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Abstract. We introduce bubbling diagrams and show that they compute the support of the
Grothendieck polynomial of any vexillary permutation. Using these diagrams, we show that the
support of the top homogeneous component of such a Grothendieck polynomial coincides with the
support of the dual character of an explicit flagged Weyl module. We also show that the homogenized
Grothendieck polynomial of a vexillary permutation has M-convex support.
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1. Introduction. Grothendieck polynomials &,, are multivariate polynomials
associated to permutations w € S,. Grothendieck polynomials were introduced by
Lascoux and Schiitzenberger [LS82] as representatives of the classes of Schubert va-
rieties in the K-theory of the flag manifold. They generalize Schubert polynomials,
which, in turn, generalize the classical Schur polynomials, a well-known basis of the
ring of symmetric functions.

There has been a flurry of research on the support of Grothendieck polynomials as
well as the distribution of their coefficients within their support [HMMSD22, Wei21,
PSW21, Haf22, MSS22, PS22, CCRMM22]. With Huh and Matherne, the second and
fourth author conjectured that homogenized Grothendieck polynomials are Lorentzian
(up to appropriate normalization). In particular, this conjecture would imply that
their support is M-convex, equivalently the set of integer points in a generalized per-
mutahedron. That the support is the set of integer points of a convex polytope was
previously conjectured by Monical, Tokcan, and Yong in [MTY19].

To date, it is known that homogenized Grothendieck polynomials are M-convex
for several families of permutations. These include permutations of the form 17 with 7
dominant on {2,3...,n} [MSD20], Grassmannian permutations [EY17], and permuta-
tions whose Schubert polynomial has all nonzero coefficients equal to 1 [CCRMM22].
In the present paper, we prove M-convexity for homogenized Grothendieck polynomi-
als of vexillary permutations.

Our inspiration is the proof of the analogous result for all Schubert polynomials
[FMS18]. The latter relies heavily on the theory of dual Weyl characters which has no
K-theoretic counterpart. Mimicking the dual Weyl character approach, we introduce
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M-CONVEXITY VIA BUBBLING 2195

bubbling diagrams, which are diagrams (subsets of the n x k grid) endowed with
additional data affecting the legality of certain local transformations (Definitions 3.3
and 3.5). These diagrams also bear strong similarities with ghost diagrams [RY15].
We show that bubbling diagrams compute the support of any vexillary Grothendieck
polynomial.

THEOREM 1.1. Ifw € S,, is a vezillary permutation, then supp(®,,) = {wt(D): D €
BD(w)}.

We also provide a much simpler subset SBD(w) C BD(w) in Definition 4.11 which
still realizes the conclusion of Theorem 1.1.

From the characterization of supp(®,,) afforded by Theorem 1.1, we derive two
interesting consequences. For a diagram D, let xp denote the dual character of the
flagged Weyl module of D (see section 2 for definitions). Denote the top degree
component of &, by &P,

THEOREM 1.2. Let w € S,, be a vexillary permutation. There is a diagram
D™P(w) such that supp(BiP) = supp(X prov (w))-

For vexillary permutations, Theorem 1.2 implies that the Rajchgot polynomials
of [PSW21] are dual characters of flagged Weyl modules. Consequently, their New-
ton polytopes are Schubitopes, a subclass of generalized permutahedra introduced in
[MTY19] whose defining inequalities are derived from a diagram.

In a recent work, Pan and Yu [PY23] also construct a diagram whose weight is
the leading monomial of G°P. In general, their diagram is distinct from D*P(w);
in particular, the dual character of their diagram does not have the same support as
&P for vexillary permutations. Tianyi Yu communicated to us that the results of
[PY23] along with those in [Yu23] can be used to show that supp(&°P) is the set of
integer points of a Schubitope.

THEOREM 1.3. Let w € S, be a vewillary permutation. Then the homogenized
Grothendieck polynomial &, has M-convexr support. In particular, each homogeneous
component of &,, has M-convezr support.

The lowest-degree homogeneous component of &,,, the Schubert polynomial,
equals an integer multiple of some xp for any permutation. As a consequence of
Theorem 1.2, one might wonder whether this is the case for &P or for other homo-
geneous components of &,,.

We can use the following result to verify whether or not the Newton polytopes
of the homogeneous components of &,, are Schubitopes, the Newton polytopes of the
polynomials xp.

THEOREM 1.4. Fizn>1. The rank functions rgm,, ry of Schubert matroids form
a basis of the vector space of functions f: 2" =R satisfying f(0) =0. In particular,
we have the following:

e A generalized permutahedron is a Schubitope if and only if its associated sub-
modular function is a Z>q-linear combination of rank functions of Schubert
matroids, and

e two Schubitopes Sp and Sp: are equal if and only if D can be obtained from
D’ by a permutation of columns.

Using Theorem 1.4, we exhibit two interesting counterexamples:
(1) Example 6.11 provides a vexillary permutation w and a (not top-degree)
homogeneous component of &,, whose Newton polytope is not a Schubitope. This
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suggests focusing attention only on &P when looking for Schubitopes among the
homogeneous components of &,,.

(2) Example 6.10 gives a nonvexillary permutation w where Newton(&!P) is not
a Schubitope and so is not a multiple of any xp. This suggests restricting attention
to vexillary permutations when relating &!P to xp. We conjecture the following
strengthening of Theorem 1.2 (tested for all vexillary w € S,,, n <9).

CONJECTURE 1.5. If w € S, is vezillary, then &P is an integer multiple of
XDmP(w)-

Outline of this paper. In section 2, we recall some relevant background. In
section 3, we establish basic properties of bubbling diagrams, including a nonrecursive
characterization of the set of bubbling diagrams (Lemma 3.19) and prove Theorem 1.1
by constructing weight preserving maps between the set of bubbling diagrams and
the set of marked bumpless pipe dreams. In section 4, we prove Theorem 1.2 by
showing that bubbling diagrams can be systematically padded to obtain a top-degree
diagram which is necessarily in supp(x pter(w)) (Theorem 4.6), and we also show that
divisibility relations among monomials in &,, can be realized by inclusion relations
among bubbling diagrams in a strong sense (Theorem 4.10). In section 5, we deduce
Theorem 1.3 from a “one-column version” of the result (Proposition 5.6). In section 6,
we prove Theorem 1.4 and use it to show that our results are sharp.

2. Background.

Conventions. We will write permutations w € S, in one-line notation as words
with the letters {1,2,...,n}. For example, w = 312 € S5 is the permutation that sends
13,21, and 3+— 2. Throughout, permutations will act on the right (switching
positions, not values). For j € [n—1], let s; denote the adjacent transposition swapping
positions j and j + 1, so, for example, ws; is the permutation w with the numbers
w(1) and w(2) swapped. We write £(w) for the number of inversions of w.

Grothendieck polynomials.
DEFINITION 2.1. Fixn>1 and j € [n—1]. The divided difference operators 9;

are operators on the polynomial ring Zlx1,...,x,| defined by
det f—585f
0;(f) = —2—
Lj =L+l
_ f(331, . ,.I‘n) — f(a:l, . ,xj_l,xj+1,mj,xj+2, . ,l'n)
Tj—Tj-1
The isobaric divided difference operators 5j are defined on Z[xy,...,xp,] by

def

5j(f) = 0i(f —wjs1f).

DEFINITION 2.2. The Grothendieck polynomial &, of w € S,, is defined recursively
on the weak Bruhat order. Let wqy denote the longest permutation in Sy,. If w # wy,
then there is j € [n — 1] with w(j) <w(j + 1). The polynomial &, is defined by

®. et eVl e,y ifw = wo,
b G, ifw(j) <w(j+1).

Recall that a permutation w € S,, is vewillary if it is 2143-avoiding, that is, if
there do not exist i < j < k < £ with w(j) <w(i) <w(l) <w(k).
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THEOREM 2.3 (see [Haf22, Theorem 3.4]). Let w € S,, be a vexillary permutation,
and let o,y € supp(B,,) be such that x| x”. Then, any 3 € Z™ such that | z” | z7
is also in supp(By,).

Marked bumpless pipe dreams. A bumpless pipe dream (BPD) is a tiling of
the n x n grid with the tiles

I IV B e e

that form a network of n pipes running from the bottom edge of the grid to the right
edge [LLS21, Wei21]. A BPD is reduced if each pair of pipes crosses at most once.

Given a BPD, one can define a permutation given by labeling the pipes 1 through
n along the bottom edge and then reading off the labels on the right edge, ignoring
any crossings after the first, i.e., replacing redundant crossing tiles H with bump tiles
FA. The set of all BPDs associated to a permutation w is denoted BPD(w) and the
set of all reduced BPDs associated to w is denoted RBPD(w).

Given a reduced BPD, we label the pipes 1 through n along the bottom edge.

For any permutation w € S, the Rothe bumpless pipe dream is the unique BPD
P(w) € BPD(w) which has no up-elbow tiles ~; each pipe has one down-elbow tile
Cat (i,w(0)).

Given P € BPD(w), let D(P) denote the set of blank tiles and U(P) denote
the up-elbow tiles. A marked bumpless pipe dream (MBPD) is a pair (P,S) where
P € BPD(w) and S CU(P). The set of MBPDs is denoted MBPD(w).

PROPOSITION 2.4 (see [Wei2l, Corollary 1.5]). We have

B, = Z (_1)\D(P)|+\S|f€(w) H T
(P,S)eMBPD(w) (3,J)€D(P)US

Given an MPBD (P, S), the weight of (P,S) is the vector wt(P,S) € Z™ whose
1th component is the number of tiles in the ith row that are blank or up-elbows.

COROLLARY 2.5. We have
supp(B,,) = {wt(P,S): (P,S) € MBPD(w)}.

The rank of a tile (4,7) € D(P) is the number of pipes northwest of (i, 7).

LEMMA 2.6 (see [Wei2l]). A permutation w € S, is vexillary if and only if every
P € BPD(w) is reduced.

Lemma 2.6 guarantees that, for vexillary w, the pipes in any P € BPD(w) are
labelled.
A local move is any of the following local transformations of BPDs:

[ I (1 [ I (]
‘ FJ L 1
4 Ll A Ll
‘ FJ L 1

LEMMA 2.7 (see [Wei2l, Lemma 7.4], [Haf22, Lemma 2.3]). Let w € S, be a
vexillary permutation, and let P € BPD(w). Then P can be obtained from the Rothe
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BPD by using local moves to position the pipe labelled w(n), then to position the pipe
labelled w(n — 1), and so on through the pipe labelled w(1). Alternatively, P can be
obtained from the Rothe BPD by using local moves to position the pipe labelled n, then
to position the pipe labelled n — 1, and so on through the pipe labelled 1.

