
Mutiny! How does Kubernetes fail,
and what can we do about it?

Marco Barletta∗, Marcello Cinque∗, Catello Di Martino†, Zbigniew T. Kalbarczyk‡, and Ravishankar K. Iyer‡

∗Università degli Studi di Napoli Federico II, Naples, NA 80125, Italy
†Nokia Bell Labs, Sao Paulo, SP 05069-010, Brazil

‡University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA

Abstract—In this paper, we i) analyze and classify real-world
failures of Kubernetes (the most popular container orchestration
system), ii) develop a framework to perform a fault/error in-
jection campaign targeting the data store preserving the cluster
state, and iii) compare results of our fault/error injection ex-
periments with real-world failures, showing that our fault/error
injections can recreate many real-world failure patterns. The
paper aims to address the lack of studies on systematic analyses
of Kubernetes failures to date.

Our results show that even a single fault/error (e.g., a bit-flip)
in the data stored can propagate, causing cluster-wide failures
(3% of injections), service networking issues (4%), and service
under/overprovisioning (24%). Errors in the fields tracking
dependencies between object caused 51% of such cluster-wide
failures. We argue that controlled fault/error injection-based
testing should be employed to proactively assess Kubernetes’
resiliency and guide the design of failure mitigation strategies.

Index Terms—container orchestration, failure, resiliency,
mission-critical, fault injection, cloud

I. INTRODUCTION

Container orchestration systems manage container life cy-
cles across a cluster of nodes providing automation and
flexibility for application management and acting as cloud
operating systems [1, 2, 3]. They are increasingly used in
mission-critical scenarios with strict non-functional require-
ments (e.g., response-time latency and availability) [4, 5, 6,
7, 8, 9]. Those scenarios adopt fog/edge-cloud and service-
based paradigms to support fast and automated reconfiguration
[10, 11, 12, 13, 14].

Kubernetes (henceforth, K8s), is the de facto standard
among container orchestration systems to provide automated
management of services. Several orchestration systems are
compliant with K8s [15] or reuse its code. A survey from
the Cloud Native Computing Foundation found that 96% of
organizations are using (or plan to use) K8s [16].

The widespread use of K8s-based platforms to host critical
applications makes it imperative to study K8s’s resiliency
and failure modes. Literature has focused on K8s testing to
discover bugs, but there are no available studies to assess the

©2024 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

resiliency of K8s in a thorough and systematic way or that
perform a clear classification of its failures.

K8s is designed to withstand common errors and failures
through a range of resiliency strategies, including heartbeats,
redundancy, failover, circuit breakers, and stateless system
components. In particular, stateless components foster easy
failover: action is based on observation rather than a state
machine. Upon restart, a component only needs to observe the
current and the desired cluster state stored on a data store. The
state dependency is thus moved away from the components
to an external data store, which becomes a dependability
bottleneck that preserves all the state information.

In this paper, we use both real-world failure reports and a
fault/error injection campaign to classify K8s’s failure modes,
assess its ability to tolerate faults, and analyze how errors
propagate and impact on the availability and response times
of deployed services.

Multiple real-world failure reports referring to enterprise
production clusters in the order of a thousand nodes [17] can
be found in blogs or forums[18, 19, 20, 21, 22, 23] on the
Internet. Although human-generated reports can be vague and
incomplete, they provide valuable insights to inform the design
of the fault/error injection campaign.

Our fault/error injections target the data store, which pre-
serves the current and desired states of cluster resources. Any
corruption of the data in the data store may propagate and
cause failures in every system component. The fault/error
injection campaign affects the data used by orchestration
operations and follow three models: bit-flips, data-type cor-
ruption, and message drops. Importantly, we show that our
injections trigger failure patterns similar to those seen in the
real world, despite the possibly different root causes. For
example, corrupting the data of a service causes containers
to be spawned in an infinite loop, leading to an overload and
system-wide outage. The same pattern was observed in [19]
as the result of incorrect container labels.

Our contributions include i) a field failure data analysis
(FFDA) of real-world K8s incidents reported in online sources,
deriving a failure model for K8s; ii) the design and implemen-
tation of Mutiny, a K8s injection framework (the data and code
are available at [24]) used to perform a fault/error injection
campaign of about 9000 injections in an on-premises cluster;
and iii) the comparison of the results of the FFDA and our

ar
X

iv
:2

40
4.

11
16

9v
1

 [c
s.D

C
]

17
 A

pr
 2

02
4

fault/error injection experiments.
Our key findings are as follows.
F1) ∼3% (282) of the performed injections led to a

system-wide failure. Those failures include Stall, i.e., the
cluster’s ability to react to changes was compromised, but
already-running services remained available; and Outage, i.e.,
services’ availability system-wide was compromised. ∼24%
of injections led to service under/over provisioning, ∼4% to
service network issues. Both experiments and real-world K8s
failures show that one incorrect data value can propagate and
cause system-wide failures despite the resiliency strategies.

F2) Errors in the fields tracking the dependencies among
objects caused 51% of critical failures (i.e., Stall, Outage,
Service unreachable). Objects are entities representing part of
the cluster state. Dependency relationships among them can
be dynamically managed through labels at the expense of
resiliency. Errors in those labels can overload the system, as
for the infinite loop of spawned containers cited above [19].

F3) Misconfigurations can easily overload the system,
like in 13 out of 81 real-world failures. The system does not
detect hazardous user commands when managing resources at
scale. Misconfigurations, which are common in practice[25],
can overload the system, and saturate all computing resources.

F4) Errors can escape monitoring and propagate inside
the system with the user being unaware. Orchestrators
compare a user-requested desired state (e.g., the number of
containers to run) and the observed state (the number of
containers spawned). If the observed and desired states differ,
the orchestrator takes actions to harmonize (reconcile) the two
states [3]. When a user modifies the desired state, the orches-
trator acknowledges the change but postpones the attainment
of the requested state. The observed and desired states should
eventually match. If they do not match because of a failure,
the user might not receive any error from the system (like in
more than 85% of our experiments), unless proper monitoring
alerts are set up. Real-world data show that errors propagated
to failures because companies had inappropriate alarms set up.

The implication of the findings is that the system should
log changes to labels that can cause critical failures, monitor
whether those changes alter system availability, and possibly
roll back to the old values when needed.

The novelties of the work include our classification of the
orchestration failures, the use of the data store as the target of
our injections, and the adoption of our fault/error injection
framework for systematic testing of orchestration systems’
resiliency as part of the software development process.

II. BACKGROUND

A. Containers and orchestration systems

Containers and orchestration systems are technologies that
automate the management of services and resources. Con-
tainers provide easy packing of services. Orchestrators are
distributed systems that provide containers with scheduling,
availability, resource allocation, health monitoring, scaling,
load-balancing, and networking [1, 2, 3]. They are composed
of a control plane and a compute cluster made of worker

nodes. The former makes global decisions to reconcile the
observed state with the desired state received in input. The
latter spawns and monitors the containers assigned to the
worker nodes.

B. Putting Mutiny into perspective

Industry 4.0 [5, 6, 7, 26], 5G networks [8, 9, 10], avionics
[4], and healthcare [14] are a few examples of critical en-
vironments in which there are plans to adopt service-based
paradigms powered by K8s. In these contexts, a systematic
analysis of failure modes is needed. Among several striking
failures reported in blogs [18, 19, 20, 21, 22, 23], an interesting
example is that of a Reddit compute cluster, in which a node
relabeling enforced by a Kubernetes update led to 314 minutes
of cluster downtime due to a system-wide network failure [21].

As ways to reduce failure-related risks, in several publica-
tions [19, 20] companies mention the use of custom fire-drill
tests and gameday testing, which deliberately create disruption
in K8s to test the orchestrator response and to train cluster
operators to do timely troubleshooting. However, these tests
differ between companies and do not seem systematic. No
established methodology, such as failure mode and effect
analysis, field failure data analysis, or Chaos engineering, is
mentioned. The literature has focused on i) testing of K8s
controllers through the discovery of bugs related to distributed
system threats, leveraging the injection of probable yet sim-
ple faults, e.g., network partitioning, crash, and stale states
[27, 28, 29, 30, 31, 32, 33, 34]; and ii) assessing, through fault
injection, the resiliency of deployed applications [35, 36, 37].

Hence, there is a gap in the systematic assessment of the
fault tolerance of K8s itself, in terms of component resiliency
and recovery capability. In our preliminary experiments, we
applied Chaos engineering to K8s components with available
tools, but the system was always recovering. Indeed, Chaos
engineering injects faults/errors (e.g., latencies, crashes, HTTP
errors) that are agnostic of the microservices and effective in
a complex interaction topology. In K8s, the limited number
of components makes simple errors well-tolerated. Mutiny
instead injects state alterations through incorrect values in
the data on the datastore. Mutiny can be integrated in the
testing clusters and/or in Chaos engineering processes to
systematically evaluate the response to orchestration errors
under realistic workloads and train the cluster operators. Our
methods can be extended to custom components, heavily used
by companies [38], and to other orchestration systems that
rely on a main data store containing the whole cluster state
and state reconciliation loops [3].

C. Kubernetes

K8s handles several resource kinds (e.g., Pod, ReplicaSet,
and Node). For each resource kind, there are multiple resource
instances. A Pod is a set of containers deployed in an isolated
environment with some hardware resources allocated. The
Pods are stateless or store their states externally (e.g., in
volumes). A ReplicaSet ensures that a desired number of Pod
replicas (i.e., Pods running the same application) is running

Fig. 1: Architecture of K8s.

at any one time. A Deployment manages rolling updates of
the container images and the replica number of a ReplicaSet.
A DaemonSet is similar to a Deployment, but it spawns Pods
on every Node (defined later) that satisfies the constraints. A
Service provides a single network endpoint to load-balance
requests among a set of Pods characterized by a given Label.
We use the term service for a deployed application that
responds to client requests. A Node is either a control plane
node or a worker node of the cluster, characterized by a
state and available resources. All resource instances carry
some metadata, like Annotations and Labels, which provide a
flexible mechanism to associate resource instances with each
other and to define custom information and behaviors.

