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Abstract. We give an explicit formula for the degree of the Grothendieck
polynomial of a Grassmannian permutation and a closely related formula for
the Castelnuovo-Mumford regularity of the Schubert determinantal ideal of
a Grassmannian permutation. We then provide a counterexample to a con-
jecture of Kummini-Lakshmibai-Sastry-Seshadri on a formula for regularities
of standard open patches of particular Grassmannian Schubert varieties and
show that our work gives rise to an alternate explicit formula in these cases.
We end with a new conjecture on the regularities of standard open patches of
arbitrary Grassmannian Schubert varieties.

1. Introduction

Lascoux and Schützenberger [11] introduced Grothendieck polynomials to study
the K-theory of flag varieties. Grothendieck polynomials have a recursive definition,
using divided difference operators. The symmetric group Sn acts on the polynomial
ring Z[x1, x2, . . . , xn] by permuting indices. Let si be the simple transposition in
Sn exchanging i and i+ 1. Then define operators on Z[x1, x2, . . . , xn]

∂i =
1− si

xi − xi+1
and πi = ∂i(1− xi+1).

Write w0 = nn−1 . . . 1 for the longest permutation in Sn (in one-line notation)
and take

Gw0
(x1, x2, . . . , xn) = xn−1

1 xn−2
2 · · ·xn−1.

Let wi := w(i) for i ∈ [n]. Then if wi > wi+1, we define Gsiw = πi(Gw). We call
{Gw : w ∈ Sn} the set of Grothendieck polynomials. Since the πi’s satisfy the
same braid and commutation relations as the simple transpositions, each Gw is well
defined.

Grothendieck polynomials are generally inhomogeneous. The lowest degree of
the terms in Gw is given by the Coxeter length of w. The degree (i.e. highest de-
gree of the terms) of Gw can be described combinatorially in terms of pipe dreams

Received by the editors December 18, 2019, and, in revised form, July 3, 2020.
2010 Mathematics Subject Classification. Primary 13C40, 14N15, 05E40.
The first author was partially supported by NSERC Grant RGPIN-2017-05732. The second

author was supported by NSERC Grant RGPIN–2017-05732. The third author was supported by
the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE
1746047.

c©2021 American Mathematical Society

1405

Licensed to Michigan St Univ. Prepared on Thu Oct  3 15:34:37 EDT 2024 for download from IP 35.10.0.184.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/proc/
https://www.ams.org/proc/
https://doi.org/10.1090/proc/15294


1406 JENNA RAJCHGOT ET AL.

(see [3,8]), but this description is not readily computable. We seek an explicit com-
binatorial formula. In this paper, we give such an expression in the Grassmannian
case. Our proof relies on a formula of Lenart [12].

One motivation for wanting easily-computable formulas for degrees of Grothen-
dieck polynomials (for large classes of w ∈ Sn) comes from commutative algebra:
formulas for degrees of Grothendieck polynomials give rise to closely related formu-
las for Castelnuovo-Mumford regularity of associated Schubert determinantal ideals.
Recall that Castelnuovo-Mumford regularity is an invariant of a homogeneous ideal
related to its minimal free resolution (see Section 4 for definitions). Formulas for
regularities of Schubert determinantal ideals yield formulas for regularities of cer-
tain well-known classes of generalized determinantal ideals in commutative algebra.
For example, among the Schubert determinantal ideals are ideals of r× r minors of
an n×m matrix of indeterminates and one sided ladder determinantal ideals. Fur-
thermore, many other well-known classes of generalized determinantal ideals can
be viewed as defining ideals of Schubert varieties intersected with opposite Schu-
bert cells, so degrees of specializations of double Grothendieck polynomials govern
Castelnuovo-Mumford regularities in these cases. Thus, one purpose of this paper
is to suggest a purely combinatorial approach to studying regularities of certain
classes of generalized determinantal ideals.

