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ABSTRACT. We give an explicit formula for the degree of the Grothendieck
polynomial of a Grassmannian permutation and a closely related formula for
the Castelnuovo-Mumford regularity of the Schubert determinantal ideal of
a Grassmannian permutation. We then provide a counterexample to a con-
jecture of Kummini-Lakshmibai-Sastry-Seshadri on a formula for regularities
of standard open patches of particular Grassmannian Schubert varieties and
show that our work gives rise to an alternate explicit formula in these cases.
We end with a new conjecture on the regularities of standard open patches of
arbitrary Grassmannian Schubert varieties.

1. INTRODUCTION

Lascoux and Schiitzenberger [I1] introduced Grothendieck polynomials to study
the K-theory of flag varieties. Grothendieck polynomials have a recursive definition,
using divided difference operators. The symmetric group S,, acts on the polynomial

ring Z[z1,x2,...,2,] by permuting indices. Let s; be the simple transposition in
Sp, exchanging ¢ and ¢ + 1. Then define operators on Z[x1,x2, . .., Zy]
1—s
0, = — and m; = 0;(1 — z441).
7 Ti — Tip1 A z( z+1)
Write wg =nn—1 ... 1 for the longest permutation in S,, (in one-line notation)
and take
By (71, T2,y - .y p) = P b2y

Let w; := w(i) for ¢ € [n]. Then if w; > w;y1, we define &g, = m;(B,,). We call
{&, : w € S} the set of Grothendieck polynomials. Since the ;’s satisfy the
same braid and commutation relations as the simple transpositions, each &,, is well
defined.

Grothendieck polynomials are generally inhomogeneous. The lowest degree of
the terms in &,, is given by the Cozeter length of w. The degree (i.e. highest de-
gree of the terms) of &,, can be described combinatorially in terms of pipe dreams
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(see [3[8]), but this description is not readily computable. We seek an explicit com-
binatorial formula. In this paper, we give such an expression in the Grassmannian
case. Our proof relies on a formula of Lenart [12].

One motivation for wanting easily-computable formulas for degrees of Grothen-
dieck polynomials (for large classes of w € S,,) comes from commutative algebra:
formulas for degrees of Grothendieck polynomials give rise to closely related formu-
las for Castelnuovo-Mumford reqularity of associated Schubert determinantal ideals.
Recall that Castelnuovo-Mumford regularity is an invariant of a homogeneous ideal
related to its minimal free resolution (see Section M for definitions). Formulas for
regularities of Schubert determinantal ideals yield formulas for regularities of cer-
tain well-known classes of generalized determinantal ideals in commutative algebra.
For example, among the Schubert determinantal ideals are ideals of r x  minors of
an n X m matrix of indeterminates and one sided ladder determinantal ideals. Fur-
thermore, many other well-known classes of generalized determinantal ideals can
be viewed as defining ideals of Schubert varieties intersected with opposite Schu-
bert cells, so degrees of specializations of double Grothendieck polynomials govern
Castelnuovo-Mumford regularities in these cases. Thus, one purpose of this paper
is to suggest a purely combinatorial approach to studying regularities of certain
classes of generalized determinantal ideals.

2. BACKGROUND ON PERMUTATIONS

We start by recalling some background on the symmetric group. We follow
[13] as a reference. Let S, denote the symmetric group on n letters, i.e. the
set of bijections from the set [n] := {1,2,...,n} to itself. We typically represent
permutations in one-line notation. The permutation matrix of w, also denoted
by w, is the matrix which has a 1 at (¢, w;) for all ¢ € [n], and zeros elsewhere.

The Rothe diagram of w is the subset of cells in the n x n grid

D(w) ={(i,5) | 1<i,j<n, w; >j, and w; ' > i},
Graphically, D(w) is the set of cells in the grid which remain after plotting the
points (i,w;) for each ¢ € [n] and striking out any boxes which appear weakly

below or weakly to the right of these points. The essential set of w is the subset
of the diagram

Ess(w) ={(i,7) € D(w) | (i+1,7),(i,j +1) & D(w)}.
Each permutation has an associated rank function defined by
ro(i, ) = {(@ wir) | & <id,wie < 5}.
We write {(w) := |D(w)] for the Coxeter length of w.