Supports and Newton polytopes of polynomials. Let f = > c.,x* €
R[z1,...,2,] be a polynomial. The support of f is the set

supp(f) ={a: co #0} CZ™.

The Newton polytope of f is the convex hull of supp(f). We denote the Newton
polytope by Newton(f), and we say f has saturated Newton polytope (abbreviated
SNP) if

supp(f) = Newton(f) NZ".

Diagrams. As stated in the introduction, a diagram is a subset D C [n] x [k].
When we draw diagrams, we read the indices as in a matrix.
Associated to any permutation w € S, is the Rothe diagram D(w) C [n] X [n],
defined by
D(w) = {(i,j) € [n] x [n]: i <w™'(j) and j <w(i)}.
The Rothe diagram comes equipped with a rank function rp(.): D(w) — Z>o defined
by

rpw)(i,5) = [{(k,w(k)): k<iand w(k) < j}.

For R,S C[n], we say R <S if #R =415 and the kth smallest element of R does
not exceed the kth smallest element of S for every k. For diagrams C = (C4,...,Cy)
and D = (D1,...,Dy), we say C < D if C; < D; for every j € [k].

Flagged Weyl modules. Let Y denote a matrix with indeterminates y;; in the
upper triangular positions ¢ < j and zeroes elsewhere. Given a matrix M € M,,(C)
and R, S C [n], let M5 denote the submatrix of M obtained by restricting to rows S
and columns R.

Let B denote the set of upper triangular matrices in GL,,(C), and let b denote the
set of upper triangular matrices in M,,(C). The coordinate ring C[b] is a polynomial
ring in the variables {y;;: ¢ < j}. The action of B on b by left multiplication induces
an action of B on C[b] on the right via f(Y) -b:= f(b~'Y).

The flagged Weyl module of a diagram D C [n] X [k] is the subrepresentation

k
Mp < spanc { [ det (yg) .C<D
j=1

of CIb].
The dual character of a representation M of B is the function chary;: T — C
given by
char}y, (diag(zy,...,2,)) = tr(diag(z7 ... 2, 1) : M — M).

We will write x p := charj, ,, for the dual character of Mp.
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PROPOSITION 2.8 (cf. [FMS18, Theorem 7]). The function xp equals a polyno-
mial in Z[z1,...,z,] whose support is {wt(C): C < D}.

Proof. The elements []| j det(ng ) € M p are simultaneous eigenvectors for the ac-
tion of T with eigenvalue 2~"*(¢) . Since these elements span M p, the dual character

is a sum of monomials of the form z%¥¢(©) for C' < D. 0

Generalized permutahedra and M-convexity. A function z: 2"} — R is
called submodular if

2(I)+2z(J)>z(IUJ)+2(INJ) for all I,J C[n].

DEFINITION 2.9. A polytope P C R™ is a generalized permutahedron if there is a
submodular function z: 2" — R such that z(0) =0 and

P= {teR": > t; < z(I) for all I C [n] and Xn:ti:z([n])}.

el

LEMMA 2.10 (see [Frall, Theorem 14.2.8]). Let P CR™ be a generalized permu-
tahedron defined by a submodular function z with z(0) =0. Then

z([):maX{Zpi: pEP}.

icl

A set S CZ™ is M-convez if for any x,y € S and any i € [n] for which z; > y;,
there is an index j € [n] satisfying z; <y; and x —e; +e;€ S and y —ej +¢; € S.

Note that the convex hull of an M-convex set is a generalized permutahedron, and
the set of integer points of an integer generalized permutahedron is an M-convex set.

Schubert matroid polytopes. A matroid is a pair (E, B) consisting of a finite
set F/ and a nonempty collection of subsets B of F, called the bases of M. The set B
is required to satisfy the basis exchange axiom: If By, Bs € B and by € By \ Bs, then
there is by € By \ By such that By \ by Uby € B.

DEFINITION 2.11. Fiz positive integers 1 < s1 < -+ < 8 < n. The Schubert
matroid SMy,(s1,...,8,) is the matroid whose ground set is [n] and whose bases are
the sets {a1,...,a,} with ay <...<a, such that a; < s1,...,a, < s,

Given a matroid M = ([n],B) and a basis B € B, let (¥ = (¢B,...,(5) be the
vector with ¢(Z =1ifi € B and (? =0if i ¢ B. The matroid polytope P(M) of M is the
convex hull conv{¢®: B € B}. The rank function of M is the function 7, : 2F — Z>g
defined by 73/(S) = max{#(S N B): B € B}. The function ry, is submodular and
rar(0) = 0. The matroid polytope P(M) is a generalized permutahedron, defined by
the submodular function ;.

3. Bubbling and supports of Grothendieck polynomials. We establish
basic properties of bubbling diagrams, including a nonrecursive characterization of the
set of bubbling diagrams (Lemma 3.19), and we prove Theorem 1.1 by constructing
weight preserving maps between the set of bubbling diagrams and the set of marked
BPDs.

DEFINITION 3.1. A bubbling diagram is a triple (D,r,F) where D C [n] x [k] is
a diagram, r: D — Z>q is a function, and F C D s a collection of squares in D
satisfying the following properties:
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e If(i,j) € F, then there exists (i',7) € D\ F with i’ <1i. For the mazimal i’ <1
with (i',j) € D\ F, the equality r(i,5) —r(i',j) =1 —14" holds.
o If (i,j) € F and (i,k) € F, then r(i,j) #r(i, k).

We refer to the squares (i,7) € D\ F as live squares, to the squares (i,j) € F' as
dead squares, and to the squares (i,7) &€ D as empty squares.

When we draw a bubbling diagram, the live squares D\ F will be colored green,
the dead squares F will be colored grey, and each square (i,j) € D will be labelled by
the value of (i, 7). See Figure 1.

The rank of a square (i,5) € D is the value r(i,5). The weight of a bubbling
diagram D= (D,r, F) is wt(D) ef wt(D).

Example 3.2. The Rothe bubbling diagram of a permutation w is the bubbling
diagram D(w) := (D(w), " p(w), ).
For example, the Rothe bubbling diagram for w = 1423 is shown in Figure 1.

DEFINITION 3.3 (bubbling move). Let D= (D,r,F') be a bubbling diagram. Sup-
pose that (i,7) is a live square and that (i —1,j) is an empty square.

Then, a bubbling move at (i,j) produces the bubbling diagram D' = (D',r', F’)
where

D/::D\(Z’,j)U(’L’*Lj%
. — r(z,y) if (x,y) # (1 — 1,7),
(ay)~ {T(i’j)_l if(x,y):(i—l,j),
F':=F.

In other words, we “bubble up” a live square (i,7) to (i —1,j), decreasing the rank of
the square by 1 in the process.

Ezample 3.4. Let w = 1423. The bubbling diagram obtained from D(w) by
applying a bubbling move at (2,3) € D(w) is shown in Figure 2.

DEFINITION 3.5 (K-bubbling move). Let D = (D,r,F') be a bubbling diagram.
Suppose that (i,7) is a live square and that (i — 1,j) is an empty square. Assume,
furthermore, that there are no dead squares (i,k) € F for which r(i,j) =7r(i, k).

F1G. 1. The Rothe bubbling diagram for w=1423. All squares in D(w) are live.

0

Fic. 2. A bubbling move applied to (2,3) € D(w), w = 1423.
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Then, a K-bubbling move at (i,j) produces the bubbling diagram D' = (D',r', F’)
where

D' :=DU(i—1,j),

’I"I x — ’I"(l’,y) Zf (xay)%(lflhj)a
(:0) {r(@j)—l if (x,y)=(i-1.7),
F':=FU(i,j).

In other words, we “bubble up” a live square (i,7) to (i —1,7), decreasing the rank of
the square by 1 in the process, while also “leaving behind” a dead copy of the original
square (i,7).

Ezample 3.6. Let w = 1423. The bubbling diagram obtained from D(w) by
applying a K-bubbling move at (2,3) € D(w) is shown in Figure 3.

We remark that a dead square cannot be bubbled or K-bubbled, but impacts the
K-bubbleability of certain other squares.

DEFINITION 3.7. Let D be a bubbling diagram. Define BD(D) to be the set of
all bubbling diagrams generated from D by a series of bubbling moves and K-bubbling
moves. For w € Sy, let BD(w) := BD(D(w)).

Ezample 3.8. Let w = 1423. Then BD(w) consists of the bubbling diagrams in
Figure 4. Note that the two squares in D(w) cannot both be K-bubbled.

DEFINITION 3.9. Let D= (D,r, F) be a bubbling diagram where D C [n] x [k]. For
Jj € [k], define D; to be the jth column of D, i.e., D;:= (Dj,7|p,, F;).

Fic. 3. A K-bubbling move applied to (2,3) € D(w), w=1423.

0 0 00
11 1 1
0 00 0 00
1 1 11

Fic. 4. The set BD(w) for w=1423.
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11111
171|111
11111

F1G. 5. The squares in the linking class {(6,3),(6,4),(7,6)} are shaded blue. (Figure in color
online.)

DEFINITION 3.10. Let D be a diagram, and let r: D — Z>q be a function. We
say that two squares (i,7),(i',5") € D are linked if i —i' =r(i,5) — r(i',5'). A linking
class is an equivalence class of linked squares.

Ezample 3.11. Let w = 178925(10)346. Then, {(6,3),(6,4),(7,6)} is a linking
class in D(w). See Figure 5.

LEMMA 3.12. Fiz D = (D,r,F), and let D' = (D',r',F’) € BD(D). If the a;th
highest live square in D; is linked to the ay-th highest live square in D}, then the a;th
highest live square in D; is linked to the ayth highest live square in Dy,.