K8s components are loosely coupled and include (Figure 1)
i) Etcd, a key-value store guaranteeing sequential consistency
to the data of the state of the cluster; ii) kube-apiserver
(hereafter, Apiserver), which exposes the API, allowing users
to interact with the cluster and interconnecting the control
plane components; iii) kube-scheduler (hereafter Scheduler),
which assigns the Pods to Nodes based on resource requests,
availability, and constraints; and iv) kube-controller-manager
(hereafter, Kcm), which reconciles the current cluster state
with the desired one. The Apiserver communicates with two
components deployed on each Node: i) the kube-proxy, which
maintains the virtual networks, connecting Pods and Services;
and ii) the Kubelet, which sends Node heartbeats and manages
the lifecycle of the assigned Pods, restarting them if they are
unhealthy. By extension, we consider as part of K8s also
coreDNS and the network manager. They are, respectively,
a service providing name translation to the Pods, and a
DaemonSet managing networking between Nodes.

The components can be seen as stateless services that indi-
rectly communicate by storing data on Etcd. They hold a cache
and can be restarted at any time, fetching necessary data from
Etcd. The Apiserver is the only component communicating
with Etcd; the others send requests to Apiserver and observe
state changes. An event or request can update the state ci
(desired or current) by modifying data on Etcd. All interested
components are notified, and they react by creating, deleting,
or updating the dependent resource instances, enforcing a
linear sequence of state changes, i.e., [ci, ck, ..., cj].

D. Resiliency strategies in K8s

In the following, we provide a non-exhaustive list of strate-
gies that K8s uses to increase its resiliency.

• Support for optional redundant control plane on different
nodes for availability: Etcd, Kcm, and the Scheduler can work

in a leader-follower scheme. Etcd uses the Raft consensus
algorithm[39] and quorum reads among the replicas. The Kcm
and the Scheduler use leader election so that there is only one
active replica at a time.
• Level-triggered reconciliation and stateless components:

decisions are based on the current and desired states[40], and
the messages exchanged between components are states, not
commands. This guarantees easy recovery if restarts occur.
• Independent components to foster failure isolation: the

control plane components are deployed as independent Pods.
A failed component can be restarted by the Kubelet without
affecting the other components.
• Circuit breakers that prevent a repeatedly failing operation

from overloading the system with a cascading effect. For
example, when a Pod fails several consecutive times, it is
restarted with increasing back-off delays.
• Timeouts in the communications between components to

release resources in a timely manner if failures occur.
• MaxUnavailability to guarantee a minimum number of

available replicas during rolling updates of Deployments,
limiting the impact of incorrect updates.
• Server Side Apply prevents unauthorized entities from

modifying fields of data structures not owned by them.
• Full disruption mode that stops Pod evictions when all

Nodes are reported as unhealthy, since the issue could be in
the heartbeat reporting mechanism itself.
• Deletion of undecryptable resources (i.e., resources that

cannot be deserialized due to protocol errors) to prevent a
failure during retrieval of the resource lists containing it.

III. FIELD FAILURE DATA ANALYSIS (FFDA)

This section analyzes data on real-world K8s failures col-
lected in [18]. The aim is a qualitative analysis to categorize
K8s faults, errors, and failures, and to identify fault/error
propagation patterns that lead to system/application failures.
From the analysis it emerges that errors or misconfigurations
in subsystems like networking or replication control can cause
cluster-wide failures. A quantitative analysis of the available
failure data is not feasible because i) the failures reported (e.g.,
in online blogs) by companies are a subset (e.g., the most
impactful) of all failures that happened in different systems;
ii) the lack of a systematic approach to data collection may
mean failures go unreported; and iii) the available failure
descriptions frequently do not provide relevant failure details
and data, hindering a traditional FFDA. Nonetheless, the
analysis is useful to analyze and classify the most relevant
and impactful error/failure patterns in the wild and inform the
design of a fault/error injection campaign.

Figure I provides a Fault-Error-Failure dependency chain
derived from 81 failure instances analyzed.

A. Orchestrator-level failures

An orchestrator-level failure (OF) is a misbehavior of the
orchestration system that may or may not have an impact
on applications. Based on our analysis of the failure data,
we classified the K8s failures into the following categories:

Fault Fault Description
Wrong
Autoscale
Trigger

Autoscaling of Pods or Nodes is
based on misleading information

Race
Condition

Concurrent actions whose final re-
sult depends on timing. E.g., in
routing tables/connections

Unverifiable
Certificate

Certificates cannot be verified or
recognized (e.g., cert. rotation)

Bug Bug in K8s, third-party, plugins, or
underlying code (runtime, OS)

Human
Mistake

Incorrect command or configura-
tion including: 1) bad resource
sizing of components or apps, 2)
wrong or badly tuned settings

Unmanaged
Upgrade

System specification or implemen-
tation changes, failing regression

Overload Too many Pods or Pods with too
many resources for a cluster/Node

Low-Level
Issues

Faulty hardware or related drivers

Failing
Application

Misbehaving application causing
many events and/or failing Pods

(a)

Error Error Description
State
Retrieval

Irretrievable, stale, or cor-
rupted state due to unavail-
ability, delays or user com-
mands

Misbehav-
ing Logic

Components behave differ-
ently from expected, affecting
the reconciliation actions

Communi-
cation

Networking delays or failures:
DNS, routing, load balancing

Resource
Exhaustion

Affected amount of avail-
able computational resources:
number of available Nodes,
Node/control plane resources,
etc.

Control
Plane
Availabil.

Unhealthy control plane com-
ponents are slowed down or
cannot take actions

Local to
worker
Nodes

Errors in underlying software:
container runtime, OS, image
availability

(b)

Failure Failure Description
None
(No)

System recovered without any consequences,
timely reaching the correct steady state

Timing
Failure
(Tim)

The creation/update of Pod or other resources
took significantly longer than expected, e.g.,
due to component restarts or overfilled queues.

Less
Resources
(LeR)

One or a reduced number of services at steady
state have permanently allotted less resources
than planned, e.g. Pod number or Pod resources

More
Resources
(MoR)

One or a reduced number of services has tem-
porarily or permanently allotted more resources
than needed, e.g. Pod number or Pod resources

Service
Network
(Net)

One or a reduced number of services have
a correct amount of resources allotted, but
incorrectly networked

Stall
(Sta)

Cluster’s ability to react to changes was
compromised, but already-running services re-
mained unaffected: e.g., new Nodes and Pods
not spawned or configured.

Cluster
Outage
(Out)

A significant number or all the running services
are compromised and unable to respond to
application clients anymore

(c)

TABLE I: Fault-Error-Failure chain of real-world Kubernetes failures. Failures are listed in order of increasing severity.

Fig. 2: Example cluster outage Out failure. A timeout during the control plane startup caused an intermittent Apiserver
downtime. This caused Kubelets to be unable to report Node health, leading to a massive Node deletion and recreation by the
Google Kubernetes Engine (GKE) autoscaler.

Timing Failure (Tim), Less Resources (LeR), More Resources
(MoR), Service Network (Net), Stall (Sta), and Cluster
Outage (Out) (see Figure I (c)). Despite being relative to
the K8s failure dataset, the failure categories do not depend
on any specific feature of K8s and can be used with other
orchestration systems as well.

In our classification, we explicitly differentiate between
Cluster Outage (Out) and Stall (Sta) failure types: a Cluster
Outage implies that a majority of services are down, while a
Stall implies that currently running services are still up, but
that the cluster’s ability to react to changes (e.g., new user
requests or a Node failure) is limited. In an environment with
limited evolution, services could remain healthy. Importantly,
error patterns that lead to Out and Sta failures can be similar.
For example, spawning an infinite number of Pods can lead to
a Sta or Out depending on the Pod priority: preemptive Pods
evict all the lower-priority Pods, leading to an Out failure.

We consider the MoR failure type to be more severe than
LeR because even if LeR impacts the application SLOs,
allotting more resources carries higher costs and risks related
to computing resource exhaustion or system overload.

The differences between LeR, Net, and Sta are mainly in
the scale of the failure impact. LeR and Net impact a limited

number of services, while Out compromises one of the vital
cluster functionalities, impacting almost every running service.
For example, a stuck Node might impact a few services,
depending on its size, but it does not lead to a system outage.

B. Orchestrator-level faults and errors

15 failures in total were Out. Hence, they are not infrequent
but a major concern. The most severe faults/errors that caused
them had the following causes (in parentheses, the categories
from Figure I(a,b)): i) network manager failures that impacted
the entire cluster (Communication); ii) massive numbers of
unhealthy or deleted Nodes (Resource Exhaustion); iii) erro-
neous commands that deleted namespaces, clusters, or Etcd
data (Human Mistake→State Retrieval); and iv) preemptions
caused by infinite spawning (Resource Exhaustion). For exam-
ple, Figure 2 illustrates a failure in which a fault hindered the
Node heartbeat reporting, leading to massive Node deletion
by the Google K8s Engine autoscaler, even if the Nodes were
correctly running the applications [22].

1) Fault/error propagation:

F3 - Misconfigurations

Misconfigurations can easily saturate all computing resources and
overload the system, that does not detect hazardous user com-
mands when managing resources at scale.