Example 2.1. If w = 63284175 € Ss (in one-line notation) then D(w) is the
following:
[ 1]

| B D
]
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DEGREES OF SYMMETRIC GROTHENDIECK POLYNOMIALS 1407

Here Ess(w) ={(1,5),(2,2),(4,5),(4,7),(5,1),(7,5)}.
3. GRASSMANNIAN GROTHENDIECK POLYNOMIALS
A partition is a weakly decreasing sequence of nonnegative integers A = (A1, Ag,
., Ak). We define the length of X to be ¢(A) = |[{h € [k] | A, # 0} and the size
of A, denoted |)\|, to be Zle X;. Write Py, for the set of partitions of length at
most k. Here, we conflate partitions with their Young diagrams, i.e. the notation
(i,4) € A indicates choosing the jth box in the ith row of the Young diagram of \.
We say w € S, has a descent at position k if wy > wgy1. A permutation w € S,
is Grassmannian if w has a unique descent. To each Grassmannian permutation
w, we can uniquely associate a partition A € Py:
A= (wg —k,...,w; — 1),

where k is the position of the descent of w.
Let wy denote the Grassmannian permutation associated to A. It is easy to check
that

(1) Al = £(wx) = |D(w)].
Define YTab()\) to be the set of fillings of A with entries in [k] so that

e entries weakly increase from left-to-right along rows and
e entries strictly increase from top-to-bottom along columns.

For a partition A, the Schur polynomial in k£ variables is

k
_ #i’s in T
sa(z1, xay .. xp) = g II.’L‘Z .

TEYTab(A) i=1
Definition 3.1. Let A,y € Py so that A C u. Denote by Tab(u/A) the set of
fillings of the skew shape p/A with entries in [k] such that

e entries strictly increase left-to-right in each row,
e entries strictly increase top-to-bottom in each column, and
e cntries in row ¢ are at most ¢ — 1 for each ¢ € [k].

For ease of notation, let &, := &,,,.

Theorem 3.2 ([I2, Theorem 2.2]). For a Grassmannian permutation wy € Sy,

Oy (z1,22,...,2) = Z arxpSu(x1, 2, ..., x))
HEPk
ACH
where (—=1)IM=Nay = |Tab(u/N\)| and k is the unique descent of wy.
Example 3.3. The Grassmannian permutation w = 24813567 corresponds to A =
(5,2,1). By Theorem B.2]
B (5,2,1)(T1, T2, T3) = S(5,2,1) — 25(5,2,2) — 5(5,3,1) T 25(5,3,2) — 5(5.,3,3)-
This corresponds to the tableaux:

[ 11 [ 1] [ 11 [1]
|| L] L] | 1] 1]

1 2 1 2 1

1

] 2
Definition 3.4. We say a partition p is maximal for A if Tab(u/A) # 0 and
Tab(v/X) = 0 whenever |v| > |yl
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The following lemma can be obtained from the proof of [I2] Theorem 2.2], but
we include it for completeness.

Lemma 3.5. Fix a partition A € Py. Define p by setting p1 = A1, and p; =
min{p;—1,A\; + (i — 1)} for each 1 < i < k. Then p is the unique partition that is
maximal for X.

Proof. Let p be any partition with Tab(p/\) # (). Since elements of Tab(p/\) have
strictly increasing rows, p/\ has at most ¢ — 1 boxes in row ¢ for each 7. That is,
pi < X+ (i—1) for each i. It follows that p; < p; for each i. Thus, uniqueness of u
will follow once we show that u is maximal for A. It suffices to produce an element
T € Tab(u/)).

