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Abstract—It is well-known that system performance can ex-
perience significant degradation from the self-interested choices
of human users. Accordingly, in this manuscript we study the
question of how a system operator can exploit system-level
knowledge to derive incentives to influence societal behavior and
improve system performance. Throughout, we focus on a simple
class of routing games where the system operator has uncertainty
regarding the network characteristics (i.e., latency functions) and
population characteristics (i.e., sensitivity to monetary taxes).
Specifically, we address the question of what information can be
most effectively exploited in the design of taxation mechanisms to
improve system performance. Our main results characterize an
optimal marginal-cost taxation mechanism and associated perfor-
mance guarantee for varying levels of network and population
information. The value of a piece of information cannot be known
a priori, so we adopt a worst-case interpretation of the value a
piece of information is guaranteed to provide. Several interesting
observations emerge about the relative value of information,
including the fact that the value of population information
saturates unless we also acquire more network knowledge.

Index Terms—Incentives | Algorithmic Game Theory |
Congestion Games | Value of Information

I. INTRODUCTION

The self-interested decision making of system users can
cause significant degradation in overall performance [2]. This
emergent inefficiency caused by selfish behavior is commonly
characterized by the ratio between the worst-case social wel-
fare resulting from choices of self-interested users and the
optimal social welfare; this quantity is often referred to as
the price of anarchy [3] and is a well studied metric of
system level inefficiency in the areas of resource allocation [4],
distributed control [5], and transportation [6]. A common line
of research studies how incentive mechanisms can be designed
to influence users to make decisions more in line with the
social optimal [7]. For the implementation of such incentives
to be effective, a system designer must consider how the users
will respond.

When designing an incentive scheme, a system designer is
benefited by having more information about the problem, e.g.,
a more accurate model of the system infrastructure or of the
human users’ behavior. This paper seeks to understand how
and what pieces of information aid in the incentive design task.
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Though increased understanding of the problem setting seems
beneficial, in settings such as road traffic [8], power grids [9],
supply chains [10], advertising [11], among others, there is an
abundance of potential information sources. Though we can
devise ways to learn different pieces of information [12], there
is some cost that must be invested in acquiring it. The central
questions that we focus on in this manuscript are as follows:

(i) What are the incentive mechanisms that optimize the
efficiency of the emergent collective behavior for a given
level of informational awareness?

(i) What type of information, i.e., what specific information
about the network or population, can be best exploited to
improve the efficiency of the emergent collective behavior
through an appropriately designed incentive mechanism?

We answer question (i) to understand how to effectively use
the available information; however; the main message of this
manuscript revolves around the answers to question (ii). In
particular, is it better for a societal planner to invest in
getting more detailed information regarding the infrastructure
characteristics or population characteristics? How do the gran-
ularity and quality of the information impact the attainable
performance guarantees?

We are particularly motivated by problems relating to con-
gestion and traffic, where the system operator may wish to in-
fluence users away from more congestible roads. Recent work
has studied this problem in practice [13], where the authors
performed experiments in Bangalore to see how users respond
to incentives persuading them to alter their commute from the
common, direct route to a less direct route. The author finds
that without additional information, incentives provide limited
opportunities and identified value-of-time/price-sensitivity as
an important factor. Inspired by this and related studies [14],
[15], we introduce a formal model where each user (driver)
has to choose between two decisions (direct commute or
long commute) and are influenced by their perceived cost
(travel time) as well as an imposed tax. To capture the system
designer’s uncertainty, we consider that each user has their
own price sensitivity, affecting how they relate temporal and
monetary costs. We model this as a congestion game with
two links and a population of heterogeneous users, where the
behavior that emerges from users self-interested decisions is a
Nash flow. It is widely known that the system-level behavior
can be suboptimal and the degree of suboptimality is typically
characterized by the price of anarchy [16]. Typically, this form
of analysis is relegated to studying worst-case scenarios; we
seek to extend this by considering how available information
may alter what performance guarantees are attainable.



Related Works — Research has sought to explore the use of
tolling or taxation mechanisms to improve the system cost
in congestion games [17]-[19]. These monetary incentives
alter users’ preferences in a manner that reduces the price of
anarchy; however, the majority of this work does not consider
the effects of user heterogeneity.

In the works that do study heterogeneous users in congestion
games, there are a number of positive and negative results per-
taining to the effectiveness of taxation mechanisms [20]-[23].
On the positive side, there always exists a taxation mechanism
that can completely mitigate any efficiency loss [24]-[26]. On
the negative side, this taxation mechanism intimately depends
on the detailed information pertaining to both the network (i.e.,
topology, edge latency functions, etc.) as well as the population
(i.e., demands, sensitivities, etc.), which significantly limits
its applicability. Accordingly, recent work in [27] focuses on
robust taxation mechanisms that do not require such extensive
knowledge. While the derived taxation mechanism does not
necessarily guarantee optimality on a network by network
basis, it does provide strictly better performance guarantees
than the uninfluenced behavior in broad classes of networks.
Hence, these results hint at an apparent trade-off between
robustness and optimality.

Contributions — In this work, we seek to bridge the gap
between optimal taxation mechanisms that require detailed
information, and robust tolls that require less information but
may fail to perfectly optimize routing. We consider a case
study in 8 information domains and derive the tolling scheme
that makes use of the available information optimally as well
as the resulting price of anarchy bound.

Section II-C highlights these comparisons, and section Sec-
tion III provides formal proofs. Though the system model we
consider is simple relative to the general class of congestion
games, the observations of this work (1) provide lower bounds
on the possible inefficiency that can occur more generally, and
(2) discover phenomona that, if can occur in simple settings,
can occur more broadly and require consideration in future
planning. Chief among these observations is that acquiring
environmental knowledge (about the congestion rates of roads)
proves more valuable than population knowledge (the exact
price sensitivity of each user). Additional findings are dis-
cussed in the body of this manuscript.

II. MODEL AND PERFORMANCE METRICS
A. Congestion Routing Game

Consider a population of users N = [0, 1], represented by a
closed interval. To model situations with a very large number
of users, a player has infinitesimal mass and is indexed by
a real number in z € [0,1] = N. To model a simple road
traffic scenario, the users must traverse a graph from an origin
o to a destination d by taking one of two routes, represented
by parallel edges e; and es; this is designed to represent two
commute options: a congestible, direct route and an open but
indirect route. Let ' = {e1,es} denote the set of edges. The
function e : N — FE (assumed to be Lebesgue integrable)
captures the action of each user, i.e., each user x € N takes
an action by selecting a route e(x) € E. A flow on edge e is

the mass of users taking that route as their action, or f.(e) =
Joen le(z) = e]dx where 1[-] is the indicator function. For
notational convenience we will omit the flow f reliance on
e when clear from context. Let f = (f1, f2) € A(E) denote
a network flow, where A(FE') denotes the standard probability
simplex over the set E; that is, Zee g fe = 1. To characterize
transit delay, each edge e € E in the network has a latency
function of the form

ée(fe) = Qe fe + be. (D

where a, > 0 and b, > 0 are coefficients used to model how
transit delay on an edge grows with more traffic. The latency
on an edge is thus a non-decreasing, non-negative function of
the flow on that edge. Though this model does not capture
all the relevant features of traffic, this setting does capture the
decision making of a population of human users. Additionally,
this simple model has been used to describe the driving
patterns and congestion rates of commuters in real word traffic
systems [13], proving useful in characterizing how incentives
and users’ decision making affect global performance.

