Information Signalling with Concurrent Monetary
Incentives in Bayesian Congestion Games

Bryce L. Ferguson, Philip N. Brown, and Jason R. Marden

Abstract—The uncertainty held by a system’s users can cause
ineffective decision making. Nowhere is this more apparent
than in transportation networks, where drivers’ uncertainty over
current road/traffic conditions can negatively alter their opinion
of which route to take. To alleviate this, an informed system
operator may elect to signal information to uninformed users with
the hope of persuading them to take more preferable actions (e.g.,
Google/Apple maps providing live traffic updates). In this work,
we study public signalling mechanisms in the context of Bayesian
congestion games. We find that though revealing information can
reduce system cost in some settings, it can also be detrimental
and cause worse performance than not signalling at all. However,
we find an important relationship between information signalling
and monetary incentives: by utilizing both signalling and incen-
tive mechanisms concurrently, the system operator can guarantee
that revealing information does not worsen performance. We
prove these findings in a general class of Bayesian congestion
games and further exemplify them with analytically characterized
bounds on the change in system cost from signalling in parallel
networks with polynomial latency functions. Finally, we consider
the problem of solving for optimal signals with and without the
concurrent use of monetary incentives of two types: those that
update with the revealed information and those that do not. We
construct solvable optimization problems whose solutions give
optimal signalling policies even when the signalling policy is
limited in its support; we then quantify the benefit of these,
and other, signalling mechanisms in numerical examples.

Index Terms—traffic congestion control, routing decisions,
information design, monetary incentives, game theory

I. INTRODUCTION

HE degree of traffic congestion on highways and roads in

busy city areas is inherently caused by the collective route
choices of the drivers [2]. Though drivers often choose routes
that minimize their own travel time, the system behavior that
emerges from this decision making need not be optimal [3].
This inefficiency can be further exacerbated by drivers’ uncer-
tainty over the state of the system [4], [5], e.g., uncertainty on
current weather conditions, traffic rates, or on-road collisions.
With the deployment of new sensing and communication tech-
nologies (e.g., vehicle-to-device and vehicle-to-infrastructure),
the traffic engineers overseeing these systems gain the oppor-
tunity to learn these unknown system parameters; however,
the effect of revealing this information to drivers is not well
understood.
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The emergence of new sensing and communication tech-
nologies opens the door to new methods for coordinating
driving behavior and improving traffic patterns. One such
method is that of information signalling by a well informed
central authority [6]-[9]. By partially revealing their infor-
mation about system parameters to uninformed users, the
signaller allows the system users the opportunity to form new
beliefs about their environment. If the signaller reveals this
information strategically, they may alter user behavior in such
a way that the overall system performance is improved; for
example, Google/Apple maps can share the travel times of
certain routes to guide driver decision making in a way that
can alter aggregate driving patterns and improve performance
for the user population [10]. One may initially think that all
information should be shared with the users; however, we find
that this need not be optimal and could further degrade system
performance. The main focus of this work is determining what
capabilities a system operator has in improving congestion
via information signalling and identifying when and how this
information should be shared.

We study the principles of information signalling in the
context of Bayesian congestion games, where a group of
users (syn. drivers) must route themselves through a con-
gestable network while the exact congestion characteristics
of each path is unknown. Deterministic congestion games
have been used in the transportation literature to model driver
decision making and its effect on road traffic [2], [11]-
[19]. Recently, Bayesian congestion games have emerged as
a generalized model in which the edge latency functions are
random variables. The users possess a common prior belief
over the random latencies of each route (for example, the
belief there was an accident on a road or the chance weather
has affected driving conditions) but do do not observe the
realization. The informed system operator does observe the
realized values of the random parameters and can strategically
signal information about them to the system users. This model
for uncertain driving conditions has been used to study how
information signalling policies should be designed [20]-[22],
what behavior is likely to emerge [23], [24], and the associated
performance of specific signalling structures [10], [25], [26].
The results are typically limited to computational methods
for finding signalling policies or identifying whether or not
revealing the state exactly is optimal. Additionally, for ease
of analysis, much of the work in this area often assumes the
signals are private (sent to individual users) which does not
give relevant insights on public signals (sent to all users) which
we consider in this work.

Signalling mechanisms are becoming a topic of increasing



research in their ability to influence user behavior, however,
this is not the only influencing mechanism at a system
operator’s disposal. Incentive mechanisms, where users are
assessed monetary penalties or rewards based on their actions,
have long been studied as an effective means of coordinating
system behavior [27]-[31]. In transportation settings, these
incentives may manifest as road/bridge tolls or transit prices.
The interplay between incentives and signalling is an emerging
area of study, and has up until now been limited to studying
mechanisms where users must pay to acquire information
[32]-[34]. To the best of our knowledge, no current work has
studied how monetary incentives and information signalling
can be used concurrently to improve system performance.

In this work, we provide general insights on the bene-
fit information signalling can provide with and without the
concurrent use of monetary incentives. Through example, we
demonstrate two key observations: (1) signalling, on its own,
can worsen system cost, and (2) co-designing signal and
incentive mechanisms offer opportunities for improvement that
were not present when using each separately. In Theorem 1, we
highlight the a benefit of co-designing these mechanisms: with
appropriate monetary incentives, information signalling will
not worsen system performance, essentially making signalling
robust. To further understand the benefit of utilizing both
mechanisms in tandem, in Section IV we focus on the class
of parallel networks with polynomial latency functions and
derive bounds on the possible benefit a signalling policy can
provide with and without concurrent incentives.

Finally, in Section V, we address the problem of finding
optimal signal-incentive pairs, including when the possible
number of signals is bounded. We show how one can create
solvable optimization problems to find the optimal signalling
policies with and without concurrent incentives that may or
may not be allowed to update with the sent signal.

We bolster the conclusions of this work with numerical
examples in Section IV-C and Section V-D, in which we
find that concurrent signal-incentive mechanisms offer notable
improvements.

II. SYSTEM MODEL
A. Congestion Games

Consider a directed graph (V, E) with vertex set V, edge
set E C (V x V), and k origin-terminal pairs (o;,¢;). Denote
by P; the set of all simple paths connecting origin o; to
destination ¢;. Further, let P = U¥_,P; denote the set of all
paths in the graph. A flow on the graph is a vector f € R|>Po"
where fp expresses the mass of traffic utilizing path P. The
mass of traffic on an edge e € E is thus f, = ZP:eep fp,
and we say f = {fc}ecr- A flow f is feasible if it satisfies
> Pep, fp = r; for each source-destination pair, where r; is
the mass of traffic traveling from origin o; to terminal ;.