Misconfigurations (Human Mistake in Figure I(a)) caused
33 of the failures in our data set. 10 of them consisted of
bad resource sizing of Nodes and services. If services had too
few resources, the application failed (Human Mistake), if they
had too many resources, Nodes failed (Overload→Resource
Exhaustion). Specifically, 19 faults were misconfigurations of
K8s, 3 misconfigurations of plugins, and 11 misconfigurations
of external software. 13 incidents involved errors caused by
bugs in K8s code (5), external software (4) (e.g., underlying
OS), plugins (1), or custom code (3). Capacity issues were
responsible for 21 failures; 11 of which due to overload
of control plane components (Overload, Failing Application,
Human Mistake→Control Plane Availability), which failed to
reconcile the cluster state in a timely manner.

19 incidents involved a range of communication errors
(Communication in Figure I(b)): DNS resolution, a misbehav-
ing network manager, blackholes, latencies, and connection
errors. They were caused by underlying OS race conditions
or bugs, certificate rotations, human mistakes, or unmanaged
upgrades. DNS-related issues have been deemed the most
painful by multiple companies [17, 20].

Various incidents were caused by multiple interacting fac-
tors, which are troublesome in conditions rarely met in testing.
Often, the alleged root cause of observed failures is a guess,
which could be a propagated error of the actual unknown root
cause. At other times, it is difficult to derive a cause from
the available “story-telling.” The lack of control motivated us
to perform a systematic injection campaign in a controlled
environment to better understand the system behavior.

IV. EXPERIMENTAL METHOD

Fig. 3: Fault injection framework.

This section presents our fault/error injection framework (in
Figure 3), including workloads, the injector Mutiny, the fault-
/error injection campaign manager, and the data collection.

A. Mutiny!

Mutiny is an injector that can be integrated into K8s
to alter the messages exchanged between components and,
consequently, the current or desired cluster state. Since K8s
components are stateless and level-triggered (§II), all the
system state is confined to Etcd, making it a dependability

bottleneck that can induce failures in any subsystem that
stores state information on Etcd. We do not care about the
possible root causes of alterations: hardware faults, software
bugs, misconfigurations, or other causes that somehow store
an incorrect value. Our fault/error injection framework al-
lows us to systematically inject faults/errors into Etcd and
assess system response (in terms of the orchestration actions
and application behavior) in a controlled environment. The
evaluation is systematic because the framework can introduce
faults/errors in all data stored on Etcd under a controlled
workload. We show (as discussed in §V) that Etcd alterations
can recreate a majority (54/81) of real-world failures analyzed
in §III. For example, Nodes can become unhealthy because of
a failing Apiserver or a bug in the Kubelet [22, 41]. Although
the subtle behavior of a bug cannot be replicated, the injections
can replicate the effect of having an unhealthy Node, e.g.,
targeting the heartbeat reporting system.

Three attributes characterize each fault/error injected by
Mutiny: location (where?), type (what?), and trigger (when?).
■ Where is defined by a communication channel, a resource

kind, and either a field value or the serialization protocol bytes
of a message. We distinguish two types of communication
channels: i) those from Apiserver to Etcd, or ii) those from
another component to Apiserver. By injecting the data in the
transactions from the Apiserver to Etcd, we directly alter the
current or desired cluster state. This emulates faults/errors
that originate in the Apiserver or in other components but
propagate undetected to Etcd. With replicated control planes,
the fault/error is injected before the consensus algorithm is
run, so that all Etcd replicas agree on the value.

Messages directed from other components to the Apiserver
undergo authentication, authorization, and admission control.
Hence, a corruption of a message in this channel can make the
message invalid and cause it to be rejected by the Apiserver.
Admission control can change the message content, even
through custom code, possibly introducing errors.
■ What consists of a value and fault/error type between

bit-flip, data-type set, and message drop.
A bit-flip is an easy way to alter a correct value without

understanding its semantics, and hence allows for extensive
fault/error injection campaigns. If the value must match reg-
ular expressions or ranges, the injected value is, with high
probability, still valid but incorrect. Bit-flip faults in Etcd data
were also reported by users [42].

A data-type set triggers data validations and integrity checks
by setting extreme, invalid, or wrong values, dependent on
the field type. Such values might include empty strings, 0 for
integers, or unsupported values for fixed-set values.

A message drop emulates a state update that did not happen
for some reason: a failed request, software bug, updated system
specification, or data loss [43]. It aims to stress the resiliency
of level-triggered reconciliation. It is a commonly assumed
failure mode in distributed systems [44].
■ When is defined by the occurrence of messages related

to the same resource instance sent by the injected component,
i.e., the index in the chain [cfi , ..., c

f
j], where cfi...j are the state

changes (see §II-C) in which the injection target appears. The
injection may have different effects depending on the current
state of the instance and the next state changes. Moreover, a
different occurrence index can correspond to a different action
performed by the software, e.g., resource instance creation vs.
update. This can influence the transiency of the effect.

B. Workloads

■ The orchestration workloads perform operations on a
service application used by a client to create activity in the
orchestration system . The workloads include i) deploy, which
creates new Deployments and related Pods; ii) scale-up, which
increases the replica number of existing Deployments; and
iii) failover, in which a Node failure is simulated through a
NoExecution taint, forcing the Pods running on the Node to be
respawned onto available Nodes. The workloads are applied
by kbench [46] acting as a cluster user (see Figure 1).

■ The service application is a service exposed to the client.
Its characteristics define the orchestration functionalities used.

■ The application client (AC) sends requests to the service
application for a fixed period, monitoring its availability and
response times.

C. Campaign manager

The campaign manager coordinates fault/error injection
experiments, following the workflow in Figure 4. First, we
record the fields of the resource instances sent to Etcd during
the execution of a nominal orchestration workload, which
comprises deploying, scaling, and updating Node states. Later,
the injection campaign is generated, and the campaign man-
ager drives the injection experiments.

■ The injection campaign includes injection experiments
targeting i) a field of a message, ii) its serialization bytes, or
iii) a whole message (for message drops). For each recorded
integer field, we flip a low- and a high-order bit (respectively,
1st and 5th), and we set the 0 data value. The reason for
flipping those bits is that exchanged messages are serialized
with the Protobuf protocol, and most such encoded integers
are long one byte, with the 8th bit used as a continuation bit.

For each recorded string field, we flip the least significant
bit of the first two characters, and we set the empty string
data value. Injecting the least significant bit of a character still
results in a character, and hence valid strings. Boolean fields
are inverted. For each field, we ran an injection experiment
for the occurrence indexes 1, 2, and 3.

For each recorded resource kind, we performed a set of in-
jections targeting random serialization Protobuf bytes to assess
the system’s response to incorrectly structured messages.

For each recorded resource kind, we performed a message
drop injection for the occurrence indexes from 1 to 10.

After the listed injections, we derived a set of critical
fields, i.e., fields that caused Out, Sta, or unavailable service

We used synthetic workloads because there is a lack of benchmarks dedi-
cated to the orchestration system. Well-known benchmarks for cloud microser-
vices (e.g., DeathStarBench [45]) do not necessarily generate representative
orchestration activity (i.e., that activates many orchestration functions).

Fig. 4: Experimental workflow.
Failure category Failure Definition
No significant im-
pact (NSI)

The service is available and the response times seen by
the AC are not significantly different from golden runs

Higher response
times (HRT)

The service is available and the response times seen by
the AC are significantly higher from golden runs

Intermittent avail-
ability (IA)

The application client experiences intermittent error
responses from the service not due to request timeouts

Service
unreachable (SU)

From a certain instant in time, the service is unreach-
able to the AC

TABLE II: Client failure categories

failures. We performed additional injection experiments with
data-set values specific to the semantics of each critical field.
■ An injection experiment is composed of the following

phases (Figure 4): K8s cluster restart, fault/error injection
scenario set-up, application client workload start, injector
programming, orchestration workload execution, and data col-
lection. In each experiment, a single fault/error was injected.

To restart the cluster, all the Nodes leave the cluster, the
control plane Node resets the cluster and creates a new one,
and, finally, all the Nodes join the newly created cluster.

The scenario setup creates all the resource instances that are
required by the orchestration workloads before the injection.

Then, the application client workload starts performing
requests to the service application. Next, the campaign man-
ager configures the injection trigger by sending the triplet
(where, when,what) in an HTTP request to the injected
component. Mutiny is implemented as a package in the K8s
source tree. Any component can call it (with instrumentation
< 10 LoC) to tamper a message serialized with Protobuf. For
bit-flip and data-type set injections, Mutiny de-serializes the
message, modifies the content, and re-serializes it, replacing
the original. For message drop injections, the calling function
returns without any error before sending the message. In each
experiment, we perform a single fault/error injection.
■ The data collection retrieves the logs of K8s control

plane components (with verbosity level set at 6, i.e., debug),
Kbench logs, response latencies experienced by the application
client, and, finally, the metrics gathered from Prometheus with
node exporter and kube-state-metrics as sources.

V. EXPERIMENTAL RESULTS

In this section, we describe the results of the fault/error
injection campaign. The experiments’ aims were to understand
K8s’s resiliency to faults/errors, pinpoint the inherent weak-

Deploy Scale Failover
NSI HRT IA SU NSI HRT IA SU NSI HRT IA SU

No 1617 (62.2%) 84 (3.2%) 0 0 1382 (54.5%) 77 (3.0%) 0 0 2652 (72.7%) 137 (3.8%) 11 (0.3%) 0
Tim 28 (1.1%) 1 0 0 40 (1.6%) 8 1 0 18 (0.5%) 11 (0.3%) 2 0
LeR 109 (4.2%) 138 (5.3%) 4 5 432 (17.0%) 63 (2.5%) 0 0 59 (1.6%) 10 (0.3%) 1 0
MoR 368 (14.2%) 12 (0.5%) 2 0 303 (12.0%) 41 (1.6%) 7 0 531 (14.6%) 31 (0.8%) 0 0
Net 14 (0.5%) 7 6 107 (4.1%) 28 (1.1%) 46 (1.8%) 10 (0.4%) 0 8 48 (1.3%) 40 (1.1%) 1
Sta 81 (3.1%) 4 0 0 81 (3.2%) 5 0 0 66 (1.8%) 8 0 0
Out 10 (0.4%) 1 0 1 8 1 0 1 7 2 2 4

TABLE III: Mapping between orchestrator failures (OF) and client failures (CF). Percentages are of the total number of
injections performed for that given workload. Percentages of single-digit numbers are omitted for readability.

nesses of K8s that can trigger severe failures, and characterize
the impact of orchestration failures on services.

