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Abstract
We prove that if σ ∈ Sm is a pattern ofw ∈ Sn , then we can express the Schubert polynomial
Sw as a monomial times Sσ (in reindexed variables) plus a polynomial with nonnegative
coefficients. This implies that the set of permutations whose Schubert polynomials have all
their coefficients equal to either 0 or 1 is closed under pattern containment. Using Magyar’s
orthodontia, we characterize this class by a list of twelve avoided patterns. We also give other
equivalent conditions on Sw being zero-one. In this case, the Schubert polynomial Sw is
equal to the integer point transform of a generalized permutahedron.

1 Introduction

Schubert polynomials, introduced by Lascoux and Schützenberger in [10], represent coho-
mology classes of Schubert cycles in the flag variety. Knutson and Miller also showed them
to be multidegrees of matrix Schubert varieties [7]. There are a number of combinatorial for-
mulas for the Schubert polynomials [1,2,5,6,9,12,14,17], yet only recently has the structure
of their supports been investigated: the support of a Schubert polynomialSw is the set of all
integer points of a certain generalized permutahedron P(w) [4,15]. The question motivating
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this paper is to characterize when Sw equals the integer point transform of P(w), in other
words, when all the coefficients of Sw are equal to 0 or 1.

One of our main results is a pattern-avoidance characterization of the permutations cor-
responding to these polynomials:

Theorem 1.1 The Schubert polynomial Sw is zero-one if and only if w avoids the patterns
12543, 13254, 13524, 13542, 21543, 125364, 125634, 215364, 215634, 315264, 315624,
and 315642.

In Theorem 4.8 we provide further equivalent conditions on the Schubert polynomialSw

being zero-one. One implication of Theorem 1.1 follows from our other main result, which
relates the Schubert polynomials Sσ and Sw when σ is a pattern of w:

Theorem 1.2 Fixw ∈ Sn and let σ ∈ Sn−1 be the pattern with Rothe diagram D(σ ) obtained
by removing row k and column wk from D(w). Then

Sw(x1, . . . , xn) = M(x1, . . . , xn)Sσ (x1, . . . , x̂k, . . . , xn) + F(x1, . . . , xn), (1)

where F ∈ Z≥0[x1, . . . , xn] and

M(x1, . . . , xn) =
⎛

⎝

∏

(k,i)∈D(w)

xk

⎞

⎠

⎛

⎝

∏

(i,wk )∈D(w)

xi

⎞

⎠ .

Theorem 1.2 is a special case of Theorem 5.8, which applies to the dual character of the
flagged Weyl module of any diagram.

Outline of this paper

Section 2 gives an expression of Magyar for Schubert polynomials in terms of orthodontic
sequences (i,m). In Sect. 3, we give a condition “multiplicity-free” on the orthodontic
sequence (i,m) ofw which implies thatSw is zero-one. In Sect. 4 we show that multiplicity-
freeness can equivalently be phrased in terms of pattern avoidance. We then prove in Sect. 4
that multiplicity-freeness is also a necessary condition for Sw to be zero-one. In the latter
proof we assume Theorem 1.2, whose generalization (Theorem 5.8) and proof is the subject
of Sect. 5.

2 Magyar’s orthodontia for Schubert polynomials

In this sectionwe explain the results we use to show one direction of Theorem 1.1.We include
the classical definition of Schubert polynomials here for reference.

The Schubert polynomial of the longest permutation w0 = n n−1 · · · 2 1 ∈ Sn is

Sw0 := xn−1
1 xn−2

2 · · · xn−1.

For w ∈ Sn , w �= w0, there exists i ∈ [n − 1] such that wi < wi+1. For any such i , the
Schubert polynomial Sw is defined as

Sw(x1, . . . , xn) := ∂iSwsi (x1, . . . , xn),

where si is the transposition swapping i and i+1, and ∂i is the i th divided difference operator

∂i ( f ) := f (x1, . . . , xn) − f (x1, . . . , xi−1, xi+1, xi , xi+2, . . . , xn)

xi − xi+1
.
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Zero-one Schubert polynomials 1025

Since the operators ∂i satisfy the braid relations, the Schubert polynomials Sw are well-
defined.

Wewill not be using the above definition of Schubert polynomials in this work. Instead, we
will make use of several results due to Magyar in [13]. We start by summarizing Proposition
15 and Proposition 16 of [13] and supplying the necessary background, closely following
the exposition of [13].

By a diagram, we mean a sequence D = (C1,C2, . . . ,Cn) of finite subsets of [n], called
the columns of D. We interchangeably think of D as a collection of boxes (i, j) in a grid,
viewing an element i ∈ C j as a box in row i and column j of the grid. When we draw
diagrams, we read the indices as in a matrix: i increases top-to-bottom and j increases left-
to-right. Two diagrams D and D′ are called column-equivalent if one is obtained from
the other by reordering nonempty columns and adding or removing any number of empty
columns. For a columnC ⊆ [n], let themultiplicitymult D(C) be the number of columns of D
which are equal toC . The sum of diagrams, denoted D⊕D′, is constructed by concatenating
the lists of columns; graphically this means placing D′ to the right of D.

The Rothe diagram D(w) of a permutation w ∈ Sn is the diagram

D(w) = {(i, j) ∈ [n] × [n] | i < (w−1) j and j < wi }.
Note that Rothe diagrams have the northwest property: If (r , c′), (r ′, c) ∈ D(w)with r < r ′
and c < c′, then (r , c) ∈ D(w).

Example 2.1 If w = 31542, then

We next recallMagyar’s orthodontia. Let D be the Rothe diagram of a permutationw ∈ Sn
with columns C1,C2, . . . ,Cn . We describe an algorithm for constructing a reduced word
i = (i1, . . . , il) and a multiplicity list m = (k1, . . . , kn; m1, . . . ,ml) such that the diagram
Di,m defined by

Di,m =
n

⊕

j=1

k j · [ j] ⊕
l

⊕

j=1

m j · (si1si2 · · · si j [i j ]),

is column-equivalent to D. In the above, m · C denotes C ⊕ · · · ⊕ C with m copies of C ; in
particular 0 · C should be interpreted as a diagram with no columns, not the empty column.

The algorithm to produce i and m from D is as follows. To begin the first step, for each
j ∈ [n] let k j = multD([ j]), the number of columns of D of the form [ j]. Replace all such
columns by empty columns for each j to get a new diagram D−.

Given a column C ⊆ [n], a missing tooth of C is a positive integer i such that i /∈ C , but
i + 1 ∈ C . The only columns without missing teeth are the empty column and the intervals
[i]. Hence the first nonempty column of D− (if there is any) contains a smallest missing tooth
i1. Switch rows i1 and i1 + 1 of D− to get a new diagram D′.

In the second step, repeat the above with D′ in place of D. That is, let m1 = multD′([i1])
and replace all columns of the form [i1] in D′ by empty columns to get a new diagram D′−.
Find the smallest missing tooth i2 of the first nonempty column of D′−, and switch rows i2
and i2 + 1 of D′− to get a new diagram D′′.