When a larger number of users traverse the same path,
the congestion (and thus transit delay) on that path increases.
To characterize this, each edge e is endowed with a latency
Sfunction £, : R>o — R>( that maps the mass of traffic on
an edge to the delay users on that edge observe. We assume
each latency function is positive, convex, non-decreasing, and
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Figure 1: System model diagram. System users (drivers) must travel from their
source to destination through a congestible network with uncertain congestion
rates. The users do not know the current network state, however, the system
operator does. Leveraging its greater information, the system operator can
devise a signalling mechanism to send messages of partial information to the
users to alter their beliefs and ultimately their actions.

continuously differentiable. The system cost of a flow f is the
total latency,

[’(f):z.fe‘ge(fe)' (D

eck

A routing problem is specified by the tuple G =
(V,E,{l}ecE, {ri, (0, t:)}_,), and we let F(G) denote the
set of all feasible flows. We define the optimal flow f°P' as
one that minimizes the total latency, i.e.,

f°PY € argmin L(f). )

feF (@)

Though this flow is desirable, it need not emerge from the
self interested decision making of users. To model the setting
where users are free to choose their own paths (such as
drivers selecting their own routes), let € [0,7;] denote the
index of an infinitesimal agent who uses a path P, € P;.
When agents are left to choose routes that minimize their own
observed travel time, i.e., each agent possesses a cost function
Ji(Pr; f) = > ocp, Le(fe), then a plausible behavior that can
emerge in the system is that of a Nash flow fNf [2], [11], [35],
which satisfies

Jo(Py; f) < J (P f), VP € Py, w €[0,14], i € [k]. (3)

These system states are those where no user has an incentive to
change their action and need not be optimal [36]; additionally,
the total latency in any Nash flow in a game of this form is
the same [37].

B. Bayesian Congestion Games & Information Signalling

We consider a setting where the exact traffic conditions are
unknown to drivers but known precisely by a central system
operator (e.g., Google Maps, Waze, Apple Maps, etc.). Let
each latency function take the form l.(f.) = D> cp Qe
La(f.), where D = {{1,...,€p} is a set of of basis latency
functions' and ae.q > 0 is the weight of the basis function

'This formulation can capture many models of congestion includ-
ing polynomial (D = {x0 2% 22,...,2P}), exponential (D =
{eb e0-5% 2z 1) and the Buereau of Public Roads (BPR) latency func-
tions (D = {z0, 2*}), commonly used to model the congestion characteristics
of physical roads [38], [39].
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Figure 2: Two-link, parallel, Bayesian congestion game. One edge possesses a linear latency function, the other a constant latency function. The coefficients

of each of these latency functions ov1,0, 2,1 are unknown but distributed with prior po over A =

[0,2]2. At right, is an illustration of a truthful signalling

policy 7 : A — {s1, s2, s3}, which partitions A to map realizations to signals. After receiving a signal s, the agents compute their posterior js, as illustrated
by the posterior beliefs with support defined by the subset of A to which it is associated. In general, signals need not be deterministic/truthful, and we may
choose a signalling policy m : A — A(S), such that the signal s is drawn from a distribution conditioned on «; the posterior beliefs are computed the same,

but now need not be of the partitioned form shown in this example.

£4(-) on the edge e € E. To capture the idea of uncertainty
in this problem, let a € R‘f;)"m' (whose elements contain
the weight of each basis latency function on each edge) be
a random variable with distribution po(z) = Pla = z]
and support A. We assume the system operator observes the
realization of this parameter, but the system users do not. If
the users reach a flow f, we extend (1) to be the expected
total latency over a distribution u,

Zfe' fe

eckE

L(f;p) =

Because /. (-) is determined by «, it is a random variable.

As a method to coordinate behavior and induce more
desirable system states, the system operator may choose to
signal relevant information to the users so they may update
their beliefs. To do so, a system operator selects a signalling
policy m : A — A(S) that maps realizations of the system
state @ € A to a distribution, from which a signal s € S is
sampled” which may reveal information to system users. We
assume these signals are public, in that every user receives
the same message, but need not be truthful or reveal the exact
realization. At the reception of signal s € S, users infer the
posterior distribution over the system state « as

7(sla) - po(e)
Jveam(sla) - po(a)da

where 7(s|a) is the probability of sending signal s when the
system state realization is «. Fig. 2 illustrates how agents
beliefs may be shaped in a simple example.

Under a signalling policy 7, agents may change their chosen
path based on which signal they receive. Let £ = {f(s)}ses
denote the tuple containing the flow that occurs at the reception
of each signal, and let o, = {0,(s) € P;}ses denote the
path user = € [0, r;] selects after receiving each signal. When
each agent adopts a strategy based on the information system’s

Hs (O‘) =

2For ease of notation, we will often treat the set of signals S as finite;
however, the set of signals can be generalized to include a unique signal for
each realization of the system state, i.e., S = A, which can be uncountable.

signals, the system designer now cares about the expected total
latency, expressed as
=2 uls

seS

where ¢(y) = Pls = y] = [, , 7(s|a) - po(a)der denotes
the distribution over signals. An agent’s cost will now be their
expected travel time,

E s Mo, T )a/’bs)a (4)

Jx(o—ma s MO, T

=D ¥() E | D0 Le(fels))

ses

We can now define a Bayes-Nash Equilibrium as a tuple
(FBNE oBNTY ag a set of strategies where no agent elects to
unilaterally change, i.e.,

Jz(UmBNf; fBNf?HOvﬂ-) S JT(U/; fBNf’MO’W)’

Vo' € (P)™, x €[0,75],i € {1,...,k}. (5)

Our main focus in this work is understanding what oppor-
tunities a system designer has in lowering the expected total
latency by way of information provisioning, i.e., comparing
L(EBNE 1 1) with L(£BNE; 11 () (where the use of () where
a m was expected denotes the case where no information is
shared with users). To quantify this improvement in system
performance, we define the benefit to system cost as our
performance metric

B(m; ) = LIEP™; 11,0) —

which measures the reduction in system cost from utilizing
a signal policy m. The system operator’s objective is to
institute a signalling structure that reduces the system cost
or, equivalently, has a positive benefit. Several works have
shown encouraging results on the capabilities of information
signalling and identified situations in which system cost can
be significantly reduced [21], [23], [25]. However, the conse-
quences of information signalling need not always be positive.
In the following example, we identify that this may be the case
even in simple settings.

L(EBNE 1, ), (6)



Example 1 (Consequences From Signalling). In this example,
consider a population of drivers tasked with selecting one of
two commute options. One of the routes is always delayed
(either from natural hazards, uncertain demand, or irregular
maintenance), while the other has free flowing traffic but
congests as the number of drivers on that route increases.
However, the drivers are uncertain which route will be delayed.

O(f)=h b(fi)=1
a0 s
la(fz) =1 La(f2) = fa

state 1 w.p. 1/2 state 2 w.p. 1/2

Figure 3: Bayesian congestion game used in example 2.

To model this, consider a congestion game with two parallel
edges F = {e1,ea}. One edge has a linear latency function,
and the other a constant; each edge is the linear congestable
edge with probability 1/2. Let po(al) = 1/2 be the prior
belief that the first edge is the linear congestable edge (state
o). When no information is revealed, users split over the two
edges equally (f; = fo = 1/2), and the expected system cost
is L(FBNE: g, 0) = 0.75.

If an information signal s is sent to the users, let ¢ := Plac =
a' | s] be the posterior belief that the first edge is the linear
congestable edge. With this posterior, f; = ¢ users utilize the
first edge, and the expected cost is L(f;us) = ¢> — q + 1.
For any value of ¢ # 1/2, the expected system cost is greater
than not revealing information; as such, any signalling policy
that causes users beliefs to differ from the prior will increase
cost, i.e., B(m; ) = L(EBNE; 1, 0) — L(£BNE; i, ) < 0 for all
7 : A — A(S). This demonstrates our first observation:
Observation: Revealing information to users can have nega-
tive consequences and increase system cost.