We will denote by T'(4, j) the filling by T of the box in row ¢ and column j of pu.
For each ¢ and j with A\; < j < p;, set

T(i,j)=i+j—pm—1
It is easily seen that T strictly increases along rows with T'(i,j) € [¢ — 1] for each

i. To see that T € Tab(u/A), it remains to note that T strictly increases down
columns. Observe

T(i,j) =T —1,5) = pi—1 — pi +1>0.
O
Example 3.6. If A = (10,10,9,7,7,2,1), the unique partition ¢ maximal for X is

w = (10,10, 10,10, 10,7,7). Below is the tableau T' € Tab(u/A) constructed in the
proof of Lemma

—
L N

ISV

112(3]4[5
1]2]3[4]5|6

Definition 3.7. Given a partition A\ = (Ay,...,Ag), let P(\) = (P, Pa,..., P)
be the set partition of [k] such that ¢,j € P, if and only if A; = A;, and A; > A
whenever ¢ € Py, and j € P, with h <.

Note that if A = (A1,..., %) = (A',...,A}") in exponential notation, then
pn, = | Py for each h € [r]. In the following definition, we describe a decomposition

of \ into rectangles.

Definition 3.8. Let A = (A1,..., \x) be a partition and P(\) = (Py, Pa, ..., B).
Set mp, = min Py, for each h. Define R(\) = (R1, Ra, ..., R,) by setting

h
Ry = {(m) €X | ielJP and Ay, <j§Amh},

=1

where we take A, , = 0.

Set A" to be the partition

h
AW = | J R,
j=1
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for h € [r]. Equivalently, for o € [r — 1], A = (A} — X\, Ao — iy oo, Aimg — \i)
where i = min Py 41, and A(") = X. Set A(®) := ().
Example 3.9. For A as in Example[B.6, one has P, = {1,2}, P, = {3}, P3 = {4,5},

P, = {6}, and P5 = {7}. The sets in R(\) are outlined below, with R; the
rightmost rectangle and Rs the leftmost. Considering h = 2, A" = Ry UR, =

(10-7,10—7,9—7) = (3,3,2).

Definition 3.10. For any n > 1, let 6™ denote the staircase shape 6" = (n,n —
1,...,1). Given a partition p, let

sv(u) = max {k | sk C w}.
The partition 650" is called the Sylvester triangle of .

Proposition 3.11. Suppose p is mazimal for A and P(\) = (Py,...,P.). Ifi €
Pry1 for some 0 < h <7, then

i = Ai 4+ sv(A®).

Proof. By Lemma BH p1 = A and p; = min{p;—1, A\ + (1 — 1)} for 1 < i <
k. Clearly P(\) refines P(p): if A; = );, then u; = p;. Example shows
this refinement can be strict. Hence, it suffices to prove the statement when ¢ =
min Pp41. We work by induction on h.

When h =0, i = min(P;) = 1. Since A\; = p, the result follows. Suppose the
claim holds for some h—1. We show the claim holds for h. Let ¢ = min P,41. Then
it suffices to show that

(2) Ai +sv(A™)) = min{p; 1, A + (i — 1)}

Since i = min Py 1, it follows that i—1 € P,. By applying the inductive assumption
to pi—1,

(3) min{;_1, N\ + (i — 1)} = min{ X1 +sv(AP7D) N\ + (i — 1)}

By Equations (@) and (@), the proof is complete once we show

(4) sv(AM)) = min{(X\i_1 — \i) + sv(AP7Y) i — 1},

Let w, £ respectively denote the (horizontal) width and (vertical) length of Ry,
and set M = sv(A\("~1). Equation @) is equivalent to proving

sv(AM) = min{w + M, ¢}.
By definition, A" = Ry, UAX"~=1) | s0 it is straightforward to see that
sv(AM) < min{w + M, (}.

Let (M, c) be the southwest most box in the northwest most embedding of 6 C
A=1) " with the indexing inherited from .
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1410 JENNA RAJCHGOT ET AL.