2. Background on permutations

We start by recalling some background on the symmetric group. We follow
[13] as a reference. Let Sn denote the symmetric group on n letters, i.e. the
set of bijections from the set [n] := {1, 2, . . . , n} to itself. We typically represent
permutations in one-line notation. The permutation matrix of w, also denoted
by w, is the matrix which has a 1 at (i, wi) for all i ∈ [n], and zeros elsewhere.

The Rothe diagram of w is the subset of cells in the n× n grid

D(w) = {(i, j) | 1 ≤ i, j ≤ n, wi > j, and w−1
j > i}.

Graphically, D(w) is the set of cells in the grid which remain after plotting the
points (i, wi) for each i ∈ [n] and striking out any boxes which appear weakly
below or weakly to the right of these points. The essential set of w is the subset
of the diagram

Ess(w) = {(i, j) ∈ D(w) | (i+ 1, j), (i, j + 1) �∈ D(w)}.
Each permutation has an associated rank function defined by

rw(i, j) = |{(i′, wi′) | i′ ≤ i, wi′ ≤ j}|.
We write �(w) := |D(w)| for the Coxeter length of w.

Example 2.1. If w = 63284175 ∈ S8 (in one-line notation) then D(w) is the
following:
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DEGREES OF SYMMETRIC GROTHENDIECK POLYNOMIALS 1407

Here Ess(w) = {(1, 5), (2, 2), (4, 5), (4, 7), (5, 1), (7, 5)}.

3. Grassmannian Grothendieck polynomials

A partition is a weakly decreasing sequence of nonnegative integers λ = (λ1, λ2,
. . . , λk). We define the length of λ to be �(λ) = |{h ∈ [k] | λh �= 0}| and the size

of λ, denoted |λ|, to be
∑k

i=1 λi. Write Pk for the set of partitions of length at
most k. Here, we conflate partitions with their Young diagrams, i.e. the notation
(i, j) ∈ λ indicates choosing the jth box in the ith row of the Young diagram of λ.

We say w ∈ Sn has a descent at position k if wk > wk+1. A permutation w ∈ Sn

is Grassmannian if w has a unique descent. To each Grassmannian permutation
w, we can uniquely associate a partition λ ∈ Pk:

λ = (wk − k, . . . , w1 − 1),

where k is the position of the descent of w.
Let wλ denote the Grassmannian permutation associated to λ. It is easy to check

that

(1) |λ| = �(wλ) = |D(wλ)|.
Define YTab(λ) to be the set of fillings of λ with entries in [k] so that

• entries weakly increase from left-to-right along rows and
• entries strictly increase from top-to-bottom along columns.

For a partition λ, the Schur polynomial in k variables is

sλ(x1, x2, . . . , xk) =
∑

T∈YTab(λ)

k∏
i=1

x#i’s in T
i .

Definition 3.1. Let λ, μ ∈ Pk so that λ ⊆ μ. Denote by Tab(μ/λ) the set of
fillings of the skew shape μ/λ with entries in [k] such that

• entries strictly increase left-to-right in each row,
• entries strictly increase top-to-bottom in each column, and
• entries in row i are at most i− 1 for each i ∈ [k].

For ease of notation, let Gλ := Gwλ
.

Theorem 3.2 ([12, Theorem 2.2]). For a Grassmannian permutation wλ ∈ Sn,

Gλ(x1, x2, . . . , xk) =
∑
μ∈Pk
λ⊆μ

aλμsμ(x1, x2, . . . , xk)

where (−1)|μ|−|λ|aλ,μ = |Tab(μ/λ)| and k is the unique descent of wλ.

Example 3.3. The Grassmannian permutation w = 24813567 corresponds to λ =
(5, 2, 1). By Theorem 3.2,

G(5,2,1)(x1, x2, x3) = s(5,2,1) − 2s(5,2,2) − s(5,3,1) + 2s(5,3,2) − s(5,3,3).

This corresponds to the tableaux:

1 2
1 1

1
1

2
1

1 2

Definition 3.4. We say a partition μ is maximal for λ if Tab(μ/λ) �= ∅ and
Tab(ν/λ) = ∅ whenever |ν| > |μ|.
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1408 JENNA RAJCHGOT ET AL.

