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On the Support of Grothendieck
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Abstract. Grothendieck polynomials Gw of permutations w ∈ Sn were
introduced by Lascoux and Schützenberger (C R Acad Sci Paris Sér I
Math 295(11):629–633, 1982) as a set of distinguished representatives for
the K-theoretic classes of Schubert cycles in the K-theory of the flag va-
riety of C

n. We conjecture that the exponents of nonzero terms of the
Grothendieck polynomial Gw form a poset under componentwise com-
parison that is isomorphic to an induced subposet of Zn. When w ∈ Sn

avoids a certain set of patterns, we conjecturally connect the coefficients
of Gw with the Möbius function values of the aforementioned poset with
0̂ appended. We prove special cases of our conjectures for Grassmannian
and fireworks permutations
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1. Introduction

Grothendieck polynomials Gw are multivariate polynomials associated to per-
mutations w ∈ Sn. Grothendieck polynomials were introduced by Lascoux
and Schützenberger [24] as a set of distinguished representatives for the K-
theoretic classes of Schubert cycles in the K-theory of the flag variety of C

n.
The lowest degree component of Gw is the Schubert polynomial Sw. Schubert
polynomials have many combinatorial constructions and are well-understood
[1,2,10,11,13,15,16,20,23,25,26,31,39]. However, there is not nearly as much
known combinatorially or discrete-geometrically about Grothendieck polyno-
mials. A recent flurry of work [4,5,9,29,32,34,38] has uncovered novel formulas
and perspectives on Grothendieck polynomials.

The main objective of this paper is to shed light on the combinatorial
structure of the support of Grothendieck polynomials. While there have been
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recent breakthroughs in the degree of Grothendieck polynomials [29,34,35],
much less is known about the structure of the support. The support has previ-
ously been conjecturally connected to generalized permutahedra via flow poly-
topes [30, Conjecture 5.1], and via the Lorentzian property [20, Conjecture
22]. In this paper, we give a new poset theoretic perspective on the support of
any Grothendieck polynomial.

1.1. Supports of Grothendieck Polynomials

For a permutation w ∈ Sn, the support of Gw is the set of exponents of terms
in Gw with nonzero coefficient. We endow the support supp(Gw) with the
following poset structure. For α, β ∈ Z

n, define the componentwise comparison
≤ by α ≤ β if αi ≤ βi for all i ∈ [n].

For w = 15324, we have

Gw = (x3
1x2 + x3

1x3 + x2
1x

2
2 + x2

1x2x3 + x1x
3
2 + x1x

2
2x3 + x3

2x3)

− (x3
1x

2
2 + 2x3

1x2x3 + x2
1x

3
2 + 2x2

1x
2
2x3 + 2x1x

3
2x3)

+ (x3
1x

2
2x3 + x2

1x
3
2x3).

The Hasse diagram of supp(Gw) as a poset under componentwise comparison
is shown in Fig. 1.

Conjecture 1.1. If α ∈ supp(Gw) and |α| < degGw, then there exists β ∈
supp(Gw) with α < β.

We prove Conjecture 1.1 for fireworks permutations in Theorem 3.16. A
natural strengthening of Conjecture 1.1 is:

Conjecture 1.2. If α ∈ supp(Gw) and |α| < degGw, then there exists β ∈
supp(Gw) with α < β and |β| = |α| + 1.

We also conjecture that supp(Gw) is closed under taking intervals in
componentwise comparison.

Conjecture 1.3. Fix any w ∈ Sn. If α, γ ∈ supp(Gw), then

{β ∈ Z
n | α ≤ β ≤ γ} ⊆ supp(Gw).

A discrete-geometric strengthening of Conjecture 1.3 is:

Conjecture 1.4. For all w ∈ Sn, Gw has saturated Newton polytope and
Newton(Gw) is a generalized polymatroid.

Figure 1. The Hasse diagram of supp(G15324) under com-
ponentwise comparison (writing exponents (a, b, c, 0, 0) ∈ Z

5

as abc)
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See Sects. 2.3 and 2.4 for definitions and background on saturated Newton
polytopes and generalized polymatroids respectively. The assertion that Gw

always has saturated Newton polytope appeared in [32, Conjecture 5.5].
We note that Conjectures 1.1–1.4 make sense for double Grothendieck

polynomials and Lascoux polynomials, and appear to hold there as well.
Conjectures 1.1–1.4 are related to each other in three ways:

• Conjecture 1.2 implies Conjecture 1.1.
• Conjecture 1.4 implies Conjecture 1.3 via the defining inequalities of gen-

eralized polymatroids (Definition 2.12).
• Conjectures 1.1 and 1.3 together imply Conjecture 1.2.

We also note that via a property of generalized polymatroids ([17, Theorem
14.2.5]), Conjecture 1.4 is implied by [20, Conjecture 22]. Conjecture 1.4 is a
strengthening of [30, Conjecture 5.1].

We prove Conjectures 1.1–1.4 for Grassmannian permutations in Theo-
rem 3.19. In Theorem 3.6, we provide a polytope containing the Newton poly-
tope Newton(Gw). Assuming Conjectures 1.1 and 1.4, we characterize when
equality with the Newton polytope occurs in Proposition 3.20.

