if (i, j)\in F \prime \setminus F , so F \prime \supseteq F 0.
(2) The canonical bubbling sequence bubbles the mth highest live square i\in Dm

j

only if the mth highest live square in D\prime 
j is above row i, so D\prime \setminus F \prime \leq D0 \setminus F 0,

(3) Since F \prime \supseteq F 0, for any (i, j) \in F \prime \setminus F 0, there is (i\prime , j) \in D\prime \setminus F \prime with i\prime < i.
If the mth and (m + 1)th highest live squares in D0

j \setminus F 0
j are in row k and

\ell , respectively, then F 0
j \cap \{ k + 1, . . . , \ell  - 1\} = F \prime 

j \cap \{ k + 1, . . . , \ell  - 1\} ; thus, if
the mth highest live square in D\prime 

j \setminus F \prime 
j is the live square that is immediately

above (i, j), then the m-th highest live square in D0
j \setminus F 0

j is below row i.
(4) Suppose that (i, j) \in F 0 and that there are a live squares in D0

j above row i
and b live squares in D0

j below row i. If (i, j)\in Fm \setminus Fm+1 for some m, then
i+1= kj,m+1 and there are a and b live squares in Dm

j above and below row
i, respectively. It follows that there are a and b live squares in D\prime 

j above and
below row i, respectively.

(5) Let (i, j), (i, k)\in F \prime be dead squares in the same row. Suppose that the mjth
highest square in D\prime 

j \setminus F \prime 
j is the live square immediately above (i, j) and that

the mkth highest square in D\prime 
k \setminus F \prime 

k is the live square immediately above (i, k).
Then the mjth highest square in Dj and the mkth highest square in Dk are
not linked; thus Lemma 3.12 guarantees that the mjth highest square in D0

j

and the mkth highest square in D0
k are not linked.

Let m be minimal so that m \not \in D0
j and m+1\in D0

j \setminus F 0
j ; if no such m exists, then set

m := n+1. It follows that if i <m and i\in D0
j \setminus F 0

j , then there is m\prime < i with m\prime \in F 0
j

and m\prime + 1, . . . , i \in D0
j \setminus F 0

j . Condition (1) implies that m\prime \in F \prime 
j , and conditions (2)

and (4) together imply (D0
j \setminus F 0

j )\cap \{ 1, . . . ,m - 1\} = (D\prime 
j \setminus F \prime 

j)\cap \{ 1, . . . ,m - 1\} . Then
condition (3) implies that (F \prime \setminus F )\cap \{ 1, . . . ,m - 1\} = \emptyset , so it suffices to show that \scrD 0

j

and \scrD \prime 
j agree below row m+ 1.

Either m \not \in Dm
j , m+1\in Dm

j , and s(\scrD m
j ,\scrD \prime 

j)\leq m+1 or m,m+1\in Dm
j and there

exists \ell <m with kj,\ell =m+1 so that s(\scrD \ell 
j ,\scrD \prime 

j)\leq m. Furthermore, in both cases, the
canonical bubbling sequence then leaves rows \{ m+1, . . . , n\} invariant. It follows that
s(\scrD 0

j ,\scrD \prime 
j)\leq m+ 1, and we conclude that D0

j =D\prime 
j and F 0

j = F \prime 
j .

Lemma 3.19. Let \scrD = (D,r,F ) be a bubbling diagram, and let F \prime \subseteq D\prime be di-
agrams. Then there exists r\prime : D\prime \rightarrow \BbbZ \geq 0, necessarily unique, so that (D\prime , r\prime , F \prime ) \in 
\scrB \scrD (\scrD ) if and only if (D\prime , F \prime ) is \scrD -admissible.
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2206 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

Proof of Lemma 3.19. A straightforward check confirms that if \scrD \prime \in \scrB \scrD (\scrD ) is
\scrD -admissible, then any bubbling diagram \scrD \prime \prime obtained from \scrD \prime via a bubbling or
K-bubbling move is \scrD -admissible. Thus, the forward implication follows.

Conversely, take any \scrD -admissible F \prime \subseteq D\prime . The canonical bubbling sequence of
(D\prime , F \prime ) with respect to \scrD gives a bubbling diagram \scrD 0 = (D0, r0, F 0) \in \scrB \scrD (\scrD ), and
Lemma 3.18 guarantees that D0 =D\prime and F 0 = F \prime .

Theorem 1.1. Let w \in Sn be a vexillary permutation. Then supp(\frakG w) = \{ wt(\scrD ) :
\scrD \in \scrB \scrD (w)\} .

Proof of Theorem 1.1. We first show that supp(\frakG w)\subseteq \{ wt(\scrD ) : \scrD \in \scrB \scrD (w)\} . By
Corollary 2.5, it suffices to show that for every marked bumpless pipe dream (P,S)\in 
MBPD(w), there exists a bubbling diagram \scrD \in \scrB \scrD (w) so that wt(\scrD ) = wt(P,S).
We will construct such a bubbling diagram \scrD as follows; see Example 3.20 for an
example.

Fix (P,S) \in MBPD(w). Let (Pm, Sm) \in MBPD(w) denote the MBPD whose
w(m + 1),w(m + 2), . . . ,w(n)th marked pipes agree with those of (P,S) and whose
w(1), w(2), . . . , w(m)th marked pipes agree with those of the Rothe BPD P (w). Let
Bm denote the set of blank tiles of Pm which are not southeast of any of the pipes
w(m+ 1), . . . ,w(n).

We will use induction to construct diagrams \scrD m = (Dm, rm, Fm) \in \scrB \scrD (w) and
bijections fm : [n]\rightarrow [n] so that we have the following:

\bullet The diagram \scrD m agrees with \scrD (w) above row m.
\bullet wt(\scrD m) =wt(Pm, Sm).
\bullet (i, j)\in Bm if and only if (i, fm(j))\in Dm\setminus Fm for every 1\leq i\leq max\{ k : (k, j)\in 
Bm\} , and

\bullet the rank of any square (i, j)\in Bm is equal to rm(i, fm(j)).
Since (Pn, Sn) is the Rothe BPD, we set \scrD n :=\scrD (w) and fn := id; the three items

above hold because Bn =D(w) (as subsets of [n]\times [n]) and Sn = Fn = \emptyset .
If (Pm - 1, Sm - 1) = (Pm, Sm), then we define \scrD m - 1 :=\scrD m and fm - 1 := fm.
Now suppose (Pm - 1, Sm - 1) \not = (Pm, Sm). Assume we are given \scrD m and fm satis-

fying the items above. Let Qm denote the set of blank tiles in Bm which are displaced
upon replacing the w(m)th pipe in Pm with the w(m)th (marked) pipe of P to obtain
(Pm - 1, Sm - 1).

Any square (i, j) \in Qm that is northernmost in its column satisfies i =m+ 1; it
follows by construction of fm that (m+1, fm(j))\in Dm\setminus Fm and that (m,fm(j)) \not \in Dm.
Furthermore, any square in Qm has the same rank, Qm\cap Sm - 1 has at most one square
in each row, and any square inQm\cap Sm - 1 is southernmost in its column. Thus, we may
apply bubbling moves to \scrD m at the squares \{ (i, fm(j)) : (i, j) \in Qm \setminus Sm - 1\} followed
by K-bubbling moves at the squares \{ (i, fm(j)) : (i, j) \in Qm \cap Sm - 1\} to produce a
bubbling diagram \scrD m - 1. This bubbling diagram agrees with \scrD (w) above row m - 1
and satisfies wt(\scrD m - 1) =wt(Pm - 1, Sm - 1).

It remains to define the bijection fm - 1. Let j1 < \cdot \cdot \cdot < jk denote the columns which
have squares inQm, and set j0 := j1 - 1. Let \sigma m : \{ j0, . . . , jk\} \rightarrow \{ j0, . . . , jk\} be the map
\sigma m(j\ell ) = j\ell +1 (with jk+1 := j0), and let fm - 1 := fm \circ \sigma m. Since (m,j0), . . . , (m,jk) \not \in 
D(w), Lemma 3.13 guarantees that the j0, . . . , jkth columns of D(w) all agree above
row m. Combined with the fact that (i, j) \in Bm if and only if (i, fm(j)) \in Dm \setminus Fm

for all 1 \leq i \leq max\{ k : (k, j) \in Bm\} , it follows that (i, j) \in Bm - 1 if and only if
(i, fm - 1(j))\in Dm - 1\setminus Fm - 1 for every 1\leq i\leq max\{ k : (k, j)\in Bm - 1\} and, furthermore,
that the rank of any square (i, j)\in Bm - 1 is equal to rm - 1(i, fm - 1(j)).
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M-CONVEXITY VIA BUBBLING 2207

We now show that supp(\frakG w)\supseteq \{ wt(\scrD ) : \scrD \in \scrB \scrD (w)\} . By Corollary 2.5, it suffices
to show that for every diagram \scrD \in \scrB \scrD (w), there exists a MBPD (P,S)\in MBPD(w)
such that wt(\scrD ) =wt(P,S). We accomplish this using the following construction; see
Example 3.21 for an example.