Suppose first that £ > w-+M. Since Ry, is a rectangle, (w+M,c—w) € A", Then
§@otM C \(h+1) and Equation (@) follows. Otherwise, it must be that £ — M < w.
Since Ry, is a rectangle, (£,c — £+ M) € A", Thus, §¢ C A\(**1) and Equation (@)
follows. |

Theorem 3.12. Suppose wy € S, is a Grassmannian permutation. Let P(\) =
(Py,...,P.). Then

deg(®x) = A+ > [Puyal-sv(A™).
he[r—1]

Proof. By Theorem and Lemma [33] the highest nonzero homogeneous compo-
nent of &y is ay,s, where p is maximal for A. Since deg(s,,) is ||, Proposition B.11
implies the theorem, using the fact that sv(A(9) = 0. O

Example 3.13. Returning to A as in Example B.6] Theorem states that
deg(By) = A+ 30—y |Puia]-sv(AM) = 46+ (1-142-34+1-5+1-6) = 46418 = 64.

4. CASTELNUOVO-MUMFORD REGULARITY OF GRASSMANNIAN MATRIX
SCHUBERT VARIETIES

In this section, we recall some basics of Castelnuovo-Mumford regularity and
then use Theorem [3.12] to produce easily-computable formulas for the regularities
of matrix Schubert varieties associated to Grassmannian permutations.

4.1. Commutative algebra preliminaries. Let S = C[zy,...,z,] be a posi-

tively Z?-graded polynomial ring so that the only elements in degree zero are the

constants. The multigraded Hilbert series of a finitely generated graded module

M over S is

K(M;t)
[T (1 —t2)

where if a; = (a;(1),...,a;(d)), then t* = t'lli(l) = ~t3i(d). The numerator IC(M;t)
in the expression above is a Laurent polynomial in the ¢;’s, called the K-polynomial
of M. For more detail on K-polynomials, see [I4, Chapter §].

We are mostly interested in the case where S is standard graded, that is, deg(z;) =
1, and the case where M = S/I where I is a homogeneous ideal with respect to the
standard grading. Note that, in this case, the K-polynomial is a polynomial in a
single variable t. There is a minimal free resolution

0= @S = PSS = - = PS(=)P = S/ =0
J J J

; deg(z;) = a,

where | < n and S(—j) is the free S-module obtained by shifting the degrees of
S by j. The Castelnuovo-Mumford regularity of S/I, denoted reg(S/I), is
defined as

reg(S/I) := max{j —i| B;; # 0}.
This invariant is a measure of the complexity of S/I and has multiple homologi-
cal characterizations. For example, reg(S/I) is the smallest integer m for which
Ext/(S/I,8), = 0, for all j and all n < —m — j — 1 (see [2, Proposition 20.16]).
We refer the reader to [2, Chapter 20.5] for more information on regularity.

Licensed to Michigan St Univ. Prepared on Thu Oct 3 15:34:37 EDT 2024 for download from IP 35.10.0.184.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DEGREES OF SYMMETRIC GROTHENDIECK POLYNOMIALS 1411

Let K(S/I;t) denote the K-polynomial of S/I with respect to the standard
grading. Assume that S/T is Cohen-Macaulay and let htgI denote the height of
the ideal I. Then,

(5) reg(S/I) = deg K(S/I;t) — htgl.

See, for example, [T Lemma 2.5] and surrounding explanation. In this paper, we
will use this characterization of regularity.

4.2. Regularity of Grassmannian matrix Schubert varieties. Let X be the
space of n X n matrices with entries in C, let X = (x;5) denote an n x n generic
matrix of variables, and let S = C[xz;;]. Given an n x n matrix M, let Mj; j; denote
the submatrix of M consisting of the top i rows and left j columns of M. Given a
permutation matrix w € S,, we have the matrix Schubert variety

Xy ={M € X | rank Mj; j; < rank wy; j1},
which is an affine subvariety of X with defining ideal
I, := {(rw(i,7) + 1) — size minors of )?[i,j] | (i,7) € Ess(w)) C S.
The ideal I,,, called a Schubert determinantal ideal, is prime [4] and is homo-
geneous with respect to the standard grading of S.

By [7, Theorem A], we have K(S/I,;t) = &,(1 —t,...,1 —t), which has the
same degree as B, (x1,...,T,), since the coefficients in homogeneous components
of single Grothendieck polynomials have the same sign (see, for example, [7]). Thus,
(6) reg(S/I,) =deg By (x1,...,2,) —htgl, = deg &y (x1,...,2,) — |D(w)],
where the second equality follows because

htsT,, = codimx X,, = |D(w)]

by [4]. We now turn our attention to the case where w is a Grassmannian permu-
tation and retain the notation from the previous section.