1.2. Coefficients of Grothendieck Polynomials

In Definition 4.1, we define a poset Pw ⊆ Z
n (under componentwise com-

parison) containing supp(Gw). It appears for permutations whose Schubert
polynomial Sw has all nonzero coefficients equal 1, that the coefficients of Gw

agree with the Möbius function of Pw:

Conjecture 1.5. Let w be a permutation such that all nonzero coefficients of
Sw equal 1. If μw is the Möbius function of Pw, then

Gw = −
∑

α∈Pw−0̂

μw(0̂, α)xα.

Conjecture 1.5 has now been proved by Pechenik and Satriano [33].
It is known that all nonzero coefficients of Sw equal 1 exactly when w

avoids the patterns 12543, 13254, 13524, 13542, 21543, 125364, 125634, 215364,
215634, 315264, 315624, and 315642 ([12, Theorem 4.8]). We conjecture one
final property connecting the poset structure of supp(Gw) to the coefficients
of Gw. Let Gtop

w denote the top degree homogeneous component of Gw.

Conjecture 1.6. Fix w ∈ Sn and let Gw =
∑

α∈Zn Cwαxα. For any β ∈
supp(Gtop

w ),
∑

α≤β

Cwα = 1.

When the poset supp(Gw) has a unique maximum element, Conjecture
1.6 coincides with the principal specialization Gw(1, . . . , 1). While we could not
locate the original source in the literature, it is well-known that Gw(1, . . . , 1) =
1 (see for instance [21, Comment 3.2], and the recent [37, Corollary 3.15]). We
provide a proof in Proposition 4.4 for completeness, concluding a special case
of Conjecture 1.6. We have tested Conjectures 1.1–1.6 for all w ∈ S8.
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1.3. Current Status of the Conjectures

Proofs of Conjectures 1.1–1.3 for vexillary permutations are given in [19,
Proposition 3.1, Theorem 3.4]. Conjecture 1.2 was proven for inverse fireworks
permutations in [8]. Conjecture 1.4 was proven for permutations w whose Schu-
bert polynomial has all nonzero coefficients equal to 1 in [6, Theorem B]. Con-
jectures 1.1, 1.2, and 1.6 was proven for permutations w whose Grothendieck
polynomial has all nonzero coefficients equal to 1 in [7, Theorem 1.10].

Finally, as Conjecture 1.1 and 1.3 together imply Conjecture 1.2, com-
bining Theorem 3.16 and [6, Theorem B] gives Conjecture 1.2 for fireworks
permutations w whose Schubert polynomial has all nonzero coefficients equal
to 1.

The above discussion is summarized in the following table.

Conjecture 1.1 Fireworks (Theorem 3.16)
Everything for which Conjecture 1.2 holds

Conjecture 1.2 Grassmannian (Theorem 3.19)
Vexillary [19, Proposition 3.1]
Inverse fireworks [8]
Zero-one Grothendieck [7, Theorem 1.10]
Fireworks zero-one Schubert (Theorem 3.16 and
[6, Theorem B])

Conjecture 1.3 Vexillary [19, Theorem 3.4]
Everything for which Conjecture 1.4 holds

Conjecture 1.4 Zero-one Schubert [6, Theorem B]
Grassmannian (Theorem 3.19)

Conjecture 1.5 Fully proven [33]
Conjecture 1.6 Zero-one Grothendieck [7, Thm 1.10]

1.4. Outline of the Paper

Section 2 covers the necessary background for the paper. In Sect. 3 we elab-
orate on Conjectures 1.1–1.4 and prove related results on the support of
Grothendieck polynomials. In Sect. 4 we conjecturally connect the coefficients
of certain Grothendieck polynomials to the Möbius function of a poset. We
conclude by considering the principal specialization of Grothendieck polyno-
mials.

2. Background

2.1. Conventions

For n ∈ N, we use the notation [n] to mean the set {1, 2, . . . , n}. We reserve
lowercase Greek letters α, β, γ, δ, ε for nonnegative integer vectors in R

n; we
opt for t to denote arbitrary vectors in R

n. We write |α| for α1 + · · · + αn. We
use x to represent the collection of variables x1, x2, . . . , xn, so xα denotes the
monomial xα1

1 · · · xαn
n .
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For j ∈ [n−1], sj will denote the adjacent transposition in the symmetric
group Sn swapping j and j + 1. We otherwise represent permutations w ∈ Sn

in one-line notation as a word w(1)w(2) · · · w(n), so w = 312 ∈ S3 is the
permutation that sends 1 �→ 3, 2 �→ 1, and 3 �→ 2. Throughout, we will
take permutations as acting on the right (switching positions, not values). For
example ws1 equals w with the numbers w(1) and w(2) swapped. We write
�(w) for the number of inversions of w.

2.2. Schubert and Grothendieck Polynomials

Definition 2.1. Fix any n ≥ 1. The divided difference operators ∂j for j ∈ [n−1]
are operators on the polynomial ring Z[x1, . . . , xn] defined by

∂j(f) =
f − (sj · f)
xj − xj+1

=
f(x1, . . . , xn) − f(x1, . . . , xj−1, xj+1, xj , xj+2, . . . , xn)

xj − xj+1
.