Proof. Let 4} and 4; denote the a;th highest live squares in D and Dj, re-
spectively, and let i) and 45 denote the aith highest live squares in D} and Dy,
respectively. By assumption,

r’(i;,j) —7r'(i}, k) = z; — .
Since D’ € BD(D), the equalities

(i, 5) —r(ij, 5) =15 — i and r'(if, k) — r(ig, k) =1}, — ik

hold. It follows that
(i, 5) — r(ig, k) =i; — ix. a

LEMMA 3.13. Let w € Sy, be a vexillary permutation. Let (i1, 1), (i2,j2) € D(w)
be two linked squares, and suppose that j1 < ja. Then,
(1) i1 <i2, and
(2) if (i1—1,71), (ia—1,52) € D(w), then the jith and jath columns of D(w) agree
above the (i1 — 1)th row, that is, (i,51) € D(w) if and only if (i,j2) € D(w)
for all i <iy — 1 and rpw)(i,J1) = 7D (w) (4, j2)-

Proof. We first show item (1). Suppose that i; > is. Since j; < ja, we know that

r(w) (2, J2) 2 [{(k, w(k)): k <iz and w(k) < ji}|-
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Thus

"D (w) (12, J2) = TD(w) (i1, 1) = [{(k,w(k)): k <iz and w(k) < j1}|
— {(k,w(k)): k< iy andw(k) < j1}|
=—|{(k,w(k)): ia <k <i;and w(k) < j1 }|

> iy — 7.

If equality occurs, then w(k) < j; for all io < k < i1; in particular, w(iz) < j1 < ja.
This contradicts the fact that (i2,j2) € D(w).

We now show item (2). Because (i1,j1) € D(w), we know that (,j2) € D(w)
implies (i,71) € D(w) for all ¢ < 1. If (4,51) € D(w) and (i,j2) ¢ D(w), then
i<ip—1<ig<wT!(jp) forms a 2143 pattern. O

Ezample 3.14. Let w = 178925(10)346, as in Figure 5. The live squares (6,4) and
(7,6) are linked, with (6,4) to the right of (7,6). Then, as Lemma 3.13 predicts, (1)
the square (6,4) is above the square (7,6), and (2) because (5,4) and (6, 6) are empty,
the 4th and 6th columns agree above the 5th row: both columns have live squares in
exactly rows 2, 3, 4.

Our next goal is to give a nonrecursive characterization of the elements in BD(D).
In Lemma 3.19, we will show that the axioms below are equivalent to membership in

BD(D).

DEFINITION 3.15. Fiz a bubbling diagram D = (D,r, F). Let F' C D' be diagrams.
We say that (D', F") is D-admissible if the following occur:

(1) F'DF.

(2) D'\ F'<D\F.

(3) For any (i,5) € F'\ F, there is (i',j) € D'\ F" with i’ < i. Furthermore,
suppose that there are m live squares above row i in D;-. Then the mth
highest live square in D; \ Fj is below row i,

(4) Suppose that (i,7) € F' and that there are a live squares in D; above row i and
b live squares in D; below row i. Then there are a live squares in D;- above
row v and b live squares in D; below row 1,

(5) Let (i,7),(i,k) € F' be dead squares in the same row. Suppose that the m;th
highest square in D} \ F} is the live square immediately above (i,j) and that
the myth highest square in D), \ Fy, is the live square immediately above (i, k).
Then the m;th highest square in D; and the myth highest square in Dy, are
not linked.

To prove Lemma 3.19, we describe a systematic way to generate a given bubbling
diagram D’ € BD(D) (Definition 3.17); the legality of the construction is the content
of Lemma 3.18.

DEFINITION 3.16. Let D= (D,r,F) be a bubbling diagram, and let F' C D’ be a
pair of diagrams. Let D' = (D', F") and D = (D}, Fj). We say that D; and D} weakly
agree below row s if the following occur:

e Din{s,...,n}=DiN{s,...,n}, and

o Fyn{s,....,n} =F/N{s,...,n}.
We write s(D;, D) to mean the minimal integer s so that D; and D’; weakly agree
below row s. If no such row exists, then we set s(D;,D}) :=n+ 1.

DEFINITION 3.17. Let D= (D,r, F) be a bubbling diagram. Suppose that F' C D’
are D-admissible. The canonical bubbling sequence of (D', F") with respect to D is the
sequence (D", ..., DY) defined by the following:
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e D":=1D.

e For m > 1, D™ is obtained from D™ = (D™, r™, F™) by applying the
following bubbling and K-bubbling moves. For each column j with an empty
square in row m directly above a live square in row m+1, let k; := s(’D}”,’D;).
Ifkj >m+1and kj —1 ¢ D;-, then apply bubbling moves at m + 1,m +
2,.. k=1, ifk;>m+1and k; —1 ¢ Fj(, then apply bubbling moves at
m+1,m+2,...,k; —2 and then a K-bubbling move at k; — 1.

See Figure 6 for an example.

To ensure the legality of the bubbling moves in Definition 3.17, we use the fol-
lowing lemma.

LEMMA 3.18. Let D = (D,r, F) be a bubbling diagram. Suppose that F' C D’
is D-admissible, and let (D™,...,D%) denote the canonical bubbling sequence. Write
D™ = (D™, r™ F™). Suppose that for some m and j, we have (m,j) ¢ D™ and
(m+1,5) e D"\ F™. Let ;. >m+1 be mazimal so that (m+1,7),...,(¢jm,J) €
D™\ F™. Let kjm = s(D}",D}). Then,

(1) ljm > kjm—1.

(2) Suppose that kj ., — 1€ F} and that for some h# j, either kj,, —1 € Fj" or
m& Dy, m+1€ Dy, kym =kjm, and kym—1€ F},. Then r™(kj,—1,7) #
’I“m(kh,m - 1, h)

Furthermore, D° =D’ and F° = F'.

Proof. We first show item (1) using induction. Let my > --- > my, be the integers
for which D;” #+ D}ni*l. Thus, my is maximal so that m; ¢ D; and my +1€ D, \ Fj.
It follows that if ¢ > ¢;,,, and i € D; \ Fj, then there is m’ < ¢ with m’ € F; and
m’' +1,m'+2,...,i€ D; \ Fj. Condition (1) implies that m’ € I}, and conditions (2)
and (4) together imply

(DJ\FJ)Q{@’ml —|—1,,n}:(D;\FJ')ﬁ{€],m1 -I-].,,TL}

S
-
~—lo|e

SN IO P P S

2|2
D
of Tofo
1] NIRRRE 1 11]o] [1
NIRRRE NERE R RE NRRRE
NIRRRE NIRRRE NIRRRE IRRRE
1 1
22 22| B 22] |2 22] |2
22 B 2[2] |3 22] |3 2[2] |3
D(w) = D° D’ D' =D DY =D

F1G. 6. The canonical bubbling sequence for a bubbling diagram D € BD(w) with w =
178925(10)346. The squares which are bubbled or K-bubbled are shaded blue. (Figure in color
online.)

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/03/24 to 35.10.0.184 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

M-CONVEXITY VIA BUBBLING 2205

Then condition (3) implies that (F'\ F) N {{;,, +1,...,n} =0. We conclude that
Cimy 2 kjom, — 1.
Now assume that ¢;,,, > k;m, —1. By construction of the canonical bubbling
sequence Dmitt = Dm"_1 weakly agrees with D; below row k;,, — 1. Furthermore,
kjm; —1¢ D} \ Fj, 50 limior < kjm, —2. Thus
kjm

)

it1 1< k"JQmi —2< €j7mi+1'

We now show item (2). By induction, we may assume that D™ € BD(D). Suppose
that k;,, € D;-”“\Fjm is the a;th highest live square in its column. Define a;, as follows:
if (kjm—1,h) € F™, then suppose that the ajth highest square in D"\ F{* is the live
square immediately above (k; ,,—1,h); if k;j ,,,—1 € D"\ F}", then suppose that k; ,, —1
is the ajth highest live square in its column. If 7™ (k; ., —1,7) # ™ (kp,m — 1, h), then
the a;th highest live square in D" and the apth highest live square in D} are linked.
Lemma 3.12 implies that the a;-th highest live square in D; and the a;th highest live
square in Dy, are linked, contrary to condition (5) in Lemma 3.19.

We now show that D0 D' and F? = F’. We claim that F' C D’ is DJ-admissible,
that is,

(1) The canonical bubbling sequence introduces a dead square (i, ) € F°\ F only

if (i,7) € F'\ F, so F' D F°.

(2) The canonical bubbling sequence bubbles the mth highest live square i € D7
only if the mth highest live square in D/ is above row i, so D"\ F’ < D° \ F0

(3) Since F' D F°, for any (i, ) GF’\FO there is (¢, 5) GD’\F’ with i’ < i.
If the mth and (m + 1)th highest hve squares in DY\ F} are in row k and
¢, respectively, then F N {k+1,. -1} =F/nN {k; +1,...,£—1}; thus, if
the mth highest live square in D’ \F ! is the hve square that is immediately
above (i,7), then the m-th hlghest hve square in DY\ F} is below row i.

(4) Suppose that (i,j) € FO and that there are a live squares in Dg above row i
and b live squares in DY below row i. If (i,5) € F™\ F™*! for some m, then
i+ 1=Fk; m+1 and there are a and b live squares in D;»" above and below row
1, respectively. It follows that there are a and b live squares in D} above and
below row %, respectively.

(5) Let (4,7), (i,k) € F’ be dead squares in the same row. Suppose that the m;th
highest square in D’ \ F] is the live square immediately above (4, j) and that
the myth highest square in Dj \ F}, is the live square immediately above (i, k).
Then the m;th highest square in D; and the mth highest square in Dj, are
not linked; thus Lemma 3.12 guarantees that the m;th highest square in D0
and the myth highest square in D0 are not linked.

Let m be minimal so that m ¢ D0 and m+ 1€ D9\ FO, if no such m exists, then set
m:=n+1. It follows that 1fz<m and ZGDO\Ftﬂ then there is m’ <i with m EFO
and m' +1,...,7 € DY\ F}. Condition ( ) 1mphes that m’ € F}, and conditions (2)
and (4) together 1mply (DO\FO)ﬁ{l —1} (DE\F))N{L,...,m—1}. Then
condition (3) implies that (F' \ Fyn{1,.. — 1} =0, so it suffices to show that DY
and D’ agree below row m + 1.

Elther m¢ D, m+1€ D}, and s(D*,D;) <m+1or m,m+1€ D] and there
exists £ <m with kﬂ =m+1 so that S(Dg D’) <'m. Furthermore, in both cases, the
canonical bubbling sequence then leaves rows {m—|— 1,...,n} invariant. It follows that

s(DY,Dj) <m+1, and we conclude that DY = D, and FO F. O

LEMMA 3.19. Let D = (D,r, F) be a bubbling diagram, and let F' C D' be di-
agrams. Then there exists r': D' — Z>q, necessarily unique, so that (D', , F’) €
BD(D) if and only if (D', F') is D-admissible.
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Proof of Lemma 3.19. A straightforward check confirms that if D' € BD(D) is
D-admissible, then any bubbling diagram D” obtained from D’ via a bubbling or
K-bubbling move is D-admissible. Thus, the forward implication follows.