The following lemma can be obtained from the proof of [12, Theorem 2.2], but
we include it for completeness.

Lemma 3.5. Fix a partition λ ∈ Pk. Define μ by setting μ1 = λ1, and μi =
min{μi−1, λi + (i − 1)} for each 1 < i ≤ k. Then μ is the unique partition that is
maximal for λ.

Proof. Let ρ be any partition with Tab(ρ/λ) �= ∅. Since elements of Tab(ρ/λ) have
strictly increasing rows, ρ/λ has at most i − 1 boxes in row i for each i. That is,
ρi ≤ λi+(i−1) for each i. It follows that ρi ≤ μi for each i. Thus, uniqueness of μ
will follow once we show that μ is maximal for λ. It suffices to produce an element
T ∈ Tab(μ/λ).

We will denote by T (i, j) the filling by T of the box in row i and column j of μ.
For each i and j with λi < j ≤ μi, set

T (i, j) = i+ j − μi − 1.

It is easily seen that T strictly increases along rows with T (i, j) ∈ [i − 1] for each
i. To see that T ∈ Tab(μ/λ), it remains to note that T strictly increases down
columns. Observe

T (i, j)− T (i− 1, j) = μi−1 − μi + 1 > 0.

�

Example 3.6. If λ = (10, 10, 9, 7, 7, 2, 1), the unique partition μ maximal for λ is
μ = (10, 10, 10, 10, 10, 7, 7). Below is the tableau T ∈ Tab(μ/λ) constructed in the
proof of Lemma 3.5.

2
1 2 3
2 3 4

1 2 3 4 5
1 2 3 4 5 6

Definition 3.7. Given a partition λ = (λ1, . . . , λk), let P (λ) = (P1, P2, . . . , Pr)
be the set partition of [k] such that i, j ∈ Ph if and only if λi = λj , and λi > λj

whenever i ∈ Ph and j ∈ Pl with h < l.

Note that if λ = (λ1, . . . , λk) = (λp1

i1
, . . . , λpr

ir
) in exponential notation, then

ph = |Ph| for each h ∈ [r]. In the following definition, we describe a decomposition
of λ into rectangles.

Definition 3.8. Let λ = (λ1, . . . , λk) be a partition and P (λ) = (P1, P2, . . . , Pr).
Set mh = minPh for each h. Define R(λ) = (R1, R2, . . . , Rr) by setting

Rh :=

{
(i, j) ∈ λ | i ∈

h⋃
l=1

Pl and λmh+1
< j ≤ λmh

}
,

where we take λmr+1
:= 0.

Set λ(h) to be the partition

λ(h) =
h⋃

j=1

Rj
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DEGREES OF SYMMETRIC GROTHENDIECK POLYNOMIALS 1409

for h ∈ [r]. Equivalently, for h ∈ [r − 1], λ(h) = (λ1 − λi, λ2 − λi, . . . , λi−1 − λi)
where i = minPh+1, and λ(r) = λ. Set λ(0) := ∅.
Example 3.9. For λ as in Example 3.6, one has P1 = {1, 2}, P2 = {3}, P3 = {4, 5},
P4 = {6}, and P5 = {7}. The sets in R(λ) are outlined below, with R1 the
rightmost rectangle and R5 the leftmost. Considering h = 2, λ(h) = R1 ∪ R2 =
(10− 7, 10− 7, 9− 7) = (3, 3, 2).

Definition 3.10. For any n ≥ 1, let δn denote the staircase shape δn = (n, n−
1, . . . , 1). Given a partition μ, let

sv(μ) = max
{
k | δk ⊆ μ

}
.

The partition δsv(μ) is called the Sylvester triangle of μ.

Proposition 3.11. Suppose μ is maximal for λ and P (λ) = (P1, . . . , Pr). If i ∈
Ph+1 for some 0 ≤ h < r, then

μi = λi + sv(λ(h)).