Continue in this fashion until no nonempty columns remain. It is easily seen that the
sequences i = (i1, . . . , il) and m = (k1, . . . , kn; m1, . . . ,ml) just constructed have the
desired properties.
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1026 A. Fink et al.

Definition 2.2 The pair (i,m) constructed from the preceding algorithm is called the
orthodontic sequence of w.

Example 2.3 If w = 31542, then the orthodontic sequence algorithm produces the diagrams

The sequence of missing teeth gives i = (2, 3, 1) and m = (1, 0, 0, 0, 0; 0, 1, 1), so

Theorem 2.4 [13, Proposition 15] Let w ∈ Sn have orthodontic sequence (i,m). If π j =
∂ j x j denotes the j th Demazure operator and ω j = x1x2 · · · x j , then

Sw = ω
k1
1 · · · ωkn

n πi1(ω
m1
i1

πi2(ω
m2
i2

· · · πil (ω
ml
il

) · · · )).
Example 2.5 For w = 31542, it is easily checked that

Sw = x1π2π3(x1x2x3π1(x1)).

Theorem 2.4 can also be realized on the level of tableaux, analogous to Young tableaux
in the case of Schur polynomials. A filling (with entries in {1, ..., n}) of a diagram D is a
map T assigning to each box in D an integer in [n]. A filling T is called column-strict if T
is strictly increasing down each column of D. The weight of a filling T is the vector wt(T )

whose i th component wt(T )i is the number of times i occurs in T .
Given a permutation w ∈ Sn with orthodontic sequence (i,m), we will define a set Tw of

fillings of the diagram Di,m which satisfy

Sw =
∑

T∈Tw

xwt(T )1
1 xwt(T )2

2 · · · xwt(T )n
n .

We start by recalling the root operators, first defined in [11]. These are operators fi which
either take a filling T of a diagram D to another filling of D, or are undefined on T . To define
root operators, we first encode a filling T in terms of its reading word. The reading word of
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Zero-one Schubert polynomials 1027

a filling T of a diagram D = Di,m is the sequence of the entries of T read in order, down
each column going left-to-right along columns; that is the sequence

(1, 1), T (2, 1), . . . , T (n, 1), T (1, 2), T (2, 2), . . . , T (n, 2), . . . , T (n, n)

ignoring any boxes (i, j) /∈ D.
If it is defined, the operator fi changes an entry of i in T to an entry of i + 1 according

to the following rule. First, ignore all the entries in T except those which equal i or i + 1.
Now “match parentheses”: if, in the list of entries not yet ignored, an i is followed by an
i + 1, then henceforth ignore that pair of entries as well; look again for an i followed (up
to ignored entries) by an i + 1, and henceforth ignore this pair; continue doing this until
all no such pairs remain unignored. The remaining entries of T will be a subword of the
form i + 1, i + 1, . . . , i + 1, i, i, . . . , i . If i does not appear in this word, then fi (T ) is
undefined. Otherwise, fi changes the leftmost i to an i + 1. Reading the image word back
into D produces a new filling. We can iteratively apply fi to a filling T .

Example 2.6 If T = 3 1 2 2 2 1 3 1 2 4 3 2 4 1 3 1, applying f1 iteratively to T yields:

Define the set-valuedquantizedDemazureoperator π̃i by π̃i (T ) = {T , fi (t), f 2i (T ), . . .}.
For a set T of tableaux, let

π̃i (T) =
⋃

T∈T
π̃i (T ).

Next, consider the column [ j] and its minimal column-strict filling ω̃ j ( j th row maps to j).
For a filling T of a diagram D with columns (C1,C2, . . . ,Cn), define in the obvious way the
composite filling of [ j] ⊕ D, corresponding to concatenating the reading words of [ j] and
D. Define [ j]r ⊕ D analogously by adding r columns [ j] to D, each with filling ω̃ j .

Definition 2.7 Letw ∈ Sn be a permutation with orthodontic sequence (i,m). Define the set
Tw of tableaux by

Tw = ω̃
k1
1 ⊕ · · · ⊕ ω̃kn

n ⊕ π̃i1(ω̃
m1
i1

⊕ π̃i2(ω̃
m2
i2

⊕ · · · ⊕ π̃il (ω̃
ml
il

) · · · )).
Theorem 2.8 [13, Proposition 16] Let w ∈ Sn be a permutation with orthodontic sequence
(i,m). Then,

Sw =
∑

T∈Tw

xwt(T )1
1 xwt(T )2

2 · · · xwt(T )n
n .

Example 2.9 Consider again w = 31542, so the orthodontic sequence of w is i = (2, 3, 1)
and m = (1, 0, 0, 0, 0; 0, 1, 1). The set Tw is built up as follows:

{} ω̃1−→ {1} π̃1−→ {1, 2} ω̃3−→ {1231, 1232} π̃3−→ {1231, 1241, 1232, 1242}
π̃2−→ {1231, 1241, 1341, 1232, 1233, 1242, 1342, 1343}
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1028 A. Fink et al.

ω̃1−→ {11231, 11241, 11341, 11232, 11233, 11242, 11342, 11343}
which agrees with

Sw = x31 x2x3 + x31 x2x4 + x31 x3x4 + x21 x
2
2 x3 + x21 x2x

2
3 + x21 x

2
2 x4 + x21 x2x3x4 + x21 x

2
3 x4.

We now describe a way to view each step of the construction of Tw as producing a set of
fillings of a diagram.

Definition 2.10 Let w be a permutation with orthodontic sequence (i,m), i = (i1, . . . , il).
For each r ∈ [l], define

Tw(r) = ω̃
mr
ir

⊕ π̃ir+1(ω̃
mr+1
ir+1

⊕ · · · ⊕ π̃il (ω̃il ) · · · ).
Set Tw(0) = Tw .

Definition 2.11 Let w be a permutation with orthodontic sequence (i,m), i = (i1, . . . , il).
For any r ∈ [l], let O(w, r) be the diagram obtained from D(w) in the construction of (i,m)

at the time when the row swaps of the missing teeth i1, . . . , ir have all been executed on
D(w), but after executing the row swap of the missing tooth ir , columns without missing
teeth have not yet been removed (mr has not yet been recorded). Set O(w, 0) = D(w). For
each r , give O(w, r) the same column indexing as D(w), so any columns replaced by empty
columns in the execution of the missing teeth i1, . . . , ir−1 retain their original index in D(w).

The motivation behind Definition 2.10 and Definition 2.11 is that the elements of Tw(r)
can be viewed as column-strict fillings of O(w, r) for each r . To do this, the choice of filling
order for O(w, r) is crucial. Let w ∈ Sn and consider D = D(w) and Di,m. Suppose D has
z nonempty columns. There is a unique permutation τ of [n] taking the column indices of D
to the column indices of Di,m ⊕ ∅n−z with the following properties:

• Column c of D is the same as column τ(c) of Di,m.
• If column c and column c′ of D are equal with c < c′, then τ(c) < τ(c′).

Recall that the columns of O(w, r) have the same column labels as D. To read an element T ∈
Tw(r) into O(w, r), read T left-to-right and fill in top-to-bottom columns τ−1(n), τ−1(n −
1), . . . , τ−1(1) (ignoring any column indices referring to empty columns).