Fix \scrD = (D,r,F ) \in \scrB \scrD (w). Let \scrD m = (Dm, rm, Fm) denote the canonical bub-
bling sequence. We will construct MBPDs (Pm, Sm) and bijections gm : [n] \rightarrow [n] so
that

\bullet The w(1), . . . ,w(m)th pipes of Pm have no up-elbow tiles.
\bullet wt(\scrD m) =wt(Pm, Sm).
\bullet (i, j)\in Bm if and only if (i, gm(j))\in Dm\setminus Fm for every 1\leq i\leq max\{ k : (k, j)\in 
Bm\} .

\bullet The rank of any square (i, j)\in Bm is equal to rm(i, fm(j)).
Since \scrD n is the Rothe bubbling diagram, we set (Pn, Sn) to be the Rothe BPD and
gn := id. If \scrD m - 1 =\scrD m, then we define (Pm - 1, Sm - 1) := (Pm, Sm) and fm - 1 := fm.

Now suppose \scrD m - 1 \not = \scrD m. Assume we are given (Pm, Sm) and fm satisfying
the items above. Let j1, . . . , j\ell be the columns which are bubbled when constructing
\scrD m - 1, and let kji = s(\scrD m

ji
,\scrD \prime 

ji
), indexed so that kj1 \geq \cdot \cdot \cdot \geq kj\ell and so that if

(kji , ji)\in F , then kji >kji+1 .
By assumption on gm and by Lemma 3.18, the squares (x, g - 1

m (ji)) are in Bm for
m+ 1\leq x\leq kji  - 1 while the squares (m,g - 1

m (ji)) are not in Bm. It follows that the
squares (i, g - 1

m (ji)) are southeast of pipe w(m).
Let

Rm = \{ (x,w - 1(m) + y) : m+ 1\leq x\leq kjy  - 1,1\leq y\leq \ell \} .

We define (Pm - 1, Sm - 1) to be the BPD obtained from Pm by replacing pipe w(m) with
the pipe that traces the southeasternmost squares of Rm and marking the up-elbow
tiles at (kji  - 1,w - 1(m)) whenever (kji  - 1, ji) \in F . The w(1), . . . ,w(m - 1)th pipes
of Pm - 1 have no up-elbow tiles, and this BPD satisfies wt(\scrD m - 1) =wt(Pm - 1, Sm - 1).

It remains to define the bijection gm - 1. Let hm be the maximal integer such
that (m + 1, hm) \in Bm. Let \psi m : \{ w - 1(m),w - 1(m) + 1,w - 1(m) + 2, . . . , hm\} \rightarrow 
\{ w - 1(m),w - 1(m) + 1,w - 1(m) + 2, . . . , hm\} denote a fixed bijection which sends
w - 1(m) + i  - 1 to g - 1

m (ji). Then we define gm - 1 := gm \circ \psi m. Since (m,w - 1(m) +
1), . . . , (m,hm) \not \in D(w), Lemma 3.13 guarantees that the w - 1(m) + 1, . . . , hmth rows
of D(w) all agree above row m. Combined with the fact that (i, j)\in Bm if and only if
(i, gm(j))\in Dm \setminus Fm for all 1\leq i\leq max\{ k : (k, j)\in Bm\} , it follows that (i, j)\in Bm - 1

if and only if (i, gm - 1(j))\in Dm - 1\setminus Fm - 1 for every 1\leq i\leq max\{ k : (k, j)\in Bm - 1\} and,
furthermore, that the rank of any square (i, j)\in Bm - 1 is equal to rm - 1(i, gm - 1(j)).

Example 3.20. Let (P,S)\in MBPD(w) be as in Figure 7.
The MBPDs (Pm, Sm) are equal to (P (w),\emptyset ) for m\geq 5, so the bubbling diagrams

\scrD m are equal to \scrD (w) for m\geq 5. Furthermore, fm is the identity for m\geq 5. The set

Q5 = \{ (6,3), (7,3), (6,4)\} 

is, however, nonempty, so (P4, S4) \not = (P5, S5). The set Q5 contains squares in columns
3 and 4, and the map f4 = \sigma 5 cyclically permutes the set (2,3,4).

Then (Pm, Sm) = (P4, S4) for 1\leq m\leq 4, so \scrD m =\scrD 4 for 1\leq m\leq 4; however,

Q1 = \{ (2,2), (3,2), (4,2), (2,3), (3,3), (4,3), (2,4)\} 

is nonempty, so (P0, S0) \not = (P1, S1). The set Q1 contains squares in columns 2, 3, and
4, and the map \sigma 1 cyclically permutes the set (1,2,3,4). Thus, the map f0 = f4 \circ \sigma 1
cyclically permutes the set (1,3,2,4). See Figure 8.
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Fig. 7. Left: A marked pipe dream (P,S) \in MBPD(w) for w = 178925(10)346 with blank tiles
shaded green and marked up-elbows shaded grey; each blank and marked tile is labeled by its rank.
Right: The Rothe MBPD (P (w),\emptyset ) with blank and marked tiles labeled by their ranks. (Figure in
color online.)
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Fig. 8. Left column: The pipe dream (P5, S5) = (P (w),\emptyset ) for P as in Figure 7 along with the
diagram \scrD 5 = \scrD (w). The squares in Q5 and its image under f5 are shaded blue. Middle column:
The pipe dream (P1, S1) along with \scrD 1. The squares in Q1 and its image under f1 are shaded
blue. Right column: The pipe dream (P0, S0) = P along with the diagram \scrD 0 =\scrD . (Figure in color
online.)

Example 3.21. Let \scrD \in \scrB \scrD (w) be as in Figure 9. The bubbling diagrams \scrD m are
equal to \scrD (w) for m \geq 6, so the MBPDs (Pm, Sm) are equal to (P (w),\emptyset ) for m \geq 6.
Furthermore, gm is the identity for m\geq 6. Then, \scrD 5 is obtained from \scrD 6 by applying
a K-bubbling move to (7,6)\in D6 \setminus F 6. We have

R6 = \{ (7,6)\} ,

so (P5, S5) \not = (P6, S6). The map \psi 6 : \{ 5,6\} \rightarrow \{ 5,6\} is a fixed bijection which sends
w - 1(6) + 1 - 1 = 5 to g - 1

6 (6) = 6, so \psi 6 will cyclically permute (5,6). Thus, g5 = \psi 6

cyclically permutes (5,6).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/0

3/
24

 to
 3

5.
10

.0
.1

84
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



M-CONVEXITY VIA BUBBLING 2209

1 1 1 1 1

1 1 1

1 1 1

1 1

1 1

2

3

2

22

1 1

1 1 1

1 1 1

1

1 1

2

3

2

22

2

1

1

0

1

0 0

0

Fig. 9. Left: A bubbling diagram \scrD \in \scrB \scrD (w) for w= 178925(10)346. Right: The Rothe bubbling
diagram \scrD (w).

Next, \scrD 4 is obtained from \scrD 5 by applying a K-bubbling move to (6,6)\in D5 \setminus F 5.
We have

R5 = \{ (6,3)\} ,

so (P4, S4) \not = (P5, S5). The map \psi 5 : \{ 2,3,4,5\} \rightarrow \{ 2,3,4,5\} is a fixed bijection which
sends w - 1(5) + 1 - 1 = 2 to g - 1

5 (6) = 5; suppose that \psi 5 cyclically permutes (2,5).
Then, g4 = g5 \circ \psi 5 cyclically permutes (2,6,5).

Then, \scrD m = \scrD 4 and gm = g4 for 1 \leq m \leq 4. The bubbling diagram \scrD 0 = \scrD is
obtained from \scrD 1 by applying bubbling moves to \{ (2,4), (2,5)\} \in D1 \setminus F 1 and then
K-bubbling moves to \{ (2,1), (3,4)\} \in D1 \setminus F 1. We have

R1 = \{ (2,2), (3,2), (2,3), (2,4)\} .