Proof. By Lemma 3.5, μ1 = λ1 and μi = min{μi−1, λi + (i − 1)} for 1 < i ≤
k. Clearly P (λ) refines P (μ): if λi = λj , then μi = μj . Example 3.6 shows
this refinement can be strict. Hence, it suffices to prove the statement when i =
minPh+1. We work by induction on h.

When h = 0, i = min(P1) = 1. Since λ1 = μ1, the result follows. Suppose the
claim holds for some h−1. We show the claim holds for h. Let i = minPh+1. Then
it suffices to show that

(2) λi + sv(λ(h)) = min{μi−1, λi + (i− 1)}.
Since i = minPh+1, it follows that i−1 ∈ Ph. By applying the inductive assumption
to μi−1,

(3) min{μi−1, λi + (i− 1)} = min{λi−1 + sv(λ(h−1)), λi + (i− 1)}.
By Equations (2) and (3), the proof is complete once we show

(4) sv(λ(h)) = min{(λi−1 − λi) + sv(λ(h−1)), i− 1}.
Let ω, � respectively denote the (horizontal) width and (vertical) length of Rh,

and set M = sv(λ(h−1)). Equation (4) is equivalent to proving

sv(λ(h)) = min{ω +M, �}.
By definition, λ(h) = Rh ∪ λ(h−1), so it is straightforward to see that

sv(λ(h)) ≤ min{ω +M, �}.
Let (M, c) be the southwest most box in the northwest most embedding of δM ⊆
λ(h−1), with the indexing inherited from λ.
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1410 JENNA RAJCHGOT ET AL.

Suppose first that � ≥ ω+M . Since Rh is a rectangle, (ω+M, c−ω) ∈ λ(h). Then
δω+M ⊆ λ(h+1) and Equation (4) follows. Otherwise, it must be that � −M < ω.
Since Rh is a rectangle, (�, c− �+M) ∈ λ(h). Thus, δ� ⊆ λ(h+1) and Equation (4)
follows. �

Theorem 3.12. Suppose wλ ∈ Sn is a Grassmannian permutation. Let P (λ) =
(P1, . . . , Pr). Then

deg(Gλ) = |λ|+
∑

h∈[r−1]

|Ph+1| · sv(λ(h)).

Proof. By Theorem 3.2 and Lemma 3.5, the highest nonzero homogeneous compo-
nent of Gλ is aλμsμ where μ is maximal for λ. Since deg(sμ) is |μ|, Proposition 3.11

implies the theorem, using the fact that sv(λ(0)) = 0. �

Example 3.13. Returning to λ as in Example 3.6, Theorem 3.12 states that
deg(Gλ) = |λ|+

∑4
h=1 |Ph+1|·sv(λ(h)) = 46+(1·1+2·3+1·5+1·6) = 46+18 = 64.

4. Castelnuovo-Mumford regularity of Grassmannian matrix

Schubert varieties

In this section, we recall some basics of Castelnuovo-Mumford regularity and
then use Theorem 3.12 to produce easily-computable formulas for the regularities
of matrix Schubert varieties associated to Grassmannian permutations.

4.1. Commutative algebra preliminaries. Let S = C[x1, . . . , xn] be a posi-
tively Zd-graded polynomial ring so that the only elements in degree zero are the
constants. The multigraded Hilbert series of a finitely generated graded module
M over S is

H(M ; t) =
∑
a∈Zd

dimK(Ma)t
a =

K(M ; t)∏n
i=1(1− tai)

, deg(xi) = ai,

where if ai = (ai(1), . . . , ai(d)), then tai = t
ai(1)
1 · · · tai(d)

d . The numerator K(M ; t)
in the expression above is a Laurent polynomial in the ti’s, called theK-polynomial
of M . For more detail on K-polynomials, see [14, Chapter 8].