For a flow f, the system cost is characterized by the total
latency in the network, defined as

E(f):Zfe'ée(fe)a 2
ecEl
and we denote the flow that minimizes this total latency as
foPY € argmingcap L£(f). We specify a particular network
by the tuple G = (E, {lc}eck).

This work examines taxation mechanisms as tools to in-
fluence the self-interested, price-sensitive user population to
reach more efficient equilibria. We model this routing problem
as a congestion game where each edge e € F is assigned
a flow dependent tolling function T, 0,1 — R*t. A
user © € N has a price-sensitivity s(xz) > 0; this price-
sensitivity is subjective for each user and relates the user’s
cost from being tolled to their cost from experiencing delays
and is the reciprocal of the user’s value of time. Without loss
of generality, we order players’ indices by their individual
price-sensitivity, i.e., s(x) > s(y) if « > y. The function
s : N — Rxq thus captures the distribution of price-sensitivity
over the users in population V. In a flow f, the cost function
for a user x that is on an edge e(z) € E can be expressed as

Jw(f) = Ee(z) (fe(z)) + s(x)Te(:L’) (fe(z)) . 3)

Each user will choose to take the route that minimizes their
own cost. When each user does so, the system reaches a Nash
equilibrium eN°, satisfying

ee(x) € aregergin{ﬁe (fe(e)) + s(z)re (fe(e))}, Yz € N.

In a Nash equilibrium, we will call the resulting network
flow a Nash flow fN' := f(eN°) (again, we typically omit
the reliance on e for brevity), also known as a Wardrop
equilibrium [28]. A game is therefore characterized by a
network G, price-sensitivity distribution s : [0,1] — RT,
and a set of tolling functions {7.}.cp, denoted by the tuple
(G, 8,{7c}ecr). It is shown in [29] that a Nash flow will
always exist in a congestion game of this form, and the total



latency of a Nash flow is unique for each s.

B. Taxation Mechanisms & Performance Metrics

To understand the robustness of a tolling scheme, we
consider the performance over a class of networks and users’
sensitivities. For a network GG, we identify the latency func-
tions which constitute the network by L(G); further, for a
family of congestion games G, let L(G) = Jgeg L(G) be the
set of all latency functions that exist in the games in G.

A taxation mechanism T maps latency functions /. to
tolling functions 7.. For a family of networks G, this mapping
is denoted T : L(G) — T, where T is the set of all admissible
tolling functions on [0, 1]. In this work, we consider a form of
tolling function that is linear with the flow on that edge known
as scaled marginal-cost tolls. We parameterize the tolls by

rolfe) = kfe - TE(f) = kac.,
dfe
where k is a parameter set by the system designer and
a. is the linear component of the edge latency function.
Though broader forms of tolling mechanisms can be used
to effectively influence users, scaled marginal-cost tolls offer
several properties useful for analysis and implementation. If
one considers a setting where the toll designer is under no con-
straint (outside of the implied information constraints), then
unbounded incentives can be designed that guarantee optimal
performance in nearly every setting by using unbounded step
functions or unbounded incentives as described in [22], [27].
Because unbounded incentives are not reasonable in many
settings, a toll designer has two options: they could choose to
add a constraint bounding the magnitude of the incentives, or
they could restrict their design to a class of tolling mechanisms
that are intrinsically bounded. In this work, we focus on the
latter by studying the design of optimal scaled marginal-cost
tolls which are bounded whenever the latency is finite. Scaled
marginal-cost tolls have been studied in congestion games
with little available information on the network or users’
price sensitivities [30]; further, in [27], it is shown that in
some low information settings the optimal bounded tolls and
associated performance guarantees can be found by solving for
the optimal scaled marginal-cost toll; because of their desirable
properties and connection to the literature, we consider scaled
marginal-cost tolls throughout.

To formalize the notion of uncertainty in users’ response,
we consider families of sensitivity distributions that can occur
when the system designer is only aware of the lower bound
St and upper bound Sy on users’ price sensitives. We define
the set of possible sensitivity distributions as § = {s
[0,1] — [SL, Su]}. When the average price sensitivity 3 of the
users is introduced to the system designer, the set of possible
distributions becomes 8(3) = {s € §| fol s(z)dx = 5} it is
clear that 8(3) C S. To evaluate the performance of a tolling
mechanism, let LN(G, s, T') be the total latency on a network
G, with price sensitivity distribution s, in the Nash flow fNf
when tolls are assigned according to taxation mechanism’

VeeE, 4)

IThe taxation mechanism is a mapping from latency functions to
tolling functions. A game with taxation mechanism 7' is therefore denoted
(G, 5,{T(£e)|le € G}). For brevity, we simply denote this as (G, s, T).

T, and let L£°PY(G) be the minimum total latency which
occurs under the optimal flow f°Pt. The price of anarchy
compares the Nash flow on a network with the optimal flow;
this characterizes the inefficiency of the network and can be
defined as

LNNG, s, T

M > 1. 5)
Eopt(G)

We extend this definition to include families of networks and

sensitivity distributions, i.e.,

LNN(G, s, T)
PoA T)=s 5 -7
o (g787 ) Z}épg 2218){ ﬁopt(G) ) (6)

PoA(G,s,T) =

such that the price of anarchy is now the worst-case ineffi-
ciency over possible networks and populations. Note that the
same taxation mechanism 7 is applied to any realized instance.

C. Optimal Tolling & Our Contributions

The system designer’s goal when designing a taxation
mechanism is to minimize worst-case inefficiency given un-
certainties over the network and/or user sensitivities. Thus, we
define an optimal tolling mechanism as

T* € arginf PoA(G,8,T),
T:L(G)—T

such that it is the taxation mechanism which minimizes the
price of anarchy expressed in (6) for a given family of
networks G and sensitivity distributions 8. To understand and
compare the value of different pieces of information, we seek
to quantify the performance guarantees under the optimal
tolling mechanism in different information settings. Therefore,
we define the price of anarchy bound under an optimal tolling
mechanism as

PoA*(G,8) 2

inf

PoA T
T:L(G)—»T 0A(G,8,T), @

which will serve as the measure of how useful information is
to the system designer.