Conversely, take any D-admissible F/ C D’. The canonical bubbling sequence of
(D', F") with respect to D gives a bubbling diagram D° = (D% 70, F°) € BD(D), and
Lemma 3.18 guarantees that D® = D’ and F°=F"’. 0

THEOREM 1.1. Letw € S, be a vexillary permutation. Then supp(®,,) = {wt(D):
DeBD(w)}.

Proof of Theorem 1.1. We first show that supp(®,,) C {wt(D): D € BD(w)}. By
Corollary 2.5, it suffices to show that for every marked bumpless pipe dream (P,S) €
MBPD(w), there exists a bubbling diagram D € BD(w) so that wt(D) = wt(P,.5).
We will construct such a bubbling diagram D as follows; see Example 3.20 for an
example.

Fix (P,S) € MBPD(w). Let (P,,Sn) € MBPD(w) denote the MBPD whose
w(m + 1), w(m + 2),...,w(n)th marked pipes agree with those of (P,S) and whose
w(l), w(2), ..., w(m)th marked pipes agree with those of the Rothe BPD P(w). Let
B,, denote the set of blank tiles of P,, which are not southeast of any of the pipes
w(m+1),...,w(n).

We will use induction to construct diagrams D™ = (D™, r™, F™) € BD(w) and
bijections fy,: [n] = [n] so that we have the following:

e The diagram D™ agrees with D(w) above row m.

o wt(D™) =wt(Pp,, Sm)-

o (i,j) € By, if and only if (¢, f,(§)) € D™\ F™ for every 1 <4 <max{k: (k,j) €
B,.}, and

e the rank of any square (i,) € By, is equal to r™ (4, fm(5)).

Since (P, Sy) is the Rothe BPD, we set D™ := D(w) and f,, :=id; the three items
above hold because B,, = D(w) (as subsets of [n] x [n]) and S,, = F}, = 0.

If (Pi_1,5m—1) = (Pm,Sm), then we define D™~1:=D™ and f,,_1 := fm.

Now suppose (Pp—1,Sm-1) # (Pm,Sm). Assume we are given D™ and f,, satis-
fying the items above. Let ), denote the set of blank tiles in B,,, which are displaced
upon replacing the w(m)th pipe in P,, with the w(m)th (marked) pipe of P to obtain
(Pm—ly Sm—l)-

Any square (i,7) € @y, that is northernmost in its column satisfies i =m + 1; it
follows by construction of fy, that (m+1, fi(j)) € D\ Fi, and that (m, f,(j)) & Di.
Furthermore, any square in @, has the same rank, @,,NS,,_1 has at most one square
in each row, and any square in @Q,,,NS;,_1 is southernmost in its column. Thus, we may
apply bubbling moves to D,, at the squares {(i, fin(4)): (4,7) € Qm \ Sm—1} followed
by K-bubbling moves at the squares {(i, fn(4)): (4,7) € Qm N Spm—1} to produce a
bubbling diagram D,,,_1. This bubbling diagram agrees with D(w) above row m — 1
and satisfies wt(D,,—1) = Wt(Pp—1, Sm—1)-

It remains to define the bijection f,,_1. Let j; <--- < ji denote the columns which
have squares in Q,,, and set jo :=j1—1. Let ot {Jo,---, 7k} — {Jos-- -, Jr} be the map
om(Je) = jew1 (With jey1:=7Jo), and let fr,—1 := fin © 0. Since (m,jo),...,(m,ji) &
D(w), Lemma 3.13 guarantees that the jo,...,jith columns of D(w) all agree above
row m. Combined with the fact that (¢,7) € By, if and only if (i, f,,(j)) € D™\ F™
for all 1 < ¢ < max{k: (k,j) € By}, it follows that (i,j) € Bp—1 if and only if
(iy frn—1(j)) € D™=\ F™ ! for every 1 <i <max{k: (k,j) € B,,_1} and, furthermore,
that the rank of any square (i,5) € By,_1 is equal to r™ (i, fr_1(j)).
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We now show that supp(&,,) 2 {wt(D): D € BD(w)}. By Corollary 2.5, it suffices
to show that for every diagram D € BD(w), there exists a MBPD (P, S) € MBPD(w)
such that wt(D) = wt(P,.S). We accomplish this using the following construction; see
Example 3.21 for an example.

Fix D= (D,r, F) € BD(w). Let D™ = (D™, r™, F™) denote the canonical bub-
bling sequence. We will construct MBPDs (P, S;,) and bijections g, : [n] — [n] so
that

The w(1),...,w(m)th pipes of P,, have no up-elbow tiles.
wt(D™) = wt(Pp, Sm,)-
(i,7) € By, if and only if (i, g, (j)) € D™\ F™ for every 1 < i <max{k: (k,j) €
B}

e The rank of any square (i,j) € By, is equal to 7, (%, fm(5)).
Since D" is the Rothe bubbling diagram, we set (P,,S,) to be the Rothe BPD and
Gn =id. If D1 =D™ then we define (Pn,_1,Sm_1) = (Pm,Sm) and fi_1:= fm.

Now suppose D™~1 # D™, Assume we are given (P,,,S,,) and f,, satisfying
the items above. Let ji,...,J¢ be the columns which are bubbled when constructing
D™ 1, and let kj, = s(Dj?, D} ), indexed so that kj, > --- > kj, and so that if
(k]u.]z) eF, then kji > k‘lji+1'

By assumption on g,, and by Lemma 3.18, the squares (x,g;.}(j;)) are in B,, for
m+ 1<z <kj, —1 while the squares (m,g,,'(j;)) are not in By,. It follows that the
squares (i, g} (j;)) are southeast of pipe w(m).

Let

Ry = {(z,w™t(m) +y): m+1<x<k; —1,1<y</(}

We define (P,,—1,Sm—1) to be the BPD obtained from P, by replacing pipe w(m) with
the pipe that traces the southeasternmost squares of R,, and marking the up-elbow
tiles at (kj, — 1,w!(m)) whenever (kj, — 1,5;) € F. The w(1),...,w(m — 1)th pipes
of P,,—1 have no up-elbow tiles, and this BPD satisfies wt(Dp,—1) = wt(Pr—1, Sm—1)-

It remains to define the bijection g,,_1. Let h,, be the maximal integer such
that (m + 1,hy) € By Let ¢y, {w™t(m),w=t(m) + L,w™(m) + 2,...,hpm} —
{w=t(m),w=(m) + L,w ' (m) + 2,...,h,y} denote a fixed bijection which sends
w=t(m) +i—1to g;,'(ji). Then we define g,,_1 := gm © ¥m. Since (m,w=(m) +
1),...,(m,hy) € D(w), Lemma 3.13 guarantees that the w=(m) + 1,..., h,,th rows
of D(w) all agree above row m. Combined with the fact that (¢,j) € B,, if and only if
(i,9m(3)) € D™\ F™ for all 1 <i<max{k: (k,j) € By}, it follows that (i,7) € Bp—1
if and only if (i, grn—1(j)) € D™ 1\ F™ ! for every 1 <i <max{k: (k,j) € B,,_1} and,
furthermore, that the rank of any square (i, ) € B,,_1 is equal to r™ (i, g,m_1(j)). O

Ezample 3.20. Let (P, S) € MBPD(w) be as in Figure 7.
The MBPDs (P,,, Sy,) are equal to (P(w),d) for m > 5, so the bubbling diagrams
D™ are equal to D(w) for m > 5. Furthermore, f,, is the identity for m > 5. The set

Qs = {(673)’ (77 3)7 (674)}

is, however, nonempty, so (Py, S4) # (Ps,S5). The set Q5 contains squares in columns
3 and 4, and the map f; = o5 cyclically permutes the set (2,3,4).
Then (P, Sy) = (Py,S4) for 1 <m <4, so D™ =D* for 1 <m < 4; however,

Ql = {(272)7 (372)7 (4’2)7 (273)7 (373)’ (473)7 (274)}

is nonempty, so (Py, So) # (P1,S1). The set ) contains squares in columns 2, 3, and
4, and the map oy cyclically permutes the set (1,2,3,4). Thus, the map fo = fy 001
cyclically permutes the set (1,3,2,4). See Figure 8.
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Fi1G. 7. Left: A marked pipe dream (P,S) € MBPD(w) for w = 178925(10)346 with blank tiles
shaded green and marked up-elbows shaded grey; each blank and marked tile is labeled by its rank.
Right: The Rothe MBPD (P(w),0) with blank and marked tiles labeled by their ranks. (Figure in
color online.)
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F1G. 8. Left column: The pipe dream (Ps,S5) = (P(w),0) for P as in Figure 7 along with the
diagram D® = D(w). The squares in Qs and its image under fs are shaded blue. Middle column:
The pipe dream (P1,S1) along with D'. The squares in Q1 and its image under fi are shaded
blue. Right column: The pipe dream (Py,So) = P along with the diagram D° =D. (Figure in color
online.)

Ezample 3.21. Let D € BD(w) be as in Figure 9. The bubbling diagrams D™ are
equal to D(w) for m > 6, so the MBPDs (P, Sp,) are equal to (P(w), ) for m > 6.
Furthermore, g,, is the identity for m > 6. Then, D? is obtained from D° by applying
a K-bubbling move to (7,6) € DS\ FS. We have

Rg = {(776)}a

so (Ps,S5) # (Ps,Sg). The map 1g: {5,6} — {5,6} is a fixed bijection which sends
w=(6) +1—1=5 to gg ' (6) =6, so 1 will cyclically permute (5,6). Thus, g5 = s
cyclically permutes (5,6).
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FI1G. 9. Left: A bubbling diagram D € BD(w) for w = 178925(10)346. Right: The Rothe bubbling
diagram D(w).

Next, D* is obtained from D® by applying a K-bubbling move to (6,6) € D5\ F®.
We have

Rs = {(653)}5

s0 (Py,S4) # (Ps,S5). The map 5 {2,3,4,5} —{2,3,4,5} is a fixed bijection which
sends w1(5)+1—-1=2to 95_1(6) = 5; suppose that 15 cyclically permutes (2,5).
Then, g4 = g5 0 ¥5 cyclically permutes (2,6,5).

Then, D™ = D* and g,, = g4 for 1 < m < 4. The bubbling diagram D° = D is
obtained from D! by applying bubbling moves to {(2,4),(2,5)} € D'\ F! and then
K-bubbling moves to {(2,1),(3,4)} € D'\ F'. We have

R ={(2,2),(3,2),(2,3),(2,4)}.