We are mostly interested in the case where S is standard graded, that is, deg(xi) =
1, and the case where M = S/I where I is a homogeneous ideal with respect to the
standard grading. Note that, in this case, the K-polynomial is a polynomial in a
single variable t. There is a minimal free resolution

0 →
⊕
j

S(−j)βl,j →
⊕
j

S(−j)βl−1,j → · · · →
⊕
j

S(−j)β0,j → S/I → 0

where l ≤ n and S(−j) is the free S-module obtained by shifting the degrees of
S by j. The Castelnuovo-Mumford regularity of S/I, denoted reg(S/I), is
defined as

reg(S/I) := max{j − i | βi,j �= 0}.
This invariant is a measure of the complexity of S/I and has multiple homologi-
cal characterizations. For example, reg(S/I) is the smallest integer m for which

Extj(S/I, S)n = 0, for all j and all n ≤ −m − j − 1 (see [2, Proposition 20.16]).
We refer the reader to [2, Chapter 20.5] for more information on regularity.

Licensed to Michigan St Univ. Prepared on Thu Oct  3 15:34:37 EDT 2024 for download from IP 35.10.0.184.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DEGREES OF SYMMETRIC GROTHENDIECK POLYNOMIALS 1411

Let K(S/I; t) denote the K-polynomial of S/I with respect to the standard
grading. Assume that S/I is Cohen-Macaulay and let htSI denote the height of
the ideal I. Then,

(5) reg(S/I) = deg K(S/I; t)− htSI.

See, for example, [1, Lemma 2.5] and surrounding explanation. In this paper, we
will use this characterization of regularity.

4.2. Regularity of Grassmannian matrix Schubert varieties. Let X be the

space of n × n matrices with entries in C, let X̃ = (xij) denote an n × n generic
matrix of variables, and let S = C[xij ]. Given an n×n matrix M , let M[i,j] denote
the submatrix of M consisting of the top i rows and left j columns of M . Given a
permutation matrix w ∈ Sn we have the matrix Schubert variety

Xw := {M ∈ X | rank M[i,j] ≤ rank w[i,j]},
which is an affine subvariety of X with defining ideal

Iw := 〈(rw(i, j) + 1)− size minors of X̃[i,j] | (i, j) ∈ Ess(w)〉 ⊆ S.

The ideal Iw, called a Schubert determinantal ideal, is prime [4] and is homo-
geneous with respect to the standard grading of S.

By [7, Theorem A], we have K(S/Iw; t) = Gw(1 − t, . . . , 1 − t), which has the
same degree as Gw(x1, . . . , xn), since the coefficients in homogeneous components
of single Grothendieck polynomials have the same sign (see, for example, [7]). Thus,

(6) reg(S/Iw) = deg Gw(x1, . . . , xn)− htSIw = deg Gw(x1, . . . , xn)− |D(w)|,
where the second equality follows because

htSIw = codimXXw = |D(w)|
by [4]. We now turn our attention to the case where w is a Grassmannian permu-
tation and retain the notation from the previous section.

Corollary 4.1. Suppose wλ ∈ Sn is a Grassmannian permutation. Let P (λ) =
(P1, . . . , Pr). Then

reg(S/Iwλ
) =

∑
h∈[r−1]

|Ph+1| · sv(λ(h)).

Proof. This is immediate from Theorem 3.12, Equation (6), and Equation (1). �

Example 4.2. Continuing Example 3.13, Corollary 4.1 states reg(S/Iwλ
) = 18.

Example 4.3. The ideal of (r+1)× (r+1) minors of a generic n×m matrix is the
Schubert determinantal ideal of a Grassmannian permutation w ∈ Sn+m. Indeed,
w is the permutation of minimal length in Sn+m such that rank w[n,m] = r.

The corresponding partition is λ = (m− r)(n−r)0r. We have λ(1) = (m− r)(n−r)

and so sv(λ(1)) = min{m− r, n− r}. Furthermore, |P2| = r. Therefore,

reg(S/Iw) = r ·min{m− r, n− r} = r · (min{m,n} − r).