The map \psi 1 : \{ 1,2,3,4,5,6\} \rightarrow \{ 1,2,3,4,5,6\} is a fixed bijection which sends w - 1(1)+
1 - 1 = 1 to g - 1

1 (4) = 4, w - 1(1) + 2 - 1 = 2 to g - 1
1 (5) = 6, and w - 1(1) + 3 - 1 = 3

to g - 1
1 (2) = 5; suppose that \psi 1 cyclically permutes (1,4) and (2,6) and (3,5). Then,

g0 = g1 \circ \psi 1 cyclically permutes (1,4) and (2,5,3).
See Figure 10.

4. Supports of top degree components of Grothendieck polynomials.
We prove Theorem 1.2 by showing that bubbling diagrams can be systematically
padded to obtain a top-degree diagram which is necessarily in supp(\chi D\mathrm{t}\mathrm{o}\mathrm{p}(w)) (The-
orem 4.6), and we show that divisibility relations among monomials in \frakG w can be
realized by inclusion relations among bubbling diagrams in a strong sense (Theo-
rem 4.10).

Definition 4.1. Let w \in Sn be a vexillary permutation. We will construct an
ordered set A(w) of distinguished live squares using the following procedure:

(1) Endow the squares in D(w) with the total ordering given by (i, j)\prec (i\prime , j\prime ) if
the following occur:
(a) i > i\prime , or
(b) i= i\prime and (i, j) has fewer squares below it than (i\prime , j\prime ), or
(c) i= i\prime , (i, j) has the same number of squares below it as does (i\prime , j\prime ), and

j < j\prime .
(2) Add the first square in this ordering to A(w).
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Fig. 10. Left column: The diagram \scrD 6 =\scrD (w) for \scrD as in Figure 9 along with the pipe dream
(P6, S6) = (P (w),\emptyset ); R6 and its image under g6 are shaded blue. Second column: The diagram \scrD 5

along with (P5, S5); R5 and its image under g5 are shaded blue. Third column: The diagram \scrD 1

along with (P1, S1); R1 and its image under g1 are shaded blue. Right column: The diagram \scrD 0 =\scrD 
along with (P0, S0) = (P,S). (Figure in color online.)

16 19 20 17 18

15 12 13

10 7 8

11 14

6 9

4

3

5

21

Fig. 11. The \prec ordering on D(w), along with the set A(w), for w= 178925(10)346.

(3) Each subsequent square in the ordering will be appended to A(w) if and only
if A(w) does not already contain a square in the same column and A(w) does
not already contain a square in the same linking class.

Example 4.2. The diagram D(w) for w = 178925(10)346 with squares labeled by
their positions in the \prec order is shown in Figure 11. The squares in A(w) are colored
gold.

Definition 4.3. Let w \in Sn be a vexillary permutation, and let \scrD \in \scrB \scrD (w).
Suppose that the kth square in A(w) is the mkth highest square in column jk. Define
the distinguished live squares A(\scrD ) of \scrD to be the ordered set whose kth element is
the mkth highest live square in Djk .
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M-CONVEXITY VIA BUBBLING 2211

Lemma 4.4. Let w \in Sn be a vexillary permutation, and let \scrD = (D,r,F ) \in 
\scrB \scrD (w). Suppose that a dead square (i, j) \in F is linked to the kth highest live square
in Dj. Suppose that the \ell th square in A(\scrD ) is the k\prime th highest live square in Dj for
k\prime <k. Then (i, j) is linked to the \ell \prime th square in A(\scrD ) for some \ell \prime < \ell .

Proof. As the k\prime th highest live square in Dj is in A(\scrD ), the k\prime th highest square
in D(w)j is in A(w). Similarly, the kth highest square in D(w)j is not in A(w). As
the kth highest square in D(w)j precedes the k\prime th highest square in the \prec order, it
follows that the kth highest square in D(w)j is linked to the \ell \prime th square in A(w) for
\ell \prime < \ell . Thus, the kth highest live square in Dj is linked to the \ell \prime th square in A(\scrD ).

Definition 4.5. Let w \in Sn be a vexillary permutation. Construct the bubbling
diagram

\scrD top(w) := (Dtop(w), rtopD(w), F
top(w))\in \scrB \scrD (w)

from \scrD (w) by repeatedly applying bubbling moves to every square that is above a
distinguished live square until it is no longer possible to do so and then repeatedly
applying K-bubbling moves to every distinguished live square until it is no longer
possible to do so.

For example, the bubbling diagram \scrD top(w) for w = 178925(10)346 is shown in
Figure 12.

Theorem 4.6. Let w \in Sn be a vexillary permutation. For any \scrD = (D,r,F ) \in 
\scrB \scrD (w), there is \scrD \prime = (D\prime , r\prime , F \prime )\in \scrB \scrD (w) with F \prime = F top(w) and xwt(D) | xwt(D\prime ).

The proof of Theorem 4.6 uses the following three lemmas.

Lemma 4.7. Let w \in Sn be vexillary. Let (i1, j1), (i2, j2) \in D(w) be two linked
squares, and suppose that i1 < i2. Then (i\prime , j2) \in D(w) implies (i\prime , j1) \in D(w) for all
i\prime > i2. In particular, (i\prime , j1) has at least as many squares below it as (i\prime , j2) does, and
the kth square of D(w)j2 below row i\prime is in the same row or in a lower row than the
kth square of D(w)j1 below row i\prime .

Proof. Lemma 3.13 implies that j1 < j2. Observe that if

| \{ (k,w(k)) : k < i2 andw(k)< j2\} |  - | \{ (k,w(k)) : k < i1 andw(k)< j1\} | = i2  - i1,

1

1 1

1 11

3

2

22

2

1

1

0 0

0 0

0 0 0 0

0 0

0

0

0

0

0

1 1 1 1 1

1 1 1

1 1 1

1 1

1 1

2

3

2

22

Fig. 12. Left: The squares in D(w) are labeled by their rank, and the set A(w) is colored gold.
Right: The bubbling diagram \scrD \mathrm{t}\mathrm{o}\mathrm{p}(w). (Figure in color online.)
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then there exists (k,w(k)) \in \{ (k,w(k)) : k < i2 and w(k) < j2\} with k \leq i1 but
w(k)> j1. Since w(i1) = j1, it follows that k < i1.

If there exists i\prime > i2 with (i\prime , j2) \in D(w) and (i\prime , j1) \not \in D(w), then k < w - 1(j1)<
i\prime <w - 1(j2) is a 2143 pattern.

Lemma 4.8. Let w \in Sn be vexillary. Let (i, j1), (i, j2) \in D(w), and suppose
that (i, j1) has more squares below it than (i, j2) does. Then (i\prime , j2) \in D(w) implies
(i\prime , j1)\in D(w) for all i\prime > i. In particular, the kth square of D(w)j2 below row i is in
the same row or in a lower row than the kth square of D(w)j1 below row i.

Proof. Suppose there exists i\prime > i such that (i\prime , j2) \in D(w) but (i\prime , j1) \not \in D(w).
Because (i, j1) has more squares below it than (i, j2) does, there exists \ell > i with
(\ell , j1)\in D(w) and (\ell , j2) \not \in D(w). If j1 < j2, then j1 <w

 - 1(\ell )< j2 <w
 - 1(i\prime ) is a 2143

pattern; if j2 < j1, then j2 <w
 - 1(i\prime )< j1 <w

 - 1(\ell ) is a 2143 pattern.

Lemma 4.9. Let w \in Sn be vexillary. Let (i1, j1), (i2, j2) \in D(w) be two linked
squares with j1 < j2, and let i\prime 1 < i1 be minimal so that (i, j1)\in D(w) for all i\prime 1 \leq i\leq i1.
Then there are exactly i1  - i\prime 1 indices k1 < \cdot \cdot \cdot < ki1 - i\prime 1

for which i\prime 1 \leq km < i2 and
(km, j2)\in D(w). Furthermore, (km, j2) is linked to (i\prime 1 +m - 1, j1).

Proof. Lemma 3.13 implies that i1 < i2. Thus,

\{ (k,w(k)) : k < i1 andw(k)< j1\} \subseteq \{ (k,w(k)) : k < i2 andw(k)< j2\} .

Since (i, j1)\in D(w) for all i\prime 1 \leq i\leq i1, we know w(i)> j1 for all i\prime 1 \leq i\leq i1 and hence,

\{ (k,w(k)) : k < i\prime 1 andw(k)< j1\} = \{ (k,w(k)) : k < i1 andw(k)< j1\} .