Example 1 highlights that signalling, on its own, may not be
capable of reducing system cost. However, this is not the only
influencing mechanism at a traffic engineers disposal. Another
mechanism to influence user behavior is that of monetary
incentives which have been well studied in transportation
and alleviating congestion [27]-[31], but, to the authors’ best
knowledge, the use of information signalling and monetary
incentives in tandem has yet to be studied in the context of
traffic networks.

C. Monetary Incentives

Consider a congestion game (; an incentive designer can
apply an incentive 7. € R to each edge e € E to change the
cost experienced by users utilizing that edge, i.e.,

J$(e; f) = KE(fE) + Te.

When a signal s is sent to the users, the expected cost
to a user z on path P, in flow f becomes J,(P.;f) =
E [ZeePw Ce(fe) + 7 | s]. This change in cost affects the
users’ decision-making and ultimately leads to new Nash
flows, ideally with lower total latency. Monetary incentives are

a well studied and highly utilized method of controlling con-
gestion in transportation [15], [16]. However, the relationship
between incentives and information signalling is not currently
well understood; studying these two mechanisms concurrently
is the main focus of this work.

To model the interplay of these two influencing mecha-
nisms, note that at each signal the selected tolls will alter the
Bayes-Nash Equilibrium?® by propagating this new cost into
(5). With incentives 7 and signalling policy , the equilibrium
system cost will be written £(fBNf: 9, 7, 7). One can identify
scenarios where either mechanism is capable of reducing
congestion, however, this is not true in general. For a given
Bayesian congestion game, it is not immediately apparent
if either influencing mechanism can independently reduce
system cost at all. In the following example, we will see that
even in a simple setting, there exist quantifiable benefits to
designing these mechanisms concurrently.

Example 2 (The Need for Co-Design). In this example, again,
consider a population of drivers tasked with choosing between
two commutes. The traffic rates on one route is always known,
but the second sometimes contains a significant delay (perhaps
caused by routine closures and detours).

b(fi)=fi+1 H(fi)=H+1

fa(f2) = fa 6(f2) = f2+2
state 1 w.p. 1/2 state 2 w.p. 1/2

Figure 4: Bayesian congestion game used in example 3.

To model this situation, consider a congestion game with
two parallel edges E = {ej,es}. The first edge has a
deterministic latency function ¢1(f1) = f1 + 1, while the
second edge has a latency function ¢5(f2) = fo + ¢ where
¢ = 2 with probability 1/2 and ¢ = 0 otherwise. First,
we show that no toll can reduce system cost alone. When
no information is revealed, each edge has the same expected
cost and the Bayes-Nash flow is fBNf = {(1/2,1/2)}; the
optimal flow is the same, ie., fP* = (1/2,1/2). As the
unincentivized equilibrium is already optimal, clearly no toll
can reduce system cost.

Now, consider some information signalling policy m with
signal set S = {s1,...,5,}. Note that LN () = 1+ ¢/2;
from Lemma 1,

LEPNG po,m) =Y w(S)(1 +E[C | 5]/2) = 1+ E[(]/2,

ses

and L(fBNf; 1o, 0) = 1 + E[¢]/2, thus, any signalling policy
7 does not reduce system cost.

Finally, let m be the full-reveal signalling policy and
71 = 0.5 and 75 = 0. The expected system cost with this
signal/incentive pair is 1.4375 < 1.5 = 1 + E[¢]/2. This
demonstrates our second observation:

3Note that the Bayes-Nash equilibrium flow fBNf is now inherently
dependent on the selected incentives.



Observation: There exist situations where signalling alone
cannot reduce system cost, tolling alone cannot reduce system
cost, but signalling and tolling together can reduce system cost.

Example 2 points to an important relationship between
signals and incentives: there exist opportunities in designing
the two together, but the benefits are not readily obvious. A
co-design of the two mechanisms can be accomplished in
two ways (1) by creating a larger optimization problem in
which signals and incentives are both decision variables (see
Section V), and (2) designing an incentive policy that can
update with the sent signal. We call incentives that can update
with the signal signal-aware and incentives that cannot signal-
agnostic. This subsection highlighted the limitations of signal-
agnostic incentives, in Section IIT and Section IV, we will
largely focus on the benefit of signal-aware incentives.

D. Summary of Contributions

The main contributions of this work come in characterizing
the interplay of two influencing mechanisms: information
signalling and monetary incentives. Further, we describe how
these mechanisms can be designed concurrently to provide
increased benefits in reducing total latency. We propose two
methods to this co-design. The first is utilizing signal-aware
incentives designed for a given signalling policy. In Proposi-
tion 1, we characterize the optimal signal-aware toll for any
signalling policy. One insight this work provides is that these
incentives make the signalling policy robust; in Theorem 1
we show that while using the optimal signal-aware incentives,
no information signalling policy can worsen system cost. To
further illustrate the advantage of co-designing signals and
incentives, in Section IV we consider the sub-class of problems
with parallel networks and polynomial latency functions, in
which we find analytical bounds for how much a signalling
policy can change system cost. The insights from this section
follow the more general results and show that signalling
can still provide significant reduction in system cost when
incentives are also used.

The second method of co-design involves directly solving
for the optimal signal-incentive pairs. To do so, we leverage
existing results on Generalized Moment Problems to solve for
optimal signalling mechanisms. In Section V, we survey the
existing literature and show how the optimal signal-incentive
pairs (with either signal-agnostic or signal-aware incentives)
can be transcribed and solved as GMPs. Additionally, we
amend the problem to handle the case where there is a limited
number of signals that can be sent (i.e., |S]| is bounded).

Finally, in Section V-D, we offer a numerical simulation
to quantify the above results of signalling and incentive
mechanisms concurrent use. This experiment demonstrates
several of the insights from this work, including that co-
designed incentive mechanisms offer notable performance
improvements.

III. ADVANTAGE OF INCENTIVES

Example 1 and Example 2 highlighted an opportunity to
design signals and incentives in tandem. In this section, we
will focus on the qualities of incentives that can update with

the sent signal. Consider a signal-aware incentive mechanism
T(s;m, po) that assigns tolls {7.(s)}scs dependent on the sig-
nal broadcast by the information provider. A player = € [0, ;]
with the strategy o, now observes an expected cost of

Jz(Uh f, M077T7T) =

Sl E | Y L)+ nls)

ses e€oy(s)

The Bayes-Nash flow definition remains as shown in (5), but
now with users’ tolled cost. We now seek to understand the
effectiveness of jointly implementing a signalling policy 7 and
an incentive mechanism 7°. As such, we extend the definition
of (6) which quantifies the gain in system performance to
include the effect of an incentive mechanism 7', i.e.,

B(m;p, T) = LOEPN 1,0, T) — LEN 5,7, T). (7)

We measure the benefit of a signalling policy by comparing
the system cost with incentives and signalling and incentives
alone. We do this because we largely want to focus on the
value that information signalling can provide on its own.

First, we must decide what monetary incentives to use.
In Proposition 1, we characterize an optimal signal-aware
incentive mechanism for a given signalling policy.

Proposition 1. Let 11 be a prior on the latency coefficients «
in a Bayesian congestion game G with positive, convex, non-
decreasing, and continuously differentiable latency functions
that are of the form (.(fc) = Y ycp Qe - La(fe) where
g € D, and let m : A — A(S) be a signalling policy. An
optimal signal-aware incentive mechanism T™* (i.e., maximizes
LN 1o, 7, T)) assigns tolls according to

)= E[ocdzelylre), ®)

where x € argmin e ) L(f; Eanp, [a]).