Lemma 2.12 Let w ∈ Sn have orthodontic sequence (i,m), i = (i1, . . . , il). In the filling
order specified above, the elements of Tw(r) are column-strict fillings of O(w, r) for each
0 ≤ r ≤ l.

Example 2.13 Take again w = 31542 with orthodontic sequence i = (2, 3, 1) and m =
(1, 0, 0, 0, 0; 0, 1, 1). Recall that

so τ = 12435 = τ−1. Consider the elements 1 ∈ Tw(3), 1232 ∈ Tw(2), 1242 ∈ Tw(1),
and 11342 ∈ Tw(0). The column filling order of each O(w, r) is given by reading τ−1

in one-line notation right to left: in the indexing of D(w), fill down column 4, then down
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Zero-one Schubert polynomials 1029

column 2, then down column 1. The elements of each set Tw(r) are column-strict fillings in
the corresponding diagrams O(w, r):

Lemma 2.14 Let w be a permutation with orthodontic sequence (i,m), i = (i1, . . . , il). For
each 0 ≤ r ≤ l, O(w, r) has the northwest property.

Definition 2.15 A filling T of a diagram D is called row-flagged if T (p, q) ≤ p for each
box (p, q) ∈ D.

Lemma 2.16 For each 0 ≤ r ≤ l, the elements of Tw(r) are row-flagged fillings of O(w, r).

Proof Clearly, the singleton Tw(l) is a row-flagged filling of O(w, l). Assume that for some
l ≥ s > 0, the result holds with r = s. We show that the result also holds with r = s − 1.
Let T ∈ Tw(s). We must show that for each u, if f uis (T ) is defined, then ω̃

ms−1
is−1

⊕ f uis (T ) is
a row-flagged filling of O(w, s − 1). By the orthodontia construction, O(w, s) is obtained
from O(w, s − 1) by removing the ms−1 columns with no missing tooth, and then switching
rows is + 1 and is .

Since T is a row-flagged filling of O(w, s), each box in O(w, s) containing an entry of
T equal to is lies in a row with index at least is . Any box in O(w, s) containing an entry of
T equal to is and lying in row is of O(w, s) will have row index is + 1 in O(w, s − 1). Any
box in O(w, s) containing an entry in T equal to is and lying in a row d > is of O(w, s)
will still have row index d in O(w, s − 1). Then if f uis (T ) is defined, ω̃ms−1

is−1
⊕ f uis (T ) will be

a row-flagged filling of O(w, s − 1).

3 Zero-one Schubert polynomials

This section is devoted to giving a sufficient condition on the orthodontic sequence (i,m) of
w for the Schubert polynomialSw to be zero-one. We give such a condition in Theorem 3.6.
We will see in Theorem 4.8 that this condition turns out to also be a necessary condition for
Sw to be zero-one.

We start with a less ambitious result:

Proposition 3.1 Let w ∈ Sn and (i,m) be the orthodontic sequence of w. If i = (i1, . . . , il)
has distinct entries, then Sw is zero-one.
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1030 A. Fink et al.

Proof Let T , T ′ ∈ Tw with wt(T ) = wt(T ′). By Definition 2.7, we can find p1, . . . , pl so
that

T = ω̃
k1
1 ⊕ · · · ⊕ ω̃kn

n ⊕ f p1i1
(ω̃

m1
i1

⊕ · · · ⊕ f plil
(ω̃

ml
il

) · · · ).
Then if e1, . . . , en denote the standard basis vectors of R

n ,

wt(T ) =
n

∑

j=1

wt(ω̃
k j
j ) +

l
∑

j=1

wt(ω̃
m j
i j

) +
l

∑

j=1

p j (ei j+1 − ei j ).

Similarly, we can find q1, . . . , ql so that

T ′ = ω̃
k1
1 ⊕ · · · ⊕ ω̃kn

n ⊕ f q1i1
(ω̃

m1
i1

⊕ · · · ⊕ f qlil (ω̃
ml
il

) · · · ),
which implies

wt(T ′) =
n

∑

j=1

wt(ω̃
k j
j ) +

l
∑

j=1

wt(ω̃
m j
i j

) +
l

∑

j=1

q j (ei j+1 − ei j ).

As wt(T ) = wt(T ′),

Since the vectors {ei j+1 − ei j }lj=1 are independent and i has distinct entries, p j = q j

for all j . Thus T = T ′. This shows that all elements of Tw have distinct weights, so Sw is
zero-one.

We now strengthen Proposition 3.1 to allow i to not have distinct entries. To do this, wewill
need a technical definition related to the orthodontic sequence. Recall the construction of the
orthodontic sequence (i,m) of a permutation w ∈ Sn (Definition 2.2) and the intermediate
diagrams O(w, r) (Definition 2.11). Let i = (i1, . . . , il), and define O(w, r)− to be the
diagram O(w, r) with all columns of the form [ir ] replaced by empty columns.

Definition 3.2 Define the orthodontic impact function Iw : [l] → 2[n] by

Iw( j) = {c ∈ [n] | (i j + 1, c) ∈ O(w, j − 1)−}.
That is, Iw( j) is the set of indices of columns of O(w, j − 1)− that are changed when rows
i j and i j + 1 are swapped to form O(w, j).

Definition 3.3 Let w ∈ Sn have orthodontic sequence (i,m), i = (i1, . . . , il). We say w is
multiplicity-free if for any r , s ∈ [l] with r �= s and ir = is , we have Iw(r) = Iw(s) = {c}
for some c ∈ [n].
Example 3.4 If w = 457812693, then
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Zero-one Schubert polynomials 1031

The only entries of i occurring multiple times are i1 = i4 = 6 and i5 = i8 = 2. Their
respective impacts are Iw(1) = Iw(4) = {3} and Iw(5) = Iw(8) = {6}, sow is multiplicity-
free.

The proof of the generalization of Proposition 3.1 will require the following technical
lemma. Before proceeding, recall Lemma 2.12 and Lemma 2.16: for every 0 ≤ j ≤ l,
elements of Tw( j) can be viewed as row-flagged, column-strict fillings of O(w, j) (via the
column filling order of O(w, j) specified prior to Lemma 2.12). Applying ω̃

m j−1
i j−1

⊕ fi j to
an element of Tw( j) gives an element of Tw( j − 1), a filling of O(w, j − 1). Thus, when
we speak below of the application of fi j to an element T ∈ Tw( j) “changing an i j to an
i j + 1 in column c”, we specifically mean that when we view T as a filling of O(w, j) and
ω̃
m j−1
i j−1

⊕ fi j (T ) as a filling of O(w, j − 1), T and ω̃
m j−1
i j−1

⊕ fi j (T ) differ (in the stated way)
in their entries in column c.

Lemma 3.5 Let w be a multiplicity-free permutation with orthodontic sequence (i,m), i =
(i1, . . . , il). Suppose ir = is with r < s and Iw(r) = Iw(s) = {c}. Then for each j with
r ≤ j ≤ s, Iw( j) = {c} and the application of fi j to an element of Tw( j) is either undefined
or changes an i j to an i j + 1 in column c.