If some (k,w(k))\in \{ (k,w(k)) : k < i2 andw(k)< j2\} \setminus \{ (k,w(k)) : k < i\prime 1 andw(k)< j1\} 
satisfies k < i\prime 1, then w(k)\geq j1 >w

 - 1(i\prime 1 - 1), and it follows that w - 1(i\prime 1 - 1)<w(k)<
j2 <w

 - 1(i2) forms a 2143 pattern. Because w is vexillary, it follows that all i2 - i1 such
elements (k,w(k)) satisfies k\geq i\prime 1. There are, thus, exactly i2 - i1 elements b such that
i\prime 1 \leq b < i2 and (b, j2) \not \in D(w); therefore, there are exactly (i2 - i\prime 1) - (i2 - i1) = i1 - i\prime 1
elements k such that i\prime 1 \leq k < i2 and (k, j2)\in D(w).

The linkedness result follows from the facts that

rD(w)(i, j1) = rD(w)(i1, j1) for all i\prime 1 \leq i < i

and

rD(w)(km, j2) = rD(w)(i2, j2) - i2 + km + (i1  - i\prime 1  - m+ 1) for all m\in [i1  - i\prime 1].

Proof of Theorem 4.6. Denote the kth square in A(w) by (i\ast k, jk), and suppose
that (i\ast k, jk) is the mkth highest square of D(w) in its column. We will construct
diagrams \scrD k = (Dk, rk, F k) satisfying the following properties for all k:

\bullet \scrD k \in \scrB \scrD (w),

\bullet xwt(\scrD k - 1) | xwt(\scrD k),
\bullet (i, j\ell )\in Dk \setminus F k for all \ell \in [k] and 1\leq i\leq m\ell ,
\bullet (i, j\ell )\in F k for all \ell \in [k] and m\ell + 1\leq i\leq i\ast \ell ,
\bullet (i, j\ell ) \not \in F k for all \ell \in [k] and i\ast \ell + 1\leq i\leq n,
\bullet \scrD k

j\ell 
=\scrD k - 1

j\ell 
for all \ell \in [k - 1].

Set \scrD 0 :=\scrD . Given \scrD k - 1, we construct \scrD k according to the following procedure.
Let ik \in Dk - 1

jk
\setminus F k - 1

jk
be the mkth highest live square in its column. Observe that

\scrD k - 1
jk

contains no dead squares (f, jk) linked to a live square below row ik: Lemma 4.4
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M-CONVEXITY VIA BUBBLING 2213

guarantees that (f, jk) is linked to (m\ell , j\ell ) for some \ell < k, and the definition of \prec 
guarantees that (f, jk) is linked to a dead square (f, j\ell ) in the same row. In particular,
\scrD k - 1

jk
contains no dead squares below row i\ast k + 1.

Let L denote the set of dead squares in F k - 1 which are below row ik and are
linked to (ik, jk). Let C = \{ c1, . . . , cr\} be the set of columns that have a square in
L; note that C \cap \{ j1, . . . , jk - 1\} is empty as all dead cells in column j\ell are linked to
(m\ell , j\ell ) and hence not linked to (ik, jk).

We shall first move squares in L horizontally between the columns in C and
reindex the ci so that whenever k < k\prime , all squares of L in column ck are above all
squares of L in column ck\prime using the following process. Let (r - i , ci) denote the live
square in column ci that is linked to (ik, jk), and let r+i > r - i be minimal such that
(r+i , ci) is live. The squares in (i, cj) for r - j < i < r+j are either dead or empty; if

they are dead, then they are linked to (ik, jk). Furthermore, if r - j < i < r+j and

r - k < i < r+k , then (i, cj) and (i, ck) cannot both be dead. If [r - i , r
+
i ] \supseteq [r - j , r

+
j ] for

some i, j, then we may move all dead squares in \{ (i, cj) : r - j < i < r+j \} to column ci
(to break a tie [r - i , r

+
i ] = [r - j , r

+
j ], we move all dead squares to the column with the

smaller index). Now, reorder the ci so that r - 1 > r
 - 
2 > \cdot \cdot \cdot , and move all dead squares

in \{ (i, cj) : r - j < i< r+j \} to (i, ck) for k minimal such that i < r+k .
We now modify each column ci \in C, starting from c1 and working towards cr,

according to the following procedure.
Let x1 < \cdot \cdot \cdot <xk1

be the rows below ik where (xs, ci) is dead and linked to (ik, jk)
and where (xs, jk) is live. Also, let y1 < \cdot \cdot \cdot < yk2 be the rows below ik where (ys, ci) is
dead and linked to (ik, jk) and where (ys, jk) is empty. Let z1 < \cdot \cdot \cdot < zk1 be the first
k1 rows below row max\{ xk1

, yk2
\} where (zs, ci) is live and (zs, jk) is empty; such rows

z1, . . . , zk1
exist because the live square (a, ci) immediately above the dead squares

(xs, ci) and (ys, ci) is linked to (ik, jk) \in A(\scrD k), so Lemma 4.7 implies (a, ci) has at
least as many live squares below it as (ik, jk) does.

Let k3 be the number of rows between ik and max\{ xk1 , yk2\} which have an empty
space in column ci and a live square in column jk. Modify the portions of columns ci
and jk below row ik such that

\bullet Column ci has live squares in rows x1, . . . , xk1
and any rows below ik which

previously had live squares, except for rows z1, . . . , zk1
,

\bullet column jk has dead squares in all rows between ik + 1 and max\{ xk1 , yk2\} ,
inclusive, along with dead squares in any other rows which already has dead
squares, and

\bullet column jk has live squares in all rows below max\{ xk1
, yk2

\} which already had
a live square, rows z1, . . . , zk1

, and the first other k3 rows below max\{ xk1
, yk2

\} .
See Figure 13 for an example. Letting Sci;i and Sjk;i denote the set of live squares

in the modified columns ci and jk,, respectively, Lemmas 4.7 and 4.8 imply that
Sci;i \leq D(w)ci and Sjk;i \leq D(w)jk . Then, Lemma 3.19 implies that the resulting
diagram is in \scrB \scrD (w).

At this point, every square in L is in column jk. We now use the following
procedure to bubble up squares in column jk so that (i, jk) is live for all \ell \in [k] and
1\leq i\leq m\ell :

\bullet If there is a column j \not = jk such that (ik, j)\in F is dead and linked to (ik, jk),
swap the portions of columns j and jk in and above row ik. Then fill in dead
squares between (ik, jk) and the next lowest live square above it, removing
matching dead squares from other columns if necessary. Such a j is necessarily
not equal to j\ell for \ell \in [k  - 1], as those columns contain only dead squares
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2214 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

...
...

...
...

x1

x2

y1

y2

z1

x1

x2

y1

y2

z1

ci jk ci jk

z2 z2

...
...

...
...

Fig. 13. In this example, k3 = 1 because row (y1 +1, ci) is empty and (y1 +1, jk) is live. After
performing the procedure, (z2  - 3, jk) is live because it is the first row below max\{ x2, y2\} which did
not already have a live square and is not row z1 or z2.

linked to (m\ell , j\ell ). Letting Sj and Sjk denote the set of live squares in the
modified columns j and jk, respectively, Lemmas 3.13 and 4.9 imply that
Sj \leq D(w)j and Sjk \leq D(w)jk . Then Lemma 3.19 implies that the resulting
diagram is in \scrB \scrD (w).

\bullet If there is no such column, and for the maximal i < ik so that i \not \in Djk \setminus Fjk ,
(i, jk) is empty, then apply bubbling moves at i+ 1, . . . , ik  - 1 followed by a
K-bubbling move at ik. The resulting diagram is in \scrB \scrD (w).

\bullet If there is no such column, and for the maximal i < ik so that i \not \in Djk \setminus Fjk ,
(i, jk) is dead, then remove this dead square and apply bubbling moves at
i+ 1, . . . , ik  - 1 followed by a K-bubbling move at ik. The resulting diagram
is in \scrB \scrD (w).

When this procedure terminates, the square (i, jk) is live for all 1 \leq i \leq mk, is
dead for all mk + 1 \leq i \leq i\ast k, and is live or empty otherwise. Columns j1, . . . , jk - 1

were left invariant throughout this construction. We may push down any remaining
live squares in \{ (ik+1, jk), . . . , (i

\ast 
k, jk)\} so that there are no live squares in this region

and then fill in any empty squares in \{ (ik +1, jk), . . . , (i
\ast 
k, jk)\} with dead squares. We

set \scrD k to be the resulting diagram.