The isobaric divided difference operators ∂j are defined on Z[x1, . . . , xn] by

∂j(f) = ∂j((1 − xj+1)f).

Definition 2.2. The Schubert polynomial Sw of w ∈ Sn is defined recursively on
the weak Bruhat order. Let w0 = n n−1 · · · 2 1 ∈ Sn, the longest permutation
in Sn. If w �= w0 then there is j ∈ [n − 1] with w(j) < w(j + 1) (called an
ascent of w). The polynomial Sw is defined by

Sw =

{
xn−1
1 xn−2

2 · · · xn−1 if w = w0,

∂jSwsj
if w(j) < w(j + 1).

Definition 2.3. The Grothendieck polynomial Gw of w ∈ Sn is defined analo-
gously to the Schubert polynomial, with

Gw =

{
xn−1
1 xn−2

2 · · · xn−1 if w = w0,

∂jGwsj
if w(j) < w(j + 1).

It can be seen from the recursive definitions that Sw is homogeneous of
degree equal to �(w), and equals the lowest-degree nonzero homogeneous com-
ponent of Gw. See [27] for a deeper introduction to Schubert polynomials. We
now recall pipe dreams, one of many combinatorial constructions of Schubert
and Grothendieck polynomials.

Definition 2.4. A pipe dream for w ∈ Sn is a tiling of an n × n matrix with
crosses and elbows such that

• All tiles in the weak south-east triangle are elbows, and
• If you write 1, 2, . . . , n on the top left-to-right and follow the strands

(treating second crossings among the same strands as elbows instead),
they come out on the left edge and read w from top to bottom.

A pipe dream is reduced if no two strands cross twice. Let RPD(w) and PD(w)
denote respectively the sets of reduced pipe dreams of w and all pipe dreams
of w.
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Figure 2. The set PD(1432). Second crossing of strands are
shown in green

Theorem 2.5 ([1,14,15]). For any permutation w ∈ Sn,

Sw =
∑

P∈RPD(w)

xwt(P ) and Gw =
∑

P∈PD(w)

(−1)#crosses(P )−�(w)xwt(P )

where wt(P )i = #crosses in row i of P .

Example 2.6. The pipe dreams of w = 1432 are shown in Fig. 2.

Pipe dreams also carry additional geometric structure, which we utilize
in Sect. 4.

Theorem 2.7 ([22]). For any w ∈ Sn, there is a simplicial complex Δw whose
faces correspond to pipe dreams {PD(v) : v ≥ w} and whose face inclusions
correspond to reverse inclusion of cross tiles. The dimension of Δw is

(
n
2

) −
�(w) − 1. The facets of Δw correspond to reduced pipe dreams RPD(w) of w.
The interior faces of Δw correspond to PD(w). The boundary of Δw is the
union of all complexes Δv where v > w.

Above, ≥ and > denotes the strong Bruhat order; we refer to [3] for
background.

Theorem 2.8 ([22, Corollary 3.8]). The simplicial complex Δw of w ∈ Sn is a
ball whenever w �= w0, and Δw0 is empty.

Example 2.9. When w = 1432, Δw is shown in Fig. 3 (with faces labeled by
their pipe dream).
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Figure 3. The simplicial complex Δ1432. The colored regions
indicate pipe dreams corresponding to a particular permuta-
tion

2.3. Support and Newton Polytopes of Polynomials

The support of a polynomial f =
∑

α∈Zn cαxα ∈ R[x1, . . . , xn] is the set

supp(f) = {α | cα �= 0} ⊂ Z
n.

The Newton polytope of f , denoted Newton(f), is the convex hull of supp(f).
When

Newton(f) ∩ Z
n = supp(f),

f is said to have saturated Newton polytope, abbreviated SNP.

2.4. Generalized Permutahedra and Generalized Polymatroids

A function z : 2[n] → R is called submodular if

z(I) + z(J) ≥ z(I ∪ J) + z(I ∩ J) for all I, J ⊆ [n].

Similarly, z is called supermodular if −z is submodular.

Definition 2.10. A polytope P ⊂ R
n is a generalized permutahedron if there is

a submodular function z such that

P =

{
t ∈ R

n
∣∣

∑

i∈I

ti ≤ z(I) for all I ⊆ [n] and
n∑

i=1

ti = z([n])

}
.
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Definition 2.11. A pair (y, z) of functions 2[n] → R is called a paramodular
pair if y is supermodular, z is submodular, and

z(I) − y(J) ≥ z(I \ J) − y(J \ I) for all I, J ⊆ [n].

Definition 2.12. A polytope Q ⊂ R
n is called a generalized polymatroid if there

is a paramodular pair (y, z) such that

Q =

{
t ∈ R

n
∣∣ y(I) ≤

∑

i∈I

ti ≤ z(I) for all I ⊆ [n]

}
.

Generalized permutahedra are special cases of generalized polymatroids.

Lemma 2.13 ([17, Theorem 14.2.8]). Let Q ⊆ R
n be a generalized polymatroid

with paramodular pair (y, z). Then y and z are uniquely determined from Q
as

y(I) = min

{
∑

i∈I

qi

∣∣ q ∈ Q

}
and z(I) = max

{
∑

i∈I

qi

∣∣ q ∈ Q

}
.