In this paper, we demonstrate the value of different pieces
of information to a system designer by comparing the price
of anarchy bounds of the optimal incentive in different in-
formation settings as shown in Table I. We consider these
questions in the class of two link parallel networks as these
networks often display worst-case inefficiency over larger
classes of networks and allow us to analyze the benefit of these
partially informed tolls [31]. Many of the results generalize
to parallel and more general networks; for those that do not,
these results provide lower bounds on the price of anarchy.
In Section IV, we discuss this context in more detail. For
uniformity of presentation, all results are expressed for two
link networks. Additionally, the purpose of this work is to
identify information factors that affect the incentive design
task. If interesting observations can occur in simple problems,
then certainly they can occur more generally.

Table I depicts a snap-shot of the theoretical results for
Su /St = 10. In the top left, the toll designer possesses no
information about the network or users’ price sensitivities,
making the zero toll (7. = 0Ve € E) optimal and recovering



Table I
PRICE OF ANARCHY BOUNDS UNDER OPTIMAL TAXATION MECHANISMS WITH VARYING AMOUNTS OF PARTIAL INFORMATION (Sy /S, = 10).

network-aware (D, Prop. 3)

S0 S 8(s) s(x)
sensitivity-agnostic bound-aware (Sv, Su) | mean-aware (Sr,, Sy, 3) distribution-aware
g ) PoA* (G,8+¢) = 1.33 | PoA* (G,8) ~1.176 | PoA* (G,8(35)) < 1.1401 | PoA™ (G, s) < 1.1401
network-agnostic ( [16], Prop. 3) (A, Thm. 1) (B, Thm. 2) (C, Thm. 3)
G PoA* (G,8-0) < 1.33 | PoA* (G,8) < 1.09 | PoA* (G,8(3)) < 1.0494 |  PoA* (G,s) =1

(E, Thm. 4)

(F, Thm. 5) (G, Thm. 6), [25]

the price of anarchy bound for this class of networks of
4/3 = 1.33 [16]; we show this formally in Proposition 3. As
the toll designer acquires more information, their performance
improvements are captured by moving down and to the left.
The information available to the system designer is encoded
in the arguments of the price of anarchy expression defined
in (7). With regard to network information, we consider two
possible cases of information available to the system designer:

o network-agnostic PoA™ (G, - ) - the system designer is
unaware of the specific problem instance and only knows
the class of possible networks and must choose a taxation
mechanism that is applied to each?.

o network-aware PoA*(G, - ) - the system designer is
aware of the specific network and may design tolls for

that specific instance.

When the system designer is aware of the exact network char-
acteristics, they will be able to design tolls more effectively.
From this fact, we expect a network-aware toll to perform
no worse than a network-agnostic one. The benefit of this
information for different settings can be seen by comparing
the two rows of Table I.

Similarly, we consider several settings for the system de-

signer’s knowledge of the user-sensitivity distribution:

o sensitivity-agnostic PoA™( - ;8~¢) - the system designer
knows nothing about the users’ sensitivities except they
are bounded away from zero.

e bound-aware PoA™( - ,|§) - the system designer knows
the lower-bound Si, and upper-bound Sy, on users’
possible sensitivities.

o mean-aware PoA™( - | 8(3)) - the system designer knows
the lower-bound S7, and upper-bound Sy as well as the
mean 5 of users’ sensitivities.

o distribution-aware PoA™( - ,s) - the system designer
knows the exact distribution on user sensitivities.

The sensitivity distribution serves as a model for the pop-
ulation’s behavior. Refining the set of possible distributions
reduces the designer’s uncertainty and allows them to design
more effective tolls. The benefit of increasing the information

2Though it was assumed prior that the demand in the network is always of
unit size, when the system designer is network-agnostic it is without loss of
generality that they are also unaware of the demand in the network. We thus
consider demand as an implied piece of network information.

3Though the network structure is consistent throughout each routing prob-
lem, we use the nomenclature of network-aware to match the literature,
where network-agnostic tolls must be assigned with only local edge latency
characteristics while network-aware tolls are designed with information of
each edge’s latency function.

available to the system designer can be seen by comparing the
columns of Table I.

The main focus of this work is to investigate which pieces
of information give the greatest gains in the performance of
tolls with respect to the price of anarchy ratio. Though it is
clear that additional information will help tolls provide better
guarantees, it is not obvious what will provide a better gain
in performance when introduced to an uninformed system de-
signer: network-awareness or population-awareness. Further,
the value of a piece of information is highly contextual, and
it is impossible to know a priori what value new information
provides, thus we adopt a worst-case approach for comparing
performance. Comparing the worst-case performance bounds
of each setting (such as those demonstrated in Table I) shows:

1) Comparing elements (B) and (C) shows that the full
distribution of users’ price sensitivities need not be any
more helpful than the mean alone, thus the value of
population information saturates.

2) Comparing elements (D) and (G) shows that, in the ab-
sence of any population information, network-awareness
may be of no help, however, in the presence of full
population information, network-awareness allows for
tolls that can always incentivize optimal self-routing.

3) Comparing elements (B) and (E) shows that the guaran-
teed value of information about network characteristics is
more valuable than the guaranteed value of the mean of
users’ price sensitivities.

To further illustrate the results and highlight that the rela-
tionships between information settings hold more generally,
we provide a plot of each price of anarchy bound for varying
levels of population heterogeneity. Fig. 1 shows the best
attainable price of anarchy bounds under scaled marginal
cost tolling in the previously described information settings
for each Sp,/Suy € [0,1]. As the Sy/Su approaches 1,
there is less discrepancy between the different users’ price
sensitivities and all tolls can optimize performance; as Sy,/Sy
approaches zero, the differences between users’ responses can
be arbitrarily large and no toll is effective. For values of
S1,/Su in between, we see that the previously described rela-
tionships hold, and network information proves more valuable
than population information. These findings illuminate several
important considerations for incentive designers. In problems
closely related to our described setting (such as the tolling
experiment in [13]), our results inform what information the
toll designer should invest in acquiring. Further work is needed
to understand if identical conclusions are true in other settings,



13 ) 1
= (©.5() |
5 )

g 12 PoA* (G,8(3)) 7
u 115 .
S 1 ]
—

A~ 105 .

1

0 0.2 0.4 0.6 0.8 1

Pop.ulation Heterogeneity SLI/ Sy

Figure 1. Worst-case price of anarchy in each information setting over
levels of user heterogeneity St,/Su € [0,1]. Each plot represents the best
achievable price of anarchy bound using scaled marginal cost tolls for one
of the information settings: (A) network agnostic, mean agnostic, (B) & (C)
network agnostic, mean (or full distribution) aware, (E) network aware, mean
agnostic, and (F) network aware, mean aware. Each toll guarantees superior
performance than the untolled price of anarchy of 4/3. The values of each
line at S1,/Suy = 0.1 are those presented in Table I. By varying the value of
S1. /Sy, we can see that the relationship between settings holds when looking
at worst-case performance guarantees.

however identifying them in our setting highlights that these
comparisons need to be considered more broadly.