Theorem 1.2. Let w \in Sn be a vexillary permutation. Then supp(\frakG top
w ) =

supp(\chi D\mathrm{t}\mathrm{o}\mathrm{p}(w)).

Proof of Theorem 1.2. Theorem 4.6 implies that any monomial appearing in \frakG top
w

is equal to xwt(D) for some (D,r,F ) \in \scrB \scrD (w) with F = F top(w). Any such diagram
D satisfies D\leq Dtop(w), so

supp(\frakG top
w )\subseteq \{ wt(D) : D\leq Dtop(w)\} .
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M-CONVEXITY VIA BUBBLING 2215

By construction, Dtop(w) \in \scrB \scrD (w). Furthermore, if (i, j) \in F top(w), then (i\prime , j) \in 
Dtop(w) for all i\prime < i. It follows (e.g., by Lemma 3.19) that

\{ wt(D) : D\leq Dtop(w)\} \subseteq \{ wt(\scrD ) : \scrD \in \scrB \scrD (\scrD top(w))\} \subseteq supp(\frakG top
w ).

We conclude that

supp(\frakG top
w ) = \{ wt(D) : D\leq Dtop(w)\} .

Finally, Proposition 2.8 guarantees that \{ wt(D) : D\leq Dtop(w)\} = supp(\chi D\mathrm{t}\mathrm{o}\mathrm{p}(w)).

The next result asserts that if a monomial xwt(D) appearing in \frakG w is represented
by a bubbling diagram \scrD = (D,r,F ), then any monomial x\alpha which divides xwt(D)

and appears in \frakG w can be represented by a bubbling diagram whose dead squares are
contained in F .

Theorem 4.10. Let \scrD = (D,r,F ) \in \scrB \scrD (w). Suppose that there exists i \in [n]
so that xwt(D)/xi appears with nonzero coefficient in \frakG w. Then there is \scrD  - =
(D - , r - , F - ) \in \scrB \scrD (w) so that wt(D - ) = wt(D)  - ei, F

 - \subsetneq F , and r = r - on
F - .

Proof. Fix a diagram \scrC = (C,s,G)\in \scrB \scrD (w) so that wt(C) =wt(D) - ei.
If row i of \scrD contains a dead square, then removing that square gives the desired

diagram \scrD  - . Otherwise, there must be a square (i, j) so that (i, j) \in D \setminus F and
(i, j) \not \in C. Suppose that (i, j)\in D \setminus F is the kth uppermost live square in the column
Dj . There are two cases:

(1) Suppose that the kth uppermost live square in the column Cj is above row i.
Let i\prime < i be maximal so that Dj does not have a live square in the i\prime th row;
such a position exists because Cj has its kth uppermost square above row i.
Apply a bubbling move to the live squares (i, j), (i - 1, j), . . . , (i\prime +1, j) of D.
If (i\prime , j) \in F , then simply remove it to make the bubbling move legal. The
resulting diagram is in \scrB \scrD (w).

(2) Suppose that the kth uppermost live square in the column Cj is below row
i. Let i\prime > i be minimal so that Dj does not have a live square in the i\prime th
row. Because the kth uppermost live square in Cj is below row i, the diagram
obtained from D by ``pushing down"" the live squares (i, j), (i+1, j), . . . , (i\prime  - 
1, j) of D by one space, removing a dead square at (i\prime , j) if it exists, is again
a diagram in \scrB \scrD (w).

In either case, if a dead square was removed then the resulting diagram has weight
wt(D) - ei, giving our desired bubbling diagram \scrD  - . If no dead square was removed,
then the resulting diagram has weight wt(D) - ei+ei\prime and has more squares in row i\prime 

than does C, so we may repeat the process using row i\prime until a dead square is removed.
At each step of the process, the squares in D move closer to their counterparts

in C. Because wt(C) = wt(D)  - ei and | D \setminus F | = | C \setminus G| , there is a row r so that
\#\{ j : (r, j)\in C\setminus G\} >\#\{ j : (r, j)\in D\setminus F\} . In particular, there is a column j\ast in which
a live square (r, j\ast )\in C \setminus G is not in the same row as its counterpart in (r\prime , j\ast )\in D\setminus F ;
the algorithm will eventually move (r\prime , j\ast ) to (r, j\ast ), so this procedure will terminate.

Definition 4.11. Let \scrS \scrB \scrD (w) denote the set of bubbling diagrams \scrD = (D,r,F )\in 
\scrB \scrD (w) for which every dead square is linked to a distinguished live square in its
column.

Theorem 4.12. If w \in Sn is vexillary, then supp(\frakG w) = \{ wt(\scrD ) : \scrD \in \scrS \scrB \scrD (w)\} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/0

3/
24

 to
 3

5.
10

.0
.1

84
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



2216 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

D(w) =

Column 2: Column 3:

Column 5:

Fig. 14. Construction of \scrS \scrB \scrD (w) for w = 146235. The set A(w) of distinguished live squares
is shown in gold. Any combination of the above options for columns 2, 3, and 5 will yield a valid
diagram in \scrS \scrB \scrD (w). (Figure in color online.)

Proof. By Theorem 1.1, any monomial appearing in \frakG w is of the form xwt(D)

for some \scrD = (D,r,F ) \in \scrB \scrD (w). By Theorem 4.6, there is a bubbling diagram
\scrC = (C,s,F top(w)) \in \scrB \scrD (\scrD top(w)) so that xwt(D) | xwt(C). Repeated application of
Theorems 2.3 and 4.10 give the desired result.

Observe that \scrS \scrB \scrD (w) is precisely the set of diagrams which can be generated
from D(w) by any series of the following moves:

(1) Bubble up any live square.
(2) K-bubble any distinguished live square.

In particular, once the set A(w) of distinguished live squares has been determined,
this procedure makes no further reference to the ranks of squares (since no pair of
squares in A(w) can be linked). The possible states of each column in \scrS \scrB \scrD (w) are,
thus, independent of the states of the other columns. Figure 14 shows an example of
\scrS \scrB \scrD (w).

5. Supports of homogenized Grothendieck polynomials. We deduce The-
orem 1.3 from a ``one-column version"" of the result (Proposition 5.6).

Definition 5.1 (see [MTY19]). Let D \subseteq [n]\times [k] be a diagram. The Schubitope
\scrS D is the Newton polytope of the dual character \chi D of the flagged Weyl module.

By [FMS18], the Schubitope \scrS D is the Minkowski sum

\scrS D =

k\sum 

i=1

P (SMn(Di))

of Schubert matroid polytopes.
We recall the combinatorial interpretation, due to [MTY19], for the rank functions

of Schubert matroids. For I, J \subseteq [n], construct a string denoted wordnI (J) by setting
k= 1, . . . , n and recording

\bullet if k \not \in I and k \not \in J ;
\bullet ( if k \not \in I and k \in J ;
\bullet ) if k \in I and k \not \in J ;
\bullet  \star if k \in I and k \in J .

Define

\theta nI (J)
def
= \#\{ matched ()

\prime 
s in wordnI (J)\} +\#\{  \star \prime s in wordnI (J)\} ,

where parentheses are matched iteratively left-to-right, removing matched pairs.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

)

)

)

)

)

(

(

(

(

⋆

⋆

⋆

wordnI (J) = )(⋆()(⋆))⋆)(

θnI (J) = 3 + 3 = 6

Fig. 15. Left: the sets I, J, and I \cap J from Example 5.2. Right: the word wordnI (J) and the
number \theta nI (J).

Example 5.2. Let n= 14, I = \{ 2,4,6,9,10,11,12,13\} , and J = \{ 3,4,5,8,9,12,14\} .
Coloring I  - J , J  - I, and I \cap J , respectively, red, blue, and purple, we show how to
compute \theta nI (J) in Figure 15.

Theorem 5.3 (see [FMS18, Theorem 10]). For any n and any I, J \subseteq [n],

rSMn(I)(J) = \theta nI (J).

Let S \subseteq [n] be a one-column diagram with a single distinguished square s \in S.
Set S(0,s) := S, and whenever [s] \not \subseteq S(k - 1,s), define S(k,s) from S(k - 1,s) by

S(k,s) = S(k - 1,s) \cup max\{ i : i < s and i \not \in S(k - 1,s)\} .

Let d= s - | \{ i\in S : i\leq s\} | so that [s]\subseteq S(d,s).