Lemma 2.14 ([17, Theorem 14.2.10]). If Q is a generalized polymatroid de-
fined by an integral paramodular pair (y, z), then Q is an integral polyhedron.
Furthermore, there are always integral optimizers for

min

{
∑

i∈I

qi

∣∣ q ∈ Q

}
and max

{
∑

i∈I

qi

∣∣ q ∈ Q

}
.

The following proposition is immediate from [18, Theorem 1].

Proposition 2.15. If Q,Q′ ⊂ R
n are generalized polymatroids, then so is Q +

Q′.

2.5. Diagrams

By a diagram, we mean a sequence

D = (D1,D2, . . . , Dn)

of finite subsets of [n], called the columns of D. We interchangeably think of
D as a collection of boxes (i, j) in a grid, viewing an element i ∈ Dj as a
box in row i and column j of the grid. When we draw diagrams, we read the
indices as in a matrix: i increases top-to-bottom and j increases left-to-right.
Associated to any permutation w ∈ Sm is the Rothe diagram D(w), defined
by

D(w) = {(i, j) ∈ [n] × [n] | i < w−1(j) and j < w(i)}.

For R,S ⊆ [n], we write R � S if #R = #S and the kth least element
of R does not exceed the kth least element of S for each k. For any diagrams
C = (C1, . . . , Cn) and D = (D1, . . . , Dn), we say C � D if Cj � Dj for all
j ∈ [n].
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2.6. Matroids and Polytopes

A matroid M is a pair (E,B) consisting of a finite set E and a nonempty
collection of subsets B of E, called the bases of M . B is required to satisfy
the basis exchange axiom: If B1, B2 ∈ B and b1 ∈ B1 − B2, then there exists
b2 ∈ B2−B1 such that B1−b1∪b2 ∈ B. By choosing a labeling of the elements
of E, we always assume E = [n] for some n.

Given a matroid M = (E,B) with E = [n] and a basis B ∈ B, let ζB be
the indicator vector of B. That is, let ζB = (ζB

1 , . . . , ζB
n ) ∈ R

n with ζB
i = 1

if i ∈ B and ζB
i = 0 if i /∈ B for each i. The matroid polytope of M is the

polytope

P (M) = Conv{ζB : B ∈ B}.
Any set S ⊆ [n] with S ⊇ B for B ∈ B is called a spanning set of M .

The spanning set polytope Psp(M) is the polytope

Psp(M) = Conv{ζS | S ⊆ [n] is a spanning set of M}.

The rank function of M is the function

r : 2E → Z≥0

defined by r(S) = max{#(S ∩B) : B ∈ B}. The sets S ∩B where S ⊆ [n] and
B ∈ B are called the independent sets of M .

The following result is well-known, see for instance [17,36].

Proposition 2.16. For any matroid M on ground set [n], P (M) is a generalized
permutahedron and Psp(M) is a generalized polymatroid.

As a generalized permutahedron, a matroid polytope is parameterized by
the (submodular) rank function r of the underlying matroid:

P (M) =

{
t ∈ R

n
∣∣

∑

i∈I

ti ≤ r(I) for I ⊆ E, and
∑

i∈E

ti = r(E)

}
.

As a generalized polymatroid, a spanning set polytope is parameterized by

Psp(M) =

{
t ∈ R

n
∣∣ r(E) − r(E \ I) ≤

∑

i∈I

ti ≤ |I| for all I ⊆ E

}
.

Definition 2.17. Fix positive integers 1 ≤ c1 < · · · < cr ≤ n. The sets
{a1, . . . , ar} of positive integers with a1 < · · · < ar such that a1 ≤ c1, . . . , ar ≤
cr are the bases of a matroid (with ground set [n]), called the Schubert matroid
SMn(c1, . . . , cr).

Theorem 2.18 ([11, Theorem 11]). For any permutation w ∈ Sn with Rothe
diagram D(w) = (D1, . . . , Dn),

Newton(Sw) =
n∑

j=1

P (SMn(Dj)).

In particular, each α ∈ supp(Sw) can be written as a sum

α = α(1) + · · · + α(n)
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Figure 4. The Schubert matroid polytope decomposition of Newton(S21543)

where α(j) is the indicator vector of a basis of SMn(Dj).

Example 2.19. Consider the permutation w = 21543. Then

The Minkowski sum decomposition of Newton(S21543) is shown in Fig. 4.

3. Supports of Grothendieck Polynomials for Certain Classes of
Permutations

For a permutation w ∈ Sn, recall the support of the Grothendieck polynomial
of w is the set supp(Gw) of exponents of terms in Gw with nonzero coefficient.
We endow supp(Gw) with the following poset structure.

Definition 3.1. For α, β ∈ Z
n, define the componentwise comparison ≤ by

α ≤ β if αi ≤ βi for all i ∈ [n].

We study the subsets supp(Gw) ⊂ Z
n with the inherited poset structure.