The proof appears in the appendix. Proposition 1 provides
a mechanism for computing the optimal incentives for any
signalling policy 7. The use of these incentives in tandem with
a signalling policy will alter the equilibrium flow and thus the
system cost. Motivated by the observed negative consequences
of information signalling shown in Example 1, Theorem 1
states the possible consequences of information signalling but
now while concurrently using the optimal monetary incentives
T™*; we find that the concurrent use of monetary incentives
makes it such that signalling can never worsen system perfor-
mance, i.e., have no negative benefit.

Theorem 1. Let py be a prior on the latency coefficients «
in a Bayesian congestion game G with positive, convex, non-
decreasing, and continuously differentiable latency functions
that are of the form (l.(fc) = Y 4cp Qed - La(fe) where
Ly € D. While using the signal-aware incentive policy T (as
defined in Proposition 1, any signalling policy m: A — A(S)
has non-negative benefit to system cost, i.e.,

B(r; jio, T*) > 0. ©)



Proof of Theorem 1: Consider a realization of a congestion
game G with latency coefficients . Let £*(«) denote the total
latency in a Nash flow while using the incentive mechanism
T* as defined in Proposition 1. First, we characterize the
Bayesian-Nash flow with incentives 7. If the signal s € S is
sent to users, they update their belief via Bayesian inference
to ps(x) = % In a flow f, user z € [0,r;] taking
path P, € P; experiences an expected cost of

B SN aca-talfe) +72(s)

e€ P, deD

S S Elaalsla(fe) + 72 (s):

ec P, deD

Jo(Pos [ 1s)

Note that if f were not a Nash flow in the congestion game
with coefficients E[a|s], then by (3) at least one user z would
be able to deviate their strategy o, (s) and experience lower
cost. Therefore, the only Bayes-Nash flows occur when f(s)
is a Nash flow with respect to E[a|s] and tolls 7(s) for all
s € S. From Proposition 1, this is the optimal flow in the
network with coefficients E[«|s].

Next, consider the prior distribution pg on «, and let f be
a flow in the network. The expected total latency

O{NN Zfe Zaeded fe

ecelR deD

Zfe Z E aed gd fe)

ecE deD

= £(f7 aw;t[ ])a

which follows from linearity of expected value.

Combining the previous two observations, we obtain that
the total latency in a Nash flow in the congestion game G
with latency coefficients o when using 7™, can be expressed

=Y ¥(s)L*(Elals).

ses

L(f; 1)

L(EPN g, m, T) (10)

Next, we observe that £*(«) is concave. £*(«) can be
expressed as the pointwise infimum over f € F(G) for a

given a,
f€.7: &) Z Z Qe dfe gd fe)

LM(a) = inf
ecE deD

Observing that » 5 > cp eafela(fe) is affine in o (and
thus concave in «) for each f, we can invoke that the pointwise
infimum over a class of functions that are each concave is
itself, concave [40]. Thus £*(«) is concave though need not
be affine.

Now, consider the total latency in a Bayes-Nash flow with
signal policy 7 and incentive 77,

f L
janf £(f5e)

LEPNG o, m, T*) = 4h(s) [r]s]) (11a)
sES
<r (Z (s) -E[a|s1> (11b)
seS
= L*(E[o]) = L(EPN; 10,0, T%), (11c)

where the (11a) holds from (10) and (11b) holds from the
concavity of £L*. From this, we can see that B(; po, 7) > 0,
i.e., while utilizing incentive scheme T, signalling cannot
increase system cost. O

IV. POLYNOMIAL ROUTING GAMES ON PARALLEL
NETWORKS

Section III provided insights into the signalling problem in
general Bayesian congestion games, showing that signalling
can be detrimental to system performance unless concurrently
utilized with monetary incentives. In this section, we seek
to further understand the connection between signalling and
incentivizing by characterizing closed form bounds on the
benefit a signalling policy can provide with and without
incentives. We do this in the context of Bayesian congestion
games on parallel networks (i.e., one source-terminal pair with
n directed edges directly connecting them) with polynomial
latency functions (i.e., £4(z) = (x)?). These latency functions
are positive, increasing, convex polynomials where D =
(di,...,dx) and d; € Z>q expresses the possible degrees®,
e.g., D = {0,1} represents affine congestion rates [28],
D = {0,4} can represent the well-known Bureau of Public
Roads (BPR) latency functions, commonly used to model the
congestion characteristics of physical roads [38], [39], and
D ={0,..., D} can represent any positive, convex, increasing
polynomial up to degree D [31]. Additionally, we note from
Remark 2 in the appendix that, without loss of generality, we
can normalize to a unit demand, i.e., r = 1.

We highlight two important possible realizations of the
random variable « that will be used throughout: & € RIfOHDI
such that ¢ ¢ = inf{supp(a.,q4)} (where supp(-) denotes the
support of «) in which each parameter takes its lowest value,
and & € RLEOHDl such that &, 4 = sup{supp(ce,q)} in which
each parameter takes its largest value. Note that ¢& and & need
not be in the support of «, but rather represent the corners
of the smallest box that contains the support of « that are
closest and furthest from the origin respectively. Further, to
avoid degenerate cases, we institute the following assumption
on Bayesian congestion games.

Assumption 1. In a Bayesian Congestion Game G with prior
o, 0,1 € D is always satisfied, and, for each edge e € E,
de,Oa de,l > 0.

This assumption prevents cases where traffic can be routed
with zero delay and has zero affect on congestion.

In the context of these games, we address the possible
benefit of a signalling policy.

A. Signalling Alone

When a system designer seeks to improve system perfor-
mance by solely using a public information-signalling system,
Theorem 2 provides bounds on the benefit a signalling policy
can provide.

Theorem 2. Consider the class of parallel Bayesian conges-
tion games with polynomial latency functions whose degrees

4We assume that 0 € D is always satisfied.



come from the set D. For any distribution over the latency
coefficients o and any signalling policy w, the benefit in the
expected total latency of a Bayes-Nash flow from signalling
satisfies

— O|E[o] — dlls < B(m; po) < O[|E[a] —dllz,  (12)

-
where (C] = |D| + % (|El+ D] - 1),

po = Milecpdeo p; = Mileepder, pT =
maXeep Y gep(d + 1)éeq Ela] = fl_eA xpo(z)dz,
and & € RLEO"‘Dl such that & q = inf{supp(a..q)} for each
e € E, d € D. Additionally, there exists a Lo such that for
any truthful ™ # () (i.e., 7 : A — S is deterministic),

= VDI |E[a]

Further, if d € D where d > 0, then there exists a o such
that for any truthful m # (),

B(7; po) = —[[E[e] - dlla.

The proof of Theorem 2 appears at the end of this section.

Theorem 2 reveals the capabilities a signalling policy has
in improving system performance. It also highlights the real-
ity that revealing information can make system performance
worse. The bounds for the benefit of a signalling policy
depends on the number of terms considered in each latency
function |D|, the size of the network |E|, as well as the
distance between the average system state and the edge of
its support ||E[a] — ¢||2 and other terms that change with the
support. One can think that the number of latency terms |D|
characterizes the complexity of the model of network conges-
tion while ||E[a] — ¢||2 measures the amount of uncertainty
about the system parameters. Additionally, (13) and (14) shows
that there exist situations where regardless of what signalling
policy is chosen, revealing information can greatly benefit or
hinder system performance.