A. Experimental setup and parameters

Our experimental setup consisted of a cluster running K8s
v1.27.4 in the default kubeadm configuration. The cluster
included 1 control plane Node and 4 worker Nodes, one of
which was used for the application client and monitoring Pods
The network manager was flannel v1.1.2. The cluster featured
the default resiliency strategies described in §II-D. Unless
differently specified (see §V-C1) the cluster was managed by
a single control plane Node running all control plane Pods
(default configuration[47]). Although production environments
commonly use multiple control plane Nodes, this improves the
availability in case of a Node crash but provides no protection
from faulty values on the datastore. Indeed, the Kcm and
Scheduler have only one active replica at any time, while
the datastore replicas agree on the faulty value. The nodes
were virtual machines (8 CPU, 4 GB RAM, Ubuntu 20.04,
Linux kernel v5.4, containerd v1.7) communicating through
an internal network, on top of VirtualBox 6 hypervisor in a
cloud-tier environment (Intel Xeon E5-2695), where no other
user application was running.

Based on the amount of resources of our setup, we
parametrized the workloads as follows: the “deploy” workload
created three Deployments, each with two replicas; the “scale-
up” workload scaled two Deployments from two replicas each,
to three replicas each, after 10 seconds to four each, and after
another 10 seconds to five each; and the “failover” workload
deals with three running Deployments with two replicas each.
Kbench waited up to 40 seconds for each request to be
completed. The service application was a Flask webserver,
which read a seed for random numbers from a Volume during
the startup, and responded to clients with the result of ran-
dom computations. Its Pods had CPU and memory resource
requests and limits, and default priority. The web server was
stateless and did not require coreDNS name resolution. The
application is used to trigger orchestration activity, through
the workloads defined in §IV-B: a stateful application with
complex topology would complicate the application failure
patterns but not the orchestration system ones. The application
client sent 20 requests/second for 30 seconds.

B. Analysis of data from fault/error injection campaign

We consider two levels of failures: orchestration-level fail-
ures (OF, §III), and client-level failures (CF). CFs reveal the
fault/error impact on application clients (AC) in terms of

performance and availability. For both OFs and CFs, if a
failure belonged to more than one category, we classified it
as the most severe failure category.

In Table II, we introduce the categories of client failures:
no significant impact (NSI), higher response times (HRT),
intermittent availability (IA), service unreachable (SU). For
each workload, we collected data from 100 golden runs
without any faults/errors injected.
■ To classify orchestration-level failures, for every golden

run we collected the number of ready replicas for each
ReplicaSet, and the number of Service endpoints, every 3
seconds. We collected Kbench statistics regarding the number
of Pods created/scheduled/running and the Pods’ total startup
times, as defined in [46]. We classify the failures as follows,
recalling Figure I (c).
Tim failure: A service Pod is restarted, or the z-score

relative to the golden distribution of either the worst Pod total
startup time or the last Pod creation time is greater than 3.
LeR failure: The number of ready replicas, created Pods,

or endpoints is stable and lower than the baseline.
MoR failure: The number of ready replicas, created Pods,

or endpoints is higher than the baseline.
Net failure: The number of ready replicas and Pods is

correct, but some are not reachable or used in load-balancing.
Sta failure: There is an uncontrolled Pod spawn, control

plane Pods are stuck, or networking Pods fail.
Out failure: All the ReplicaSets are unreachable (including

Prometheus), the DNS Pods fail, or the networking Pods fail
and cause a disruption of the service application.
■ To classify client-level failures, we create a time series

for each golden run containing the response time latency of
the requests, ordered by the time of sending. We padded
with 0 the response times of failed requests. We computed
a baseline time series for each workload by averaging the
golden run time series. We measured the Mean Absolute Error
(MAE) between each golden run time series and the baseline
time series, obtaining a distribution of golden-run MAEs. For

Fig. 5: On the left, a golden run time series (z score = −0.2).
On the right, an injection time series (z score = 11.0)

each injection experiment, we computed the MAE between
the experimental time series and the baseline, and computed
the z-score of the MAE against the distribution of golden-run
MAEs. The z-score quantifies the impact on the application
client (see Figure 5). We classify the failures as follows.
HRT failure: The z-score is greater than 2.
IA failure: The application client experiences intermittent

errors not due to timeouts.
SU failure: An application has no response from the service.

C. Results

We performed a total of 8,782 injection experiments based
on the campaign described in §IV-C, targeting the communica-
tion between the Apiserver and Etcd in order to directly alter
the stored state and efficiently trigger failures, as mentioned in
§IV-A. Exactly one fault/error was injected in each experiment.

The results are summarized in Tables III, IV, and V. Ta-
ble III describes the propagation of OFs to CFs. For example,
the cell intersecting the column HRT and row MoR contains
the number of MoR failures that caused HRT. Tables IV,
and V divide failures by workload and injection type, with
percentages of categories, e.g., 2.8% of experiments are Sta.

WL Injection Perf. Orchestration-level Failures (OF)
No Tim LeR MoR Net Sta Out

Deploy
Bit-flip 1563 1097 17 135 210 58 45 1
Value set 900 484 12 111 172 70 40 11
Drop 136 120 0 10 0 6 0 0
Bit-flip 1522 950 29 260 190 45 47 1
Value set 872 387 17 224 161 35 39 9Scale
Drop 140 122 3 11 0 4 0 0

Failover
Bit-flip 2132 1610 13 5 424 33 42 5
Value set 1288 972 18 64 130 62 32 10
Drop 229 218 0 1 8 2 0 0∑

8782 5960 109 821 1295 315 245 37
% 100% 67.8% 1.2% 9.4% 14.8% 3.6% 2.8% 0.4%

TABLE IV: Statistics on orchestrator-level (OF) failures ob-
served in fault/error injection experiments.

WL Injection Perf. Client-level Failures (CF)
NSI HRT IA SU

Deploy
Bit-flip 1563 1386 132 5 40
Value set 900 720 105 6 69
Drop 136 121 10 1 4
Bit-flip 1522 1379 133 10 0
Value set 872 772 91 8 1Scale
Drop 140 123 17 0 0

Failover
Bit-flip 2132 1989 132 9 2
Value set 1288 1139 100 46 3
Drop 229 213 15 1 0∑

8782 7842 735 86 119
% 100% 89.2% 8.4% 0.9% 1.4%

TABLE V: Statistics on client-level (CF) failures observed in
fault/error injection experiments.

1) Analysis of OF and CF failures:

F1 - System-wide failures

3.2% of the performed injections of one value propagated to a
system-wide failure, despite the resiliency strategies. 24.2% of in-
jections resulted in service under/over provisioning, 3.6% in service
networking problems. ∼70% of performed injections have no effect
because they are either i) detected and mitigated by the health
checks, like heartbeats; or ii) mitigated by natural system behavior
(e.g., the value is overwritten).

In our experiments, a non-negligible number (3.2%, last
two columns of Table IV) of fault/error injections of a single
bit-flip or value set resulted in Sta and Out failures. Sta
failures were caused by i) a control plane overload due to
uncontrolled replication of resource instances (e.g., Pods); ii)
a Scheduler or Kcm that was unable to obtain a leadership
role and perform state changes; or iii) a failure or deletion
of networking Pods. On the other hand, the causes of cluster
outages were i) uncontrolled replication of resource instances;
ii) misconfigured networking daemons that caused a global
network outage; or iii) coreDNS Pods that failed or were
deleted. Below there is an example of uncontrolled replication.

Example of uncontrolled replication
A single-bit corruption of the labels that associate a Pod
with a DaemonSet leaves the Kcm unable to identify the
Pods belonging to the DaemonSet. That causes new Pods to
be spawned, in an infinite loop. The system is overloaded
and all the cluster computing resources are filled up. The
DaemonSet Pods have high scheduling priority, so they
terminate all application Pods to claim resources. Eventually,
the disk of the control plane Node can fill up, stalling Etcd.

Particularly interesting is the case of injections affecting the
serialization protocol. They usually cause the resource instance
to become undecryptable and be deleted (see §II), but in some
cases, the resource instance remains decryptable and wrong.
Because of how the protocol works, an injection can move
a value from one field to another, and a required field could
remain empty and trigger failures.

Our results indicate that 3.6% of injections resulted in
service networking problems (column 5 in Table IV), 24.2%
in service under/over provisioning (column 3,4).
∼70% of faults/errors across the three workloads had no

perceivable effect (first column in Table IV). Both the injec-
tions recovered and the ones not activated belonged to this set.
We define an injection as activated when the injected resource
instance is requested after the injection. The activation rate is
82%. We have no control over the activation of a single field.

Examples of system recovery include i) overwriting of the
injected data field with a correct value that is still stored some-
where in the system (e.g., some ReplicaSet fields, which cause
a ReplicaSet recreation or the PodIP, which is overwritten
by the correct value sent by kubelets) or ii) the corrupted
data have no immediate effect but remain latent. For example,
some data-structures have a versioning number. If the Kcm
does not detect any change in the number, it does not process
the instance, preventing the injected value from being used.
However, a subsequent update of the versioning number (e.g.,
by another request) triggers the errors caused by the injected
value. For example, several injections targeting the networking
DaemonSets can lead to a Sta or Out if triggered.

Injections classified as No mostly did not propagate to
clients (see No-NSI cell in Table III). However, some of them
led to HRT client failure. Those cases could be attributed to the
natural nondeterministic timing behavior of the orchestrator.