Example 3.2. For w = 15324, we have
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Figure 5. Black: The Hasse diagram of supp(G15324) (writ-
ing exponents (a, b, c, 0, 0) ∈ Z

5 as abc); cf. Fig. 1.
Red: Elements of (Psp(SM3({2, 3})) + Psp(SM2({2})) +
Psp(SM2({2}))) ∩ Z

3 not in supp(G15324)

Sw = x3
1x2 + x3

1x3 + x2
1x

2
2 + x2

1x2x3 + x1x
3
2 + x1x

2
2x3 + x3

2x3,

Gw = Sw − (x3
1x

2
2 + 2x3

1x2x3 + x2
1x

3
2 + 2x2

1x
2
2x3 + 2x1x

3
2x3)

+ (x3
1x

2
2x3 + x2

1x
3
2x3).

The Hasse diagram of supp(Gw) as a poset under componentwise comparison
is shown in black in Fig. 5 (cf. also Figure 1).

We first present two known properties of the posets supp(Gw).

Lemma 3.3. Fix any permutation w ∈ Sn. For each β ∈ supp(Gw), with |β| >
�(w), there is α ∈ supp(Gw) with α ≤ β and |α| = |β| − 1.

Proof. Choose any pipe dream P of w with weight β. Since |β| > �(w), P is
not reduced. Removing any single second crossing in P yields a pipe dream P ′

whose weight α satisfies the conditions of the lemma. �
For any diagram D ⊆ [n]2, define the weight of D to be the vector

wt(D) ∈ Z
n whose ith component counts the number of boxes in row i of D.

Definition 3.4. For any diagram D, the upper closure D is the diagram

D = {(i, j) | j = j′ and i ≤ i′ for some (i′, j′) ∈ D}.

Theorem 3.5. ([29, Theorem 1.2]) For any permutation w ∈ Sn,

wt(D(w)) ≥ α for all α ∈ supp(Gw).

Consequently,

degGw ≤ #D(w).

The following theorem gives a polytopal interpretation for Theorem 3.5.
For the Minkowski sum below, we use the natural inclusions R

k−1 → R
k by

appending a zero.

Theorem 3.6. Let w ∈ Sn be any permutation and let D(w) have columns
D1, . . . , Dn. Set dj = max(Dj), taking max(∅) = 0. Then,

Newton(Gw) ⊆
n∑

j=1

Psp(SMdj
(Dj)).
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Proof. Let α ∈ supp(Gw). By repeated use of Lemma 3.3, we can write α =
β + γ where β ∈ supp(Sw) and γ ≥ 0. By Theorem 2.18, we can find a
decomposition

β = β(1) + · · · + β(n)

where each β(j) is the indicator vector of a basis of SMn(Dj).
Let δ = wt(D(w)), and note that

δ = δ(1) + · · · + δ(n)

where δ(j) is the indicator vector in R
n of Dj = [dj ]. Let A be the n×n matrix

with columns δ(j). Equivalently, Ai,j = 1 if and only if (i, j) ∈ D(w).
Observe that β

(j)
i = 1 means Aij = 1. Call the entry (i, j) of A marked

if β
(j)
i = 1. Fix any i ∈ [n]. Since γi ≥ 0, we have βi ≤ αi, so δi − βi ≥ δi − αi.

Since δi − βi is the number of unmarked entries of A in row i, there are at
least δi − αi unmarked entries in row i of A.

For each p ∈ [n], pick any δi − αi unmarked entries in row i of A. Set all
these entries to 0 to get a new matrix B. Let ε(j) be the jth column of B for
each j ∈ [n]. By construction,

ε(1) + · · · + ε(n) = δ − (δ − α) = α.

From the use of marked entries, we see that δ(j) ≥ ε(j) ≥ β(j) for each j, so
ε(j) ∈ Psp(SMdj

(Dj)). Thus,

α =
n∑

j=1

ε(j) ∈
n∑

j=1

Psp(SMdj
(Dj)).

�
Example 3.7. For w = 15324, the inclusion in Theorem 3.6 is strict, as we
now show. The columns D1, . . . , D5 of D(w) are equal to ∅, {2, 3}, {2}, {2}, ∅
respectively. Compute that

Psp(SM3({2, 3})) = conv{ζ{2,3}, ζ{1,3}, ζ{1,2}, ζ{1,2,3}}
Psp(SM2({2})) = conv{ζ{2}, ζ{1}, ζ{1,2}}.

The polytope Psp(SM3({2, 3}))+Psp(SM2({2}))+Psp(SM2({2})) has 16 integer
points, shown in Figure 5, whereas supp(G15324) has just 14 elements.

We now make two pairs of conjectures describing the support of Grothendieck
polynomials. We provide partial results and describe some implications of the
conjectures.

Theorem 3.5 shows the vector wt(D(w)) is an upper bound (in Z
n) for

supp(Gw). When wt(D(w)) ∈ supp(Gw), it is the unique maximal element.
We conjecture that all maximal elements of supp(Gw) have the same degree.

Conjecture 1.1. If α ∈ supp(Gw) and |α| < degGw, then there exists β ∈
supp(Gw) with α < β.

The following is a natural strengthening of Conjecture 1.1, dual to Lemma
3.3.
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Figure 6. The Rothe diagram of the fireworks permutation
w = 267419853

Conjecture 1.2. If α ∈ supp(Gw) and |α| < degGw, then there exists β ∈
supp(Gw) with α < β and |β| = |α| + 1.