Proof Wehandle first the case that j = r . In the diagram O(w, r−1), column c is the leftmost
column containing a missing tooth, and ir is the smallest missing tooth in column c. Reading
column c of O(w, r − 1) top-to-bottom, one sees a (possibly empty) sequence of boxes in
O(w, r − 1), followed by a sequence of boxes not in O(w, r − 1). The sequence of boxes
not in O(w, r − 1) has length at least two since ir occurs at least twice in i , and terminates
with the box (ir +1, c) ∈ O(w, r −1). Note that since (ir −1, c), (ir , c) /∈ O(w, r −1), the
northwest property of O(w, r − 1) implies that there can be no box (ir − 1, c′) or (ir , c′) in
O(w, r−1)with c′ > c. Note also that since Iw(r) = {c}, we have (ir +1, c′) /∈ O(w, r−1)
for each c′ > c. Lastly, observe that for any c′ > c and d > ir + 1, there can be no box
(d, c′) ∈ O(w, r − 1). Otherwise there would be some t ∈ [l] with it = ir and t �= r such
that c′ ∈ Iw(t), violating that w is multiplicity-free.

As a consequence of the previous observations, the largest row index that a column c′ > c
of O(w, r − 1) can contain a box in is ir − 2. In particular, Lemma 2.16 implies that the
application of fir to an element of Tw(r) either is undefined or changes an ir to an ir + 1 in
column c. This concludes the case that j = r .

When j = s, an entirely analogous argument works. The only significant difference in
the observations is that when column c of O(w, s − 1) is read top-to-bottom, the (possibly
empty) initial sequence of boxes in O(w, s − 1) is followed by a sequence of boxes not in
O(w, s − 1) with length at least 1, ending with the box (is + 1, c). Consequently, the largest
row index that a column c′ > c of O(w, s − 1) can contain a box in is is − 1. In particular,
Lemma 2.16 implies that the application of fis to an element of Tw(s) either is undefined or
changes an is to an is + 1 in column c. This concludes the case that j = s.

Now, let r < j < s. Since Iw(r) = Iw(s) = {c}, we have c ∈ Iw( j). If i j occurs multiple
times in i , then multiplicity-freeness of w implies Iw( j) = {c}. In this case, we can find
j ′ �= j with i j = i j ′ and apply the previous argument (with r and s replaced by j and j ′) to
conclude that the application of fi j to an element of Tw( j) is either undefined or changes an
i j to an i j + 1 in column c.

Thus, we assume i j occurs only once in i . Recall that it was shown above that O(w, r−1)
has no boxes (d, c′)with d > ir and c′ > c. Read top-to-bottom, let column c of O(w, r −1)
have a (possibly empty) initial sequence of boxes ending with a missing box in row u, so
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1032 A. Fink et al.

clearly u ≤ ir −1. Since the first missing tooth in column c of O(w, r −1) is in row ir , none
of the boxes (u, c), (u + 1, c), . . . , (ir , c) are in O(w, r − 1), but (ir + 1, c) ∈ O(w, r − 1).
Then, the northwest property implies that there is no box in O(w, r−1) in any column c′ > c
in any of rows u, u + 1, . . . , ir . In particular, the largest row index such that a column c′ > c
of O(w, r − 1) can contain a box in is u − 1.

As r < j < s and Iw(r) = Iw(s) = {c}, we have that c ∈ Iw( j). Also since r < j < s,
the leftmost nonempty column in O(w, j −1) is column c, and i j ≥ u. Then in O(w, j −1),
themaximum row index a box in a column c′ > c can have is u−1. In particular,Iw( j) = {c},
and Lemma 2.16 implies that the application of fi j to an element of Tw( j) is either undefined
or changes an i j to an i j + 1 in column c.

Theorem 3.6 If w is multiplicity-free, then Sw is zero-one.

Proof Assume wt(T ) = wt(T ′) for some T , T ′ ∈ Tw . If we can show that T = T ′, then
we can conclude that all elements of Tw have distinct weights, soSw is zero-one. To begin,
write

T = ω̃
k1
1 ⊕ · · · ⊕ ω̃kn

n ⊕ f p1i1
(ω̃

m1
i1

⊕ · · · ⊕ f plil
(ω̃

ml
il

) · · · )
and

T ′ = ω̃
k1
1 ⊕ · · · ⊕ ω̃kn

n ⊕ f q1i1
(ω̃

m1
i1

⊕ · · · ⊕ f qlil (ω̃
ml
il

) · · · ),
for some p1, . . . , pl , q1, . . . , ql . The basic idea of the proof is to show that as T and T ′
are constructed step-by-step from ω̃

ml
il
, the resulting intermediate tableaux are intermittently

equal. At termination of the construction, this will imply that T = T ′.
By the expansion (*) of wt(T ) − wt(T ′) used in the proof of Proposition 3.1, we observe

that pu = qu for all u such that iu occurs only once in i . Let s be the largest index such that
ps �= qs . Suppose Iw(s) = {c}. Let r1 be the smallest index such that ir1 occurs multiple
times in i and Iw(r1) = {c}. We know r1 < s, because (*) implies that ps′ �= qs′ for another
s′ < s with is′ = is , and by multiplicity-freeness Iw(s′) = {c}. We wish to find an interval
[r , s] ⊆ [r1, s] such that r < s and the following two conditions hold:

(i) If v ≥ r and iv occurs multiple times in i , then any other v′ with iv = iv′ will satisfy
v′ ≥ r .

(ii) For every j with r < j < s and i j occurring only once in i , there are t and u with
r ≤ t < j < u ≤ s such that it = iu .

We first show that (i) holds for [r1, s]. Note that if iv occurs multiple times in i and
r1 ≤ v ≤ s, then it must be that Iw(v) = {c} by the fact that the orthodontia construction
records all missing teeth needed to eliminate one column before moving on to the next
column. If iv′ = iv , then Iw(v′) = {c} also, by multiplicity-freeness of w. The choice of
r1 implies r1 ≤ v′. If iv occurs multiple times in i with s < v and Iw(v) = {c}, then the
choice of r1 again implies that r1 ≤ v′ for any iv′ = iv . If iv occurs multiple times in i with
s < v and Iw(v) �= {c}, then the orthodontia construction implies that any v′ with iv = iv′
must satisfy s < v′. In particular, r1 < v′ as needed. Thus, (i) holds for [r1, s]. If [r1, s] also
satisfies (ii), then we are done.

Otherwise, assume [r1, s] does not satisfy (ii). Then there is some j with r1 < j < s such
that i j occurs only once in i and there are no t and u with r1 ≤ t < j < u ≤ s and it = iu .
Consequently for every pair iu = it with r1 ≤ t < u ≤ s, it must be that either t < u < j or
j < t < u. Let r2 be the smallest index such that j < r2 and ir2 occurs multiple times in i .
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By the choice of j , it is clear that the interval [r2, s] still satisfies (i). If [r2, s] also satisfies
(ii), then we are done.

Otherwise, [r2, s] satisfies (i) but not (ii), and we can argue exactly as in the case of [r1, s]
to find an r3 such that r2 < r3 < s and [r3, s] satisfies (i). Continue working in this fashion.
We show that this process terminates with an interval [r , s] satisfying r < s, (i), and (ii).