A non-negligible number (10.8%, last three columns of
Table V) of injections impact the clients. Figure 6 shows the
z-scores of response times observed by the clients for different
fault/error types injected at the orchestrator level.

Timing failures generally have a limited impact on clients,
but under the “failover” workload, they can introduce a
significant delay (reflected by a high z-score) because of
control plane Pods’ restarts. Scheduler restarts were caused by
injections into the nodeName field of an existing Pod, which
changed the value to a non-existing nodeName.

Below, an example of this phenomenon.

Example of timing failure
The Scheduler detects a mismatch between the data in Etcd
and its cache and, assuming a cache corruption, restarts.
After a new leader Scheduler is elected (after 20 seconds,
in the standard configuration), it starts scheduling Pods. The
corrupted Pod remains pending for ∼50 seconds, until the
Kcm deletes it and creates another one.

Less resources failures can have severe impacts on response
times when the difference between the expected and used
numbers of Pods is significant. We observed that part (∼40%)
of MoR failures represent a negligible threat to clients because
they are transient and involve little extra resource consump-
tion. (The Pod number at steady state is correct, but the
number of Pods spawned is greater than expected by less than
three.) Interestingly, MoR failures can negatively impact the
clients as well. When the system does not detect the resource
overprovisioning for a service and uses less resources than
allotted, a LeR and MoR failures are caused at the same time.

Example of undetected overprovisioning
When the namespace field of a Deployment is corrupted
during the scale-up of the service application, fewer Pods are
spawned, causing longer response times. Upon deletion of
the resource instances, K8s starts reconciling a residual cor-
rupted Deployment that is not even listed anymore, spawning
Pods in the terminating state in an infinite loop. When the
rates of terminated and created Pods become similar, the
system reaches an equilibrium, but Etcd is filling up.

Service networking failures (Net) induce the majority of
intermittent failures for clients (IA), and complete service

Fig. 6: Impact on app. client measured through z-scores.

outages (SU). Almost all SUs happen under deploy (see
Table III); the injections with index 1 during deploy are
create transactions, making the unwanted value changes barely
detectable, unlike the injections in the following updates. Sta
failures may or may not impact the application client response
times, as said in §III-A, although the system eventually gets
to a degraded state. Finally, Out failures in our data do not
always impact response times because the service application
does not require the DNS. This makes error propagation from
the orchestrator to the clients difficult to identify.

We repeated the injections targeting the critical data fields
(360 in total; see §V-C2) in a cluster with three control plane
Nodes with an Etcd replica on each control plane Node. The
results show no significant difference from the previous ones.
The only component that actually works in a replicated fashion
is Etcd, and values were injected before getting to it. A few
additional experiments also showed that corrupting the data
in Etcd at rest has a different propagation pattern from our
injections because of the Apiserver cache. The cache is used
intensively, and it is refreshed with Etcd data when needed,
e.g., getting a resource instance. If the refresh does not happen
before an update, the injected value in Etcd is overwritten, and
a complete component restart may be needed to pick up the
injected value. Furthermore, quorum reads mitigate corrupted
values. In conclusion, i) corruption at rest is less likely to
cause issues than errors that happen before a transaction; and
ii) a corruption of the cache may overwrite a correct value on
the data store if the right sequence of requests is triggered.

2) Critical field analysis:

F2 - Dependency relationships

51% of fault/error injection experiments that caused critical failures
targeted the fields managing the dependency relationships among
resource instances, revealing an inherent data weakness.

We analyzed the fields that caused the most severe failures
when injected, i.e., Sta, Out, or SU. 377 injections were
derived, which all affected the same 34 fields of different
resource kinds. Out of them, 8 are related to metadata and
26 to technical specifications.

A subset of fields is important because it constitutes the way
in which K8s keeps track of the associations between multiple
dependent resource instances of different kinds. These include:
i) owner relationships with references to other resource in-
stances, and ii) label relationships that use matching labels
and selectors to create dynamic relationships. labels, managed-
by, targetRef, and ownerReferences are metadata, while label
selectors are specification fields. In total, 20 fields out of 34
belong to this subset, representing 187 injections out of 360.
The injections that triggered uncontrolled replication of objects
belong to this category, revealing an issue in K8s: although
these fields are important for the functioning and represent a
risk because of the associated possible failures, there are not
enough resiliency strategies in place to recover the system in
case of errors. Other relevant fields (124 injections total) are
name, namespace, and uid, which are the fields used by K8s
to identify a resource and appear in its URL. The remaining

Fig. 7: Number of total injection experiments vs. injection
experiments in which the cluster user received an error (Error)
in response to requests to the Apiserver.

fields include 5 related to networking (protocols, addresses,
and ports); the replica number; and 2 specification fields of
images and commands that prevent the start of critical Pods.

3) User error analysis:

F4 - User unawareness

The reconciliation of the observed cluster state and the desired state
is postponed to a later time. If the state of the system diverges and
never reaches the desired state because of failures, the user may
be unaware of it unless proper monitoring alerts are set.

Figure 7 shows the number of injection experiments with
failed user requests to the Apiserver (indicated by the Error
label) as a fraction of the total number of fault/error injection
experiments, distinguished by orchestration failure types. For
most fault/error injections that lead to erroneous data store
states and failures, the user does not receive any warning or
error notification from the Apiserver. The “scale” workload
shows that a significant number of experiments return errors.
The reason is that the workload generates multiple successive
requests related to the same resource instances. In this context,
a fault/error may compromise the resource integrity, triggering
errors in subsequent requests. In the case of the “deploy”
and “failover” workloads, the majority of errors (29/32) were
due to injections in the serialization protocol that prevented
decoding and operations on the object. The reason for the
small number of errors is the delayed reconciliation of the
cluster state and the desired state on the data store (see §I).
The Apiserver only acknowledges receiving a request for a
modification of values in Etcd. This does not imply that the
cluster state changed.

4) Injection propagation analysis:
We performed a batch of experiments to understand which

injected data values coming from other components can be
detected and blocked by the Apiserver validation layer. We
used Mutiny to inject bit-flips into the messages sent towards
the Apiserver by the Kcm, the Scheduler, and the Kubelet,
and we checked through logging whether the injected values
reached Etcd. The experiment was also intended to indicate
the robustness of the client input validation. The experimental
setup is the same of the campaign described in §V-C.

The fault/error injections targeted the same set of message
fields as our previous injection campaign. Table VI shows the
results from those experiments. We observed that for 12 of the
critical data fields (previously analyzed), the validation mech-

Kcm Scheduler Kubelet
Inj. Prop Err. Inj. Prop Err. Inj. Prop Err.

Deploy 468 165 38 40 9 8 69 34 7
Scale 472 165 26 40 9 8 69 31 5
Failover 382 136 29 30 9 6 69 29 5

TABLE VI: Results of the propagation experiments. Inj.: the
number of injections performed. Prop: values propagated to
Etcd. Err.: an error was logged due to a wrong value. The Kcm
has more injections performed because it manipulates multiple
types of resources and updates larger numbers of fields than
the other two components.

Error Error Subcategories
State Re-
trieval

State corrupted, erased, stale, unretrievable

Misbehav.
Logic

Wrong label, Wrong replica value, Request rejected, Lost update,
Controller loop not executed, Relationship broken

Commun.
Problems

Connection delay, Wrong IP address, DNS resolution delay, DNS not
resolving, Uneven load balancing, Endpoint delete after Pod kill, Routes
dropped, New Nodes’ routes not configured, Routes not updated

Capacity
Exceed

Overcrowding, Cluster out of resources, Worker nodes cannot join,
Worker nodes unhealthy

CP
Availab.

CP Pods crash loop, CP Pods hang, CP Pods deleted, CP overload

Local to
Nodes

Kubelet delayed, Container runtime failure, Pods not ready, Image Pull
Error, Slow/throttling

Failure Failure Subcategories
Cluster
Outage

Cluster-wide networking drop, Cluster-wide networking intermittent,
Massive Service Deletion, DNS resolution failure

Stall Control Plane stuck, Control Plane slow, Control Plane quorum
unreachable, New Services network not configurable, New Nodes
network not reconfigurable

Service
Networking

Service Networking Drop Permanent, Service Networking Drop
Intermittent, Service Networking Delay

More Res. Pods not deleted, Too many Pods created, More Pods Transient,
More Resources Per Pod

Less Res. Pods deleted, Pods not created, Pods crashloop, Less Resources Per
Pod

Timing Pods’ Creation Delayed, Pods Restart

TABLE VII: Comparison between injections and the real
world. Bold indicates what Mutiny can replicate, and italics
indicates what is triggered by Mutiny and not present in the
real world.

anisms failed to capture data corruption, i.e., the corrupted
inputs propagated from the Kcm without being intercepted
and caused failures like SU. The reason is that the Apiserver
performs general validations, e.g., regex matching or border-
case testing, but is not able to detect valid but wrong values.
Fortunately, the Apiserver is able to validate some of the fields
that can cause severe error patterns. For example, the Apiserver
detects and prevents the propagation of a namespace that does
not match the URL or label selectors that do not match the
template labels of the same resource instance, a condition
that triggers the infinite Pod spawn. Values from the Kubelet,
which may be more likely to be compromised, impact only
the Node itself or a single Pod, presenting a low risk.

VI. DISCUSSION

A. How can we improve testing?

Table VII shows failures triggered by Mutiny compared to
failures reported in the real world. Our injector easily triggers
errors related to logic, capacity, and control plane availability.