Corollary 4.1. Suppose wy € S, is a Grassmannian permutation. Let P(\) =
(P1,...,P.). Then

reg(S/Lu,) = Y [Pusr|-sv(A™).
her—1]
Proof. This is immediate from Theorem BI2, Equation (@), and Equation (). O
Example 4.2. Continuing Example B13] Corollary [l states reg(S/I,,) = 18.

Example 4.3. The ideal of (r+1) x (r+1) minors of a generic n x m matrix is the
Schubert determinantal ideal of a Grassmannian permutation w € Sy 4,. Indeed,
w is the permutation of minimal length in S, 4, such that rank wy, ,) = 7.

The corresponding partition is A = (m —7)™~"0". We have \() = (m —r)(»=7)
and so sv(A()) = min{m — r,n — r}. Furthermore, |P;| = r. Therefore,

reg(S/IL,) =r-min{m —r,n —r} =7 (min{m,n} —r).

We claim no originality for the formula in Example [£.3} minimal free resolutions
of ideals of r x r minors of a generic n x m matrix are well-understood (see [10] or
[15, Chapter 6]).
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1412 JENNA RAJCHGOT ET AL.

5. ON THE REGULARITY OF COORDINATE RINGS OF (GRASSMANNIAN SCHUBERT
VARIETIES INTERSECTED WITH THE OPPOSITE BIG CELL

In this section, we discuss a conjecture of Kummini-Lakshmibai-Sastry-Seshadri
[9] on Castelnuovo-Mumford regularity of coordinate rings of certain open patches of
Grassmannian Schubert varieties. We provide a counterexample to the conjecture,
and then we state and prove an alternate explicit formula for these regularities. We
end with a conjecture on regularities of coordinate rings of standard open patches
of arbitrary Schubert varieties in Grassmannians.

5.1. Grassmannian Schubert varieties in the opposite big cell. Fix k € [n]
and let Y denote the space of n x n matrices of the form

M I

™ Pt

where M is a kx (n—k) matrix with entries in C and I, is a kx k identity matrix. Let
P C GL,(C) denote the maximal parabolic of block lower triangular matrices with
block rows of size k, (n — k) (listed from top to bottom). Then the Grassmannian
of k-planes in n-space, Gr(k,n), is isomorphic to P\GL,(C). Further, the map
7w : GL,(C) — Gr(k,n) given by taking a matrix to its coset mod P induces an
isomorphism from Y onto an affine open subvariety U of Gr(k,n) (often called the
opposite big cell).

Let B C GL,(C) be the Borel subgroup of upper triangular matrices. Schubert
varieties X,, in P\GL,(C) are closures of orbits P\PwB, where w € S, is a
Grassmannian permutation with descent at position k. Let Y,, denote the affine
subvariety of Y defined to be 7|y' (X, N U).

Let Y denote the matrix that has the form given in () with variables m;; as the
entries of M. Then, the coordinate ring of Y is C[Y] = C[m,; | i € [k], j € [n — K]],
and the prime defining ideal J,, of Y., is generated by the essential minors of Y.
That is,

(8) Jw = (1w (%, j) + 1) — size minors of }7[1-734} | (4,7) € Ess(w)).

5.2. A conjecture, counterexample, and correction. We now consider a con-
jecture of Kummini-Lakshmibai-Sastry-Seshadri from [9] on regularities of coordi-
nate rings of standard open patches of certain Schubert varieties in Grassmannians.
We show that this conjecture is false by providing a counterexample, and then state
and prove an alternate explicit combinatorial formula for these regularities. This
latter result follows immediately from our Corollary E11

To state the conjecture from [9], we first translate the conventions from their
paper to ours. Indeed, we use the same notation as the previous section and assume
that w € S, is a Grassmannian permutation with unique descent at position k.
Suppose that w = w; ws - - - w, in one-line notation. Observe that w is uniquely
determined from n and (ws, ..., wg). Suppose further that for some r € [k — 1],

(9) Wg—pti =n —k+i forallie[r]

and w; = 1. Let w be defined by (ws,...,wg) = (n—wi+1,...,n—wy+1). Then
we have

(W, ...,0)=(k—r+1Lk—r+2,...,kary1,...,an-1,n)
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for some k < apy1 < -+ < ap_1 <n. Let a, =k and a =n. Forr <i <k -1,
define m; = a;4+1 — a;.