As mentioned above, there exists s′ < s such that is′ = is . Let s′ be the maximal index
less than s with this property. Since all of the intervals [r∗, s] will satisfy (i), it follows that
r1 < r2 < · · · ≤ s′. At worst, the process will terminate after finitely many steps with the
interval [s′, s]. The interval [s′, s] will then satisfy (i) since the process reached it, and will
trivially satisfy (ii) since is = is′ .

Hence, we can assume that we have found an interval [r , s] satisfying r < s, (i), and (ii).
Consider the tableaux

Tr = ω̃
mr−1
ir−1

⊕ f prir
(ω̃

mr
ir

⊕ · · · ⊕ f plil
(ω̃

ml
il

) · · · ), Ts = ω̃
ms
is

⊕ f ps+1
is+1

(ω̃
ms+1
is+1

⊕ · · · ⊕ f plil
(ω̃

ml
il

) · · · ),
T ′
r = ω̃

mr−1
ir−1

⊕ f qrir (ω̃
mr
ir

⊕ · · · ⊕ f qlil (ω̃
ml
il

) · · · ), T ′
s = ω̃

ms
is

⊕ f qs+1
is+1

(ω̃
ms+1
is+1

⊕ · · · ⊕ f qlil (ω̃
ml
il

) · · · ).
By definition, Tr , T ′

r ∈ Tw(r − 1), so we can view Tr and T ′
r as fillings of O(w, r − 1).

Similarly, Ts, T ′
s ∈ Tw(s), so we can view Ts and T ′

s as fillings of O(w, s). Since we chose
s to be the largest index such that ps �= qs , it follows that Ts = T ′

s . By property (i) of [r , s],
iu �= iv for any u < r ≤ v. Hence, it must be that wt(Tr ) = wt(T ′

r ). Finally, property (ii) of
[r , s] allows us to apply Lemma 3.5 and conclude that for any ar , ar+1, . . . , as ≥ 0, when
ω̃
mr−1
ir−1

⊕ f arir (ω̃
ir
mr ⊕ · · · ⊕ ω̃

ms−1
is−1

f asis
(—) · · · ) is applied to an element of Tw(s), only the

entries in column c are affected by the root operators f arir , . . . , f asis
. Since

Tr = ω̃
mr−1
ir−1

⊕ f prir
(ω̃ir

mr
⊕ · · · ⊕ ω̃

ms−1
is−1

f psis
(Ts) · · · )

and T ′
r = ω̃

mr−1
ir−1

⊕ f qrir (ω̃ir
mr

⊕ · · · ⊕ ω̃
ms−1
is−1

f qsis
(T ′

s ) · · · ),
Tr and T ′

r must coincide outside of column c. Since we already deduced that wt(Tr ) =
wt(T ′

r ), it follows that column c of Tr and T ′
r have the same weight. By column-strictness of

Tr and T ′
r , column c of Tr and T ′

r must coincide, so Tr = T ′
r .

To complete the proof, let ŝ be the largest index ŝ < r such that pŝ �= qŝ . If no such index
exists, then T = T ′. Otherwise, set r̂1 to be the smallest index such that ir̂1 occurs multiple
times in i and Iw(r̂1) = Iw(ŝ). We have r̂1 < ŝ because some other ŝ′ distinct from ŝ such
that pŝ′ �= qŝ′ and iŝ′ = iŝ must exist as before, and ŝ′ is also less than r by property (i) of
[r , s]. Use the previous algorithm to find an interval [r̂ , ŝ] ⊆ [r̂1, ŝ] satisfying r̂ < ŝ, (i), and
(ii). Construct Tr̂ , T

′
r̂ , Tŝ, T

′
ŝ , and argue exactly as in the case of [r , s] that Tr̂ = T ′

r̂ .
Continuing in this manner for a finite number of steps will show that T = T ′.

As we will show in Theorem 4.8, it is not only sufficient but also necessary that w be
multiplicity-free for the Schubert polynomialSw to be zero-one.

4 Pattern avoidance conditions for multiplicity-freeness

This section is devoted to showing that w being multiplicity-free is equivalent to a certain
pattern avoidance condition. We then prove our full characterization of zero-one Schubert
polynomials.

We start with several definitions.
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1034 A. Fink et al.

Fig. 1 Examples of instances of the configurations A, B, and B′ in Rothe diagrams. Both the hooks removed
from the n × n grid to form each Rothe diagram and the remaining boxes are shown

Definition 4.1 We say a Rothe diagram D = D(w) contains an instance of configuration A
if there are r1, c1, r2, c2, r3 such that 1 ≤ r3 < r1 < r2, 1 < c1 < c2, (r1, c1), (r2, c2) ∈ D,
(r1, c2) /∈ D, and wr3 < c1.

Definition 4.2 We say a Rothe diagram D = D(w) contains an instance of configuration
B if there are r1, c1, r2, c2, r3, r4 such that 1 ≤ r4 �= r3 < r1 < r2, 2 < c1 < c2,
(r1, c1), (r1, c2), (r2, c2) ∈ D, wr3 < c1, and wr4 < c2.

Definition 4.3 We say a Rothe diagram D = D(w) contains an instance of configuration
B′ if there are r1, c1, r2, c2, r3, r4 such that 1 ≤ r4 < r3 < r1 < r2, 2 < c1 < c2,
(r1, c1), (r1, c2), (r2, c1) ∈ D, wr3 < c1, and wr4 < c1.

Given a Rothe diagram D(w), we will call a tuple (r1, c1, r2, c2, r3) meeting the con-
ditions of Definition 4.1 an instance of configuration A in D(w). Similarly, we will call a
tuple (r1, c1, r2, c2, r3, r4) meeting the conditions of Definition 4.2 (resp. 4.3) an instance of
configuration B (resp. B′) in D(w) (Fig. 1).

Theorem 4.4 If w ∈ Sn is a permutation such that D(w) does not contain any instance of
configuration A, B, or B′, then w is multiplicity-free.

Theorem 4.8 will also imply the converse of this theorem.

Proof We prove the contrapositive. Assume w is not multiplicity-free and let (i,m) be the
orthodontic sequence of w. Then, we can find entries i p1 = i p2 of i with p1 < p2 such that
either Iw(p1) �= Iw(p2), or Iw(p1) = Iw(p2)with |Iw(p1)| > 1.We show that D(w)must
contain at least one instance of configuration A, B, or B′.

Case1:Assume thatIw(p1) � Iw(p2) andIw(p2) � Iw(p1). Take c1 ∈ Iw(p1)\Iw(p2)
and c2 ∈ Iw(p2)\Iw(p1). We show that columns c1 and c2 of D(w) contain an instance of
configuration A.