III. MAIN RESULTS

In each setting considered, we provide a result reporting
the price of anarchy bound under an optimal toll, as well as a
subsidiary result reporting the the optimal scaled marginal-cost
toll when applicable. The main conclusions can be observed
numerically in Table I, while the analytic expressions are
given in the following subsections. In this work, we limit the
search for optimal tolls to a search over scaled marginal-cost
tolling mechanisms. Taxation mechanisms of this form can be
parameterized by a single scaling factor &, and will be denoted
T(k) which assigns to an edge e a toll 7.(f.) = kaefe. As
discussed previously, these tolls posses desirable properties
in that they are naturally bounded when the latency is finite,
and they can be reasonably implemented in network-aware
and network-agnostic settings; further, in [27, Lemma 2.2]
the authors show that the optimal bounded toll can be found
by searching for the optimal scaled marginal-cost toll in the
network-agnostic case. In the network-aware case, it is an
open question as to what form an optimal, bounded taxation
mechanism will take.

A. Network-agnostic, bound-aware

The first scenario we consider is when the system designer
is agnostic of the exact network characteristics and knows only
the lower and upper bound on user sensitivities; we provide
a bound on the price of anarchy under an optimal scaled
marginal-cost taxation mechanism in this setting.

Theorem 1. When only Sy, and Sy are known, the price
of anarchy under an optimal scaled marginal-cost tolling
mechanism is

2
(q—1+\/q2+14q+1)
8¢ (—q—1+\/q2+14q+1)

PoA™ (G,8) = (8)

Table II
TABLE OF COMMONLY USED NOTATION & ABBREVIATIONS

E Edge set indexed by e € E/

fe Flow on edge e

Le(+) Latency on edge e as a function of edge flow

Qe Linear coefficient of latency function on edge e
be Constant coefficient of latency function on edge e
L(-) Total latency as a function of network flow
LN Total latency in a Nash flow

LOP() Total latency in the optimal flow

Congestion routing game problem instance
g Family of Congestion routing game problems
Toll on edge e as a function of edge flow

s( User price sensitivity as a function of user index
8 Set of population sensitivity distributions

S, Su Lower and upper bound on users’ price sensitivity
s Average user price sensitivity

Toll applied to edge e as a function of edge flow

T(-) Incentive mechanisms that maps edges to tolls

kagn scalar of network/sensitivity agnostic toll

k(s scalar of network agnostic/mean aware toll

ki scalar of network aware/sensitivity agnostic toll

ki,a) scalar of network/mean aware toll

kem geometric mean scaling factor 1/4/SL, Sy

PoA(+) Price of anarchy as a function of a class of congestion
games, price sensitivity set, and incentive mechanisms

PoA*(-) | Price of anarchy using optimal toll as a function of a class
of congestion games and price sensitivity set

Common Abbreviations
opt optimal over respective domain
Nf Nash flow (often w.r.t. toll, population, and game)

where q := S1,/Su.

This result gives a performance guarantee for the setting
where the system designer has minimal information about
the population and network characteristics. This result is a
generalization of [30, Theorem 1], where we now consider
networks that need not have traffic on every edge in a Nash
flow. As a means to find this upper bound, we first derive the
optimal scaled marginal-cost toll. In the proof of Theorem 1,
at the end of this subsection, we will use this toll to show the
associated price of anarchy bound.

Proposition 1. When only S1, and Sy are known, the optimal
network-agnostic marginal-cost toll scaling factor is
_ -5 — Sy + \/SIQJ + 1451, Sy + 5%

Kaen = 9
& 251,y ©)

Proof. We start by finding the scaling factor k.g, for the
optimal scaled marginal-cost toll. In this information setting,
the optimal scaling factor was found in [32] to be the solution
to the equation

4 (14 kagnSu)®
4 (]. + kagnSL) — (1 + kagnSL)Q 4kagnSU .

It is shown in [32] that when ST, < Sy, (10) always has exactly
one solution on the interval (1/Sy,1/51), and that solution
is the desired optimal scale factor. (9) is a solution to (10),
so we show here that (9) describes this desired solution by
showing that kg, is in the interval (1/Sy,1/Sy). Define the
term p = Sy/Sp. Because p > 1, we have

(10)

1+ 14p+p> > 1+ 14p+p> +8(1—p) = (p+3)°.



Thus, (9) can be lower bounded by

P ok A Gk M
ast 28y - Sy’

Likewise, define ¢ = S1,/Su (so that ¢ < 1), we have

(1)

1+14g+¢* <1414+ ¢*>+8(1 —q) = (¢ + 3),

yielding a lower bound on kg, of

~1-q+4/(¢+3)° 1
25y S

Thus, the scaling factor kg, defined in (9) exists in the interval
(1/Sy,1/5L). It can be shown by substitution that (9) satisfies
(10). O

kagn < (12)

Proof of Theorem 1: Using the scaling factor from Proposi-
tion 1, (8) can be found by substituting (9) into (10). O

B. Network-agnostic, mean-aware

We consider the mean sensitivity as additional information
to just the bounds Sy, Sy. If the system designer is aware that
the mean user sensitivity is s, the set of possible sensitivity
distributions is reduced to the set 8(3) C 8. Using this
information, the toll designer is able to refine the optimal
mechanism and improve the performance guarantees. The
price of anarchy of an optimal toll in this setting is shown
in Table I, where value (B) is noticeably lower than (A)
demonstrating the value of information to the system designer.

In deriving this bound, we perform a series of reductions in
the set of feasible instances to one which realizes the worst-
case price of anarchy. In Lemma 1, we show that any Nash
flow can emerge by a population with a bimodal sensitivity
distribution, thus reducing our search for worst-case instances
to those with bimodal sensitivity populations. In Lemma 2 we
further identify two distributions, one of which will realize
worst-case inefficiency. In Lemma 3 we reduce the search over
networks to those with only one linear and one constant edge,
and in Lemma 4 we identify two such networks that constitute
worst-case instances. We will first prove these lemmas that will
aid in proving several later theorems.

We say users x,y have the same fype if s(z) = s(y).
Further let a bimodal distribution be one in which there exist
exactly two user types; the set of such distributions is denoted
8P(3) C 8(3). We denote a bimodal distribution with types
S1 and Sy by (S7,S52). Note that for a given 5, S; and
So, the mass of users with each sensitivity is well defined.
Additionally, we adopt the convention used elsewhere that the
network links are indexed such that b; < bs.