We claim no originality for the formula in Example 4.3; minimal free resolutions
of ideals of r× r minors of a generic n×m matrix are well-understood (see [10] or
[15, Chapter 6]).
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5. On the regularity of coordinate rings of Grassmannian Schubert

varieties intersected with the opposite big cell

In this section, we discuss a conjecture of Kummini-Lakshmibai-Sastry-Seshadri
[9] on Castelnuovo-Mumford regularity of coordinate rings of certain open patches of
Grassmannian Schubert varieties. We provide a counterexample to the conjecture,
and then we state and prove an alternate explicit formula for these regularities. We
end with a conjecture on regularities of coordinate rings of standard open patches
of arbitrary Schubert varieties in Grassmannians.

5.1. Grassmannian Schubert varieties in the opposite big cell. Fix k ∈ [n]
and let Y denote the space of n× n matrices of the form

(7)

[
M Ik
In−k 0

]
,

whereM is a k×(n−k) matrix with entries in C and Ik is a k×k identity matrix. Let
P ⊆ GLn(C) denote the maximal parabolic of block lower triangular matrices with
block rows of size k, (n − k) (listed from top to bottom). Then the Grassmannian
of k-planes in n-space, Gr(k, n), is isomorphic to P\GLn(C). Further, the map
π : GLn(C) → Gr(k, n) given by taking a matrix to its coset mod P induces an
isomorphism from Y onto an affine open subvariety U of Gr(k, n) (often called the
opposite big cell).

Let B ⊆ GLn(C) be the Borel subgroup of upper triangular matrices. Schubert
varieties Xw in P\GLn(C) are closures of orbits P\PwB, where w ∈ Sn is a
Grassmannian permutation with descent at position k. Let Yw denote the affine
subvariety of Y defined to be π|−1

Y (Xw ∩ U).

Let Ỹ denote the matrix that has the form given in (7) with variables mij as the
entries of M . Then, the coordinate ring of Y is C[Y ] = C[mij | i ∈ [k], j ∈ [n− k]],

and the prime defining ideal Jw of Yw is generated by the essential minors of Ỹ .
That is,

(8) Jw = 〈(rw(i, j) + 1)− size minors of Ỹ[i,j] | (i, j) ∈ Ess(w)〉.

5.2. A conjecture, counterexample, and correction. We now consider a con-
jecture of Kummini-Lakshmibai-Sastry-Seshadri from [9] on regularities of coordi-
nate rings of standard open patches of certain Schubert varieties in Grassmannians.
We show that this conjecture is false by providing a counterexample, and then state
and prove an alternate explicit combinatorial formula for these regularities. This
latter result follows immediately from our Corollary 4.1.

To state the conjecture from [9], we first translate the conventions from their
paper to ours. Indeed, we use the same notation as the previous section and assume
that w ∈ Sn is a Grassmannian permutation with unique descent at position k.
Suppose that w = w1 w2 · · ·wn in one-line notation. Observe that w is uniquely
determined from n and (w1, . . . , wk). Suppose further that for some r ∈ [k − 1],

(9) wk−r+i = n− k + i for all i ∈ [r]

and w1 = 1. Let w̃ be defined by (w̃1, . . . , w̃k) = (n−wk+1, . . . , n−w1+1). Then
we have

(w̃1, . . . , w̃k) = (k − r + 1, k − r + 2, . . . , k, ar+1, . . . , an−1, n)
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for some k < ar+1 < · · · < an−1 < n. Let ar = k and ak = n. For r ≤ i ≤ k − 1,
define mi = ai+1 − ai.

Conjecture 5.1 ([9, Conjecture 7.5]).

(10) reg(C[Y ]/Jw) =

k−1∑
i=r

(mi − 1)i.

Example 5.2. We consider [9, Example 6.1]. Let J be the ideal generated by 3×3
minors of a 4 × 3 matrix of indeterminates. Then J = Jw for w = 1245367 ∈ S7,
where k = 4 and n = 7. Then w̃ = (3, 4, 6, 7). Here we see that Equation (10)
yields a regularity of 2. This matches the regularity we computed in Example 4.3.