The map 91 : {1,2,3,4,5,6} — {1,2,3,4,5,6} is a fixed bijection which sends w=1(1)+
l1-1=1tog;'(4)=4, w'(1)+2-1=2tog;"(5)=6,and w ' (1)+3—-1=3
to g; *(2) = 5; suppose that 1, cyclically permutes (1,4) and (2,6) and (3,5). Then,
go = g1 o ¢ cyclically permutes (1,4) and (2,5, 3).

See Figure 10.

4. Supports of top degree components of Grothendieck polynomials.
We prove Theorem 1.2 by showing that bubbling diagrams can be systematically
padded to obtain a top-degree diagram which is necessarily in supp(X pter(w)) (The-
orem 4.6), and we show that divisibility relations among monomials in &,, can be
realized by inclusion relations among bubbling diagrams in a strong sense (Theo-
rem 4.10).

DEFINITION 4.1. Let w € S, be a vezillary permutation. We will construct an
ordered set A(w) of distinguished live squares using the following procedure:
(1) Endow the squares in D(w) with the total ordering given by (i,7) < (i',j') if
the following occur:
(a) i>1/, or
(b) i=1" and (i,J) has fewer squares below it than (i',j'), or
(¢) i=17, (i,5) has the same number of squares below it as does (i',5'), and
i<y
(2) Add the first square in this ordering to A(w).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/03/24 to 35.10.0.184 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2210 HAFNER, MESZAROS, SETIABRATA, AND ST. DIZIER

[ Tol Jolo
1[afafafy NARAE 1 1 1ifo] Ju
1fifafi ]y 1lafafafs RN 1afafafy
1fififafs 1lafafae NERRE 1fafafafa

1 1
2|2 L1 [2l=] | L T2l=2] |2 2[2] |2
2|2 2]2] |3 3 2[2] |3
T 11 I == olole]

1111 1af11]1 11 Ll AH
IRRRAR IIRRRAR i 10111 Mlifa]1]a
IIRRNAR H [l o] H [T fa [y H [l s -
! L 1] A 1l -
2]2] A T[22 T A2 le]2] - A2l2]2] -
22 : 2|2] 45 2|2 22
I I I I
il il il i

FiG. 10. Left column: The diagram DS = D(w) for D as in Figure 9 along with the pipe dream
(Ps, Se) = (P(w),0); Re and its image under gs are shaded blue. Second column: The diagram D°
along with (Ps,S5); Rs and its image under gs are shaded blue. Third column: The diagram D!
along with (P1,S1); R1 and its image under g1 are shaded blue. Right column: The diagram D° =D
along with (Po, So) = (P,S). (Figure in color online.)
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Fic. 11. The < ordering on D(w), along with the set A(w), for w=178925(10)346.

(3) Each subsequent square in the ordering will be appended to A(w) if and only
if A(w) does not already contain a square in the same column and A(w) does
not already contain a square in the same linking class.

Ezample 4.2. The diagram D(w) for w = 178925(10)346 with squares labeled by
their positions in the < order is shown in Figure 11. The squares in A(w) are colored
gold.

DEFINITION 4.3. Let w € S,, be a vezillary permutation, and let D € BD(w).
Suppose that the kth square in A(w) is the myth highest square in column ji. Define
the distinguished live squares A(D) of D to be the ordered set whose kth element is
the myth highest live square in Dj, .

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/03/24 to 35.10.0.184 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

M-CONVEXITY VIA BUBBLING 2211

LEMMA 4.4. Let w € S, be a vexillary permutation, and let D = (D,r,F) €
BD(w). Suppose that a dead square (i,7) € F is linked to the kth highest live square
in Dj. Suppose that the {th square in A(D) is the k'th highest live square in D; for
k' <k. Then (i,7) is linked to the €'th square in A(D) for some ' <.

Proof. As the k’th highest live square in D; is in A(D), the k'th highest square
in D(w); is in A(w). Similarly, the kth highest square in D(w); is not in A(w). As
the kth highest square in D(w); precedes the k’th highest square in the < order, it
follows that the kth highest square in D(w); is linked to the ¢'th square in A(w) for
¢' < ¢. Thus, the kth highest live square in D; is linked to the ¢'th square in A(D).O

DEFINITION 4.5. Let w € S,, be a vezillary permutation. Construct the bubbling
diagram

DYP(w) 1= (DtOP(w),TEFw),Fmp(w)) € BD(w)

from D(w) by repeatedly applying bubbling moves to every square that is above a
distinguished live square until it is no longer possible to do so and then repeatedly
applying K-bubbling moves to every distinguished live square until it is no longer
possible to do so.

For example, the bubbling diagram D*P(w) for w = 178925(10)346 is shown in
Figure 12.

THEOREM 4.6. Let w € S,, be a vezillary permutation. For any D = (D,r,F) €

i

BD(w), there is D' = (D',r', F') € BD(w) with F' = F*°P(w) and xV!P) | zWt(P),
The proof of Theorem 4.6 uses the following three lemmas.

LEMMA 4.7. Let w € S,, be vexillary. Let (i1,71), (i2,J2) € D(w) be two linked
squares, and suppose that iy <is. Then (i',j2) € D(w) implies (i',51) € D(w) for all
i’ >1iy. In particular, (i',j1) has at least as many squares below it as (', j2) does, and
the kth square of D(w);, below row i’ is in the same row or in a lower row than the
kth square of D(w);, below row i’

Proof. Lemma 3.13 implies that j; < j3. Observe that if
{(k,w(k)): k <igandw(k) < jo}| — |[{(k,w(k)): k <i; and w(k) < j1}| =2 — i1,

0]0[{0]0]0

11111 0j]0|1]0]|0
11111 0(0(1]110
11111 1710|1110
0 1

1 2

3 2 3

F1G. 12. Left: The squares in D(w) are labeled by their rank, and the set A(w) is colored gold.
Right: The bubbling diagram DP(w). (Figure in color online.)
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then there exists (k,w(k)) € {(k,w(k)): k < i3 and w(k) < jo} with k& < 43 but
w(k) > j1. Since w(iy) = j1, it follows that k <.

If there exists i’ > iy with (i',j2) € D(w) and (i, j1) & D(w), then k <w~(j;) <
i’ <w™1(ja) is a 2143 pattern. O

LEMMA 4.8. Let w € S, be vexillary. Let (i,j1),(i,j2) € D(w), and suppose
that (i,71) has more squares below it than (i,j2) does. Then (i',7j2) € D(w) implies
(¢, j1) € D(w) for all i > 4. In particular, the kth square of D(w);, below row i is in
the same row or in a lower row than the kth square of D(w);, below row i.

Proof. Suppose there exists i’ > i such that (¢/,j2) € D(w) but (¢,71) ¢ D(w).
Because (4,71) has more squares below it than (i,j2) does, there exists £ > i with
(£,41) € D(w) and (£, 72) & D(w). If j1 < ja, then j; < w1 (£) < jo < w~'(¢') is a 2143
pattern; if jo < 51, then jo <w™1(i") < j; <w™1(¢) is a 2143 pattern. d

LEMMA 4.9. Let w € S,, be vexillary. Let (i1,71), (i2,J2) € D(w) be two linked
squares with j1 < ja, and let i < iy be minimal so that (i,71) € D(w) for all i} <i<i;.
Then there are exactly i1 — i} indices k1 < -+ < ki, —ir for which 1] < ky <ig and
(km,J2) € D(w). Furthermore, (kp,j2) is linked to (i} + m—1,71).

Proof. Lemma 3.13 implies that i; <is. Thus,
{(k,w(k)): k<iyandw(k) <j1} C{(k,w(k)): k <izand w(k) < j2}.
Since (4, 71) € D(w) for all ¢} <i <4y, we know w(i) > j; for all #{ <i<4i; and hence,
{(k,w(k)): k<iy andw(k) < j1}={(k,w(k)): k <iy andw(k) < ji }.

If some (k,w(k)) € {(k,w(k)): k <igand w(k) < j2}\{(k,w(k)): k <} andw(k) < j1}
satisfies k < i}, then w(k) > j; >w~1(i} — 1), and it follows that w=1(ij —1) <w(k) <
Jo <w~t(iy) forms a 2143 pattern. Because w is vexillary, it follows that all i5—i; such
elements (k,w(k)) satisfies k > ¢}. There are, thus, exactly io —i; elements b such that
i1 <b<iz and (b,j2) € D(w); therefore, there are exactly (ia — i) — (i2 —41) =11 — 1}
elements k such that i{ <k <iy and (k,j2) € D(w).

The linkedness result follows from the facts that

TD(w) (B, J1) =Tp(w) (i1,51)  for all 4] <i <
and

TD(w)(FmsJ2) = D(w) (i2, j2) —i2 + K + (i1 — 1) —m+1) for all m € [i; —41]. O

Proof of Theorem 4.6. Denote the kth square in A(w) by (i}, k), and suppose
that (i,jx) is the myth highest square of D(w) in its column. We will construct
diagrams D* = (D* r* F¥) satisfying the following properties for all k:

D* ¢ BD(w),
WD) |mwt(’Dk)7
(i,7¢) € D*\ F* for all £ € [k] and 1 <i<my,
(i,7¢) € F* for all £ € [k] and me+1<4q <47,
(i,j¢) & F* for all £ € [k] and i} +1<i<n,

o D =D}~ forall Le[k—1].

Set DY :=D. Given D*~!, we construct D* according to the following procedure.

Let i € D;‘fk_l \ka_l be the myth highest live square in its column. Observe that
D;-Ck_l contains no dead squares (f, ji) linked to a live square below row iy: Lemma 4.4
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guarantees that (f,jx) is linked to (my,je) for some £ < k, and the definition of <
guarantees that (f,jx) is linked to a dead square (f, j¢) in the same row. In particular,
ka_l contains no dead squares below row iy + 1.

Let L denote the set of dead squares in F*~! which are below row i) and are
linked to (ix,jx). Let C'= {c1,...,c,} be the set of columns that have a square in
L; note that C N {j1,...,j5k—1} is empty as all dead cells in column j, are linked to
(my,je) and hence not linked to (ig, jx).