On the other hand, it fails to trigger several errors local to the
worker Nodes, because those errors are mainly due to local
configurations and underlying software (e.g., kernel, runtimes)
problems. For example, it falls short in inducing delays caused
by DNS resolution, connection errors, arbitrary numbers (dif-
ferent from 1 and all) of unhealthy Nodes, and transient and
intermittent network failures in general. Nonetheless, almost
all failure subcategories can be covered. At any rate, our
aim is not to create a one-size-fits-all injector, but rather to
provide a framework capable of triggering unforeseen error
patterns to test the system response and provide insights that
can be used to devise methods for mitigating or recovering
from potential failures. Currently, companies use well-known
techniques for testing applications’ resiliency (e.g., Chaos
engineering), but there is limited understanding of how to
test the resiliency of the platform itself. At the moment, the
responsibility for setting up proper monitoring alerts to detect
failures and enforce manual mitigation belongs to cluster
operators. Sometimes custom code is employed to prevent
past failures from happening again; for example, validation of
namespace deletion can prevent accidental deletion of a non-
empty namespace together with all its Pods. However, a post-
incident manual procedure or code customization cannot be the
answer to a trend that sees the use of K8s as a cloud OS for
more critical scenarios with tight non-functional requirements.

Systematic orchestration resiliency tests should become an
integral part of the development process to get quantitative
metrics of resiliency strategies in place. A set of injectors,
such as network and OS-level injectors, can be used in
testing clusters in a Chaos-engineering fashion to train human
operators and improve handbooks containing procedures to
follow when a failure occurs. With a real workload, Mutiny
would introduce errors in a set of events that rarely happen,
but that can be troublesome (e.g., updates of networking
ConfigMaps, certificates, and secrets). This would trigger
new failure patterns not reflected in our experiments, due to
simple workloads. For each critical failure pattern, appropriate
and systematic countermeasures should be designed before
deployment in production environments.

Findings like F1 and the systematic orchestration resiliency
tests are not specific to K8s: they descend from the inherent
problem that these systems control resources at a huge scale.

The proposed fault-injection methodology can be ported
to other orchestration systems, as they all share common
architectural principles: the study in [48] compares several
orchestration frameworks (e.g., K8S, Docker Swarm, Mesos,
Autora, Marathon), observing that all of them keep applica-
tions in their desired state by comparing the monitored state
and the desired state. Moreover, controllers use a data store
(e.g., Etcd, Consul, or Zookeeper) for storing the states.

B. What can we do about failures?

■ The system design can be improved in terms of data
validation for critical resources and fields. In K8s there is a
massive use of labels because of their flexibility in grouping
and selecting resources. We showed that this flexibility comes

at the expense of resiliency, because it is hard to validate their
custom values. Recall the Reddit [21] failure discussed earlier,
in which a single label tore down the entire cluster network.
Hence, updates to critical fields and resources (e.g., control
plane Pods or Nodes) should be logged. In case of logging
subsystem failure, additional data sources (e.g., Prometheus)
can be used to detect the change. Upon a change, system
behavior should be monitored to detect any degradation of
the system’s health, so it is possible to roll back changes to
critical fields. Moreover, stricter checks can be enforced: e.g.,
scaling of coreDNS to 0 should be denied, while adding the
MaxUnavailability parameter could prevent outages. Logs can
be used to derive a nominal behavior of the system. Mutiny
can be used to conduct a log analysis to check what K8s
logs under injection, to possibly improve the logging when no
traces about failures/errors are found. To this aim, K8s auditing
(currently a beta feature [49]) can be used together with
injections. Then, methods like model checking and runtime
verification, can be used to validate data exchanged between
components and detect anomalies. Log analysis can be used to
derive dependability measurements for each K8s component
and assess failure propagation patterns among them. The
analysis can help to spot the most problematic components.
For instance, our experiments showed that components running
validations or controlling scaling and cluster-wide configu-
rations (i.e., Apiserver, Kcm, and network managers) can
be troublesome, other than the centralized state itself which
represents the main dependability bottleneck.

Although the analysis in §V-C4 reveals that data-validation
mechanisms can prevent some severe failures, it is not enough
to validate the data only once. If for some reason an incorrect
value gets to Etcd (perhaps introduced by the Apiserver
itself), escaping data validation, no circuit breaker, or other
resiliency strategies mitigate the impact on the system. Real-
world incidents have proven that incorrect data can escape
data validation, causing, for example, uncontrolled replication
of resources. Circuit breakers must thus be systematically
designed to cover all the resource kinds that can cause overload
errors, for example, when the relationship between resource
instances is broken. Furthermore, when writing custom con-
trollers, the replication management must be designed resilient
to a variety of faults/errors. Simple data redundancy mecha-
nisms, like redundancy codes on critical fields, can protect
the cluster from hardware faults with a negligible overhead in
terms of resource usage (the critical fields are < 10% of total).
■ Cluster managers, since a single error can disrupt

an entire cluster, should prefer multiple clusters rather than
a reduced number of high-scale clusters to contain error
propagation; at the cost of additional control plane Nodes
and management complexity. Cluster managers should set
and test upper resource limits in terms of Pod resources,
number of Nodes in the cluster, request rates, and number of
spawned Pods. Namespace features can limit resource counts
and quotas[50] to somehow partition different tenant/service
types and mitigate failures. Cluster managers must be aware
of the default parameters and the software specification in

non-nominal conditions. Mechanisms like MaxUnavailability,
MaxSurge (i.e., maximum Pod number that can be created
over the desired one), and backoff timers should be tuned
thinking at failures, despite slowing down daily operations.
From a security perspective, the access to Etcd must be strictly
guarded by authentication and firewalls. K8s configures Etcd
with client authentication, but not rarely administrators directly
connect to Etcd. K8s security features can reduce the attack
surface from unauthorized users, but cannot prevent errors
generated in the authorized clients, e.g., Apiserver or Kcm.

Capacity-related failures in real-world incidents have been
caused by misconfigurations and human mistakes more often
than by internal system errors. User requests that can overload
the system should be blocked, e.g., reject the spawning of a
large number of Pods without resource limits or slow down
evictions due to preemption by a new deployment.

VII. RELATED WORK

A. Dependability assessment for cloud systems

Software and hardware injections have been debated for
a long time [51, 52, 53]. The authors of [54] analyze pro-
duction failures in cloud systems, arguing that they cannot
be understood by analyzing a single system in isolation.
Hence, they introduce the concept of cross-system interaction
failures, and discuss potential mitigations. The authors of
[55] use FFDA to analyze the failures of the Blue Waters
supercomputer. The authors of [56] describe dependability
bottlenecks through stochastic models of two software-defined
network (SDN) controllers. SDNs feature a distributed control
plane, like container orchestration systems. Several papers
have studied the availability assessment for cloud and edge
computing [57, 58, 59, 60, 61]. The most common approaches
use analytical models like Markov chains or Petri nets, and
rely on field measurements.

B. Fault injection in cloud systems

The authors of [27] created a testing framework for custom
K8s controllers by perturbing the controller’s view of the
current cluster state through stale-state, crash, and unobserved
states. That was followed by [28], which describes how end-to-
end tests can be generated to trigger state changes from states
different from the initial one. Oracle state checking is used
to detect misbehavior. The approach described in [29] looks
for crash-recovery bugs in distributed systems by injecting
crashes at precise points identified through the analysis of
meta-information used by nodes. Similarly, in [30], time-
of-fault bugs are found by identifying conflicting operations
based on correct runs, and exploiting the ones not covered
by fault-tolerance mechanisms. The authors of [31] injected
network partitions to discover partition bugs. The injections are
performed when consistency invariants are violated. Simple
random partitions were found to be useful in [33] in which
the probability bounds for discovering bugs are derived. The
authors of [32] argue that partial histories, including staleness,
time traveling, and observability gaps, are an inherent threat to
distributed systems that locally cache their state, as K8s does.

The above work all aimed to expose flaws by leveraging
the inherent weaknesses of distributed systems and injecting
simple faults (e.g., crash and stale states) in strategic ways.
Unlike previous studies of operating systems [62, 63, 64] and
past cloud platforms [65, 66], the above publications do not
provide a systematic assessment of failures and resiliency.
Unlike them, we focus on fault tolerance, assuming the pres-
ence of residual bugs or even components that are flawless
but can nevertheless lead to system failures. The authors of
[36] used fault injection to study the effectiveness of K8s at
handling the aging and faults of deployed microservices, and
concluded that probes fall short in detecting several failure
modes. In 2016, Netflix introduced Chaos engineering [35],
which automatically, randomly, and deliberately introduces
faults through injections in production systems to find and im-
prove dependability bottlenecks. Chaos engineering effective-
ness relies on the simple fault/error model that can be applied
without being aware of services’ semantics, highlighting the
bottlenecks of a complex system topology. Unlike us, those
efforts focused on the resiliency of deployed services (§II-D),
while we claim that chaos-engineering–like methods should be
applied to the components of the orchestration system itself,
which are fewer and with known interaction patterns. This
allows taking advantage of the architecture to inject tailored
faults/errors.

C. Fault-tolerant designs in orchestration systems

Papers [67, 68] provide reviews of fault-tolerance methods
in cloud environments. In [69], Byzantine fault tolerance is
integrated into the K8s control plane through state machine
replication. The work in [70] does something similar for SDN
control planes, while [71] introduces state machine replications
for the applications deployed in K8s. However, state machine
replication cannot mitigate common cause failures, e.g., de-
terministic failures due to misconfigurations, mistakes, bugs,
and upgrades. The authors of [72] describe how violations of
invariants can be used to detect deterministic bugs, and how
semantic-equivalent input transformation through symbolic
execution can be performed to recover dynamically.

VIII. CONCLUSION

We classified real-world incidents to analyze how Kuber-
netes fails, and we described a fault injection campaign we
performed that altered the data representing the cluster state to
reproduce some incidents and also trigger new error patterns.
We introduced a failure model for orchestration systems that
we used to analyze our experimental results. Although K8s re-
siliency strategies can tolerate quite a lot of errors, the system
is sensitive to state alterations, and a single bad value can cause
overloads and cluster-wide failures. The mechanisms enabling
flexible relationships among resource instances can cause such
critical failures. Hence, injection-based testing is essential to
proactively assess orchestration resiliency, guide the design
of failure mitigation actions, and set up monitoring alerts.
Nonetheless, a systematic design of resiliency mechanisms is
required to prevent system-wide failures.