For many of the proofs in this sections, we will utilize the
following Lemma, demonstrated in the proof of Theorem 1
and proven in the appendix.

(75 ko) — allz. (13)

(14)

Lemma 1. With a prior py and a signalling policy 7, the
Bayes-Nash flow £BNF can be characterized by {fN (8)}ses,
where ?Nf(s) is the Nash flow in the network G with coef-
ficients a; = Elals]. Additionally, for a given flow f, the
expected total latency with distribution | over the coefficients
« is equal to the total latency in the network with the expected
coefficients, i.e., L(f;pn) = L(f;Ea~pula]). Together, these
facts show that the expected total latency in a Bayes-Nash
flow is equal to the weighted average of the total latency in
the expected network after receiving each signal, i.e.,

LN o, ) =Y (5) LN (B, []),

ses

5)

where LN! () denotes the total latency in a Nash flow in the
deterministic congestion game G with latency coefficients .

To prove Theorem 2, in Lemma 2 we provide a fact
about the function £Nf(a) which bounds the difference in
total latency between any two realizations of edge latency
coefficients.

Lemma 2. Consider the class of parallel congestion games
with polynomial latency functions with degrees drawn from
the set D with coefficients o € A. Let a,b € RLEOHDl be two
possible sets of coefficients for a congestion game with edge
set E, then

. LN (@) — £NE(p
D+ 220 (B + | - 1) > D=L g
2p; lla — b2
where p, = Mingecp Geo, p; = Mileck Ge 1, and pt =

MaXecE ZdED (d + 1)6[6’51.

Proof of Theorem 2: We start by proving the lower bound on
B(m; po), which quantifies how much the use of a signalling
policy can worsen the system performance. Consider the prior
o and signalling policy 7 : A — A(S). If ug is the posterior
formed from receiving signal s, let @, = Eqnp, (0.

To prove the lower bound, first, define the set A =
HeeE gepinf{supp(ac,q), sup{supp(a.,q)| that is the small-
est box in R' ‘ Pl that contains A = supp(«). Note that &
is the corner of this box that is closest to the origin. Let, £NE
be the concave closure of the function £Nf over 4, i.e.,

LN = sup {z|(e, z) € Conv 4(£N)},

where Conv ; ([,Nf) denotes the convex hull of the graph of
LN over the domain A. With this, we show

B(m; o) = L(EPN; o, 0) — LEPN; o, 7) (17a)
= LN (@) = > w(s) - LN (@) (17b)
SES
> LN (&) — LN (@) (17¢)
= LN(@) — LN (ap) (17d)
> —O|E[a] — a2, (17e)

where (17b) holds from Lemma 1, (17c) holds from £Nf
monotonically increasing in « and ¢ q < g forall e € E,
d € D, and o € A, as well as the concave closure LNE
being greater than any concave combination of points in A
and 3,4 ¥(s)@s = ap, (17d) holds from LN (a) = LN ()
due to & being a corner of A, and (17e) holds from Lemma 2
and the definition of © from the theorem statement along with
the observation that the maximum gradient in the concave
closure £N must also occur in the original function £Nf by
the intermediate value theorem.
Now, we prove the upper bound using similar methods:

B(7; o) = L(FBN; 1o, 0) — L(EBNE: 1o, ) (18a)
= LN (@) = Y _w(s) - LN (@) (18b)
seS
< LN (ap) — LN (@) (18¢)
< O||E[0] — all2. (18d)

Together, these two bounds show the range of attainable
performance improvements by utilizing a signalling policy .
The fact that B(7; 119) can be negative shows that providing
information to users need not always help. In fact, for any
signalling policy , there exist scenarios where adding infor-
mation can be detrimental to system performance.



To see (13), consider a two link parallel network where
él(fl) = 1, and ég(fg) = ZdED B(fg)d, i.e., Qg d = B for all
d € D. When 8 < 1/|D|, fo = 1 and LN (3) = 3-|D|. When
B>1,fi >0and LN(3) = 1. Consider a distribution g
where 3 = 0 with probability 1 — € and D‘ with probability
e. The expected value of § is thus 1/ |D\ The expected total
latency without signalling is £LNf(8 = 1/|D|) = 1. Because
any truthful signal 7 will reveal the two possible realizations
of 3, the expected total latency with 7 is

1
LN0)(1 —e) 4+ N e— LN0) =0
- |D|
as € — 0. The benefit of 7 is thus

LN 1o, 0) —

‘C(fBNf;,u'Oa =1=

~V/IDI - [E[a

where « is a vector with |D| entries of value ‘D

To see (14), consider the two link parallel network where
6(f1) = (f1)%+B and £5(f2) = B(f2)?+1and f1+f> = 1;in
this congestion game, = a1, = a4 is a single parameter
that represents two, correlated coefficients. It is difficult to
characterize the Nash flow in closed form, however, we can
utilize the following two facts (1)%[31\”(5)\ g=0 = 0 and (2)
a—aﬁCNf(ﬁ)mﬁoo = 1. Let po be a distribution on 8. From
the first fact, L(fBNE; g, 0) = £LN(B3) — LNI(0) as 3 — 0.
Now, consider the prior distribution po(z) = {0, w.p. 1 —
¢, B/e, w.p. €}. Any signalling policy 7 will reveal which 3
as 0 or B/e, as such,

£(fBNf7 Mo, T )

*dH%

LN0)(1 - €) + LN (B/e)e.

From fact (2) above, as ¢ — 0, E(fBNj;,uo,w) — f. From
these two facts, with sufficiently small 3,

L(EPN o, 0) — LEPN po, ) — =B = —|E[B] — B2
where 3 = 0 to match (14). O

B. Signals & Incentives

Theorem 2 showed that revealing information has the pos-
sibility of increasing or decreasing system cost. It is already
known from Theorem 1 that concurrently utilizing appropriate
monetary incentives removes the possibility of worsening
performance; however, it is not yet clear how these incentives
affect a signalling policy’s ability to improve performance.

Theorem 3 provides bounds on the benefit a signalling
policy can provide while also utilizing the signal-aware in-
centive mechanism 7*. We see that by concurrently utilizing
incentives and signalling, the system designer can guarantee
the benefit of signalling is non-negative and still have room
for significant improvement.

Theorem 3. Consider the class of parallel Bayesian conges-
tion games with polynomial latency functions whose degrees
come from the set D. For any distribution over the latency
coefficients o and any signalling policy m, the decrease in
the expected total latency of a Bayes-Nash flow from signalling
satisfies

0 < B(m; po, T*)

< E|E[o] — allz, 19)

+7_ —
where E := |D| + 2 (1B + Yaep o (d+ 1), pg =

mingcg de,O; P; = Mincep de,l; P+ = MaXecE ZdeD(d +
Déea Elo] = [ o, zpo(x)de, and & € R|>E0|'|D‘ such that
Qe,q = inf{supp(a.q)} for each e € E, d € D.

Comparing the bounds on the benefit of a signalling policy
with and without the use of incentives (i.e., (12) and (19)), we
see that incentives can make the use of signals more robust
(non-negative benefit) while allowing for similar opportunities
to improve performance. We further support this conclusion
in Section IV-C by providing a numerical example and com-
paring the benefit of revealing information with and without
incentives.

Before we prove Theorem 3, we state the following lemma
that is similar to Lemma 2 but applies to £*.