Lemma 5.4. For all k, we have

rSMn(S(k+1,s))(J) - rSMn(S(k,s))(J)\in \{ 0,1\} .

When rSMn(S(k+1,s))(J) = rSMn(S(k,s))(J), then we have

rSMn(S(k\prime +1,s))(J) = rSMn(S(k\prime ,s))(J) for all k\prime >k, and

rSMn(S(k+1,s))(J
\prime ) = rSMn(S(k,s))(J

\prime ) for all J \prime \subset J.

Proof. Suppose that S(k+1,s) \setminus S(k,s) = \{ i\} . If i \in J , then wordnS(k+1,s)(J) is
obtained from wordnS(k,s)(J) by replacing the ( in the ith position of wordnS(k,s)(J) with
a  \star , while if i \not \in J , then wordnS(k+1,s)(J) is obtained from wordnS(k,s)(J) by replacing
the in the ith position of wordnS(k,s)(J) with a ). In either case, rSMn(S(k+1,s))(J) - 
rSMn(S(k,s))(J)\in \{ 0,1\} .

To prove the rest of the lemma, we will use the following observation. Let a\in [n]
and suppose that T,K \subset [n] are such that a \not \in T and every ( in the first a positions
of wordnT (K) is matched to a ). In this case, observe that wordnT\cup \{ a\} (K) is obtained
from wordnT (K) as follows:
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2218 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

\bullet If a \in K, then we replace the ( in the ath position, which is matched by
assumption, with a  \star ; then the number of matched ()'s decreases by one and
the number of  \star 's by one, so that rSMn(T\cup \{ a\} )(K) = rSMn(T )(K).

\bullet If a \not \in K, then we replace the in the ath position with a ); then the number
of matched ()'s does not increase as every ( to the left of position a was
already matched. Thus rSMn(T\cup \{ a\} )(K) = rSMn(T )(K).

When rSMn(S(k+1),s)(J) = rSMn(S(k,s))(J), we know that every ( in the first i positions
of wordnS(k,s)(J) is matched. Furthermore, for any k\prime >k, observe that wordnS(k\prime ,s)(J) is

obtained from wordS(k,s)(J) by modifying entries strictly to the right of a := S(k\prime +1,s)\setminus 
S(k\prime ,s), so every (in the first a positions of wordS(k\prime ,s)(J) is matched. The observation
guarantees that rSMn(S(k\prime +1,s))(J) = rSMn(S(k\prime ,s))(J).

Similarly, let J \prime \subseteq J . Note that for any set T , wordnT (J
\prime ) is obtained from

wordnT (J) by replacing, for every j \in (J \setminus J \prime ) \cap T , the  \star in the j-th position with
a ) and, for every j \in (J \setminus J \prime ) \setminus T , the ( in the j-th position with a . Because
wordnT (J

\prime ) is obtained from wordnT (J) by replacing  \star 's with )'s and ('s with 's, every
( in the first i positions of wordnS(k,s)(J \prime ) is matched. The observation guarantees that
rSMn(S(k+1,s))(J

\prime ) = rSMn(S(k,s))(J
\prime ).

Corollary 5.5. The Schubert matroid rank function of S(k,s) is given by

rSMn(S(k,s))(I) =min\{ rSMn(S(d,s))(I), rSMn(S)(I) + k\} for all I \subseteq [n].

Furthermore, if J \prime \subseteq J , then

rSMn(S(d,s))(J) - rSMn(S(d,s))(J
\prime )\geq rSMn(S)(J) - rSMn(S)(J

\prime ).

Proof. By Lemma 5.4, we know rSMn(S(k+1,s))(J) - rSMn(S(k,s))(J) \in \{ 0,1\} . This
implies

rSMn(S(k,s))(J)\leq min\{ rSMn(S(d,s))(I), rSMn(S)(I) + k\} .

Furthermore, Lemma 5.4 implies the following:
\bullet If rSMn(S(k+1,s))(J) - rSMn(S(k,s))(J) = 0, then rSMn(S(k\prime +1,s))(J) - rSMn(S(k\prime ,s))

(J) = 0 for all k\prime >k, so rSMn(S(k,s))(J) = rSMn(S(d,s))(J).
\bullet If rSMn(S(k+1,s))(J) - rSMn(S(k,s))(J) = 1, then rSMn(S(k\prime +1,s))(J) - rSMn(S(k\prime ,s))

(J) = 1 for all k\prime <k, so rSMn(S(k,s))(J) = rSMn(S)(J) + k.
If J \prime \subseteq J , then Lemma 5.4 implies that

rSMn(S(d,s))(J) - rSMn(S)(J)\geq rSMn(S(d,s))(J
\prime ) - rSMn(S)(J

\prime ).

Rearranging the inequality gives the desired result.

For B \leq S(k,s), let \widetilde \zeta B = (\zeta B1 , . . . , \zeta 
B
n , d - k) \in \BbbR n+1 be the vector with \zeta Bi = 1 if

i\in B and \zeta Bi = 0 if i \not \in B. Define the polytope

\scrP (S(s))
def
= conv\{ \widetilde \zeta B : B \leq S(k,s) for some k\leq d\} .

Proposition 5.6. The polytope \scrP (S(s)) is a generalized permutahedron, and

\scrP (S(s))\cap \BbbZ n+1 = \{ \widetilde \zeta B : B \leq S(k,s) for some k\leq d\} .
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M-CONVEXITY VIA BUBBLING 2219

Proof. Consider the function z : 2[n+1] \rightarrow \BbbR defined by

z(I) =

\Biggl\{ 
rSMn(S(d,s))(I) if n+ 1 \not \in I,
rSMn(S)(I \setminus \{ n+ 1\} ) + d if n+ 1\in I.

We claim that z is submodular. Indeed,
\bullet If n+ 1 \not \in I, J , then z(I) + z(J)\geq z(I \cup J) + z(I \cap J) because rSMn(S(d,s)) is

submodular.
\bullet If n+ 1\in I \setminus J , then

z(I) + z(J) = rSMn(S)(I \setminus \{ n+ 1\} ) + d+ rSMn(S(d,s))(J)

\geq rSMn(S)(I \setminus \{ n+ 1\} ) + d+ rSMn(S)(J) - rSMn(S)(I \cap J)
+ rSMn(S(d,s))(I \cap J)

\geq d+ rSMn(S)(I \cup J \setminus \{ n+ 1\} ) + rSMn(S(d,s))(I \cap J)
= z(I \cup J) + z(I \cap J),

where the first inequality uses Corollary 5.5 applied to rSMn(S(d,s))(J) and the
second inequality uses the submodular inequality rSMn(S)(J)  - rSMn(S)(I \cap 
J)\geq rSMn(S)(I \cup J \setminus \{ n+ 1\} ) - rSMn(S)(I \setminus \{ n+ 1\} ).

\bullet If n + 1 \in I, J , then z(I) + z(J) \geq z(I \cup J) + z(I \cap J) because rSMn(S) is
submodular.

Since z is submodular, we have a generalized permutahedron

P =

\Biggl\{ 
t\in \BbbR n+1 :

\sum 

i\in I

ti \leq z(I) for all I \subseteq [n+ 1] and

n+1\sum 

i=1

ti = z([n+ 1])

\Biggr\} 
.

We now claim that \scrP (S(s)) = P . To prove this, fix any B \leq S(k,s) and I \subseteq [n+ 1]. If
n+ 1 \not \in I, then

\sum 

i\in I

\zeta Bi \leq rSMn(S(k,s))(I)\leq rSMn(S(d,s))(I),

and if n+ 1\in I, then
\left( 
 \sum 

i\in I\setminus \{ n+1\} 

\zeta Bi

\right) 
 + d - k\leq rSMn(S(k,s))(I \setminus \{ n+ 1\} ) + d - k

\leq rSMn(S)(I \setminus \{ n+ 1\} ) + d,

where we use the inequality rSMn(S(k,s))(I) - k\leq rSMn(S)(I) from Corollary 5.5. Fur-
thermore,

\sum 

i\in [n]

\zeta Bi + d - k= (| S| + k) + d - k= z([n+ 1]),

so \widetilde \zeta B \in P . We conclude that \scrP (S(s))\subseteq P .
Now fix any t\in P \cap \BbbZ n+1. Observe that z([n]) = z([n+1]), so tn+1 \geq 0. Further-

more, z(\{ n+ 1\} ) = d, so tn+1 \leq d. Write tn+1 = d - k. Observe that for any I \subseteq [n],
we have

\sum 

i\in I

ti \leq z(I) = rSMn(S(d,s))(I) and

\sum 

i\in I

ti \leq z(I \cup \{ n+ 1\} ) - tn+1 = rSMn(S)(I \setminus \{ n+ 1\} ) + k,
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2220 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

so that
\sum 

i\in I

ti \leq min\{ rSMn(S(d,s))(I), rSMn(S)(I \setminus \{ n+ 1\} ) + k\} = rSMn(S(k,s))(I).