We shall first move squares in L horizontally between the columns in C' and
reindex the ¢; so that whenever k < k’, all squares of L in column ¢, are above all
squares of L in column ¢ using the following process. Let (r; ,c;) denote the live
square in column ¢; that is linked to (iy, jx), and let 77 > r;” be minimal such that
(ri,¢i) is live. The squares in (i,c;) for r; <i< 7’;7 are either dead or empty; if
they are dead, then they are linked to (ix,ji). Furthermore, if 7 < i < rT and
r, < i<}, then (i,¢;) and (i,cx) cannot both be dead. If [r;,r/] 2 [r;,rj'} for
some 1, j, then we may move all dead squares in {(i,c;): r; <i< 7']+} to column ¢;
(to break a tie [r; , 7] = [r-‘,rﬁ, we move all dead squares to the column with the
smaller index). Now, reorder the ¢; so that r; >r; >---, and move all dead squares
in {(i,¢;): ry <i< Tj} to (i,c) for k minimal such that i <r; .

We now modify each column ¢; € C, starting from ¢; and working towards c,,
according to the following procedure.

Let z1 < -+ < x, be the rows below i; where (z,¢;) is dead and linked to (i, jx)
and where (x4, j) is live. Also, let y; < - -+ < yg, be the rows below iy, where (ys,¢;) is
dead and linked to (ig,jr) and where (ys,ji) is empty. Let z1 < --- < zg, be the first
k1 rows below row max{xg, , Yy, } where (zs,¢;) is live and (zs, ji) is empty; such rows
21,...,2k, €xist because the live square (a,c;) immediately above the dead squares
(24,¢;) and (ys,c;) is linked to (i, jx) € A(D¥), so Lemma 4.7 implies (a,c;) has at
least as many live squares below it as (ix,jx) does.

Let k3 be the number of rows between ¢, and max{zy, ,yr, } which have an empty
space in column ¢; and a live square in column j;. Modify the portions of columns ¢;
and ji below row ¢ such that

e Column ¢; has live squares in rows z,...,2;, and any rows below 4 which
previously had live squares, except for rows z1,..., 2k, ,

e column ji has dead squares in all rows between i, + 1 and max{x,, Yk, },
inclusive, along with dead squares in any other rows which already has dead
squares, and

e column jj has live squares in all rows below max{zy, , yx, } which already had
a live square, rows 21, . . ., 2k, , and the first other k3 rows below max{xg, , Y, }-

See Figure 13 for an example. Letting Sc;.; and S;,.; denote the set of live squares
in the modified columns ¢; and jg,, respectively, Lemmas 4.7 and 4.8 imply that
Seiii < D(w),, and Sj,;; < D(w)j,. Then, Lemma 3.19 implies that the resulting
diagram is in BD(w).

At this point, every square in L is in column j;. We now use the following
procedure to bubble up squares in column jj so that (¢,7jx) is live for all £ € [k] and
1 <i<my:

o If there is a column j # ji such that (ix,j) € F is dead and linked to (i, ji),
swap the portions of columns j and j; in and above row i;. Then fill in dead
squares between (ix,jr) and the next lowest live square above it, removing
matching dead squares from other columns if necessary. Such a j is necessarily
not equal to jp for £ € [k — 1], as those columns contain only dead squares
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Ci Jk Ci Jk
T Mo
W Y1
w ] .
X2 T2
— —> —
21 21
29 Z2

F1G. 13. In this ezample, k3 =1 because row (y1 + 1,¢;) is empty and (y1 + 1,jk) is live. After
performing the procedure, (z2 — 3, ji) is live because it is the first row below max{xa,y2} which did
not already have a live square and is not row z1 or z2.

linked to (myg,j;). Letting S; and Sj, denote the set of live squares in the
modified columns j and jj, respectively, Lemmas 3.13 and 4.9 imply that
S; < D(w); and Sj, < D(w)j,. Then Lemma 3.19 implies that the resulting
diagram is in BD(w).

If there is no such column, and for the maximal i < iy so that i ¢ Dj, \ F},,
(i,7x) is empty, then apply bubbling moves at i+ 1,...,4i; — 1 followed by a
K-bubbling move at ;. The resulting diagram is in BD(w).

If there is no such column, and for the maximal 7 < ix so that ¢ € D;, \ F},,
(i,7k) is dead, then remove this dead square and apply bubbling moves at
i+ 1,...,ix — 1 followed by a K-bubbling move at ix. The resulting diagram
is in BD(w).

When this procedure terminates, the square (4, j) is live for all 1 < ¢ < my, is

dead for all my +1 <4 <47, and is live or empty otherwise. Columns ji,...,Jk—1
were left invariant throughout this construction. We may push down any remaining
live squares in {(ix +1,jk), ..., (i}, jk)} so that there are no live squares in this region

and then fill in any empty squares in {(ix + 1, k), ..., (i}, jx)} with dead squares. We
set DF to be the resulting diagram.

THEOREM 1.2. Let w € S, be a wemillary permutation. Then supp(BP) =
SUPP(X ptor (w) )-

Proof of Theorem 1.2. Theorem 4.6 implies that any monomial appearing in &P
is equal to zV*P) for some (D,r, F) € BD(w) with F = F*°P(w). Any such diagram
D satisfies D < D'*P(w), so

supp(&°P) C {wt(D): D < D*P(w)}.
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By construction, D*P(w) € BD(w). Furthermore, if (i,7) € F*P(w), then (i,j) €
D'*P(w) for all 7/ <i. It follows (e.g., by Lemma 3.19) that

{wt(D): D < D*P(w)} C {wt(D): D € BD(D"*P(w))} C supp(BLP).
We conclude that
supp(&:°P) = {wt(D): D < D*P(w)}.

Finally, Proposition 2.8 guarantees that {wt(D): D < D*P(w)} =supp(X pror(w)). O

The next result asserts that if a monomial ¥*P) appearing in &,, is represented
by a bubbling diagram D = (D,r, F), then any monomial z® which divides z**")
and appears in &,, can be represented by a bubbling diagram whose dead squares are
contained in F'.

THEOREM 4.10. Let D = (D,r,F) € BD(w). Suppose that there exists i € [n]
so that th(D)/xi appears with nonzero coefficient in &,,. Then there is D~ =
(D=,r=,F7) € BD(w) so that wt(D~) = wt(D) —e;, F- C F, and r = r~ on
.

Proof. Fix a diagram C = (C, s,G) € BD(w) so that wt(C) =wt(D) — e;.

If row 7 of D contains a dead square, then removing that square gives the desired
diagram D~. Otherwise, there must be a square (i,5) so that (i,j) € D\ F and
(i,7) € C. Suppose that (i,5) € D\ F is the kth uppermost live square in the column
D;. There are two cases:

(1) Suppose that the kth uppermost live square in the column C; is above row 4.

Let ¢ < ¢ be maximal so that D; does not have a live square in the 'th row;
such a position exists because C; has its kth uppermost square above row .
Apply a bubbling move to the live squares (7,5), (¢ —1,7),...,(#’ +1,7) of D.
If (i',j) € F, then simply remove it to make the bubbling move legal. The
resulting diagram is in BD(w).

(2) Suppose that the kth uppermost live square in the column Cj is below row

i. Let 4’ >4 be minimal so that D; does not have a live square in the ¢'th
row. Because the kth uppermost live square in C is below row 4, the diagram
obtained from D by “pushing down” the live squares (4,5), (i +1,5),..., (7 —
1,7) of D by one space, removing a dead square at (i, ) if it exists, is again
a diagram in BD(w).
In either case, if a dead square was removed then the resulting diagram has weight
wt(D) — e;, giving our desired bubbling diagram D~. If no dead square was removed,
then the resulting diagram has weight wt(D) —e; +¢;» and has more squares in row ¢’
than does C, so we may repeat the process using row 7’ until a dead square is removed.

At each step of the process, the squares in D move closer to their counterparts
in C. Because wt(C) = wt(D) —¢; and |D \ F| = |C'\ G|, there is a row r so that
#{j: (r,j) € C\G} > #{j: (r,j) € D\ F}. In particular, there is a column j, in which
a live square (r, j.) € C'\ G is not in the same row as its counterpart in (r',j.) € D\ F};
the algorithm will eventually move (', j,) to (7, j.), so this procedure will terminate.O0

DEFINITION 4.11. Let SBD(w) denote the set of bubbling diagrams D = (D,r, F) €
BD(w) for which every dead square is linked to a distinguished live square in its
column.

THEOREM 4.12. If w € S,, is vexillary, then supp(&.,) = {wt(D): D€ SBD(w)}.
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Column 2: Column 3:

(LITTT]
(LIITT]
(LI TT]
(LT T]

Column 5:

F1G. 14. Construction of SBD(w) for w = 146235. The set A(w) of distinguished live squares
is shown in gold. Any combination of the above options for columns 2, 3, and 5 will yield a valid
diagram in SBD(w). (Figure in color online.)

Proof. By Theorem 1.1, any monomial appearing in &,, is of the form z"tP)

for some D = (D,r,F) € BD(w). By Theorem 4.6, there is a bubbling diagram
C = (C,s, Ft°P(w)) € BD(DYP(w)) so that z*4*P) | z%C)  Repeated application of
Theorems 2.3 and 4.10 give the desired result. ]

Observe that SBD(w) is precisely the set of diagrams which can be generated
from D(w) by any series of the following moves:

(1) Bubble up any live square.

(2) K-bubble any distinguished live square.
In particular, once the set A(w) of distinguished live squares has been determined,
this procedure makes no further reference to the ranks of squares (since no pair of
squares in A(w) can be linked). The possible states of each column in SBD(w) are,
thus, independent of the states of the other columns. Figure 14 shows an example of

SBD(w).

5. Supports of homogenized Grothendieck polynomials. We deduce The-
orem 1.3 from a “one-column version” of the result (Proposition 5.6).

DEFINITION 5.1 (see [MTY19]). Let D C [n] x [k] be a diagram. The Schubitope
Sp is the Newton polytope of the dual character xp of the flagged Weyl module.

By [FMS18], the Schubitope Sp is the Minkowski sum

k
Sp = ZP(SMn(Di))
i=1
of Schubert matroid polytopes.

We recall the combinatorial interpretation, due to [MTY19], for the rank functions
of Schubert matroids. For I,J C [n], construct a string denoted word7 (J) by setting
k=1,...,n and recording
_ifkel and k& J,;

(if k¢TI and k€ J;
Jiftkeland k¢ J;
xif kel and ke J.