Lemma 3. Consider the class of parallel congestion games
with polynomial latency functions with degrees coming from
the set D with coefficients o € A. Let a,b € RLEOHDl be two
possible sets of coefficients for a congestion game with edge
set E, then

L*(a) — £*(b)
la—bll2

(20)
Mineep Ge1, pt =

pl+ 2 —r d+1)7| >
D+ —— B[+ ) (@d+1)*|>

dpy deD\{0}

where p, = Mileep Qeo, p; =
maxeer y_gep(d+ 1)be.q.

The proof of Lemma 3 is in the appendix.
Proof of Theorem 3: Consider the prior po and signalling
policy m : A — A(S). If ps is the posterior formed from
receiving signal s, then let @; = E,~,,[a]. When utilizing
the incentive mechanism 7™ which assigns incentives as stated
in (8), then Proposition 1 states that the equilibrium flow
that emerges when signal s is received will be f*(s) €
argmin L(f;a;); as such £*(@;) is the total latency that
occurs.

The lower bound of (19) is immediate from Theorem 1. For
the upper bound, we show that

B(7T7 MOvT*) = ‘C(fBNf;,an @ T*) - ‘C(fBNf;,anﬂ-vT*)

= L*(@0) — > _(s) - L*(@s) (21a)
seS

< L (@) — L£*(&) (21b)

< E||E[a] — &2, (21¢)

where the (21a) holds from Lemma 1, (21b) from £* non-
decreasing with «, and (21c) from Lemma 3 and the definition
of = in the theorem statement.

The bound can be proven tight by considering an example
in which d; = 0 for each d € D (i.e., all latency terms are
constant. Consider an Bayesian congestion game in a two link
parallel network in which the first edge has latency ¢1(f1) = 1
and the second has l3(f2) = >, ¢, Where ¢ = a4 > 0
for each d € D is a single unknown latency parameter that
represents |D|, perfectly correlated coefficients. Let 19 be a
prior distribution on ¢ such that po(¢ = 0) = 1 — € and
no(¢ = 1/(ID] - €) = e as such Ecv[¢] = 1/|D] and
using Lemma 1 tells us the expected total latency without
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Figure 5: The benefit of revealing information with and without the concurrent use of incentives. 7 is the uniform-grid signal structure where the support A
is partitioned into a grid with granularity b; as b increases, more information is revealed to the users. At left, the benefit of using the uniform-grid signalling
policy 7 is shown for the setting described in Section IV-C with and without the concurrent use of the incentive mechanism T™*. When incentives are used,
revealing information provides a positive benefit and improves performance, which is shown to be generally true in Theorem 1. With no incentives, the benefit
becomes negative and revealing information worsens system cost, which was shown to be possible in Example 1 and Theorem 2.

signalling is £(fBNf; 19,0, T*) = 1. Now, consider the use of
a signalling policy 7 that reveals the state to the users; again
using Lemma 1 we see the total latency with the signalling
policy 7 is L(fBNY; yg, 7, T*) = 0. To see this matches our
bound in (19), we note that the mean coefficient vector is
E[a] = [1,0,...,0,1/|D,...,1/|D|]T and the bottom of our
support is & = [1,0,...,0]. Substituting this in, we get that
the bound in (19) equates to 1. O]

C. Benefit of Truthful Signalling

To understand how the benefit of signalling changes as
more, truthful information is revealed, we offer the following
numerical example. Consider a Bayesian congestion game
with two edges, ¢1(f1) = f2 + a1 and lo(f2) = oo f3 +1,
where a1 ¢ and ap o are parameters unknown to the user. We
consider that these two parameters are drawn from a truncated
normal distribution, i.e., let

!

and define the prior over a0, 02 as po(z) = Plz = 2|z €
A] where A = [0,60]? is their support.

Now, we analyze the benefit of the uniform-grid signalling
policy with and without the concurrent use of the signal-
aware incentive mechanism 7 as defined in Proposition 1.
This signalling policy is truthful in that each user is informed
accurately of what partition the realization of the latency
coefficient parameter « is in, and reveals more information
as the number of partitions increases. Let b be an integer
representing the granularity of the signalling mechanism, i.e.,
the number of times A is partitioned along each dimension as
shown in Fig. 5, i.e.,

60 . 60 . 60 , 60 |
m = [Sa-0. 5]« [R5 - 0.5

essentially forming a uniform grid over A.

In Fig. 5, we plot the benefit for using the uniform-grid
signalling policy with and without the concurrent use of the
incentive mechanism 7%, i.e., B(m; o) and B(m; po, T*).

Observe that when no incentives are used, increasing the
amount of information revealed to users (i.e., larger b) causes
the benefit to become increasingly negative; meaning as more
information is revealed, the signalling policy makes the system
performance worse. Conversely, while using incentive mech-
anism 7™*, as more information is added, the benefit becomes
increasingly positive and revealing information now improves
performance.

V. OPTIMAL SIGNAL DESIGN

In the preceding sections of this paper, we showed the
range of possible benefit a signalling policy can provide with
and without the concurrent use of monetary incentives. In
this section, we address how one can compute an optimal
signalling policy 7*. In general, the optimal signal can be NP-
hard to find [41]; however, in many problems, this is not the
case [42]. We remain in the context of parallel, polynomial-
latency congestion games. However, if the signalling platform
is limited (e.g., physical signs or discrete Ul options), the
designer may be limited to a small/finite number of possible
signals, i.e., |[S| = A < |A|. In Section V-A, we survey
the result in [21] which shows a method of transcribing the
optimal signalling policy problem as a generalized moment
problem (GMP) which can be approximately solved with
existing solvers [43]. Because we have observed in this work
that the concurrent use of monetary incentives can aid in
information signalling, we propose two extensions to solve
for co-designed signal/incentive pairs with both signal-aware
and signal-agnostic incentives. In Section V-B, we show that
the signal-agnostic co-design problem can be done by an
expansion of the decision variables and the problem remains a
GMP. In Section V-C, we show that the signal-aware co-design
allows for a simplification where the polynomial constraints
can be removed, making the program geometric and solvable
via convex programming techniques.

A. Computing Optimal Signals

We assume that « is realized from a prior distribution pg
with finite support A = {a!,...,a™}. A signalling policy



| Latency Functions |

State 1 w.p. 0.3 State 2 w.p. 0.4 State 3 w.p. 0.3
fl(fl)_25f1 +5 | fa(f1) =30f1 +25 | £1(f1) =30f1 +25
lo(f2) = 17f2 +10 | La2(f2) = 35f2 + 13 | L2(f2) = 17f2 + 10
l3(f3) = 30f3 +25 | £3(f3) =13f3+15 | £3(f3) = 30f3 +25
Ly(fa) = 10fs +25 | La(fa) = 10f4 +25 | la(fs) = 11f4 + 35

t(f) =aiifi+aio [ Info./Incentive Setting | Total Lat. ||
f _ No signal / No tolls 23.99
2f2) =aafateao True signal / No tolls 22.25

Opt. signal / No tolls 21.91*

No signal / w/ ag. tolls 23.41
O5(fs) = a3 fs + aso Opt. Vmgnal / wl ag. tolls 21.35

No signal / w/ aw. tolls 23.41
() =i+ aso Opt. signal / w/ aw. tolls 21.29

Figure 6: Simulation results for the system cost (expected total latency) in a four-link parallel congestion game with affine latency functions. The comparison
is made between seven information/incentive settings: no, true/full, and optimal signalling as well as no signalling and optimal signalling with the use of
concurrent signal-agnostic (ag. tolls) and signal-aware (aw. tolls) incentives, respectively. The optimal signals and associated total latency are found using (PT)
and (P) with and without constraints (23); the asterisk denotes that the solution is approximate, found using the GloptiPoly solver. We find that the optimal
signals provide notable improvements over signalling naively (true signal) and that both types of tolls further aid the benefit of signalling.

m : A — A(S) can now be represented by an m x A
column stochastic matrix, where A < m defines the designer’s
constraint on their available signals’, and 7(s, k) = P[s|a¥].
A signal-dependent flow tuple f can be represented by a A xn
matrix, where f(s,e) is the flow on edge e in the flow that
emerges after receiving signal s. The expected system cost of
a signalling policy = with flows f can thus be written as

L(f;p0,7) = ZZE(f(S,—);ak) “P[s N a*]

m A
=335 Ak u(f (s ) (s, K)o (k).

k=1s=1eeE decD
(22)

Note that (22) is polynomial in f and 7.