Conjecture 5.1 ([9, Conjecture 7.5]).

k—1
(10) reg(C[Y]/Jw) = Z(mi — 1)i.

=T
Example 5.2. We consider [9, Example 6.1]. Let J be the ideal generated by 3 x 3
minors of a 4 X 3 matrix of indeterminates. Then J = J,, for w = 1245367 € S7,
where kK = 4 and n = 7. Then @ = (3,4,6,7). Here we see that Equation (I0)
yields a regularity of 2. This matches the regularity we computed in Example [£.3]

We now show that Conjecture [5.1]is not always true.

Example 5.3. Let k = 4, n = 10, w = 145723689(10) so that w = (4,6, 7,10).
Then w has the desired form. Furthermore, we have that m; = 2, ms = 1, mg = 3.
Thus, by Conjecture B1] the regularity should be (2—-1)14+(1—-1)24+(3—-1)3 =
1+ 6 = 7. However, a check in Macaulay2 [5] yields a regularity of 5. In fact, J,,,
once induced to a larger polynomial ring, is a Schubert determinantal ideal for w,
so we can use our formula from Corollary [£Il Notice w has associated partition
A= (3,2,2,0). Then A(M) = (1) and \® = (3,2,2), giving reg(C[Y]/J,) = 2 -
syAM) +1-sv(AP)=2.14+1-3=5.

As illustrated in Example B3] our formula for the regularity of a Grassmannian
matrix Schubert variety given in Corollary ET] corrects Conjecture B whenever
the ideal J,, is equal (up to inducing the ideal to a larger ring) to the Schubert
determinantal ideal I,,. In fact, each Grassmannian permutation considered in
[9, Conjecture 7.5] is of this form. This follows because all the essential set of such
w is contained in wy, ,—x by Equation (@).

Corollary 5.4. Let wy € S, be a Grassmannian permutation with descent at
position k such that wy =1 and for some r € [k—1], wg—ry; =n—k+i fori € [r].
Let P(A\) = (P1,..., P). Then

reg(C[Y]/Juy) = D |Pugal-sv(A ™).
helr—1]

5.3. A conjecture for the general case. We end the paper with a conjecture
for the regularity of C[Y]/J, where w is an arbitrary Grassmannian permutation
with descent at position k. We begin with some preliminaries.

First note that C[Y]/J, is a standard graded ring. Indeed, the torus 7" C
GL,(C) of diagonal matrices acts on U and on X,, N U by right multiplication.
This action induces a Z"-grading on C[Y] such that m;; has degree €; — €; and
Jw 1s homogeneous. This Z"-grading can be coarsened to the standard Z-grading
because the T-action contains the dilation actionf] embed C* < T by sending
z € C* to the diagonal matrix that has its (¢, 7)-entry equal to 1 when 1 <4 <n—k
and equal to z whenn —k+1 <17 <n.

The codimension of Y,, in Y is equal to the number of boxes in the diagram
D(w). So, to compute the regularity reg(C[Y]/J,,), it remains to find the degree

IMore generally, coordinate rings of Kazhdan-Lusztig varieties X, N XY € B_\GL,(C) are
standard graded when v, the permutation defining the opposite Schubert cell XY = B_\B_vB_,
is 321-avoiding. See [0, pg. 25] or [16] Section 4.1] for further explanation.
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of the K-polynomial of C[Y]/J,. By [16, Theorem 4.5], this K-polynomial can be
expressed in terms of a double Grothendieck polynomial, &, (x;y), which is
defined as follows:
By (X3y) = H (zi +y; — @iy;)-
i+j<n

The rest are defined recursively, using the same operator m; and recurrence defined
in Section [Il Note that if G, (x;y) denotes the double Grothendieck polynomials
in [7], we have G (x;y) = &, (1 —x;1 — %)