Define
07 (J) d:Ef#{matched ()'s in word} (J)} + #{+'s in word}(.J)},

where parentheses are matched iteratively left-to-right, removing matched pairs.
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1
20

3 (

4 *

500 (

6 ) n

7 wordy (J) =) (*() (x))*)(
Sl ( 07(J) =3+3=6

9 *

0f |)

11 )

12 | *

130 )

140 (

F1G. 15. Left: the sets I, J, and INJ from Ezample 5.2. Right: the word word} (J) and the
number 07 (J).

Ezample 5.2. Let n=14, I ={2,4,6,9,10,11,12,13}, and J ={3,4,5,8,9,12,14}.
Coloring I — J, J — I, and I N J, respectively, red, blue, and purple, we show how to
compute 67(J) in Figure 15.

THEOREM 5.3 (see [FMS18, Theorem 10]). For any n and any I,J C [n],

rsm, (1) (J) =07 (J)-

] be a one-column diagram with a single distinguished square s € S.

Let S C[n
= S, and whenever [s] € S=19) define S**) from S*=1%) by

Set S(0:9) .
Sk:s) — =19 ymax{i: i < s and i ¢ S,

Let d=5— |{i€S:i<s}| so that [s] C S(®*),

LEMMA 5.4. For all k, we have

TSMn(S(kJrl,s))(J) — TSMH(S(k,s))(J) S {0, 1}.

When re, (st+1.9)(J) = rsm,, (g0 (J), then we have

ron,, (s 4100y (J) = Tong, (g000y () for all k' >k, and
TSMn(S(k+1,s))(J/) = TSMn(S(k,s))(JI) for all J'cJ.

Proof. Suppose that S*+1:5)\ §ks) = i} If i € J, then word% i1, (J) is
obtained from word§..) (J) by replacing the ( in the ith position of word§..,(J) with
a %, while if ¢ & J, then wordg+1..)(J) is obtained from wordgw . (J) by replacing
the _ in the ith position of wordi,.) (J) with a ). In either case, royp, (s+1.9y(J) —
rsm, (s (J) € {0,1}.

To prove the rest of the lemma, we will use the following observation. Let a € [n]
and suppose that T, K C [n] are such that a ¢ T and every ( in the first a positions
of wordy(K) is matched to a ). In this case, observe that wordy . (K) is obtained
from word?.(K) as follows:
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e If a € K, then we replace the ( in the ath position, which is matched by
assumption, with a x; then the number of matched ()’s decreases by one and
the number of x’s by one, so that ren,, (ruga}) (K) = rsm,, (1) (K)-

e If a ¢ K, then we replace the _ in the ath position with a ); then the number
of matched ()’s does not increase as every ( to the left of position a was
already matched. Thus rew,, (rugay) (K) = rem,, (7) (K).

When 7gyp, (sk+1).5)(J) = Ts,, stk (J), we know that every ( in the first i positions
of wordgx,«) (/) is matched. Furthermore, for any &' > k, observe that wordg ., (/) is
obtained from wordg.) (.J) by modifying entries strictly to the right of a := §*'+1:5)\
S(-9) 5o every (in the first a positions of word g . (J) is matched. The observation
guarantees that roy; (go+1.0)(J) =7rgn, (str.0)(J)-

Similarly, let J* C J. Note that for any set T, word’(J') is obtained from
word’:(J) by replacing, for every j € (J\ J')NT, the x in the j-th position with
a ) and, for every j € (J\ J')\ T, the ( in the j-th position with a _. Because
word7.(J") is obtained from word?.(J) by replacing x’s with )’s and (’s with _’s, every
(in the first ¢ positions of wordg..)(J’) is matched. The observation guarantees that
M, (sk+1.0)(J7) = Trem,, (stk.0) (). a

COROLLARY 5.5. The Schubert matroid rank function of S%*+%) is given by

rSM"(S(k,S))(I) = min{rSMn(S(iS))(I)aTSMH(S)(I) +k} for all I C[n].

Furthermore, if J' CJ, then

TSM,,(S(de))(‘D - TSM"(SMs))(J/) > TSMn(S)(J) - TSMn(S)(J/)-
Proof. By Lemma 5.4, we know rgy;, (ste+1,9)(J) = Tsp,, (sv.0) () € {0,1}. This
implies
Tsm, (s¢-0) (J) <min{rey, (s@.) (1), rsm, (s) (L) + K}

Furthermore, Lemma 5.4 implies the following:

o If TSM,,L(SUC‘*'LS))(J) — TSMn(S(k,s))(J) = O7 then TSM,,L(S(’“/‘*'LS))(‘]) — TSM,,L(S(WYS))
(J) =0 for all k/ > k, SO TSMH(SUV*S))(‘]) = TSM,L(S(dWS))(J)'

o If ’I’SMn(S(k-H,s))(J) — TSMn(S(k,s))(J) = 1, then TSM“(S(MH,S))(J) - T‘SM,’L(S(M,S))
(J)=1for all K <k, so re\r,, sty () =Tsm,(5)(J) + k-
If J' C J, then Lemma 5.4 implies that

Tem,, (5@ (J) = Tsm, () (J) = Tsm, sy (J) = rsm, (s)(J)-

Rearranging the inequality gives the desired result. ]

For B < S®%) et (B = (¢B,...,¢(B,d — k) € R"! be the vector with (B =1 if
i € B and (P =0 if i ¢ B. Define the polytope

P(S) d:Efconv{EB: B < 8% for some k < d}.
PROPOSITION 5.6. The polytope ’P(S(s)) is a generalized permutahedron, and

7)(5(8)) Nzt = {ZB: B < 5% for some k < d}.
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Proof. Consider the function z: 2[**1 — R defined by

() = TSMn(S(d,s))(I) 1fn+1¢[,
TSMTL(S)(I\ {n+1})+d ifn+1el.
We claim that z is submodular. Indeed,
o lfn+1¢1,J, then 2(I) + 2(J) > 2(I U J) + 2(I N J) because rgyy, (st 18
submodular.
e Ifn+1el\J, then

2(I) + 2(J) =rsm, (s) (I \ {n +1}) + d + rp, (sca.) ()
> rsm, sy L\ {n+1}) + d+ rem, (s)(J) — rsm, sy (L N JT)
+ TSMH(S((J,S))<I NnJ)
>d+rsm,(s)(TUJT\{n+1}) +rem, (s (I NJ)
=z(IUJ)+=2(INJ),
where the first inequality uses Corollary 5.5 applied to gy, (sa.)) (J) and the

second inequality uses the submodular inequality reyr, (s)(J) — rsm,, (s)(1 N
7) 2 15n,(5)(TU T\ [+ 1) = reag, o) (T {n + 1}).
e Ifn+1¢€l,J, then 2(I) + 2(J) > 2(I U J) + 2(I N J) because rgy, (s) is
submodular.
Since z is submodular, we have a generalized permutahedron

pP= {tER"+1: Ztigz(l)for all I C[n+1]and %ti:z([n—&—l])}.

icl i=1

We now claim that P(S()) = P. To prove this, fix any B < S*) and I C [n+1]. If
n+1¢ 1, then

Z CiB S TEM,, (SC9)) (1) < T'SM,, (S(d:)) (1),
iel
and if n+ 1€, then

Y. ) Hd—k<ra eI\ {n+1}) +d—k
i€eI\{n+1}

<rsm,(s) (L \ {n+1}) +4d,

where we use the inequality gy, sty () — k <7, (s)(I) from Corollary 5.5. Fur-
thermore,

P +d—k=(S|+k)+d—k=z(n+1]),
1€[n]
so (B € P. We conclude that P(S()) C P.
Now fix any t € PN Z"*L. Observe that 2([n]) = z([n + 1]), so t,,+1 > 0. Further-

more, z({n+1}) =d, so t,41 < d. Write t,41 =d — k. Observe that for any I C [n],
we have

Zti <z(I)= TSMH(S(d,s))(I) and
il

D oti<z(IU{n+1}) —tupr =rsu, s\ {n+1}) +k,
iel
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so that

Zti S min{rSMn(sm,s))(I),TSMH(S)(I\ {Tl + 1}) + k} = TSMn(S(k,s))(I).

el

In particular, (¢1,...,t,) is an integer point of the Schubitope Sg.s). It follows that

(t1,...,tn) = B for some B < S(’“ hence, t = (B. Thus, PNZ" = {(B: B <
S#:5) for some k} and P D P(S)). We conclude that P = P(S(S ) and that P(S*))N
Zrt =Pzt = {(P: B< S®9). 0

Let f{° := #F'"P(w);, and write f'*P = (f/°P,..., fP). For f < f%*P let
D (w) = (Df(w)y,...,Df(w),) be the diagram with

DY (w) = (D(w),) %) where (i, k) € A(w).
LEMMA 5.7. We have

{D: there exist r, F' so that (D,r,F) € SBD(w)}
={D: D < D’(w) for some f < ft°P}.

Proof. Let (D,r,F) € SBD(w). Define (f1,...,fn) by fi == #Fr = #Dy —
#D(w)y. Because F C F*P(w), we know that f < f*P. Suppose that (i, k) € A(w)
is the myth highest square in D(w);. Writing d; for the ith highest square in Dy, we
have Fi, = {dm,+1 < - <dmp+s.} With dpty, <ig. Since D € BD(w), Lemma 3.19
implies that Dy, \ Fy < D(w)g. It follows that Dy < (D’ (w))g, and by varying k, we
deduce that D < Df(w).

Now suppose that D < Df(w). As above, suppose that (i, k) € A(w) is the
myth highest square in D(w), and write d; for the i¢th highest square in Dj. Let
Fi :={dmy+1 <--- <dm+s.}- Then D\ F < D(w), and furthermore, dp,,+f, < ix.
The live square immediately above any square in Fy is d,,, € Dy \ Fk, and no two
squares in A(w) are linked. Thus, Lemma 3.19 implies that there exists r so that
(D,r, F) € BD(w). O

For D < Df(w), let wt(D) € Z"*! denote the vector whose ith coordinate counts
the number of squares in the ith row of D for i <n and whose (n + 1)th coordinate
is deg(Gy) — D).

Recall that &,, denotes the homogenized Grothendieck polynomial

deg(®

éw(xlw-'amna . Z ®(k .1'1, T )zdeg(Qﬁw)—k.
k=0(w)

THEOREM 1.3. Let w € S, be a vexillary permutation. Then, the homogenized
Grothendieck polynomial &,, has M-convex support. In particular, each degree com-
ponent 62@ has M-convex support.