In order find the optimal signalling mechanism, we must
introduce a constraint that f is a Bayes-Nash equilibrium; from
Lemma 1, we can do this by requiring f(s,-) to be a Nash
flow with the expected latency coefficients given the signal,
ie.,

de,k S, 6 ,Ufs S Z e’ k S e ))p’s(k)
k=1 k=1

Ve € E s.t. f(s,e) >0, ¢ € E, s€ S,

= %, this can be rewritten as

e)- > (Lex(f(s,e)

k=1

where ps(k)

)—Ler i ((s,€))) (s, k)po(k) <0,

Ve, € E, s S. (23)

Using (22) and (23), along with other constraints, we can
write the following optimization problem, whose solution is
the signalling mechanism which minimizes expected total
latency in a Bayes-Nash flow:

ez, £(F o)
subJect to (23), (P)
157 =17,
f1, =1,

Note that (P) has a polynomial objective, polynomial in-
equality constraints, and linear equality constraints. Problems

SFrom [6], we need not consider signal sets with more than m signals.

of this form can be cast as instances of the generalized problem
of moments and solved approximately using a semidefinite
programming approach [43], as discussed in [21]. In Sec-
tion V-D, we will use the solution to (P) to numerically
investigate the benefit of optimal signals.

B. Optimal Signal-Agnostic Co-design

Example 2 showed that signals and tolls may be less
effective when designed separately. We will show how the Co-
design with signal-agnostic incentives can be done with little
more complication than the signal design case. Let 7 € RY
be a vector for the signal-agnostic incentive levied on each
edge. The objective of the optimization problem will remain
the same as in (22); however the equilibrium constraint will
be affected by 7. The new equilibrium constraints become

m

f(s, e)Z(ée,k(f(Sv

k=1

€)) +7e—Ler 1k (£(s,¢")) = 7.) (s, k) po (k)
<0, Ye,e' € E, s€ 5. (24)

Using (22) and (24), we get the new program

minimize L(f; po,
FERLE™, meRLF™, TERY, (£ 10, )
subject to (24), (PT)
1 =1L,
f1, =1,

The program Eq. (PT) belongs to the same class of GMPs as
Eq. (P), but with more constraints. In Section V-D and Fig. 6,
we discuss how the co-designed mechanisms may improve
performance.

C. Optimal Signal-Aware Co-design

In this subsection, we seek to solve for optimal sig-
nals/incentive pairs with signal-aware incentives. The incentive
design portion of this task is handled by Proposition 1, which
states that the incentive mechanism 7™ is optimal for any
m. We thus look for how to design a signalling policy while
concurrently using these incentives.

Remark 1. The optimal signal-incentive pair (7*,T*) uses
monetary incentives from Proposition 1 and signalling policy
from the solution to (P) without constraints (23).



Remark 1 follows from the fact that 7 causes the Bayes-
Nash flow f(s,-) after receiving a signal s to be one that
minimizes the expected total latency given s. As such, remov-
ing (23) from (P) allows f(s, -) to be any feasible flow; in the
minimization problem f(s, -) thus becomes one that minimizes
the expected total latency, or be what emerges from using 7.

Additionally, after removing (23) from (P), the problem has
only linear equality constraints and a posynomial objective.
This problem is thus a geometric program and can be trans-
formed to a convex optimization problem [40]. We will use the
solution to this program to compare the effectiveness of the
optimal signal-incentive pair with signalling-aware incentive
to other settings in Section V-D.

D. Value of Optimal Signalling

To quantify the performance of optimal signalling mech-
anisms, we discuss a generated numerical example and draw
several conclusions. The example is described in Fig. 6 and de-
picts a setting in which users must traverse a parallel network
with four edges whose travel delays grow in an affine manner.
Users are uncertain of these latency functions but known they
come from three possible states (potentially caused by road
accidents or weather related hazards). In this problem, we
compute the expected total latency in seven different settings:
no signalling, truthful signalling which reveals the exact state,
and the optimal signal, as well as no signalling and optimal
signalling alongside the optimal signal-agnostic and signal-
aware incentives respectively. The optimal signals are found
using the polynomial optimization solver GloptiPoly [44],
which casts the problem as a generalized moment problem and
finds an approximate solution via semi-definite programming
(the asterisk in Fig. 6 is to denote the signalling mechanisms
are found by this approximate solution method). We identify
the following observation from the simulation:

1) Signalling can offer notable performance improvements.
Simply revealing the truth offered a 7.25% reduction in system
cost and signalling optimally offered am 8.67% reduction.

2) Incentives can further aid in the capabilities of signalling.
The optimal signal-incentive pairs — for both signal-aware and
signal-agnostic incentives — offered the most significant per-
formance improvements over signalling alone or incentivizing
alone.

3) Using signal-aware incentives gives the best performance
and makes optimal mechanisms easiest to compute. This is
apparent from the last row of the right table in Fig. 6 and 1.

VI. CONCLUSION

In this paper, we study the effectiveness of information
signalling in the context Bayesian congestion games. Our
main observations are that designing signalling mechanisms
and monetary incentives concurrently can offer improvements
that cannot be offered by either alone; one such improvement
is that concurrently using appropriate monetary incentives
and information signals can help avoid cases where revealing
information worsens expected total travel latency. To further
this understanding, we derive bounds on the possible benefit

of signalling with and without the concurrent use of mone-
tary incentives and provide methods to compute the optimal
signalling policies.

Future work may investigate the capabilities of a system
operator with less reliable mechanisms (e.g., uncertainty of
their own about the system state and heterogeneity in users’
beliefs and responses to incentives). Additionally, further stud-
ies may uncover if these conclusions exist in settings outside
of Bayesian congestion games.
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APPENDIX

Remark 2. In parallel, polynomial Bayesian congestion
games, without loss of generality, we can assume a unit traffic
rate, r = 1, even when r ~ v is a random variable.

proof: Consider a congestion game G with demand r. Define a
mapping Q(G, ) that outputs a new congestlon game G with
latency functions £c(2) = 3 ;e ~#5 (f, )% Let f be a flow in
G with total traffic r. Now, consider the flow vf = {7 f.}ecE
in G. Each edge e € I/ will have latency

>

deD

Co(vfe) =

"}/d+1< fe) Ee(fe)'

Notice that latency on each edge is scaled by 1/ and the
preference structure is preserved; therefore, if f is a Nash
flow in G then v f is a Nash flow in G. Further,

=Y yfele(vfe)

eckE

’Yf G :Zfege(fe)zﬁ(f7G)7

ecE

and the two networks will have the same total latency.