ACKNOWLEDGMENTS

We thank the reviewers, S. Cui, H. Qiu, H. Sreejith, A.
Patke, P. Cao, J. Applequist, and K. Atchley for the insightful
comments on the early drafts. We acknowledge the early
participation of Larisa Shwartz (IBM) and Saurabh Jha (IBM)
in the conceptualization of fault injection methods for Kuber-
netes; and Chandra Narayanaswami (IBM) for his continued
insights and support on related system issues. This work is
partially supported by the National Science Foundation (NSF)
under grant No. 2029049; by the IBM-ILLINOIS Discovery
Accelerator Institute (IIDAI); a gift from Nokia Bell Labs
Core Research; and by the Italian Ministry of Enterprises
and Made in Italy (MIMIT) under the GENIO Project (CUP
B69J23005770005). In memory of Fabio Barletta.

REFERENCES

[1] A. Khan, “Key characteristics of a container orchestration
platform to enable a modern application,” IEEE cloud
Computing, vol. 4, no. 5, pp. 42–48, 2017.

[2] M. A. Rodriguez and R. Buyya, “Container-based cluster
orchestration systems: A taxonomy and future direc-
tions,” Software: Practice and Experience, vol. 49, no. 5,
pp. 698–719, 2019.

[3] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes, “Borg, omega, and kubernetes: Lessons
learned from three container-management systems over
a decade,” Queue, vol. 14, no. 1, pp. 70–93, 2016.

[4] Windriver. Containers at the Intelligent
Edge. https://www.windriver.com/resource/
containers-at-the-intelligent-edge. Accessed April
18, 2024.

[5] J. Mellado and F. Núñez, “Design of an IoT-PLC: A
containerized programmable logical controller for the
industry 4.0,” Journal of Industrial Information Integra-
tion, vol. 25, p. 100250, 2022.

[6] M. Barletta, M. Cinque, L. De Simone, and R. D. Corte,
“Criticality-aware monitoring and orchestration for con-
tainerized industry 4.0 environments,” ACM Transactions
on Embedded Computing Systems, vol. 23, no. 1, pp. 1–
28, 2023.

[7] B. Johansson, M. Rågberger, T. Nolte, and A. V. Pa-
padopoulos, “Kubernetes orchestration of high availabil-
ity distributed control systems,” in 2022 IEEE Inter-
national Conference on Industrial Technology (ICIT).
IEEE, 2022, pp. 1–8.

[8] Linux Foundation. Nephio: Cloud Native Network Au-
tomation. https://nephio.org/about/. Accessed April 18,
2024.

[9] A. E. Ferguson, J. Larrea, and M. K. Marina, “Corekube:
An efficient, autoscaling and resilient mobile core sys-
tem,” in The 29th Annual International Conference On
Mobile Computing And Networking. ACM Association
for Computing Machinery, 2023, pp. 1–15.

[10] R. Botez, J. Costa-Requena, I.-A. Ivanciu, V. Strautiu,
and V. Dobrota, “SDN-based network slicing mechanism

for a scalable 4G/5G core network: A kubernetes ap-
proach,” Sensors, vol. 21, no. 11, p. 3773, 2021.

[11] A.-W. Colombo, S. Karnouskos, and J.-M. Mendes, “Fac-
tory of the future: A service-oriented system of modular,
dynamic reconfigurable and collaborative systems,” in
Artificial intelligence techniques for networked manu-
facturing enterprises management. Springer, 2010, pp.
459–481.

[12] J. Morgan, M. Halton, Y. Qiao, and J. G. Breslin, “Indus-
try 4.0 smart reconfigurable manufacturing machines,”
Journal of Manufacturing Systems, vol. 59, pp. 481–506,
2021.

[13] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoff-
mann, “Industry 4.0,” Business & information systems
engineering, vol. 6, pp. 239–242, 2014.

[14] P. P. Ray, D. Dash, and D. De, “Edge computing for
internet of things: A survey, e-healthcare case study
and future direction,” Journal of Network and Computer
Applications, vol. 140, pp. 1–22, 2019.

[15] Cloud Native Computing Foundation. (2022) Kubernetes
Certified Distributions. https://www.cncf.io/certification/
software-conformance/. Accessed April 18, 2024.

[16] C. N. C. Foundation, “CNCF Annual Survey 2021,”
https://www.cncf.io/reports/cncf-annual-survey-2021/,
2022, accessed April 18, 2024.

[17] L. Bernaille and R. Boll, “10 Ways to Shoot Yourself
in the Foot with Kubernetes,” https://www.youtube.com/
watch?v=QKI-JRs2RIE, 2020, accessed April 18, 2024.

[18] hjacobs, “Kubernetes Failure Stories,” https://k8s.af/,
2023, accessed April 18, 2024.

[19] Airbnb, “10 More Weird Ways to Blow Up Your
Kubernetes,” https://www.youtube.com/watch?v=
4CT0cI62YHk, 2021, accessed April 18, 2024.

[20] S. Visvanathan and N. Venkatachalam, “101 Ways to
“Break and Recover” Kubernetes Cluster,” https://www.
youtube.com/watch?v=likHm-KHGWQ, 2018, accessed
April 18, 2024.

[21] J. Howard, “You Broke Reddit: The Pi-Day Outage,”
https://www.reddit.com/r/RedditEng/comments/
11xx5o0/you broke reddit the piday outage/, 2023,
accessed April 18, 2024.

[22] Venafi, “How a Simple Kubernetes Admission Web-
hook Lead to a Cluster Outage,” https://venafi.com/blog/
gke-webhook-outage/, 2019, accessed April 18, 2024.

[23] Google. (2022) All incidents reported
for Google Kubernetes Engine . [On-
line]. Available: https://status.cloud.google.com/
products/LCSbT57h59oR4W98NHuz/history

[24] M. Barletta, “Mutiny,” https://dessert.unina.it:
8088/marcobarlo/mutiny ”Mutiny-Scripts”
https://dessert.unina.it:8088/marcobarlo/mutiny-scripts,
note = ”Accessed April 18, 2024”,, 2023.

[25] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen,
and T. Xu, “Testing configuration changes in context to
prevent production failures,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI

https://www.windriver.com/resource/containers-at-the-intelligent-edge
https://www.windriver.com/resource/containers-at-the-intelligent-edge
https://nephio.org/about/
https://www.cncf.io/certification/software- conformance/
https://www.cncf.io/certification/software- conformance/
https://www.cncf.io/reports/cncf-annual-survey-2021/
https://www.youtube.com/watch?v=QKI-JRs2RIE
https://www.youtube.com/watch?v=QKI-JRs2RIE
https://k8s.af/
https://www.youtube.com/watch?v=4CT0cI62YHk
https://www.youtube.com/watch?v=4CT0cI62YHk
https://www.youtube.com/watch?v=likHm-KHGWQ
https://www.youtube.com/watch?v=likHm-KHGWQ
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://venafi.com/blog/gke-webhook-outage/
https://venafi.com/blog/gke-webhook-outage/
https://status.cloud.google.com/products/LCSbT57h59oR4W98NHuz/history
https://status.cloud.google.com/products/LCSbT57h59oR4W98NHuz/history
https://dessert.unina.it:8088/marcobarlo/mutiny
https://dessert.unina.it:8088/marcobarlo/mutiny
https://dessert.unina.it:8088/marcobarlo/mutiny-scripts

20), 2020, pp. 735–751.
[26] M. Barletta, M. Cinque, and C. Di Martino, “SLA-Driven

Software Orchestration in Industry 4.0,” IEEE Internet of
Things Magazine, vol. 5, no. 4, pp. 136–141, 2022.

[27] X. Sun, W. Luo, J. T. Gu, A. Ganesan, R. Alagappan,
M. Gasch, L. Suresh, and T. Xu, “Automatic reliabil-
ity testing for cluster management controllers,” in 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), 2022, pp. 143–159.

[28] J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri,
O. Legunsen, and T. Xu, “Acto: Automatic end-to-end
testing for operation correctness of cloud system man-
agement,” in Proceedings of the 29th Symposium on
Operating Systems Principles, 2023, pp. 96–112.

[29] J. Lu, C. Liu, L. Li, X. Feng, F. Tan, J. Yang, and
L. You, “Crashtuner: detecting crash-recovery bugs in
cloud systems via meta-info analysis,” in Proceedings
of the 27th ACM Symposium on Operating Systems
Principles (SOSP), 2019, pp. 114–130.

[30] H. Liu, X. Wang, G. Li, S. Lu, F. Ye, and C. Tian,
“FCatch: Automatically detecting time-of-fault bugs in
cloud systems,” ACM SIGPLAN Notices, vol. 53, no. 2,
pp. 419–431, 2018.

[31] H. Chen, W. Dou, D. Wang, and F. Qin, “Cofi:
consistency-guided fault injection for cloud systems,”
in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020,
pp. 536–547.

[32] X. Sun, L. Suresh, A. Ganesan, R. Alagappan, M. Gasch,
L. Tang, and T. Xu, “Reasoning about modern datacenter
infrastructures using partial histories,” in Proceedings of
the Workshop on Hot Topics in Operating Systems, 2021,
pp. 213–220.

[33] R. Majumdar and F. Niksic, “Why is random testing
effective for partition tolerance bugs?” Proceedings of
the ACM on Programming Languages, vol. 2, pp. 1–24,
2017.

[34] R. Meng, G. Pı̂rlea, A. Roychoudhury, and I. Sergey,
“Distributed system fuzzing,” arXiv preprint
arXiv:2305.02601, 2023.