In step p1 of the orthodontia on D(w), a box in column c1 is moved (by the missing tooth
i p1 ) to row i p1 . Let this box originally be in row r1 of D(w). Analogously, let the box in column
c2 moved to row i p2 in step p2 of the orthodontia (by the missing tooth i p2 ) originally be in
row r2 of D(w). Observe that r1 < r2. If c2 < c1, then the northwest property would imply
that (r1, c2) ∈ D(w), contradicting that c2 /∈ Iw(p1). Thus c1 < c2. Since c2 /∈ Iw(p1),
(r1, c2) /∈ D(w). Lastly, since the box (r1, c1) is moved by the orthodontia, there is some
box (r3, c1) /∈ D(w) with r3 < r1. Consequently, wr3 < c1. Thus, (r1, c1, r2, c2, r3) is an
instance of configuration A.
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Fig. 2 The Rothe diagrams of the twelve multiplicitous patterns

Case 2: Assume Iw(p2) is a proper subset of Iw(p1). Let c1 = max(Iw(p2)) and c2 =
min(Iw(p1)\Iw(p2)). Let the box in column c1 moved to row i p1 = i p2 in step p1 (resp.
p2) of the orthodontia originally be in row r1 (resp. r2) of D(w). Observe that r1 < r2.

Assume first that c1 < c2. Since c1 ∈ Iw(p1) ∩ Iw(p2), the boxes (r1, c1) and (r2, c2)
both move weakly above row i p1 in the orthodontia. Then, we can find indices r3, r4 with
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1036 A. Fink et al.

r4 < r3 < r1 such that (r3, c1), (r4, c1) /∈ D(w). Hence, wr3 < c1 and wr4 < c1, so
(r1, c1, r2, c2, r3, r4) is an instance of configuration B′.

Otherwise c1 > c2. Since the box (r1, c2) is moved by the orthodontia, we can find
r3 < r1 with (r3, c2) /∈ D(w). Thenwr3 < c2. As we are assuming c2 < c1, (r3, c1) /∈ D(w)

also. Since the boxes (r1, c1) and (r2, c1) in D(w) are moved weakly above row i p1 by the
orthodontia, we can find some r4 < r1 with r4 �= r3 such that (r4, c1) /∈ D(w). Then,
wr4 < c1, so (r1, c2, r2, c1, r3, r4) is an instance of configuration B.

Case 3: Assume Iw(p1) is a proper subset of Iw(p2). This case is handled similarly to
Case 2. Let c1 = max(Iw(p1)) and c2 = min(Iw(p2)\Iw(p1)). Let the box in column c1
moved to row i p1 = i p2 in step p1 (resp. p2) of the orthodontia originally be in row r1 (resp.
r2) of D(w). Observe that r1 < r2.

Assume c1 < c2. Since the boxes (r1, c1) and (r2, c1) of D(w) are moved weakly
above row i p1 by the orthodontia, we can find indices r3, r4 with r4 < r3 < r1 such
that (r3, c1), (r4, c1) /∈ D(w). Then, wr3 < c1 and wr4 < c1. Since c2 /∈ Iw(p1),
(r1, c2) /∈ D(w). Then, (r1, c1, r2, c2, r3) is an instance of configuration A.

Otherwise c1 > c2. As c2 /∈ Iw(p1), (r1, c2) /∈ D(w). Since (r2, c2), (r1, c1) ∈ D(w),
this is a contradiction of the northwest property of D(w).

Case 4: Assume Iw(p1) = Iw(p2) is not a singleton. Let c1, c2 ∈ Iw(p1) with c1 < c2.
Let the box in column c1 moved to row i p1 = i p2 in step p1 (resp. p2) of the orthodontia
originally be in row r1 (resp. r2) of D(w). Observe that r1 < r2. Since the boxes (r1, c1) and
(r2, c1) in D(w) are moved weakly above row i p1 by the orthodontia, we can find indices
r3, r4 with r4 < r3 < r1 such that (r3, c1), (r4, c1) /∈ D(w). Then, wr3 < c1 and wr4 < c1.
Thus, (r1, c1, r2, c2, r3, r4) is an instance of configuration B′.

We now relate multiplicity-freeness to pattern avoidance of permutations. We begin by
clarifying our pattern avoidance terminology. A pattern σ of length n is a permutation
in Sn . The length n is a crucial part of the data of a pattern; we make no identifications
between patterns of different lengths, unlike what is usual when handling permutations in
the Schubert calculus. A permutation w contains σ if w has n entries w j1 , . . . , w jn with
j1 < j2 < · · · < jn that are in the same relative order as σ1, σ2, . . . , σn . In this case, the
indices j1 < j2 < · · · < jn are called a realization of σ in w. We say that w avoids the
pattern σ if w does not contain σ . To illustrate the dependence of these definitions on n, note
that w = 154623 contains the pattern 132, but not the pattern 132456.

The following easy lemma gives a diagrammatic interpretation of pattern avoidance.

Lemma 4.5 Let w ∈ Sn be a permutation and σ a pattern of length m contained in w.
Choose a realization j1 < j2 < · · · < jm of σ in w. Then D(σ ) is obtained from D(w) by
deleting the rows [n]\{ j1, . . . , jm} and the columns [n]\{w j1 , . . . , w jm }, and reindexing the
remaining rows and columns by [m], preserving their order.
Definition 4.6 The multiplicitous patterns are those in the set

MPatt = {12543, 13254, 13524, 13542, 21543, 125364, 125634, 215364, 215634,
315264, 315624, 315642}.

Theorem 4.7 Let w ∈ Sn. Then D(w) does not contain any instance of configuration A, B,
or B′ if and only if w avoids all of the multiplicitous patterns.

Proof It is easy to check (see Fig. 2) that each of the twelve multiplicitous patterns contains
an instance of configuration A, B, or B′. Lemma 4.5 implies that if w contains σ ∈ MPatt,
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then deleting some rows and columns from D(w) yields D(σ ). Since D(σ ) contains at least
one instance of configuration A, B, or B′, so does D(w).

Conversely, assume D(w) contains at least one instance of configuration A, B, or B′. We
must show that w contains some multiplicitous pattern. Let τ 1, τ 2, . . . , τ n be the n patterns
of length n − 1 contained in w; say τ j is realized in w by forgetting w j . Without loss of
generality, we may assume none of D(τ 1), . . . , D(τ n) contain an instance of configuration
A, B, or B′: if D(τ j ) does contain an instance of one of these configurations, replace w by
τ j and iterate.

For each j , D(τ j ) is obtained from D(w) by deleting row j and column w j . Since
D(τ j ) does not contain any instance of any of our three configurations, each cross {( j, q) |
( j, q) ∈ D(w)}∪{(p, w j ) | (p, w j ) ∈ D(w)} intersects each instance of every configuration
contained in D(w). However, an instance of configurationA involves only three rows and two
columns, and an instance of B or B′ involves only four rows and two columns. Thus, it must
be that w ∈ Sn for some n ≤ 6. It can be checked by exhaustion that the only permutations
in Sn with n ≤ 6 that are minimal (with respect to pattern avoidance) among those whose
Rothe diagrams contain an instance of configuration A, B, or B′ are the twelve multiplicitous
patterns.

We are now ready to state our full characterization of zero-one Schubert polynomials, and
most of the elements of the proof are at hand.