We now show that Conjecture 5.1 is not always true.

Example 5.3. Let k = 4, n = 10, w = 145723689(10) so that w̃ = (4, 6, 7, 10).
Then w̃ has the desired form. Furthermore, we have that m1 = 2,m2 = 1,m3 = 3.
Thus, by Conjecture 5.1, the regularity should be (2− 1)1 + (1− 1)2 + (3− 1)3 =
1 + 6 = 7. However, a check in Macaulay2 [5] yields a regularity of 5. In fact, Jw,
once induced to a larger polynomial ring, is a Schubert determinantal ideal for w,
so we can use our formula from Corollary 4.1. Notice w has associated partition
λ = (3, 2, 2, 0). Then λ(1) = (1) and λ(2) = (3, 2, 2), giving reg(C[Y ]/Jw) = 2 ·
sv(λ(1)) + 1 · sv(λ(2)) = 2 · 1 + 1 · 3 = 5.

As illustrated in Example 5.3, our formula for the regularity of a Grassmannian
matrix Schubert variety given in Corollary 4.1 corrects Conjecture 5.1 whenever
the ideal Jw is equal (up to inducing the ideal to a larger ring) to the Schubert
determinantal ideal Iw. In fact, each Grassmannian permutation considered in
[9, Conjecture 7.5] is of this form. This follows because all the essential set of such
w is contained in w[k,n−k] by Equation (9).

Corollary 5.4. Let wλ ∈ Sn be a Grassmannian permutation with descent at
position k such that w1 = 1 and for some r ∈ [k−1], wk−r+i = n−k+ i for i ∈ [r].
Let P (λ) = (P1, . . . , Pr). Then

reg(C[Y ]/Jwλ
) =

∑
h∈[r−1]

|Ph+1| · sv(λ(h)).

5.3. A conjecture for the general case. We end the paper with a conjecture
for the regularity of C[Y ]/Jw where w is an arbitrary Grassmannian permutation
with descent at position k. We begin with some preliminaries.

First note that C[Y ]/Jw is a standard graded ring. Indeed, the torus T ⊆
GLn(C) of diagonal matrices acts on U and on Xw ∩ U by right multiplication.
This action induces a Zn-grading on C[Y ] such that mij has degree �ei − �ej and
Jw is homogeneous. This Zn-grading can be coarsened to the standard Z-grading
because the T -action contains the dilation action:1 embed C

× ↪→ T by sending
z ∈ C× to the diagonal matrix that has its (i, i)-entry equal to 1 when 1 ≤ i ≤ n−k
and equal to z when n− k + 1 ≤ i ≤ n.

The codimension of Yw in Y is equal to the number of boxes in the diagram
D(w). So, to compute the regularity reg(C[Y ]/Jw), it remains to find the degree

1More generally, coordinate rings of Kazhdan-Lusztig varieties Xw ∩ Xv
◦ ⊆ B−\GLn(C) are

standard graded when v, the permutation defining the opposite Schubert cell Xv
◦ = B−\B−vB−,

is 321-avoiding. See [6, pg. 25] or [16, Section 4.1] for further explanation.
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of the K-polynomial of C[Y ]/Jw. By [16, Theorem 4.5], this K-polynomial can be
expressed in terms of a double Grothendieck polynomial, Gw(x;y), which is
defined as follows:

Gw0
(x;y) =

∏
i+j≤n

(xi + yj − xiyj).

The rest are defined recursively, using the same operator πi and recurrence defined
in Section 1. Note that if Gw(x;y) denotes the double Grothendieck polynomials
in [7], we have Gw(x;y) = Gw(1− x;1− 1

y ).

Let c = ((1− t), (1− t), . . . , (1− t), 0, 0, . . . , 0) be the list consisting of k copies
of 1− t followed by n− k copies of 0, and let c̃ = (0, 0, . . . , 0, 1− 1

t , 1−
1
t , . . . , 1−

1
t ) be the list consisting of n − k copies of 0 followed by k copies of 1 − 1

t . By
[16, Theorem 4.5], theK-polynomial of S/Jw is the specialized double Grothendieck
polynomial Gw(c; c̃).