Lemma 1. A Nash flow f for a sensitivity distribution
s € 8(3), under a linear tax T, is likewise a Nash flow
for some distribution s' € 8P(3) in which one type of user
is indifferent between the two edges and all users on each
edge are of a single type. This implies the price of anarchy
over sensitivities in $(3) is equal to the price of anarchy over
bimodal distributions in 8¥1(3), i.e.,

PoA(G,8(3),T) = PoA(G, 8" (3),T). (13)

Proof. Let s1 € 8(3) be some distribution of users’ sensitivi-
ties, and let Si,q be the sensitivity that has equal cost between
the two links in the Nash flow fNf, i.e., solution to

(14 Simak)ar frF + by = (1 + Sinak)aaf + by (14)

Note that in the case where Sj,q > Sy or Sing < SL, any
distribution s € 8§ will have the same Nash flow with all users
choosing the same edge. First, consider the case where Si,gq <
w(s1), where p(-) is the mean of the distribution. From Claim
1.1.2 in [30], if a user has a sensitivity S < Sj,q, then they
strictly prefer the first link; if they have a sensitivity S > Sinq
then they strictly prefer the second.

Now, let so be a new distribution where each user who had
chosen edge 1 now has sensitivity Si,q. The Nash flows from
s1 and s, are the same, as the same number of users have a
sensitivity S < Si,q and thus the same users choose the first
edge. It is clear that p(s2) > p(s1) as no user has a lower
sensitivity and some have higher.

Now, consider a third distribution s3, where users who chose
edge 2 now have some sensitivity S’ € (Sinq, Su); these users
will now strictly prefer the second edge of the network but
the Nash flow will remain unchanged. If we pick S’ = Sy,
the mean has surely increased again; if we pick S’ = Sinq,
because we are in the case Si,q < S, the mean is lower than
w(s1). Because p(s3) is continuous with S’, we can select S’
so that u(ss) = p(s1). The case of Sing > p(s1) is similar.

The distribution s3 = (Sind,S’) induces the same Nash flow
as s1 and now, one set of users is indifferent and users of the
same type exist on the same edge only. O

Having shown in Lemma 1 that any feasible Nash flow
can be realized by a population with a bimodal sensitivity
distribution, we note that the worst-case price of anarchy
can be realized by a bimodal distribution. Our search further
reduces as we characterize two specific distributions that give
worst-case inefficiency.

Lemma 2. For a given network G € G and scaled marginal-
cost tax T with toll scaling factor k, two distributions SES’G’]C)

and s,(lg’G’k), that maximize and minimize (respectively) the
flow on the first edge of the network, realize the price of

anarchy over those in 8P(3),
PoA(G, 8 (3),T) = PoA (G, (s&GR) sEmCR)Y T) (15)

Proof. The proof follows from the fact that total latency
is quadratic in the flow, thus the largest price of anarchy
will come from the flow that is furthest from optimal. From
Lemma 1, we see that any flow induced by a distribution
s € 8(3) can be realized by a bimodal distribution that has one
set of users observing equal cost between the links and each
edge containing only one sensitivity type. We therefore define

sfg’G’k) as the distribution that maximizes f{\lf and SEE’G”C) as
the distribution which maximizes f}'. O

Next, we focus on which networks exhibit worst-case in-
efficiency and reduce our search to the set of instances with



have one linear latency function and one constant; the set of
such networks is defined as

G = {Gt1(f1) = a1 f1, La(f2) = ba, a1, by > 0}

Lemma 3. For any G € G, there exists a G e Gl ¢ G that,
under the same scaled marginal-cost tolling mechanism T (k),
has a higher price of anarchy, implying

PoA(G,8(3),T(k)) = PoA(G'°,8(3),T(k)).  (16)

The proof of Lemma 3 appears in the appendix.

Finally, we identify two specific networks that demonstrate
worst-case inefficiency. For a given set of distributions 8(3)
and toll scaling factor k, we define two networks:

(1) Gg € G'® with latency functions ¢1(f;) = f; and
l5(f2) = B and satisfies SES’GB’]C) = (S, Sy), and

(2) G, € G' with latency functions ¢;(f;) = f1 and
l5(f2) = « and satisfies s = (S, Su). Due to the
discussion in the proof of Lemma 3, any network in G'° with
cost functions satisfying bs/a; = 8 will have the same price

of anarchy as G, and the same is true for for G,.

Lemma 4. For linear constant networks, under sensitivity
distributions in 8(3) with toll scaling factor k, the network G,
or Gg will realize the upper bound on the price of anarchy,
Le.,

PoA(G',8(5), T(k)) = PoA({Ga4,G5s},8(3), T(k)).

Proof. 1t can be seen by differentiation of (33), the price of
anarchy increases with the value of the indifferent sensitivity
when fNf < foP* and decreases when fNf < f°P'. Recall
that SESG’]’C) has fir > f7 P' and indifferent sensitivity S;1;
similarly, s,(f’G’k) has fi1, < fy P' and indifferent sensitivity
Syo. It is therefore true that having S;; = Sy or S,2 = Sy
is a necessary condition for the network which maximizes the
price of anarchy.

Further, in bimodal distributions (S7,S2) where users are
homogeneous on either link, fNf = (S5 — 3)/(S2 — S1).
For SES,G,I@) when users with sensitivity S;; = Sy, are
indifferent, the largest flow that can occur on f; occurs when
sfS’G’k) = (S, Sy). Similarly, for s8GR) $hen users with
sensitivity S, = Sy are indifferent, the least flow in f; has
sFER) = (SL, Su). One of these two conditions must be met
by a network G' € G'° to maximize the price of anarchy. Those

networks are the defined G, and Gj. O

For ease of notation, we will define a change of variable
2(x) =

Proposition 2. When Sy, Sy and the mean sensitivity s
are known, the optimal network-agnostic marginal-cost toll
scaling factor k() will be the solution on (1/Sy,1/SL) to

POA(Gﬁa (SLa SU)? T(k)) = POA(GQ, (SLa SU); T(k))a
(17)

1 _ 1 1
@k d 2L = gy and 2u = gy

where
1 1

B=R/z, a= 2(zu—z5)’ 2(1-zv) =
R/zy, otherwise.

(18)

13k m—(A) : PoA"(G,§) = =(E):PoA"(G,8) |-
S A (B) : PoA* (G,8(3)) (F) : PoA" (G,8(3))
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Figure 2. Price of anarchy in each information setting over various mean
sensitivities. Each plot represents a bound for one of the introduced tolling
mechanisms: (A) network agnostic, mean agnostic toll, (B) network agnostic,
mean aware toll, (E) network aware, mean agnostic toll, and (F) network
aware, mean aware toll. Each toll gives superior performance guarantees than
the untolled price of anarchy of 4/3. Price sensitivity bounds S, = 1 and
Sy = 10 are shown; changing these values has a minimal effect on the
relation between the lines.

where R := (Su —3)/(Su — SL).

The proof of Proposition 2 appears in the appendix.
Finally, the price of anarchy under the optimal tolling
mechanism can be expressed as in the following theorem.