Theorem 4.8 The following are equivalent:

(i) The Schubert polynomial Sw is zero-one.
(ii) The permutation w is multiplicity-free,
(iii) The Rothe diagram D(w) does not contain any instance of configuration A, B, or B′,
(iv) The permutation w avoids the multiplicitous patterns, namely 12543, 13254, 13524,

13542, 21543, 125364, 125634, 215364, 215634, 315264, 315624, and 315642.

Proof Theorem 3.6 shows (i i) ⇒ (i). Theorem 4.4 shows (i i i) ⇒ (i i). Theorem 4.7 shows
(i i i) ⇔ (iv). The implication (i) ⇒ (iv) will follow immediately from Corollary 5.9, since
the Schubert polynomials associated to the permutations 12543, 13254, 13524, 13542, 21543,
125364, 125634, 215364, 215634, 315264, 315624, and 315642 each have a coefficient equal
to 2. We prove Corollary 5.9 in the next section.

5 A coefficient-wise inequality for dual characters of flaggedWeyl
modules of diagrams

The aim of this section is to prove a generalization of Theorem 1.2, namely, Theorem 5.8.
We now explain the necessary background and terminology for Theorem 5.8 and its proof.

Let G = GL(n, C) be the group of n × n invertible matrices over C and B be the
subgroup of G consisting of the n × n upper-triangular matrices. The flagged Weyl module
is a representationMD of B associated to a diagram D. The dual character ofMD has been
shown in certain cases to be a Schubert polynomial [8] or a key polynomial [16]. We will
use the construction ofMD in terms of determinants given in [13].

Denote by Y the n × n matrix with indeterminates yi j in the upper-triangular positions
i ≤ j and zeros elsewhere. Let C[Y ] be the polynomial ring in the indeterminates {yi j }i≤ j .
Note that B acts on C[Y ] on the right via left translation: if f (Y ) ∈ C[Y ], then a matrix
b ∈ B acts on f by f (Y ) · b = f (b−1Y ). For any R, S ⊆ [n], let Y R

S be the submatrix of Y
obtained by restricting to rows R and columns S.
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For R, S ⊆ [n], we say R ≤ S if #R = #S and the kth least element of R does not
exceed the kth least element of S for each k. For any diagrams C = (C1, . . . ,Cn) and
D = (D1, . . . , Dn), we say C ≤ D if C j ≤ Dj for all j ∈ [n].
Definition 5.1 For a diagram D = (D1, . . . , Dn), the flagged Weyl moduleMD is defined
by

MD = SpanC

⎧

⎨

⎩

n
∏

j=1

det
(

Y
C j
D j

)

| C ≤ D} .

MD is a B-module with the action inherited from the action of B on C[Y ].
Note that since Y is upper-triangular, the condition C ≤ D is technically unnecessary

since det
(

Y
C j
D j

)

= 0 unless C j ≤ Dj . Conversely, if C j ≤ Dj , then det
(

Y
C j
D j

)

�= 0.

For any B-module N , the character of N is defined by char(N )(x1, . . . , xn) =
tr (X : N → N ) where X is the diagonal matrix diag(x1, x2, . . . , xn) with diagonal entries
x1, . . . , xn , and X is viewed as a linear map from N to N via the B-action. Define the dual
character of N to be the character of the dual module N∗:

char∗(N )(x1, . . . , xn) = tr
(

X : N∗ → N∗)

= char(N )(x−1
1 , . . . , x−1

n ).

A special case of dual characters of flagged Weyl modules of diagrams are Schubert
polynomials:

Theorem 5.2 [8] Let w be a permutation, D(w) be the Rothe diagram of w, andMD(w) be
the associated flagged Weyl module. Then,

Sw = char∗MD(w).

Another special family of dual characters of flagged Weyl modules of diagrams, for so-
called skyline diagrams of compositions, are key polynomials [3].

Definition 5.3 For a diagram D ⊆ [n]× [n], let χD = χD(x1, . . . , xn) be the dual character

χD = char∗MD .

We now work towards proving Theorem 5.8. We start by reviewing some material from
[4] for the reader’s convenience. We then derive several lemmas that simplify the proof of
Theorem 5.8.

Theorem 5.4 (cf. [4, Theorem 7]) For any diagram D ⊆ [n]×[n], the monomials appearing
in χD are exactly

⎧

⎨

⎩

n
∏

j=1

∏

i∈C j

xi | C ≤ D

⎫

⎬

⎭

.

Proof (Following that of [4,Theorem7])Denote by X the diagonalmatrix diag(x1, x2, . . . , xn).
First, note that yi j is an eigenvector of X with eigenvalue x−1

i . Take a diagram C =
(C1, . . . ,Cn) with C ≤ D. Then, the element

∏n
j=1 det

(

Y
C j
D j

)

is an eigenvector of X

with eigenvalue
∏n

j=1
∏

i∈C j
x−1
i . Since MD is spanned by elements

∏n
j=1 det

(

Y
C j
D j

)

and

each is an eigenvector of X , the monomials appearing in the dual character χD are exactly
{

∏n
j=1

∏

i∈C j
xi | C ≤ D} .
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Corollary 5.5 Let D ⊆ [n] × [n] be a diagram. Fix any diagram C (1) ≤ D and set

m =
n

∏

j=1

∏

i∈C(1)
j

xi .

Let C (1), . . . ,C (r) be all the diagrams C such that C ≤ D and
∏n

j=1
∏

i∈C j
xi = m. Then,

the coefficient of m in χD is equal to

dim

⎛

⎝SpanC

⎧

⎨

⎩

n
∏

j=1

det

(

Y
C(i)

j
D j

)

| i ∈ [r ]}
⎞

⎠ .

Proof The coefficient of m in χD equals the dimension of the eigenspace of m−1 in MD

(m−1 occurs here instead of m since χD is the dual character of MD). This eigenspace
equals

SpanC

⎧

⎨

⎩

n
∏

j=1

det

(

Y
C(i)

j
D j

)

| i ∈ [r ]
⎫

⎬

⎭

,

so the result follows.

The understanding of the coefficients of the monomials of χD given in Corollary 5.5 is
key to our proof of Theorem 5.8. We set up some notation now.

Given diagrams C, D ⊆ [n] × [n] and k, l ∈ [n], let ̂C and ̂D denote the diagrams
obtained from C and D by removing any boxes in row k or column l. Fix a diagram D. For
each diagram ̂C , let

̂Caug = ̂C ∪ {(k, i) | (k, i) ∈ D} ∪ {(i, l) | (i, l) ∈ D} ⊆ [n] × [n].
The following lemma is immediate and its proof is left to the reader.

Lemma 5.6 Let C, D ⊆ [n] × [n] be diagrams and k, l ∈ [n]. If ̂C ≤ ̂D, then ̂Caug ≤ D.
In particular, every diagram C ′ ≤ ̂D with no boxes in row k can be obtained from some
diagram C ≤ D by removing any boxes in row k or column l from C.

The following result is our key lemma. For a polynomial f ∈ Z[x1, . . . , xn] and a mono-
mial m, let [m] f denote the coefficient of m in f .