2 Consequently, we are reduced to computing the degree of
this polynomial.

Example 5.5. Let w = 132 and k = 2. Then

Gw(x;y) = (x2 + y1 − x2y1) + (x1 + y2 − x1y2)− (x1 + y2 − x1y2)(x2 + y1 − x2y1).

Letting c = (1−t, 1−t, 0) and c̃ = (0, 1− 1
t , 1−

1
t ), one checks that Gw(c; c̃) = (1−t)

which is the K-polynomial of S/Jw with respect to the standard grading.

For the reader familiar with pipe dreams (see, e.g. [3] and [8]), we note that the
degree of Gw(c; c̃) is the maximum number of plus tiles in a (possibly non-reduced)
pipe dream for w with all of its plus tiles supported within the northwest justified
k × (n− k) subgrid of the n× n grid. This follows from [16]. However, this is not
a very explicit formula for degree.

We now turn to our conjecture. It asserts that the degree of the K-polynomial
of C[Y ]/Jw for a Grassmannian permutation w ∈ Sn with descent at position k can
be computed in terms of the degree of a Grothendieck polynomial of an associated
vexillary permutation. This will be a much more easily computable answer than a
pipe dream formula because the first, third, and fifth authors will give an explicit
formula for degrees of vexillary Grothendieck polynomials in the sequel.

A permutation w ∈ Sn is vexillary if it contains no 2143-pattern, i.e. there are
no i < j < k < l such that wj < wi < wl < wk. For example, w = 325164 is not
vexillary since it contains the underlined 2143 pattern.

Suppose wλ ∈ Sn is Grassmannian with descent k. Define λ′ = (λ1, . . . , λ�(λ))
and φ(λ) = (φ1, . . . , φ�(λ)) as follows. For i ∈ [�(λ)],

φi =

{
i+min{(n− k)− λi, k − i} if λi > λi+1 or i = �(λ),

φi+1 otherwise.

A vexillary permutation v is determined by the statistics of a partition and a flag,
computed using D(v) (see [13, Proposition 2.2.10]). Thus, the partition λ′ and flag
φ defined above from wλ define at most one vexillary permutation.

Conjecture 5.6. Fix wλ ∈ Sn Grassmannian with descent k. Then λ′, φ(λ) de-
fine a vexillary permutation v, and deg(Gwλ

(c; c̃)) = deg(Gv(x)). In particular,
reg(C[Y ]/Jwλ

) = deg(Gv(x))− |λ|.
2The conventions used in [16] differ from ours, so the given formula is a translation of their

formula to our conventions.
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Example 5.7. Let k = 5, n = 10 and wλ = 1489(10)23567. Then λ′ = (5, 5, 5, 2)
and φ(wλ) = (3, 3, 3, 5), which corresponds to the vexillary permutation v =
678142359(10). Thus Conjecture 5.6 states that deg(Gwλ

(c; c̃)) = deg(Gv(x)) = 18,
so reg(C[Y ]/Jwλ

) = 18− 17 = 1.
To compute this regularity directly, take R = C[Y ] = C[mij | 1 ≤ i, j ≤ 5].

Let G denote the set of 2 × 2 minors of

[
m11 m12 m13

m21 m22 m23

]
, and let H be the set

of entries in the bottom three rows of the matrix of variables M = (mij)1≤i,j≤5.
Then G ∪H is a minimal generating set of Jwλ

. The Eagon-Northcott complex is
a minimal free resolution of R/〈G〉:

0 → R(−3)2 → R(−2)3 → R → R/〈G〉 → 0.

From this, one directly observes that the regularity of the R-module R/〈G〉 is 1.
Modding out R/〈G〉 by the linear forms in H does not change the regularity (see,
e.g. [2, Proposition 20.20]), and hence the regularity of R/Jwλ

is also 1.
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