Let c = ((1—¢),(1—1¢),...,(1 =1),0,0,...,0) be the list consisting of k copies
of 1 — ¢ followed by n — k copies of 0, and let ¢ = (0,0,...,0,1 — %,1— %,...,1—
%) be the list consisting of n — k copies of 0 followed by k copies of 1 — % By
[16], Theorem 4.5], the K-polynomial of S/J,, is the specialized double Grothendieck
polynomial &, /(c; E)E Consequently, we are reduced to computing the degree of
this polynomial.

Example 5.5. Let w =132 and &k = 2. Then

Gu(x3y) = (z2+ 11 — z2y1) + (@1 +y2 — 21y2) — (21 + Y2 — z1y2) (T2 + Y1 — Ta2y1).

Letting ¢ = (1—t,1—¢,0) and ¢ = (0,1—3,1—1), one checks that &,,(c;¢) = (1—t)
which is the K-polynomial of S/J,, with respect to the standard grading.

For the reader familiar with pipe dreams (see, e.g. [3] and []]), we note that the
degree of &,,(c; €) is the maximum number of plus tiles in a (possibly non-reduced)
pipe dream for w with all of its plus tiles supported within the northwest justified
k x (n — k) subgrid of the n x n grid. This follows from [I6]. However, this is not
a very explicit formula for degree.

We now turn to our conjecture. It asserts that the degree of the K-polynomial
of C[Y]/J,, for a Grassmannian permutation w € S,, with descent at position k can
be computed in terms of the degree of a Grothendieck polynomial of an associated
vexillary permutation. This will be a much more easily computable answer than a
pipe dream formula because the first, third, and fifth authors will give an explicit
formula for degrees of vexillary Grothendieck polynomials in the sequel.

A permutation w € S, is vexillary if it contains no 2143-pattern, i.e. there are
no i < j < k <1 such that w; < w; < w; < wy. For example, w = 325164 is not
vexillary since it contains the underlined 2143 pattern.

Suppose wy € S, is Grassmannian with descent k. Define A = (A1,..., Ayn))
and ¢(A\) = (é1,...,¢¢n)) as follows. For i € [((N)],

b = i+min{(n — k) — A\, k—i} X > N1 ori=~L(N),
! Dit1 otherwise.

A vexillary permutation v is determined by the statistics of a partition and a flag,
computed using D(v) (see [I3 Proposition 2.2.10]). Thus, the partition X" and flag
¢ defined above from w) define at most one vexillary permutation.

Conjecture 5.6. Fiz wy € S, Grassmannian with descent k. Then N, ¢(\) de-
fine a vezillary permutation v, and deg(®., (c;€)) = deg(B,(x)). In particular,

reg(ClY]/ Jw,) = deg(&y(x)) — [A].

2The conventions used in [I6] differ from ours, so the given formula is a translation of their
formula to our conventions.
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Example 5.7. Let k = 5,n = 10 and wy = 1489(10)23567. Then X = (5,5,5,2)
and ¢(wy) = (3,3,3,5), which corresponds to the vexillary permutation v =
678142359(10). Thus Conjecture[Gllstates that deg(®,,, (c; €)) = deg(B,(x)) = 18,
so reg(C[Y]/Jy,) =18 =17 = 1.

To compute this regularity directly, take R = C[Y] = C[m;; | 1 < 4,5 < 5.
mi1 MMi2 Mi3
ma1 M2z M3
of entries in the bottom three rows of the matrix of variables M = (m;;)1<i j<s-
Then G U H is a minimal generating set of .J,,, . The Eagon-Northcott complex is
a minimal free resolution of R/(G):

0 — R(-3)> - R(-2)®> = R— R/(G) — 0.
From this, one directly observes that the regularity of the R-module R/(G) is 1.

Modding out R/{G) by the linear forms in H does not change the regularity (see,
e.g. [2| Proposition 20.20]), and hence the regularity of R/J,, is also 1.

Let G denote the set of 2 x 2 minors of [ }, and let H be the set
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