Theorem 2. When Sip, Sy and the mean sensitivity §
are known, the price of anarchy under an optimal, scaled
marginal-cost toll is given by

R?—BR+

B—p2/4 7
where R := (Suy —3)/(Su — SL), and B = (1 + Svks))R,
with ks being the solution to (17).

PoA* (G, 8(5)) = (19)

In Fig. 2, we show the price of anarchy bound of the
network-agnostic, mean-aware tolls alongside the price of
anarchy bound in several other settings. As mentioned before,
the value of knowing certain pieces of information (in this
case the mean) is highly contextual: when the mean 35 is
close to one of the lower or upper bound S;, and Sy, the
mean is very informative as users’ sensitivities must be more
concentrated around the average. However, in worst-case, the
mean sensitivity does not offer as much value to the toll
designer as the knowledge of the edge latency functions as
in the network-aware, mean-agnostic case.

Proof of Theorem 2: From Lemma 4, a network G realizes
the price of anarchy when the toll scaling factor is chosen
optimally as in Proposition 2. The price of anarchy for this
network is found by substituting 3 from (38) into the latency
function ratio in (36). O]

C. Network-agnostic, distribution-aware

When the system designer is informed of the average user
sensitivity, they are able to improve the price of anarchy
ratio by utilizing the new information. It would seem that
having precise knowledge would allow further reductions in
the price of anarchy; however, in Theorem 3 it is shown that
full information on the user sensitivities does not improve the
price of anarchy.



Theorem 3. The worst-case performance guarantee for the
network-agnostic taxation mechanism with knowledge of the
full user sensitivity distribution is no better than that of the
network-agnostic, mean-aware:

max PoA*(G,s) = PoA*(G,8(3)).

20
s€8(3) (20)

When the system designer is uncertain of the network
characteristics, the full sensitivity distribution information is
no more valuable than the average of the users sensitivities,
in worst-case; this is highlighted in Table I where the price of
anarchy in box (B) and (C) are equal.

Proof. The proof follows similarly from Section III-B, utiliz-
ing Lemma 1, Lemma 2, Lemma 3, and Lemma 4. Observe the
two worst-case problem instances: G, with bimodal distribu-
tion (Sr,, Sy) with mean 3, and G with bimodal distribution
(SL, Su) with mean 5. Because the user sensitivity distribution
is the same in both instances, if this distribution was known
apriori, the networks G, and Gg would still constitute worst-
case instances and the optimal tolling mechanism must be
selected as in Proposition 2 and give the same performance
guarantee as if only the mean was known. O

D. Network-aware, sensitivity-agnostic

In the previous sections, it is shown that additional infor-
mation about the population of users may help improve the
performance guarantees of an optimal taxation mechanism. In
the following sections we will also see how full knowledge
of the network characteristics can improve the efficacy of
tolls. Specifically, in this section we consider the case where
the system designer has full information on the network
characteristics but knows nothing about the users’ sensitivities
except that they are bounded away from zero; in this setting,
the additional information will not help.

Proposition 3. When the the exact network G is known, but
users’ sensitivities s € 8¢ are only known to be bounded
away from zero, no taxation mechanism can improve the price
of anarchy, i.e.,

sup PoA™(G,8<0) = PoA™(G,8¢) = 4/3.
Geg
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Proposition 3 shows shows that even if the exact network
characteristics are known, some information about the popula-
tion’s response is required to improve worst-case performance
guarantees. This is consistent with box (D) of Table I; Further,
this implies the top left box as well: when no information on
network or population is present, no toll can lower the price
of anarchy below 4/3.

Proof. If each user has the same sensitivity .S; further, consider
the classic Pigou network with two parallel edges, one with
latency ¢1(f1) = f1 and £.(f2) = 1. In the absence of any
tolling, the Nash flow is fNf = (1,0) and the optimal is
fort = (1/2,1/2), giving a price of anarchy of 4/3. When all
users travel on the same link (either the first or the second)
in the Nash flow, the price of anarchy is 4/3, the same as the
untolled case. Any tolling mechanism that incentives users to
utilize the second link (i.e., 71 > 72) can be made arbitrarily

ineffective by letting S — oo, causing the Nash flow to be
Nt =(0,1) and the price of anarchy to be 4/3. O

E. Network-aware, mean-agnostic

As seen in the previous section, network information will
not help a system designer that has no knowledge of the
population. When the system designer at least has bounds on
the possible sensitivities of users, the optimal toll will be able
to improve performance.

Theorem 4. When only Sy, and Sy are known, the price of
anarchy under an optimal, network-aware, scaled marginal-
cost toll is tightly upper bounded by

)

By comparing box (B), (C) and (E) in Table I, one can ob-
serve that network information is significantly more valuable
than additional population information beyond the lower and
upper bound.

To prove this bound, we assume the toll designer can
determine the Nash flow of a possible homogeneous low-
sensitivity population associated with each toll scaling fac-
tor; this assumption is reasonable as the Nash flow of a
homogeneous population can be found by solving a convex
optimization problem [16]. Let fN{(G, S, k) be the mass of
traffic on edge ¢ in network G in a Nash flow of a population of
users with homogeneous price-sensitivity S and tolling factor
k.

PoA* (G, 8) < g <1 - (22)

where q ;= S1,/Su.

Proposition 4. For any network G € G and any Sy > S, > 0,
let k8™ = (SLSU)_UQ. The following is an optimal network-
aware marginal-cost toll scaling factor:

. 0 if SNG, Su k) =0,
(@) =3 jem

otherwise.
Proof. Consider the following cases, differentiated by the
structure of Nash flows resulting from k& = k8" =
(SLSU)71/2:

D (G, SL, k&™) > 0, and

2) (G, S, k™) = 0.

It is shown in [30] that in Case (1), it must be true that
LN(G, S, k) = LN (G, Sy, k) and that this choice of k
is uniquely optimal, resulting in the price of anarchy given
in (22).

Consider Case (2). Here, the extreme low-sensitivity pop-
ulation with s = Sp, strictly prefers link 1 when k = k5™,
effectively stripping the designer of their influence over the
price of anarchy. It can easily be shown (using, e.g., tools
from [30]) that

(23)

E<kt™ — NG, S k) = LN (G, 0), (24)
but that
kP> ks = LNY(G, Su, k") > NG, 0).  (25)



That is, in this regime, the designer cannot change the behavior
of s = S1, without increasing tolls, but cannot increase tolls
because this would cause the high-sensitivity population with
s = Sy to route more inefficiently. That is, £ = 0 is an optimal
tolling coefficient in this case.* O

Proof of Theorem 4 1t follows easily from the results in [30]
that in Case (2) when k£ < k&M, it is true for any s that
LNYG, s, k) < LN(G, Sy, k¥™); the price of anarchy bound
for this scenario is thus precisely that in [30], where now we
include games which need not have flow on every edge in an
untolled Nash flow. O

E. Network-aware, mean-aware

Next, we consider when the system designer is network-
aware and mean-aware to illustrate the gain in performance
when the system designer has knowledge of the network and
partial information of the population.