We prove Conjecture 1.1 in the special case of fireworks permutations
by confirming wt(D(w)) ∈ supp(Gw). Conjecture 1.2 is shown for vexillary
permutations in [19, Proposition 4.1].

Definition 3.8 ([34, Definition 3.5]). A permutation w ∈ Sn is called fireworks
if the initial elements of its decreasing runs occur in increasing order.

Example 3.9. Consider w = 267419853. The decreasing runs of w are
2|6|741|9853, so w is fireworks since 2 < 6 < 7 < 9. The Rothe diagram
of w is shown in Fig. 6.

Observe in the previous example that there is a dot directly below the
southmost box in each column of D(w). We show this property characterizes
fireworks permutations.

Proposition 3.10. Let w ∈ Sn and D(w) have columns D1, . . . , Dn. Then w is
fireworks if and only if Dw(j) �= ∅ implies max(Dw(j)) = j − 1.

Proof. First, note that Dw(j) �= ∅ if and only if there is i < j with w(i) > w(j).
In particular when w(j −1) > w(j), the box (j −1, w(j)) is the southmost box
in column w(j) of D(w).

Suppose w is fireworks. If w(j) is initial in a decreasing run of w, then
w(j) > w(i) for all i < j, so Dw(j) = ∅. If w(j) is not initial in a decreasing
run of w, then w(j − 1) > w(j) and we are done.

Conversely, suppose w is not fireworks. Then, we can find a decreasing
run w(i) > w(i + 1) > · · · > w(j − 1) with w(j − 1) < w(j) < w(i). Then
Dw(j) �= ∅, but (j − 1, w(j)) /∈ Dw(j), so max(Dw(j)) < j − 1. �
Definition 3.11 ([34]). The Rajchgot code of w ∈ Sn is the vector rajcode(w) =
(r1, . . . , rn), where rj is defined as follows. Choose an increasing subsequence
of w(j), w(j+1), . . . , w(n) containing w(j) which has greatest length among all
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such subsequences. Let rj be the number of terms from w(j), w(j+1), . . . , w(n)
omitted to form the chosen subsequence.

Theorem 3.12 ([34, Theorem 1.1]). Let w ∈ Sn and rajcode(w) = (r1, . . . , rn).
Then degGw = r1+ · · ·+rn, and in any term order satisfying x1 < x2 < · · · <
xn, the leading term of Gw is a scalar multiple of xrajcode(w).

The following two lemmas describe rajcode(w) when w is a fireworks
permutation.

Lemma 3.13. Let w ∈ Sn be fireworks. The Rajchgot code rajcode(w) = (r1
, . . . , rn) can be read off from w as follows:

ri =

⎧
⎪⎨

⎪⎩

0 if i = n

ri+1 if w(i) < w(i + 1)
ri+1 + 1 if w(i) > w(i + 1)

Proof. Since w is fireworks, one greatest length increasing subsequence of
w(j), w(j + 1), . . . , w(n) (starting with w(j)) consists of w(j) together with
the initial elements of all subsequent decreasing runs. �

Lemma 3.14. When w ∈ Sn is fireworks, rajcode(w) = wt(D(w))

Proof. Let rajcode(w) = (r1, . . . , rn). From Proposition 3.10 and its proof
together with Lemma 3.13 we see that

wt(D(w))i = # of columns of D(w)with a box in any row j ≥ i

= #{j ∈ [n] | w(j) is not initial in a decreasing run of w,

and j ≥ i + 1 = ri.

�

Denote by Gtop
w the highest-degree nonzero homogeneous component of

Gw.

Theorem 3.15. Let w ∈ Sn be fireworks. Then supp(Gtop
w ) = {wt(D(w))}.

Proof. Theorem 3.5 establishes wt(D(w)) as an upper bound for supp(Gw)
(under componentwise comparison). Theorem 3.12 together with Lemma 3.14
show that when w is fireworks,

wt(D(w)) = rajcode(w) ∈ supp(Gtop
w ).

Since no two elements in the support of a homogeneous polynomial can
be componentwise comparable, the theorem follows. �

Theorem 3.16. Conjecture 1.1 holds for fireworks permutations.

We now make one other pair of conjectures, further specifying the poset
structure of supp(Gw).

Conjecture 1.3. Fix any w ∈ Sn. If α, γ ∈ supp(Gw), then

{β ∈ Z
n | α ≤ β ≤ γ} ⊆ supp(Gw).



On the Support of Grothendieck Polynomials

Conjecture 1.4. For all w ∈ Sn, Gw has SNP and Newton(Gw) is a generalized
polymatroid.

We prove Conjectures 1.2 and 1.4 for Grassmannian permutations. We
begin by reviewing the main result of [9]. Recall a permutation w is Grassman-
nian if w has exactly one descent. It is well-known that Grassmannian permu-
tations are in bijection with partitions: when w has a descent at position r, the
corresponding partition λ is given by λ = (w(r) − r, · · · , w(2) − 2, w(1) − 1).

Let λ ∈ Z
n be a partition and consider the Young diagram of λ in

English notation. Set μ(0) = λ. For j ≥ 1, define μ(j) to be μ(j−1) with
a box added to the northmost row r such that the addition still yields a
partition, and μ

(j−1)
r − μ

(0)
r < r − 1. Stop when no such box exists. Let

the resulting partitions be μ(0), . . . , μ(N). For Grassmannian w ∈ Sn corre-
sponding to λ, define Par(w) = {μ(0), . . . , μ(N)}, the partitions constructed
from λ. Recall that dominance order on partitions is defined by ρ � ν if
ρ1 + · · · + ρi ≤ ν1 + · · · + νi for all i and |ρ| = |ν|.