In particular, (t1, . . . , tn) is an integer point of the Schubitope \scrS S(k,s) . It follows that
(t1, . . . , tn) = \zeta B for some B \leq S(k,s); hence, t = \widetilde \zeta B . Thus, P \cap \BbbZ n+1 = \{ \widetilde \zeta B : B \leq 
S(k,s) for some k\} and P \supseteq \scrP (S(s)). We conclude that P =\scrP (S(s)) and that \scrP (S(s))\cap 
\BbbZ n+1 = P \cap \BbbZ n+1 = \{ \widetilde \zeta B : B \leq S(k,s)\} .

Let f topi := \#F top(w)i, and write f top = (f top1 , . . . , f topn ). For f \leq f top, let
Df (w) = (Df (w)1, . . . ,D

f (w)n) be the diagram with

Df (w)k = (D(w)k)
(fk,ik), where (ik, k)\in A(w).

Lemma 5.7. We have

\{ D : there exist r,F so that (D,r,F )\in \scrS \scrB \scrD (w)\} 
= \{ D : D\leq Df (w) for some f \leq f top\} .

Proof. Let (D,r,F ) \in \scrS \scrB \scrD (w). Define (f1, . . . , fn) by fk := \#Fk = \#Dk  - 
\#D(w)k. Because F \subseteq F top(w), we know that f \leq f top. Suppose that (ik, k) \in A(w)
is the mkth highest square in D(w)k. Writing di for the ith highest square in Dk, we
have Fk = \{ dmk+1 < \cdot \cdot \cdot < dmk+fk\} with dm+fk \leq ik. Since D \in \scrB \scrD (w), Lemma 3.19
implies that Dk \setminus Fk \leq D(w)k. It follows that Dk \leq (Df (w))k, and by varying k, we
deduce that D\leq Df (w).

Now suppose that D \leq Df (w). As above, suppose that (ik, k) \in A(w) is the
mkth highest square in D(w)k, and write di for the ith highest square in Dk. Let
Fk := \{ dmk+1 < \cdot \cdot \cdot < dmk+fk\} . Then D \setminus F \leq D(w), and furthermore, dmk+fk \leq ik.
The live square immediately above any square in Fk is dmk

\in Dk \setminus Fk, and no two
squares in A(w) are linked. Thus, Lemma 3.19 implies that there exists r so that
(D,r,F )\in \scrB \scrD (w).

For D\leq Df (w), let \widetilde wt(D)\in \BbbZ n+1 denote the vector whose ith coordinate counts
the number of squares in the ith row of D for i\leq n and whose (n+ 1)th coordinate
is deg(\frakG w) - | D| .

Recall that \widetilde \frakG w denotes the homogenized Grothendieck polynomial

\widetilde \frakG w(x1, . . . , xn, z) :=

deg(\frakG w)\sum 

k=\ell (w)

\frakG (k)
w (x1, . . . , xn)z

deg(\frakG w) - k.

Theorem 1.3. Let w \in Sn be a vexillary permutation. Then, the homogenized
Grothendieck polynomial \widetilde \frakG w has M-convex support. In particular, each degree com-
ponent \frakG 

(k)
w has M-convex support.

Proof of Theorem 1.3. By Theorem 4.12 and Lemma 5.7, we know that

supp(\widetilde \frakG w) =
\Bigl\{ 
\widetilde wt(D) : D\leq Df (w) for some f \leq f top

\Bigr\} 

=

n\sum 

k=1

\Bigl\{ 
\widetilde \zeta Dk : Dk \leq (D(w)k)

(fk,ik) for some fk \leq f topk

\Bigr\} 
.

Thus

Newton(\widetilde \frakG w) =

n\sum 

k=1

\scrP ((D(w)k)
(ik))
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M-CONVEXITY VIA BUBBLING 2221

is a generalized permutahedron. Furthermore, [Sch03, Corollary 46.2c] implies that

any t\in Newton(\widetilde \frakG w)\cap \BbbZ n+1 can be written as a sum

t= t1 + \cdot \cdot \cdot + tn, ti \in \scrP ((D(w)k)
(ik))\cap \BbbZ n+1.

Since ti = \widetilde \zeta Di , we conclude that t= \widetilde wt(D) \in supp(\widetilde \frakG w) for D = (D1, . . . ,Dn), so \widetilde \frakG w

has SNP.
M-convexity of supp(\frakG 

(k)
w ) follows from the equality

supp(\frakG (k)
w ) = supp(\widetilde \frakG w)\cap \{ t\in \BbbR n+1 : tn+1 =deg(\frakG w) - k\} .

6. Linear independence of Schubert matroid rank functions. We prove
Theorem 1.4 and use it to show that our results are sharp.

Definition 6.1. For each n, denote by Vn the set of all nonempty subsets of [n]
with the following total order: if I, J \in Vn, then I \prec J if

max(I \setminus J)\leq max(J \setminus I),
where we take max(\emptyset ) := 0.

Example 6.2. V4 is the chain:

\{ 1\} \prec \{ 2\} \prec \{ 1,2\} \prec \{ 3\} \prec \{ 1,3\} \prec \{ 2,3\} \prec \{ 1,2,3\} 
\prec \{ 4\} \prec \{ 1,4\} \prec \{ 2,4\} \prec \{ 1,2,4\} \prec \{ 3,4\} \prec \{ 1,3,4\} \prec \{ 2,3,4\} \prec \{ 1,2,3,4\} .

Note that Vn - 1 is an initial segment of Vn.

Definition 6.3. For each n\geq 1, define An to be the (2n  - 1)\times (2n  - 1) matrix

An = (rSMn(I)(J))I,J\in Vn
.

Example 6.4. For n= 3 and n= 4, we have

A3 =

\left( 
         

1 0 1 0 1 0 1
1 1 1 0 1 1 1
1 1 2 0 1 1 2
1 1 1 1 1 1 1
1 1 2 1 2 1 2
1 1 2 1 2 2 2
1 1 2 1 2 2 3

\right) 
         

,

A4 =

\left( 
                         

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 1 2 0 1 1 2 0 1 1 2 0 1 1 2
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 2 1 2 1 2 0 1 1 2 1 2 1 2
1 1 2 1 2 2 2 0 1 1 2 1 2 2 2
1 1 2 1 2 2 3 0 1 1 2 1 2 2 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 2 1 2 2 2 1 2 2 2 1 2 2 2
1 1 2 1 2 2 3 1 2 2 3 1 2 2 3
1 1 2 1 2 2 2 1 2 2 2 2 2 2 2
1 1 2 1 2 2 3 1 2 2 3 2 3 2 3
1 1 2 1 2 2 3 1 2 2 3 2 3 3 3
1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

\right) 
                         

.
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2222 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

Because Vn - 1 is an initial segment of Vn, the upper left justified (2n - 1 - 1)\times (2n - 1 - 1)
submatrix of An is equal to An - 1.

We would like to show that the columns of An are linearly independent. To do
this, we will use symmetries of An which relate blocks of An with An - 1. We first give
a motivating example.

Example 6.5. Take A4 as above. For each I \in V3, subtract row I from row I \cup \{ n\} 
to get




1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 1 2 0 1 1 2 0 1 1 2 0 1 1 2
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 2 1 2 1 2 0 1 1 2 1 2 1 2
1 1 2 1 2 2 2 0 1 1 2 1 2 2 2
1 1 2 1 2 2 3 0 1 1 2 1 2 2 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1




=




0
0
0
0
0
0
0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1




A3 A3

.

More generally, Lemmas 6.6 and 6.7 imply that the matrix A\prime 
n obtained from An

by subtracting row I from row I \cup \{ n\} for each I \in Vn - 1 has a block decomposition
as in Figure 16.

Lemma 6.6. The row and column of An indexed by \{ n\} are given by

rSMn(\{ n\} )(J) = 1 and rSMn(I)(\{ n\} ) =
\Biggl\{ 
1 if n\in I,
0 if n \not \in I,

respectively.

Proof. It is straightforward to check that

wordn\{ n\} (J) =

\Biggl\{ 
(. . . ( \star if n\in J,
(. . . () if n \not \in J and wordnI (\{ n\} ) =

\Biggl\{ 
) . . .) \star if n\in I,
) . . .)( if n \not \in I.