Theorem 5. When Sy, Sy and the mean sensitivity s are
known, under an optimal, network-aware, scaled marginal-
cost tolling mechanism, the price of anarchy is tightly upper
bounded by

R? - BR+ 8

B—p2/4
where R = (Sy —3)/(Su — Sv) and (3 is the unique solution
on the interval [0, 2] to

B | 1+R-7

In order to prove this, we start by making several of the
same reductions as in Section III-B. In this setting, the optimal
network-aware toll is found and denoted by the scaling factor

k(g’G).

PoA* (G, $8(3)) < (26)

27)

Proposition 5. For a network G € G with price sensitivity
distributions s € 8(3) with extreme sensitivity distributions
SES’G’k) = (Sr1,Sr2) and s,(,s’G’k) = (S,1,Su2), the optimal
toll scaling factor for a linear toll will take the form,
i B 1
G 55

Proof of Proposition 5: From Lemma 1, under the same
tolling mechanism, the set of Nash flows caused by 8(3) is
equal to those caused by distributions with bounds [S1, S,2]
and no mean constraint. The optimal scaling factor will
therefore minimize the price of anarchy over this set of
distributions. From [30], the optimal scaling factor for a linear
toll will take this form. O

Lemma 3 shows that a transformation from a network G €
G to a network G € G'¢ will increase the price of anarchy; we
also note that this transformation had no dependence on the

(28)

“In this case, the set of price-of-anarchy-minimizing tolling coefficients
is not a singleton in general: any coefficient satisfying £LNf(G, Sy, k) >
LNY(@G, Sy, k) is optimal. Implication (24) means that this set always
contains k = 0.

toll scaling factor and we can thus choose a k that is optimal
for the resulting network.

Corollary 1. When making a reduction from G € G to Ge
G'°, the price of anarchy increases regardless of the toll scaling
factor k, including when k = k(5 ¢ for each network before
and after the reduction.

Proof: In the proof of Lemma 3, the relation between k and
the price of anarchy was not used; instead, it was shown that
the price of anarchy increases as the network is transformed
from any two link network, to one that was in G'c. Consider
having network G with the non-optimal toll scaling factor
k(g’é). When the reduction from G to G is done, by Lemma
3 we have

PoA(G,8(3), T(k(s ) < POA(G,8(5), T (ks )
< PoA(G,8(3), T (ks ¢))- -

Proof of Theorem 5: 1t is shown in Lemma 4 that a set of two
networks realizes the price of anarchy. The price of anarchy
for the network G is found by (36). Now, let G’, defined by
B, be a network that has the same price of anarchy when the
flow R is on the first link, One solution is clearly 5 = /', the

otheris ' = %. Using the cost function of ne?vgr}l:) G,
s,G, _

we have 3 = (1+ SLk(s,¢))R. Thus, if 8’ satisfied s,
(S, Sy) for the same mean sensitivity, then
4-P)R
ﬁ/ _ % = (1 + SUk(gﬁG/))R.

However, it can be shown that the right hand side of (37) is
strictly less than the left hand side. This imposes that the flow
f1 = R cannot be a Nash flow in G’ under distributions in
8(3) and therefore not achieve the same price of anarchy as
G. This implies that the price of anarchy for G is greater
than that of G, when both are tolled optimally with respect
to Proposition 5. As this network is optimally tolled, from
Proposition 5, it will be the case that

35— SL
1+R-p

(29)

Sz = + SL. (30)
Now, in sensitivity distribution sES’G’k) = (S, Su), users with
sensitivity Sy, are indifferent with optimally scaled toll k(5 ).
Using S from (37) and substituting the optimal scaling factor
with extreme sensitivity from (30) leads to the characterization
of 8 in the theorem statement, and the price of anarchy is
found by substituting this into (36). O

G. Network-aware, distribution-aware

In [25], the authors show that in the fully informed setting,
there exist fixed tolls that will incentivize the users to self route
optimally. We will extend this work to our framework to show
that, when the system designer known the full user sensitivity
distribution and the network characteristics, they can always
design a toll that gives price of anarchy of one.

Let F(S) be a cumulative distribution function of the
users’ sensitivities in population s. Further, let F~1(f) be a
preimage of [St, Sy] under F(S) where if the preimage is
non-singleton, the minimum sensitivity is used, i.e., Ffl( )



is the sensitivity at which f mass of users have a lower
sensitivity.

Theorem 6. For the network G with population s, the linear
toll 1

T(af +b) = W

af, €29

opt _ 2as+bo—b1 - i i
where fI*° = 5 a2) will have price of anarchy one, i.e.,

PoA* (G, s) =1 for any G and s.

Box (G) in Table I shows that, when sufficient informa-
tion is available, the inefficiency can be entirely eliminated,
regardless of the problem instance.

Proof. First, note that for a network G, the optimal flow will
be f{P' = % If S is the sensitivity at which a user
is indifferent between the two paths in the optimal flow, then
any user with lower sensitivity will use the first edge. If the
indifferent sensitivity is S* = F~1(f2P") then picking k such

that
(14 S*k)ar £ + by = (14 S*k)aa(1 — ) + by (32)

is satisfied, the equilibrium flow will be f°Pt. Substituting S*
and solving for k gives k = W O
1

IV. EMPIRICAL STUDY

The theoretical claims of this work are presented in the
setting of two-link, affine-latency congestion games with
scaled marginal cost tolls. As mentioned previously, some of
these results generalize beyond this simple class of networks;
we presented each result in this reduced setting to improve
uniformity in presentation. Specifically, by matching the upper
bound in [16], Proposition 3 holds for all networks, even
those with multiple source-destination pairs. Theorem 6 easily
generalizes to multi-link parallel networks following the same
steps as presented in this work. Theorem 1 and Theorem 4 can
be shown to hold after a slight transformation for multi-link
parallel networks by following steps from [27]. This leaves
Theorem 2, Theorem 3, and Theorem 5 as results where it
is not known if our findings generalize to other classes of
networks. In this section, we will motivate why we believe
these results offer insights more broadly and the relationships
likely hold more generally.

To understand how the results of this work extend to more
general networks, we focus on understanding how the derived,
optimal, scaled marginal-cost tolls perform in networks of
greater than two links. We do this empirically by randomly
generating a large number of five-link parallel networks with
different population sensitivity distributions and recording the
price of anarchy. Fig. 3 shows the empirical price of anarchy
values and demonstrates that every found parallel network has
a strictly better price of anarchy than the 2-link bound.