Proof of Theorem 1.3. By Theorem 4.12 and Lemma 5.7, we know that
supp(B,,) = {“%(D)i D < DY (w) for some f < ftop}
Z{CDk Dk‘< D( ) )(fk Vik) for some fk<ft0p}-
k=1

Thus

Newton w) Z P(( (““ ))
k=1
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is a generalized permutahedron. Furthermore, [Sch03, Corollary 46.2c] implies that
any t € Newton(&,,) N Z""! can be written as a sum

t=ti 4 +t,, t; €eP((D(w))™)nzrtt,

Since t; = gDi, we conclude that t = VAVE(D) € supp((’Nﬁw) for D= (D1,...,D,), so 6,
has SNP.
M-convexity of supp(QﬁgC )) follows from the equality

supp(6)) = supp(B,,) N {t € R t,41 = deg(B,,) — k}. 0
6. Linear independence of Schubert matroid rank functions. We prove
Theorem 1.4 and use it to show that our results are sharp.

DEFINITION 6.1. For each n, denote by V,, the set of all nonempty subsets of [n]
with the following total order: if I,J €V, then I <J if

max(I\ J) <max(J\ I),
where we take max(0) := 0.
Ezample 6.2. Vy is the chain:
{1} < {2} <{1,2} < {3} <{1,3} < {2,3} < {1,2,3}
< {4} <{1,4} < {2,4} < {1,2,4} < {3,4} < {1,3,4} < {2,3,4} < {1,2,3,4}.
Note that V,,_; is an initial segment of V,,.
DEFINITION 6.3. For each n>1, define Ay to be the (2™ —1) x (2" — 1) matriz
Ay = (rsm, (D)) r,7ev, -

Ezample 6.4. For n =3 and n =4, we have

101 0101
1110111
11 2 01 1 2

As=| 1 1 1 1 1 1 1 |,
11 2 1 2 1 2
11 2 1 2 2 2
11 2 1 2 2 3
101 010101010101
11101 1101110111
1 1201120112011 2
111111101111 111
1 1212120112121 2
11212 2201121222
112122 301121223

Ay=| 1 1 1 111111111111
11 2121212121212
11212 2 2122 212 2 2
11212 2 312231223
11212 2 21222 2 2 2 2
11212 2 312 23 2 3 2 3
112122 312 232 3 3 3
11212 2 3122323 3 4
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Because V;,_1 is an initial segment of V;,, the upper left justified (271 —1) x (2"~1—1)
submatrix of A, is equal to A, _1.

We would like to show that the columns of A,, are linearly independent. To do

this, we will use symmetries of A,, which relate blocks of A,, with A,,_1. We first give
a motivating example.

Ezample 6.5. Take A4 as above. For each I € V3, subtract row I from row IU{n}
to get

1010101402 010101 0

111011 10|11 10111 0
112011201 1 20112 0
P01 A 0 A
112122 20|11 21222 0

11212 2 3/0]1 1 212 23 0

111111 1)j1)1 111111 }=1]111111 111 1 1 1 1 11
011111 1/1f1 111111 011111111 111111
001111111 111111 001111111 111111
000111 1j1j1 111111 000111 1f1f1 11 1111
001011 1f1f1 111111 001011 1f1f1 111111
000O0OO0CGCTTT1j1j1 1 1 1 1 11 000O0OOOT1T1Tj1j1 11 1 111
000O0O0OO0OT1fL|T 11 1 111 000O0O0OO0OT1fL{T 11 1111
000O0OO0OCOOfL|T 1T 1 1111 000O0OO0OOOLILl 111111

/

More generally, Lemmas 6.6 and 6.7 imply that the matrix A}, obtained from A,
by subtracting row I from row I U {n} for each I € V,,_; has a block decomposition
as in Figure 16.

LEMMA 6.6. The row and column of A, indexed by {n} are given by

1 ifnel,

s, ({np)(J)=1  and TSMn<z>({n})={0 o

respectively.

Proof. 1t is straightforward to check that

(...(x ifned

wordfny (J) = {(...() it ngJ

(L 1

0
T 1 -meeeees 1 1|1 - 1
0 1-oeeee 1 11 1
R TN 1 I IREEER T 1
0 1|1 1

F1G. 16. The matriz A}, .
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LEMMA 6.7. Let I,J € V,\{{n}}. The rank functions s\, 1y satisfy the following
properties:

(1) Ifng I and n ¢ J, then rom,, () (J) =rsm,_, (1)(J)-

(2) If ng€I and n € J, then rewm, (1)(J) =rsm, ) (J \ {n}).

(3) If nel and ne J, then rsm, (1) (J) =rem, (\inp) (S \ {n}) + 1.

(4) Ifnel, ngJ, and I\ {n} < J, then rem, (1)(J) =rsm, 1\ {n}) (J) +1

(5) If nel, then rem, (I \{n}) =rsm, 1\ (o) (L \ {n})

Proof. If n ¢ I and n ¢ J, then word}(J) = word? '(.J). Thus, rsm, () (J) =
TsM,_y (1)(J)-

If n ¢ I and n € J, then word}(J) is obtained by appending a ( to the end
of word}(J \ {n}). Doing so does not change the number of xs or paired ()s, so
TSMn(I)(J) = TSMn(I)(J\ {n}).

If n €I and n € J, then word}(J) is obtained by appending a x to the end of
wordf, 1,3 (J\ {n}), s0 rsu,, (1) (J) = rsm, (n\fnp) (I \ {n}) + 1.

If neland n ¢ J, then word}(J) is obtained by appending a ) to the end of
wordp, 1,3 (/). On the other hand, if I\ {n} < J, then max(/ \ {n}\ J) <max(J\ I);
thus, wordf, ;,,)(J) contains an unmatched left parenthesis to the right of all closed
parentheses. Combined, we deduce rgm,, (1)(J) = rsm,, 1\ {n})(J) + 1.

If nel, then word”([\ {n}) is obtained by appending a ) to the end of wordj\{n}
(I\{n}) =*...x Thus, rem, 1)L \ {n}) =rsm, 1\ (o} (I \ {n}).

PROPOSITION 6.8. The Schubert matroid rank functions ren,, (1) are linearly in-
dependent.

Proof. We will show that the columns of A,, are linearly independent. First, let
Al denote the matrix obtained from A, by subtracting row I from row I U{n} for
each I € V,_1, as in Figure 16. Let A! denote the matrix obtained from A! by
subtracting each row in V,, \ (V,—1 U {n}) from the row above it, working from the
top row to the bottom row. Then A/ has a block decomposition.

0

0

0 O0--------nvn-- 0
0o 0

0 0 rrrrrrrrrrrrrr 0

| 1

Let v; denote the column vector of A indexed by J € V,,, and suppose that

(0) S ey =0

JEV,
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is a linear dependence between the vectors v;. The columns of A, _; are linearly
independent, so ¢; +cyyqny =0 for all J € V,,_;. Furthermore, comparing coordinates
of the dependence ({) corresponding to V, \ (V;,—1 U{n}), working from the smallest
element to the largest element, gives that ¢y = 0 for all J € V,,_;. It follows that
cjugny =0 for all J € V,,_; as well. Thus, the linear dependence (<) reads c{, v} =
0, and since v,y # 0, it follows that cg,; =0.

We conclude that the columns of A/, and hence the columns of A4,, are
independent. ]

THEOREM 1.4. Fizn>1. The rank functions rsm,, ry of Schubert matroids form
a basis of the vector space of functions f: 21"} =R satisfying f(0) =0. In particular,
we have the following:

o A generalized permutahedron is a Schubitope if and only if its associated sub-
modular function is a Z>q-linear combination of rank functions of Schubert
matroids, and

o two Schubitopes Sp and Sp: are equal if and only if D can be obtained from
D' by a permutation of columns.

Proof of Theorem 1.4. The vector space of functions f: 2[" — R satisfying f(0)) =
0 is (2" — 1)-dimensional and contains the 2" — 1 functions rgn,, (1y. Proposition 6.8
guarantees that these functions are linearly independent, so they form a basis.

Let D = (Dy,...,Dy) be a collection of columns. The submodular function of the
Schubitope Sp is given by sy, (p,) ++* + Tsm, (Dy); in particular, it is a Zxo-linear
combination of Schubert matroid rank functions.

Lemma 2.10 guarantees that a generalized permutahedron P is uniquely deter-
mined by its submodular function z. Because Schubitopes are generalized permu-
tahedra, an arbitrary generalized permutahedron P is equal to a Schubitope Sp if
and only if the submodular function z defining P is a Zx>p-linear combination of rank
functions of Schubert matroid polytopes.

Combined with the linear independence of rank functions of Schubert matroid
polytopes, it also follows that two Schubitopes Sp and Sp are equal if and only if D
can be obtained from D’ by a permutation of columns. ]

Remark 6.9. One can show that det(A,) = 1, so the Schubert matroid rank
functions in fact form a Z-basis for the space of functions f: 2"l — Z with f((}) = 0.

The following examples provide counterexamples to natural generalizations of
Theorems 1.2 and 1.3.

Ezample 6.10. Consider the nonvexillary permutation w = 2168534(10)79 € S,.
We show that the Newton polytope of &P is not a Schubitope. The defining in-
equalities of Newton(®!°P) show it is a generalized permutahedron. Its submodular
function z expands in the basis of Schubert matroid rank functions as

Z=TSM,({1}) — TSM,.({2,3,4}) T 27sM,, ({1,2,3,4}) T T'SM.. ({3,4,5})
+TSM, ({1,2,3,4,5}) T T'SM,,({2,3,4,8}) T 7SM,,({1,2,3,4,5,6,7.8})-

Because there is a negative coefficient in this expansion, Theorem 1.4 implies that
Newton(&!P) is not a Schubitope.

Example 6.11. Let w = 14253 € S5. We show that the Newton polytope of

Qs%(“’)“) is not a Schubitope. Since w is vexillary, Theorem 1.3 implies Newton
(655(1“)“)) is a generalized permutahedron. Its submodular function z expands in

the basis of Schubert matroid rank functions as
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Z=TSM, ({1,2}) T TSM,.({2,4}) — TSM,, ({1,2,4}) T TSM,. ({2,3,4})-

Because there is a negative coefficient in this expansion, Theorem 1.4 implies that

Newton(&4 ™) is not a Schubitope.

Based on the previous two examples, we conclude with the following conjecture,
a generalization of Theorem 1.2.

CONJECTURE 1.5. If w € S, is vezillary, then &P is an integer multiple of
XDtop (w)-

We tested Conjecture 1.5 for all vexillary w € S, n <9.

Acknowledgment. We thank the anonymous referee for their careful reading
and good suggestions.
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