Lemma 5.7 Fix a diagram D and k, l ∈ [n]. Let {̂C (i)}i∈[m] be a set of diagrams

with ̂C (i) ≤ ̂D for each i , and denote ̂C (i)
aug by C (i) for i ∈ [m]. If the polyno-

mials

{

∏

j∈[n] det
(

Y
C(i)

j
D j

)}

i∈[m]
are linearly dependent, then so are the polynomials

{

∏

j∈[n]\{l} det
(

Y
̂C(i)
j

̂Dj

)}

i∈[m]
.

Proof We are given that

∑

i∈[m]
ci

∏

j∈[n]
det

(

Y
C(i)

j
D j

)

= 0 (2)
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for some constants (ci )i∈[m] ∈ C
m not all zero. Since C (i) = ̂C (i)

aug for ̂C (i) ≤ ̂D we have that

C (i)
l = Dl for every i ∈ [m]. Thus, (2) can be rewritten as

det
(

Y Dl
Dl

)

⎛

⎝

∑

i∈[m]
ci

∏

j∈[n]\{l}
det

(

Y
C(i)

j
D j

)

⎞

⎠ = 0. (3)

However, since det
(

Y Dl
Dl

)

�= 0, we conclude that

∑

i∈[m]
ci

∏

j∈[n]\{l}
det

(

Y
C(i)

j
D j

)

= 0. (4)

First consider the case that the only boxes of D in row k or column l are those in Dl . If
this is the case then

∏

j∈[n]\{l}
det

(

Y
̂C(i)
j

̂Dj

)

=
∏

j∈[n]\{l}
det

(

Y
C(i)

j
D j

)

(5)

for each i ∈ [m]. Therefore,
∑

i∈[m]
ci

∏

j∈[n]\{l}
det

(

Y
̂C(i)
j

̂Dj

)

=
∑

i∈[m]
ci

∏

j∈[n]\{l}
det

(

Y
C(i)

j
D j

)

. (6)

Combining (4) and (6) we obtain that the polynomials

{

∏

j∈[n]\{l} det
(

Y
̂C(i)
j

̂Dj

)}

i∈[m]
are

linearly dependent, as desired.
Now, suppose that there are boxes of D in row k that are not in Dl . Let j1 < · · · < jp be

all indices j �= l such that Dj = ̂Dj ∪ {k}. Then also C (i)
jq

= ̂C (i)
jq

∪ {k} for each i ∈ [m] and
q ∈ [p]. Let us consider the left-hand side of (4) as a polynomial in ykk . Then, (4) implies
that the coefficient of y pkk is 0:

[y pkk]
∑

i∈[m]
ci

∏

j∈[n]\{l}
det

(

Y
C(i)

j
D j

)

= 0. (7)

However,

[y pkk]
∏

j∈[n]\{l}
det

(

Y
C(i)

j
D j

)

=
∏

j∈[n]\{l}
det

(

Y
̂C(i)
j

̂Dj

)

, (8)

as is seen by Laplace expansion on the kth row, and therefore

[y pkk]
∑

i∈[m]
ci

∏

j∈[n]\{l}
det

(

Y
C(i)

j
D j

)

=
∑

i∈[m]
ci

∏

j∈[n]\{l}
det

(

Y
̂C(i)
j

̂Dj

)

. (9)

Thus, (7) and (9) imply that

∑

i∈[m]
ci

∏

j∈[n]\{l}
det

(

Y
̂C(i)
j

̂Dj

)

= 0, (10)

as desired.

We now state and prove Theorem 1.2 and its generalization Theorem 5.8.
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Theorem 5.8 Fix a diagram D ⊆ [n] × [n] and let ̂D be the diagram obtained from D by
removing any boxes in row k or column l. Then

χD(x1, . . . , xn) = M(x1, . . . , xn)χ̂D(x1, . . . , xk−1, 0, xk+1, . . . , xn) + F(x1, . . . , xn),

where F(x1, . . . , xn) ∈ Z≥0[x1, . . . , xn] and

M(x1, . . . , xn) =
⎛

⎝

∏

(k,i)∈D
xk

⎞

⎠

⎛

⎝

∏

(i,l)∈D
xi

⎞

⎠ .

Proof Let M = M(x1, . . . , xn). We must show that [Mm]χD ≥ [m]χ
̂D for each monomial

m of χ
̂D not divisible by xk . Let C (1), . . . ,C (r) be all the diagrams C such that C ≤ D and

∏n
j=1

∏

i∈C j
xi = Mm. By Corollary 5.5,

[Mm]χD = dim

⎛

⎝SpanC

⎧

⎨

⎩

n
∏

j=1

det

(

Y
C(i)

j
D j

)

| i ∈ [r ]}
⎞

⎠ .

Let 1, 2, . . . , q be the indices of the distinct diagrams among ̂C (1), . . . , ̂C (r). By Lemma 5.6,
̂C (1), . . . , ̂C (q) are all the diagrams C such that C ≤ ̂D and

∏n
j=1

∏

i∈C j
xi = m, as no

diagram with this dual eigenvalue can have a box in row k. So Corollary 5.5 implies that

[m]χ
̂D = dim

⎛

⎝SpanC

⎧

⎨

⎩

n
∏

j=1

det

(

Y
̂C(i)
j

̂Dj

)

| i ∈ [q]}
⎞

⎠ .

Finally, Lemma 5.7 implies that

dim

⎛

⎝SpanC

⎧

⎨

⎩

n
∏

j=1

det

(

Y
C(i)

j
D j

)

| i ∈ [r ]
⎫

⎬

⎭

⎞

⎠ ≥ dim

⎛

⎝SpanC

⎧

⎨

⎩

n
∏

j=1

det

(

Y
̂C(i)
j

̂Dj

)

|i ∈ [q]
⎫

⎬

⎭

⎞

⎠ ,

so [Mm]χD ≥ [m]χ
̂D for each monomial m of χ

̂D not divisible by xk ; that is

χD(x1, . . . , xn) − Mχ
̂D(x1, . . . , xk−1, 0, xk+1, . . . , xn) ∈ Z≥0[x1, . . . , xn].

1.2 Fix w ∈ Sn and let σ ∈ Sn−1 be the pattern with Rothe diagram D(σ ) obtained by
removing row k and column wk from D(w). Then

Sw(x1, . . . , xn) = M(x1, . . . , xn)Sσ (x1, . . . , x̂k, . . . , xn) + F(x1, . . . , xn), (11)

where F ∈ Z≥0[x1, . . . , xn] and

M(x1, . . . , xn) =
⎛

⎝

∏

(k,i)∈D(w)

xk

⎞

⎠

⎛

⎝

∏

(i,wk )∈D(w)

xi

⎞

⎠ .

Proof Specialize Theorem 5.8 to the case that D is a Rothe diagram D(w) and l = wk . The
dropping of xk is due to reindexing, since the entirety of row k and column wk of D(w) are
removed from to obtain D(σ ), not just the boxes in row k and column wk .

Corollary 5.9 Fix w ∈ Sn and let σ ∈ Sm be any pattern contained in w. If k is a coefficient
of a monomial in Sσ , then Sw contains a monomial with coefficient at least k.

Proof Immediate consequence of repeated applications of Theorem 1.2.
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