Example 3.17. Let λ = (5, 5, 1, 1). Then we obtain the sequence of partitions

Theorem 3.18 ([9]). Suppose w is a Grassmannian permutation with Par(w) =
{μ(0), . . . , μ(N)}. Then degGw = |μ(N)|, and for 0 ≤ j ≤ N , the support of the
(�(w) + j)th degree homogeneous component of Gw is exactly

{α ∈ Z
n | α ≥ 0 and α � μ(j)}.

In particular, Gw has SNP.

Theorem 3.19. Conjectures 1.2 and 1.4 hold when w is a Grassmannian per-
mutation.

Proof. Let Par(w) = {μ(0), . . . , μ(N)} with λ = μ(0). We first confirm Conjec-
ture 1.2. Let α ∈ supp(Gw) with |α| = �(w) + j < degGw. By Theorem 3.18,
α � μ(j). Let ei be the standard basis vector such that μ(j+1)−μ(j) = ei. Then
α + ei � μ(j+1), so α + ei ∈ supp(Gw). Hence β = α + ei confirms Conjecture
1.2.

We now confirm Conjecture 1.4. Define functions y, z : 2[n] → R by

y(I) = λn + · · · + λn−#I+1 and z(I) = μ
(N)
1 + · · · μ(N)

#I .
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It is straightforward to check that (y, z) is a paramodular pair. Let Q be the
corresponding generalized polymatroid

Q =

{
t ∈ R

n
∣∣ y(I) ≤

∑

i∈I

ti ≤ z(I) for all I ⊆ [n]

}
.

Observe that

min
t∈Newton(Gw)

∑

i∈I

ti = λn + · · · + λn−#I+1 and

max
t∈Newton(Gw)

∑

i∈I

ti = μ
(N)
1 + · · · + μ

(N)
#I ,

so Newton(Gw) ⊆ Q. We prove the opposite inclusion.
Let q ∈ Q ∩ Z

n and |q| = |λ| + j. We must show q � μ(j). We have

y(I) ≤
∑

i∈I

qi =
n∑

i=1

qi −
∑

i/∈I

qi = |λ| + j −
∑

i/∈I

qi,

so that
∑

i/∈I

qi ≤ λ1 + · · · + λn−#I + j = λ1 + · · · + λ#([n]\I) + j.

Replacing [n] \ I with I, we see
∑

i∈I

qi ≤ λ1 + · · · + λ#I + j for all I ⊆ [n]. (1)

Set α to be the vector α = μ(N) − λ, so
∑

i∈I

qi ≤ z(I) = (λ1 + α1) + · · · + (λ#I + α#I) for all I ⊆ [n]. (2)

Fix any k ∈ [n]. Note that j ≤ α1 + · · · + αk. Then (1) shows

μ
(j)
1 + · · · + μ

(j)
k = λ1 + · · · + λk + j ≥ q1 + · · · + qk.

Hence, we have shown q � μ(j). �

The following characterization of equality in Theorem 3.6 would follow
from Conjectures 1.1 and 1.4.

Proposition 3.20. Let w ∈ Sn be any permutation and let D(w) have columns
D1, . . . , Dn. Set dj = max(Dj), taking max(∅) = 0. Assuming Conjectures 1.1
and 1.4 hold, it follows that

degGw = #D(w) if and only if Newton(Gw) =
n∑

j=1

Psp(SMdj
(Dj)).
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Proof. Since, Conjectures 1.1 and 1.3 together imply Conjecture 1.2, we are as-
suming Conjecture 1.2 holds as well. Suppose first that the polyhedral equality
holds. By linearity,

Newton(Gtop
w ) = {wt(D(w))}.

Thus degGw = #D(w).
Conversely, assume degGw = #D(w). By Theorem 3.5, we have Newton

(Gtop
w ) = {wt(D(w))}. Since we are assuming Conjecture 1.4, Gw has SNP and

Newton(Gw) is a generalized polymatroid.
Set Q =

∑n
j=1 Psp(SMdj

(Dj)). By Propositions 2.15 and 2.16, Q is a
generalized polymatroid. Denote its associated paramodular pair by (y, z).
Observe that the integer points of Psp(SMdj

(Dj)) satisfy the conclusions of
Lemma 3.3 and Conjecture 1.2. Then, Lemmas 2.13 and 2.14 imply

y(I) = min

{
∑

i∈I

qi
∣∣ q ∈ Q ∩ Z

n

}
= min

⎧
⎨

⎩
∑

i∈I

qi
∣∣ q ∈ Z

n ∩
n∑

j=1

P (SMn(Dj))

⎫
⎬

⎭

= min

{
∑

i∈I

qi
∣∣ q ∈ Z

n ∩ Newton(Sw)

}
= min

{
∑

i∈I

qi
∣∣ q ∈ Newton(Gw)

}
.