0

0
1 1 1 1 1 1
0 1 1 1 1 1

0

1 1 1 1
0 1 1 1



An−1 An−1

∗
Fig. 16. The matrix A\prime 

n.
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M-CONVEXITY VIA BUBBLING 2223

Lemma 6.7. Let I, J \in Vn\setminus \{ \{ n\} \} . The rank functions rSMn(I) satisfy the following
properties:

(1) If n \not \in I and n \not \in J , then rSMn(I)(J) = rSMn - 1(I)(J).
(2) If n \not \in I and n\in J , then rSMn(I)(J) = rSMn(I)(J \setminus \{ n\} ).
(3) If n\in I and n\in J , then rSMn(I)(J) = rSMn(I\setminus \{ n\} )(J \setminus \{ n\} ) + 1.
(4) If n\in I, n \not \in J , and I \setminus \{ n\} \prec J , then rSMn(I)(J) = rSMn(I\setminus \{ n\} )(J) + 1.
(5) If n\in I, then rSMn(I)(I \setminus \{ n\} ) = rSMn(I\setminus \{ n\} )(I \setminus \{ n\} ).
Proof. If n \not \in I and n \not \in J , then wordnI (J) = wordn - 1

I (J). Thus, rSMn(I)(J) =
rSMn - 1(I)(J).

If n \not \in I and n \in J , then wordnI (J) is obtained by appending a ( to the end
of wordnI (J \setminus \{ n\} ). Doing so does not change the number of  \star s or paired ()s, so
rSMn(I)(J) = rSMn(I)(J \setminus \{ n\} ).

If n \in I and n \in J , then wordnI (J) is obtained by appending a  \star to the end of
wordnI\setminus \{ n\} (J \setminus \{ n\} ), so rSMn(I)(J) = rSMn(I\setminus \{ n\} )(J \setminus \{ n\} ) + 1.

If n \in I and n \not \in J , then wordnI (J) is obtained by appending a ) to the end of
wordnI\setminus \{ n\} (J). On the other hand, if I \setminus \{ n\} \prec J , then max(I \setminus \{ n\} \setminus J)<max(J \setminus I);
thus, wordnI\setminus \{ n\} (J) contains an unmatched left parenthesis to the right of all closed
parentheses. Combined, we deduce rSMn(I)(J) = rSMn(I\setminus \{ n\} )(J) + 1.

If n\in I, then wordnI (I \setminus \{ n\} ) is obtained by appending a ) to the end of wordnI\setminus \{ n\} 
(I \setminus \{ n\} ) =  \star . . .  \star . Thus, rSMn(I)(I \setminus \{ n\} ) = rSMn(I\setminus \{ n\} )(I \setminus \{ n\} ).

Proposition 6.8. The Schubert matroid rank functions rSMn(I) are linearly in-
dependent.

Proof. We will show that the columns of An are linearly independent. First, let
A\prime 

n denote the matrix obtained from An by subtracting row I from row I \cup \{ n\} for
each I \in Vn - 1, as in Figure 16. Let A\prime \prime 

n denote the matrix obtained from A\prime 
n by

subtracting each row in Vn \setminus (Vn - 1 \cup \{ n\} ) from the row above it, working from the
top row to the bottom row. Then A\prime \prime 

n has a block decomposition.

0

0
1 0 0 0 0

1 0 0

1 0 0 0
1 1 1



An−1 An−1

∗

Let vJ denote the column vector of A\prime \prime 
n indexed by J \in Vn, and suppose that

\sum 

J\in Vn

cJvJ = 0(\diamondsuit )
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2224 HAFNER, M\'ESZ\'AROS, SETIABRATA, AND ST. DIZIER

is a linear dependence between the vectors vJ . The columns of An - 1 are linearly
independent, so cJ+cJ\cup \{ n\} = 0 for all J \in Vn - 1. Furthermore, comparing coordinates
of the dependence (\diamondsuit ) corresponding to Vn \setminus (Vn - 1 \cup \{ n\} ), working from the smallest
element to the largest element, gives that cJ = 0 for all J \in Vn - 1. It follows that
cJ\cup \{ n\} = 0 for all J \in Vn - 1 as well. Thus, the linear dependence (\diamondsuit ) reads c\{ n\} v\{ n\} =
0, and since v\{ n\} \not = 0, it follows that c\{ n\} = 0.

We conclude that the columns of A\prime \prime 
n, and hence the columns of An, are

independent.

Theorem 1.4. Fix n\geq 1. The rank functions rSMn(I) of Schubert matroids form
a basis of the vector space of functions f : 2[n] \rightarrow \BbbR satisfying f(\emptyset ) = 0. In particular,
we have the following:

\bullet A generalized permutahedron is a Schubitope if and only if its associated sub-
modular function is a \BbbZ \geq 0-linear combination of rank functions of Schubert
matroids, and

\bullet two Schubitopes \scrS D and \scrS D\prime are equal if and only if D can be obtained from
D\prime by a permutation of columns.

Proof of Theorem 1.4. The vector space of functions f : 2[n] \rightarrow \BbbR satisfying f(\emptyset ) =
0 is (2n  - 1)-dimensional and contains the 2n  - 1 functions rSMn(I). Proposition 6.8
guarantees that these functions are linearly independent, so they form a basis.

Let D= (D1, . . . ,Dk) be a collection of columns. The submodular function of the
Schubitope \scrS D is given by rSMn(D1) + \cdot \cdot \cdot + rSMn(Dk); in particular, it is a \BbbZ \geq 0-linear
combination of Schubert matroid rank functions.

Lemma 2.10 guarantees that a generalized permutahedron P is uniquely deter-
mined by its submodular function z. Because Schubitopes are generalized permu-
tahedra, an arbitrary generalized permutahedron P is equal to a Schubitope \scrS D if
and only if the submodular function z defining P is a \BbbZ \geq 0-linear combination of rank
functions of Schubert matroid polytopes.

Combined with the linear independence of rank functions of Schubert matroid
polytopes, it also follows that two Schubitopes \scrS D and \scrS D\prime are equal if and only if D
can be obtained from D\prime by a permutation of columns.

Remark 6.9. One can show that det(An) = 1, so the Schubert matroid rank
functions in fact form a \BbbZ -basis for the space of functions f : 2[n] \rightarrow \BbbZ with f(\emptyset ) = 0.

The following examples provide counterexamples to natural generalizations of
Theorems 1.2 and 1.3.

Example 6.10. Consider the nonvexillary permutation w = 2168534(10)79 \in S10.
We show that the Newton polytope of \frakG top

w is not a Schubitope. The defining in-
equalities of Newton(\frakG top

w ) show it is a generalized permutahedron. Its submodular
function z expands in the basis of Schubert matroid rank functions as

z = rSMn(\{ 1\} )  - rSMn(\{ 2,3,4\} ) + 2rSMn(\{ 1,2,3,4\} ) + rSMn(\{ 3,4,5\} )

+ rSMn(\{ 1,2,3,4,5\} ) + rSMn(\{ 2,3,4,8\} ) + rSMn(\{ 1,2,3,4,5,6,7,8\} ).

Because there is a negative coefficient in this expansion, Theorem 1.4 implies that
Newton(\frakG top

w ) is not a Schubitope.

Example 6.11. Let w = 14253 \in S5. We show that the Newton polytope of
\frakG 

(\ell (w)+1)
w is not a Schubitope. Since w is vexillary, Theorem 1.3 implies Newton

(\frakG 
(\ell (w)+1)
w ) is a generalized permutahedron. Its submodular function z expands in

the basis of Schubert matroid rank functions as
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z = rSMn(\{ 1,2\} ) + rSMn(\{ 2,4\} )  - rSMn(\{ 1,2,4\} ) + rSMn(\{ 2,3,4\} ).

Because there is a negative coefficient in this expansion, Theorem 1.4 implies that
Newton(\frakG 

(\ell (w)+1)
w ) is not a Schubitope.

Based on the previous two examples, we conclude with the following conjecture,
a generalization of Theorem 1.2.

Conjecture 1.5. If w \in Sn is vexillary, then \frakG top
w is an integer multiple of

\chi D\mathrm{t}\mathrm{o}\mathrm{p}(w).

We tested Conjecture 1.5 for all vexillary w \in Sn, n\leq 9.

Acknowledgment. We thank the anonymous referee for their careful reading
and good suggestions.
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