[35] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein,
L. Kosewski, J. Reynolds, and C. Rosenthal, “Chaos
engineering,” IEEE Software, vol. 33, no. 3, pp. 35–41,
2016.

[36] J. Flora, P. Gonçalves, M. Teixeira, and N. Antunes, “A
study on the aging and fault tolerance of microservices in
kubernetes,” IEEE Access, vol. 10, pp. 132 786–132 799,
2022.

[37] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and
R. K. Iyer, “FIRM: An intelligent fine-grained resource
management framework for slo-oriented microservices,”
in 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20). Banff, Alberta:
USENIX Association, Nov. 2020, pp. 805–825.

[38] H. Jacobs, “Kubernetes Failure Stories, or: How to
Crash Your Cluster,” https://www.youtube.com/watch?v=

LpFApeaGv7A, 2019.
[39] D. Ongaro and J. Ousterhout, “In search of an under-

standable consensus algorithm,” in 2014 USENIX annual
technical conference (USENIX ATC 14), 2014, pp. 305–
319.

[40] J. Bowes, “Level Triggering and Reconcili-
ation in Kubernetes,” https://hackernoon.com/
level-triggering-and-reconciliation-in-kubernetes-1f17fe30333d,
2020, accessed April 18, 2024.

[41] Zalando, “Let’s talk about Failures
with Kubernetes - Hamburg Meetup,”
https://www.slideshare.net/try except /
lets-talk-about-failures-with-kubernetes-hamburg-meetup,
2019, accessed April 18, 2024.

[42] K. repository users, “Kubernetes Issue 69579 ,” https:
//github.com/kubernetes/kubernetes/issues/69579, 2018,
accessed April 18, 2024.

[43] M. Cebula and B. S. Airbnb, “10 Weird Ways to Blow
Up Your Kubernetes,” https://www.youtube.com/watch?
v=FrQ8Lwm9 j8, 2020, accessed April 18, 2024.

[44] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi, “Fail-
ure detectors in omission failure environments,” Cornell
University, Tech. Rep., 1996.

[45] delimitrou, “DeathStarBench,” https://github.com/
delimitrou/DeathStarBench, accessed April 18, 2024.

[46] VMware Tanzu. k-bench. https://github.com/
vmware-tanzu/k-bench. Accessed April 18, 2024.

[47] Kubernetes, “Kubernetes docs - components,” https:
//kubernetes.io/docs/concepts/overview/components/,
2023.

[48] E. Truyen, D. Van Landuyt, D. Preuveneers, B. La-
gaisse, and W. Joosen, “A comprehensive feature compar-
ison study of open-source container orchestration frame-
works,” Applied Sciences, 2019.

[49] Kubernetes, “Kubernetes docs - scuring a cluster,”
https://kubernetes.io/docs/tasks/administer-cluster/
securing-a-cluster/, 2023.

[50] K. developers, “Resource quotas,” https://kubernetes.
io/docs/concepts/policy/resource-quotas/, 2024, accessed
April 18, 2024.

[51] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection
techniques and tools,” Computer, vol. 30, no. 4, pp. 75–
82, 1997.

[52] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing
dependability with software fault injection: A survey,”
ACM Computing Surveys (CSUR), vol. 48, no. 3, pp. 1–
55, 2016.

[53] R. Moraes, R. Barbosa, J. Durães, N. Mendes, E. Mar-
tins, and H. Madeira, “Injection of faults at component
interfaces and inside the component code: are they equiv-
alent?” in Proceedings of Sixth European Dependable
Computing Conference (EDCC). IEEE, 2006, pp. 53–
64.

[54] L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji,
I. Gupta, and T. Xu, “Fail through the cracks: Cross-
system interaction failures in modern cloud systems,” in

https://www.youtube.com/watch?v=LpFApeaGv7A
https://www.youtube.com/watch?v=LpFApeaGv7A
https://hackernoon.com/level-triggering-and-reconciliation-in-kubernetes-1f17fe30333d
https://hackernoon.com/level-triggering-and-reconciliation-in-kubernetes-1f17fe30333d
https://www.slideshare.net/try_except_/lets-talk-about-failures-with-kubernetes-hamburg-meetup
https://www.slideshare.net/try_except_/lets-talk-about-failures-with-kubernetes-hamburg-meetup
https://github.com/kubernetes/kubernetes/issues/69579
https://github.com/kubernetes/kubernetes/issues/69579
https://www.youtube.com/watch?v=FrQ8Lwm9_j8
https://www.youtube.com/watch?v=FrQ8Lwm9_j8
https://github.com/delimitrou/DeathStarBench
https://github.com/delimitrou/DeathStarBench
https://github.com/vmware-tanzu/k-bench
https://github.com/vmware-tanzu/k-bench
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/

Proceedings of the Eighteenth European Conference on
Computer Systems, 2023, pp. 433–451.

[55] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico,
J. Fullop, and W. Kramer, “Lessons learned from the
analysis of system failures at petascale: The case of
blue waters,” in 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks.
IEEE, 2014, pp. 610–621.

[56] P. Vizarreta, K. Trivedi, V. Mendiratta, W. Kellerer,
and C. Mas-Machuca, “Dason: Dependability assessment
framework for imperfect distributed sdn implementa-
tions,” IEEE Transactions on Network and Service Man-
agement, vol. 17, no. 2, pp. 652–667, 2020.

[57] P. Maciel, J. Dantas, C. Melo, P. Pereira, F. Oliveira,
J. Araujo, and R. Matos, “A survey on reliability and
availability modeling of edge, fog, and cloud computing,”
Journal of Reliable Intelligent Environments, pp. 1–19,
2021.

[58] H. Khazaei, J. Mišić, V. B. Mišić, and N. B. Mohammadi,
“Availability analysis of cloud computing centers,” in
Proceedings of IEEE Global Communications Confer-
ence (GLOBECOM). IEEE, 2012, pp. 1957–1962.

[59] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S.
Trivedi, “Scalable analytics for IaaS cloud availability,”
IEEE Transactions on Cloud Computing, vol. 2, no. 1,
pp. 57–70, 2014.

[60] L. De Simone, M. Di Mauro, R. Natella, and
F. Postiglione, “A latency-driven availability assessment
for multi-tenant service chains,” IEEE Transactions on
Services Computing, vol. 16, no. 2, pp. 815–829, 2022.

[61] M. Faraji Shoyari, E. Ataie, R. Entezari-Maleki, and
A. Movaghar, “Availability modeling in redundant open-
stack private clouds,” Software: Practice and Experience,
vol. 51, no. 6, pp. 1218–1241, 2021.

[62] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang, “Char-
acterization of linux kernel behavior under errors,” in
Proceedings of International Conference on Dependable
Systems and Networks. IEEE Computer Society, 2003,
pp. 459–459.

[63] T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun, “Exper-
imental analysis of the errors induced into linux by three
fault injection techniques,” in Proceedings of the 2002
IEEE International Conference on Dependable Systems
and Networks (DSN). IEEE, 2002, pp. 331–336.

[64] D. Cotroneo, R. Natella, and S. Russo, “Assessment and
improvement of hang detection in the linux operating
system,” in 2009 28th IEEE International Symposium on
Reliable Distributed Systems. IEEE, 2009, pp. 288–294.

[65] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and
N. Bidokhti, “How bad can a bug get? an empirical
analysis of software failures in the openstack cloud
computing platform,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, 2019, pp. 200–211.

[66] X. Ju, L. Soares, K. G. Shin, K. D. Ryu, and D. Da Silva,

“On fault resilience of openstack,” in Proceedings of the
4th annual Symposium on Cloud Computing, 2013, pp.
1–16.

[67] M. A. Shahid, N. Islam, M. M. Alam, M. Mazliham,
and S. Musa, “Towards resilient method: An exhaustive
survey of fault tolerance methods in the cloud computing
environment,” Computer Science Review, vol. 40, p.
100398, 2021.

[68] P. Kumari and P. Kaur, “A survey of fault tolerance
in cloud computing,” Journal of King Saud University-
Computer and Information Sciences, vol. 33, no. 10, pp.
1159–1176, 2021.

[69] G. M. Diouf, H. Elbiaze, and W. Jaafar, “On byzantine
fault tolerance in multi-master kubernetes clusters,” Fu-
ture Generation Computer Systems, vol. 109, pp. 407–
419, 2020.

[70] E. Sakic, N. Deric, E. Goshi, and W. Kellerer, “P4bft:
Hardware-accelerated byzantine-resilient network control
plane,” in 2019 IEEE Global Communications Confer-
ence (GLOBECOM). IEEE, 2019, pp. 1–7.

[71] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz,
and L. M. S. de Souza, “State machine replication in
containers managed by kubernetes,” Journal of Systems
Architecture, 2017.

[72] Z. Zhou, T. A. Benson, M. Canini, and B. Chan-
drasekaran, “Tardis: A fault-tolerant design for network
control planes,” in Proceedings of the ACM SIGCOMM
Symposium on SDN Research (SOSR), 2021, pp. 108–
121.

	Introduction
	Background
	Containers and orchestration systems
	Putting Mutiny into perspective
	Kubernetes
	Resiliency strategies in K8s

	Field Failure Data Analysis (FFDA)
	Orchestrator-level failures
	Orchestrator-level faults and errors
	Fault/error propagation

	Experimental method
	Mutiny!
	Workloads
	Campaign manager

	Experimental results
	Experimental setup and parameters
	Analysis of data from fault/error injection campaign
	Results
	Analysis of OF and CF failures
	Critical field analysis
	User error analysis
	Injection propagation analysis

	Discussion
	How can we improve testing?
	What can we do about failures?

	Related Work
	Dependability assessment for cloud systems
	Fault injection in cloud systems
	Fault-tolerant designs in orchestration systems

	Conclusion