Similarly, Lemmas 2.13 and 2.14 together with Conjecture 1.2 imply

z(I) = max

{
∑

i∈I

qi
∣∣ q ∈ Q ∩ Z

n

}
= max

{
∑

i∈I

qi
∣∣ q = wt(D(w))

}

= max

{
∑

i∈I

qi
∣∣ q ∈ Z

n ∩ Newton(Gtop
w )

}
= max

{
∑

i∈I

qi
∣∣ q ∈ Newton(Gw)

}
.

Thus, the paramodular pairs of Q and Newton(Gw) coincide. Consequently,
Q = Newton(Gw). �

4. Coefficients and Principal Specialization of Grothendieck
Polynomials

For each permutation w, we describe a poset Pw. For certain permutations,
we connect the Möbius function of Pw to the coefficients of the Grothendieck
polynomial Gw. Recall the Möbius function μ of a finite poset P is the unique
function P × P → Z defined by

μ(p, q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if p � q,

1 if p = q,

−
∑

p≤r<q

μ(p, r) if p < q.

Definition 4.1. For each w ∈ Sn, define Pw to be the poset

{β ∈ Z
n | α ≤ β ≤ wt(D(w)) for some α ∈ supp(Gw)},

together with a minimum element denoted 0̂.
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Figure 7. The poset Pw and its Möbius function μw

Conjecture 1.5. Let w be a permutation such that all nonzero coefficients of
Sw equal 1. If μw is the Möbius function of Pw, then

Gw = −
∑

β∈Pw−0̂

μw(0̂, β)xβ .

Conjecture 1.5 has now been proved by Pechenik and Satriano [33].

Example 4.2. Set w = 351624. Then wt(D(w)) = (3, 3, 2, 2), and

Gw = (x3
1x

2
2x

2
3 + x2

1x
3
2x

2
3 + x3

1x
3
2x3 + x3

1x
2
2x3x4 + x2

1x
3
2x3x4 + x3

1x
3
2x4

+ x2
1x

3
2x

2
4 + x3

1x
2
2x

2
4) − (2x3

1x
3
2x

2
3 + x3

1x
2
2x

2
3x4 + x2

1x
3
2x

2
3x4 + 3x3

1x
3
2x3x4

+ x2
1x

3
2x3x

2
4 + x3

1x
2
2x3x

2
4 + 2x3

1x
3
2x

2
4) + (2x3

1x
3
2x

2
3x4 + 2x3

1x
3
2x3x

2
4).

The poset Pw and its Möbius function μw are shown in Fig. 7.

The class of permutations covered by Conjecture 1.5 is characterized by
the following result.

Theorem 4.3 ([12, Theorem 4.8]). A permutation w avoids the patterns 12543,
13254, 13524, 13542, 21543, 125364, 125634, 215364, 215634, 315264, 315624,
and 315642 if and only if all nonzero coefficients of Sw equal 1.

We conjecture one last property connecting the poset structure of supp(Gw)
to the coefficients of Gw.

Conjecture 1.6. Fix w ∈ Sn and let Gw =
∑

α∈Zn Cwαxα. For any β ∈
supp(Gtop

w ),
∑

α≤β

Cwα = 1.

When supp(Gw) has a unique maximum element (such as for fireworks
permutations), Conjecture 1.6 specializes to

Gw(1, . . . , 1) = 1.
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The principal specialization of β-Grothendieck polynomials has been previ-
ously considered, for example by Kirillov [21, Comment 3.2] as well as by the
first author of this paper [28]. While we assume that Gw(1, . . . , 1) = 1 for
all w ∈ Sn is well-known to experts, we could not find the original source
of this fact. We include a short proof below based on pipe dream complexes,
essentially a restatement of the proof given in [37, Corollary 3.5].

We recall basic facts about the Euler characteristic of simplicial com-
plexes. Let Δ be any simplicial complex. Denote the interior faces of Δ by
int(Δ), and the boundary faces by bd(Δ). Suppose Δ has fi faces of dimension
i for each i ≥ 0. Recall the Euler characteristic χ(Δ) is the alternating sum

χ(Δ) = f0 − f1 + f2 − f3 + · · ·
It is well-known that χ(Δ) = 1 when Δ is a ball, and that χ(Δ) = 1+(−1)d−1

when Δ is the boundary of a d-dimensional ball. Recall the pipe dream complex
Δw of w ∈ Sn (see Theorem 2.7 and Example 2.9).

Proposition 4.4. ([37, Corollary 3.5]) For any permutation w ∈ Sn,

Gw(1, . . . , 1) = 1.

Proof. Let w ∈ Sn. If w = w0, then clearly the result holds. Otherwise, Theo-
rem 2.8 implies Δw is a ball of dimension d =

(
n
2

) − �(w) − 1. Thus

χ(int(Δw)) = χ(Δw) − χ(bd(Δw)) = 1 − (1 + (−1)d−1) = (−1)d.

From Theorems 2.5 and 2.7, one observes Gw(1, . . . , 1) = (−1)dχ(int(Δw)).
Hence Gw(1, . . . , 1) = 1. �

Alternatively, one can also deduce the preceding result from [28, Lemma
2.3]. Theorem 3.15 yields the following.

Corollary 4.5. Conjecture 1.6 holds for fireworks permutations.
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