If (a,7) ~ po, e.g., po(z,y) = Pla = z,r = y], then con-
sider that & ~ fig, whe.:re .ﬂo(.z) =2 e y|Qe1 )=z Mo (T, Y)-
Now & has the same distribution over total latency. O
Proof of Lemma 1: To prove the first claim, consider the prior
o on « and the signalling policy 7 : A — A(S). If the signal
s € S is sent to users, they J)date their belief via Bayesian
inference to ps(z) = ”(S‘a “0 In a flow f, user x € [0, r;]
taking path P, € P; experlences an expected cost of

Z Zaed La(fe)

e€ P, deD

= > > Elacalsla(fe).

e€P, deD

Jo(Poi fops) = E

anps

Note that if f were not a Nash flow in the congestion game
with coefficients E[«/|s], then by (3) at least one user x would
be able to deviate their strategy o, (s) and experience lower
cost. Therefore, the only Bayes-Nash flows occur when f(s)
is a Nash flow with respect to E[als] for all s € S. Further,
because the total latency in a Nash flow is unique, so too is
the expected total latency in a Bayes-Nash flow.
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To prove the second claim, consider the distribution 1 on
a, and let f be a flow in the network. The expected total
latency

L(f; 1)

@NH Zfe Zaeded fe

ecelR deD

Zfe Z E aed gd fe)

ecE deD

= ﬁ(fv (xw;t[ ])a

which follows from linearity of expected value. O
Proof of Proposition 1: Consider that the users receive signal
s from signalling policy m and prior po (forming posterior
1), and reach a flow of f. From Lemma 1 the expected total
latency in this flow is equal to the total latency of this flow
in the expected network, i.e., L(f;us) = L(f;as), where
as = Eq~p,[a). Thus, an optimal flow at the reception of
signal s is one that satisfies fP*(s) € argmin; L(f;@,).
We now look for a incentives that will influence users such
that f°P*(s) becomes a Nash flow in a congestion game with
latency coefficients @;. To do so, we note that G with flow-
varying incentive functions 7.(f.) is a potential game [12]

with potential function
-y [

eckE

x) + Te(x)dx.

As such, the flow in argmin; ®(f; ) is a Nash equilibrium.
For the polynomial latency functions considered in this work,
let 7(x) = Y cp Taealy(x). Now, the potential function
becomes

Z/ > e la(x) + zaeala(r)ds

ecE deD

— Z Z feaeydéd(fe) = L(f;()é),

ecE deD

and the Nash flow that minimizes ® also minimizes £; as
such, f°Pt(s) becomes a Nash equilibrium in the game with
the coefficients a.

Finally, notice that by selecting the fixed incentive 77 (s) =
Te(fOPE(s)), the equilibrium conditions do not change and
f°Pt(s) remains a Nash flow. Nash flows retain the same
uniqueness properties under fixed incentives, and thus assign-
ing 7*(s) minimizes the expected total latency when s is sent.
If this is done for each signal, the total latency with each
signal will me minimal and so too will the overall expected
total latency, making 7" an optimal incentive mechanism. [J
Proof of Lemma 2 We assume r = 1, which is without
loss of generality from Remark 2. We note that £N(a) is
continuous, but need not be continuously differentiable; as
such we look for the largest gradient in the differentiable
regions of the support. Let fNf(a) be the Nash flow in the
parallel congestion game with polynomial coefficients «, i.e.,
£N(0) = Lo [N(0) = X e p Sep 0ea (£ First
we seek to bound the partial derivative of LN () with respect
to some parameter o q. Clearly, 5 8 ENf( ) > 0 in parallel
networks as no Braess’s paradox type example can exist [45].
To upper-bound this partial derivative, we will consider a case

where by increasing «. 4 any mass of traffic that chooses to
leave edge e will all choose the edge ¢’; in general, this may
not occur with every change in a. 4, as users may disperse
over multiple edges, however, if we consider that users do all
move to the same edge, and we pick edge ¢’ as the one that
increases the total latency most rapidly, then the following
upper-bound will hold. With this in mind, it implies that
NE— 0 _¢NF and that we can evaluate the partial

dac.a’e
derivative as

(9 Nf Nf d+1
aaedﬁ (a)= +1 >

"eD

_ 4 Nf 9 Nf
> acal(d +1)(£)? )aaeydfe, (25)

d’'eD

cter (A + 1) (FEHT T

Now, we note that latency on edges e and ¢’ must be the same
in a Nash flow, thus

Ce(f2) = Ler(f01)
0 0
C(fN) = ——Le (f5D).
G el = ot (£
Using this equality, and the fact that 5 — 9 fo fﬁi’d gf,

we can evaluate the derivative and rearrange to get

0 i UNY (N
daca® T U+ T 2y

(26)

where p| = mingcg ¢, 1. Substituting (26) into (25) gives us

0 £Nf( ) < (fo)d+1+ pt— (fo) Q27)
da, .d ¢ 2p7
where py = mineep deo and p* = maxecp Y yep(d +

1)ée q.
Now, the gradient of £Nf(a) must satisfy

_ 2
VLN (@) < Z Z < (fNEYd+1 4 p* *_Po (fé\]f)d)
e€E deD 2p;
2
< (Z Z (fNEyd+1 4 (fo) )
ecE deD

IN

d+1 g
fé“) + o,

d

Sy (z f>

cCE deD\{0} \e€E

= D]+ 2 Lo (1| + | - 1),

2P1

where the first inequality holds from (27), the second and third
hold from the super-additivity of convex monomials of positive
terms, and the final equality holds from the assumption that
r=1.



Finally, consider two sets of coefficients a,b € A. Observe
ﬁNf(a) — ENf(b)
la —bll2

1 1
~ lla—b2 /)\:O
1 1
< o=
lla = bll2 Jx=o

' Pt —po
s/ D+ 2P0 (15| 1 |D| — 1) dA
A=0 2pq

(a—b)TVLN (N + (1 — A\)b)dA

lla = bllz - [IVLY (Aa + (1 = X)b)[l2dX

. -
= D]+ PP (1| + D] - 1).
P1

Where the first inequality holds from Cauchy-Schwarz, and
the second holds from our observation above on the norm of
the gradient of LN (). O
Proof of Lemma 3: This proof follows very similarly to the
proof of Lemma 2, but now, in an optimal flow f*(«a), the
latency on each edge is not equal, however, the marginal-cost
on each edge is [2]. Let ve(fe) =3 jep(d+ Do a(fe)? be
the marginal cost on edge e with flow f.. Now, in the optimal
flow f* (which emerges from using the tolls 7%),

ve(fE) = ve (f2)
0
ve (&)

8ae7d
Evaluating and rearranging these derivatives gives

0

aTlee( ¢) =

0 d+1)(f)? d+1)(f)?
oo XU @D
8ae,d Ve(fg)+ye/(fe’) 4/)1
With this, we can upper bound the partial derivative of £* as
0

-

£1(0) < (f) 4+ B @ D" )
1

Following the same steps as in the proof of Lemma 2, the

gradient of £* must satisfy

8ae,d

.
pt—p
VL (a)ll2 < D]+ i O | |E|+ E (d+ 1)
p deD\{0}

Finally, we can use this bound as in the proof of Lemma 2 to
complete the proof. [
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