We focus our simulation on the mean aware setting to under-
stand how these results generalize. To garner these empirical
results, we set s = 1 and vary the lower and upper bound
over several values. For many values of o € (0, 1), such that
S, = 35— o and Sy = 5+ a, we randomly generate 500
networks with five parallel edges, where the coefficients a, and

T T T T T T
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Figure 3. Empirical price of anarchy in 5-link parallel congestion networks
compared to two-link bound. Specifically, the study is in the mean-aware,
network-agnostic information setting, where in each game the optimal scaled
marginal cost toll k) from Prop. 1 is used. With average sensitivity 5 = 1,
the population sensitivity distributions were chosen with lower bound S}, =
S — o and upper bound Sy = 5 + . For varying values of o € (0,1), 500
parallel networks with 5 links and 100 population sensitivity distributions
(including demonstrably worst-case distributions) were randomly generated
and the price of anarchy while using k(s) was recorded for each realization.

be in the latency function £ (fe) = a fe+be are independently
drawn uniformly at random from [0,1]. For each realized
network, a set of sensitivity distribution were generated; the
generated distributions included ones randomly created with
2, 3, 4, and 5 sensitivity values with positive weight. Fig. 3
shows a scatter plot of each recorded price of anarchy along
with the maximum over these empirical samples.

It is not surprising that the 2-link bound appears to hold over
the class of parallel networks; in [31], it is shown that the price
of anarchy in non-atomic congestion games is independent of
the network structure, and worst-case examples are realized by
two-link networks. Though it is not obvious this relationship
holds with the introduction of tolling, in [30], the authors show
that scaled-marginal cost tolls similarly experience worst-case
performance over parallel networks in two-link networks.

V. CONCLUSION

This work studies the value of different types of infor-
mation to a toll designer. When comparing the performance
guarantees awarded to toll designers with differing available
information, we observe that, though possessing additional
information can give a system designer greater capabilities,
it is not trivial which specific pieces of information are most
helpful in influencing user behavior. The results of this work
offer comparisons between the value of different types of
information, including when additional information is helpful
and when it is not.
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APPENDIX

Proof of Lemma 3: Consider a network G € G with affine
latency functions on each link ¢;(f) = a;f + b;. Let G have
cost functions l@(f) =a;f+ b; with @; > 0 and b; > 0. We
first show that simply removing the constant latency term on
the first edge by strictly increases the price of anarchy under
any scaled marginal-cost toll. Using the optimal and Nash flow
in (33), if by = by — by and by = 0 then G and G will have
the same optimal flow and Nash flow for a distribution s.
From (2), we observe that LOP*(G) = LPY(G) + b as well
as LNN(G, s, k) = LNU(G, s, k) + by; therefore,

) [N (@’ s,T(k)) + b
PoA (G5, T(N) = — o &

< LNt (G,S,T(k))

LoPH(C) = PoA(G, 8(5), T(k)).

Thus, for any network G € G, there exists a network G with a
linear latency function on an edge with higher price of anarchy.

Next, we show a network G € G will have the same price
of anarchy as a network G € G under the same linear toll if
the latency functions of G equal the latency functions of G
times a scaling factor c¢. Under a distribution s € 8§, G and G
will have the same Nash flow. Using the indifferent sensitivity
Sing that is the solution to (14), the Nash flow and optimal
flow on the first edge are

opt __ 2a2 +ba — by

Nt (1 + Sinak)az + by — by
1 2(&1 + CLQ)

b (1 + Sinak)(a1 + a2)
(33

Under the same distribution s, Sj,q will satisfy
(14 Sinak)car [ + cby = (1 + Sinak)cazfa’ + cba, (34)

which are the latency functions for the network G. It is now
clear that @ and G will have the same Nash and optimal flows.
From the definition of total latency in (2), the latency in G
will be ¢ times the latency in G under the same flow. The
price of anarchy, which is the ratio of two total latencies, will
be identical in G and G'.

Lastly, we show that by decreasing a3 in a network, the price
of anarchy will increase. In Lemma 1, it was shown that any
feasible Nash flow can be induced by a bimodal sensitivity
distribution in which users are segregated on either link by
their sensitivity. The price of anarchy for the network G with
a Nash flow caused by s will therefore be,

Po(G.s, 7)) = ~AUNIAT + (A

AU (T

(35)




Let us consider the case where fNf > fsP'. Now, consider
a new network, G which replaces latency function £5(f) =
as f + by in G with ég(f) = a2f+b2 where by = by + § such
that 6 > 0. Because the users are segregated on the links, the

Nash flow will not change. Note that because f3'' > fOpt
@(m)_<hbf+® 2
£2( opt) - a2fopt é)pt'

It can now be shown that
LNN(G, s, T(k))
Eopt(G)

LNY(G, s, T(k)) + 5
Lo (G) + 3L
_ LNY(GL s, T(R))
Lopt (é) ’

Thus the price of anarchy has increased in the new network
G, under the same sensitivity distribution and toll, when bo
was increased, which has the same effect as decreasing the
other terms and holding b, constant. A very similar argument
can be followed for when fNf < f9P* by picking dy = as — 6,
and the price of anarchy then again increases. O

Proof of Proposition 2: The k that solves (17) equates the
price of anarchy for Gg and G,. It is shown in Lemma 4
that these networks realize the worst-case inefficiency and
in Lemma 2 it is shown the worst-case distribution will be
sfs @R and 55 respectively, both defined as the bimodal
distribution (S, Sy) with mean § and mass R of the lower
sensitivity type. To show this is optimal, it is sufficient to show
that the price of anarchy for the network G is decreasing with
k while the price of anarchy for the network G, is increasing
with k. If the networks have this relation with &, then the k&
that minimizes the price of anarchy must equalize them.

Consider a network G € G'° characterized by v = by /ay. If

N

this satisfies that s(s R = (S, Su) or s$7FK) = (51, Sy),
then the price of anarchy for this network will be
R?—yR+4y
=L <2
PoA(G,8(5),T) =4 1 v/ 7 (36)

R* —yR+7y, 7v2>2.

This piecewise-continuous expression is locally minimized by
= 2R, further, by differentiation, it can be observed that
it is monotone decreasing for 0 < v < 2R and monotone
increasing for v > 2R.
For the previously defined network G, under the bimodal
distribution (Sr,, Su),

B = (1 + SL]C)R = R/ZL,

where [ is dependent on the scaling factor k. From [32], the
optimal scaling factor k£ will be in (1/Sy,1/5L). Therefore,
for any k, § < 2R. The price of anarchy for this network
is therefore monotone decreasing with 3, and from (37),
is clearly increasing with k. The price of anarchy of the
network is therefore decreasing with k. Similarly for G,
under the distribution (St,, Sy), the worst network is found
by maximizing (36) over v = «, giving
1
2(zy — %)

> R, and R/zy = a > 2R, and the price of

(37

=a>2R, (38)

1
when Moo —22)

anarchy will be increasing with k. O
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