
Practical Constructions for Single Input Functionality

against a Dishonest Majority

Zhelei Zhou
Zhejiang University
Hangzhou, China

zl zhou@zju.edu.cn

Bingsheng Zhang
Zhejiang University
Hangzhou, China

bingsheng@zju.edu.cn

Hong-Sheng Zhou
Virginia Commonwealth University

Richmond, USA
hszhou@vcu.edu

Kui Ren
Zhejiang University
Hangzhou, China
kuiren@zju.edu.cn

Abstract—Single Input Functionality (SIF) is a special case of

MPC, where only one distinguished party called dealer holds

the secret input. SIF allows the dealer to complete a compu-

tation task and send to other parties their respective outputs

without revealing any additional information about its secret

input. SIF has many applications, including multiple-verifier

zero-knowledge and verifiable relation sharing, etc. Recently,

several works devote to round-efficient realization of SIF,

and achieve 2-round communication in the honest majority

setting (Applebaum et al., Crypto 2022; Baum et al., CCS

2022; Yang and Wang, Asiacrypt 2022).

In this work, we focus on concrete efficiency and propose

the first practical construction for SIF against a dishonest
majority in the preprocessing model; moreover, the online

phase of our protocol is only 2-round and is highly efficient,

as it requires no cryptographic operations and achieves

information theoretical security. For SIF among 5 parties,

our scheme takes 152.34ms (total) to evaluate an AES-128

circuit with 7.36ms online time. Compared to the state-of-

the-art (honest majority) solution (Baum et al., CCS 2022),

our protocol is roughly 2⇥ faster in the online phase,

although more preprocessing time is needed. Compared to

the state-of-the-art generic MPC against a dishonest majority

(Wang et al., CCS 2017; Cramer et al., Crypto 2018), our

protocol outperforms them with respect to both total running

time and online running time.

1. Introduction

Single Input Functionality (SIF) has received a lot of
attention in the recent years [2]–[4], [37]. We can view
SIF as a special case of MPC, where only one distin-
guished party, called the dealer D, is allowed to hold a
private input w, while all other parties, called the verifiers
V1, . . . ,Vn, have no private inputs. More concretely, let
(y1, . . . , yn) C(w) be the SIF they jointly compute;
after the execution, the i-th verifier Vi obtains yi as its
private output.

The investigation of SIF can be traced back to the
work by Gennaro et al. [20]. Very recently, Applebaum
et al. [3] observe that SIF have two direct applications
– Multiple-Verifier Zero-Knowledge (MVZK) [4], [37] and

Zhelei Zhou, Bingsheng Zhang and Kui Ren are with the State Key
Laboratory of Blockchain and Data Security & Hangzhou High-Tech
Zone (Binjiang) Institute of Blockchain and Data Security, Hangzhou,
China. Bingsheng Zhang and Hong-Sheng Zhou are the corresponding
authors.

Verifiable Relation Sharing (VRS) [2]. Note that, as shown
in [3], MVZK can be viewed as a special case of VRS.

Multiple-Verifier Zero-Knowledge (MVZK). In a
MVZK protocol, a distinguished party called prover P,
who takes input as the statement x and the witness w,
and he wants to convince the n verifiers V1, . . . ,Vn that
R(x,w) = 1 for an NP relation R. It is easy to see that
MVZK can be implemented via SIF. Namely, let C be the
circuit that evaluates R(x,w). Then the parties can invoke
SIF to jointly evaluate C such that the verifiers can obtain
C(x,w) as their outputs.

Recently, several MVZK protocols [3], [4], [37] have
been constructed in the honest majority setting. More
precisely, in these constructions, the adversary is allowed
to corrupt the prover and the minority of the verifiers.
Among them, Applebaum et al. [3] focus more on the
theoretical side and show how to construct a 2-round
MVZK protocol in the plain model1 using non-interactive
commitments. On the other hand, Baum et al. [4] and
Yang and Wang [37] provide highly efficient construc-
tions. More concretely, Yang and Wang [37] show how to
construct 2-round MVZK protocols in the random oracle
(RO) model, where the prover sends a single message to
each verifier in the first round, and the verifiers exchange
messages among them and make a decision in the second
round. Similarly, the MVZK protocols proposed by Baum
et al. [4] are also 2-round, but they are designed in the
preprocessing model2.

We must note that a variant of MVZK has been
investigated in the dishonest majority setting (i.e., the
prover and the majority of the verifiers can be malicious):
Lepinski et al. [29] introduce the notion of fair ZK, which
can be viewed as a strengthened version of MVZK in
the dishonest majority setting. More precisely, Lepinski et
al. extend the traditional ZK to the setting with multiple
verifiers and add a new security property called fairness,
which ensures the malicious verifiers who collude with the
malicious prover cannot learn anything beyond the validity
of the statement if the honest verifiers accept the proof.
However, their construction is only a feasibility result and
is far from being practical. On the one hand, their protocol

1. In the plain model, there is no setup.
2. In the preprocessing model, the protocol execution is divided into

two phases: (i) the preprocessing phase, where the inputs are unknown
to parties and some correlated randomness are generated; (ii) the online
phase, where the inputs are known to parties and the previously generated
randomness will be used to improve the performance of the computation.

398

2024 9th IEEE European Symposium on Security and Privacy (Euro&SP)

© 2024, Zhelei Zhou. Under license to IEEE.
DOI 10.1109/EuroSP60621.2024.00029

2
0

2
4

 I
E

E
E

 9
t
h

 E
u

r
o

p
e

a
n

 S
y
m

p
o

s
iu

m
 o

n
 S

e
c
u

r
it

y
 a

n
d

 P
r
iv

a
c
y
 (

E
u

r
o

S
&

a
m

p
;P

)
|

 9
7

9
-8

-3
5

0
3

-5
4

2
5

-6
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
E

U
R

O
S

P
6

0
6

2
1

.2
0

2
4

.0
0

0
2

9

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

requires heavy cryptographic operations. On the other
hand, they assume an unrealistic network assumption: the
parties can only communicate through a broadcast channel
and unidirectional secure channels (from the verifiers to
the prover).

We emphasize that, the previous practical MVZK pro-
tocols are constructed in the honest majority setting [4],
[37]. How to construct a practical MVZK protocol in the
dishonest majority setting, is still an open problem.

Verifiable Relation Sharing (VRS). Analogously, in a
VRS protocol, we also consider a distinguished prover P
who holds a private input s, and n verifiers V1, . . . ,Vn

who have no private inputs. The prover P shares the secret
s to the verifiers; denote the verifier Vi’s share as xi, for
i 2 [n]. In addition, the prover P proves in zero-knowledge
that R(s, x1, . . . , xn) = 1 for an NP relation R. Clearly,
VRS can also be implemented via SIF. In particular, we
define a circuit (y1, . . . , yn) C(s, x1, . . . , xn) such that
yi = xi for i 2 [n] if R(s, x1, . . . , xn) = 1; otherwise,
yi = ? for i 2 [n], where ? is a failure symbol. We
note that, as shown in [3], VRS implies many important
cryptographic primitives, such as MVZK, Verifiable Secret
Sharing (VSS) [13], and secure multicast [19].

Applebaum et al. show that a 2-round VRS protocol
can be constructed using non-interactive commitment as
a building block; their protocol allows the adversary to
corrupt the prover and up to t < n

3 verifiers [2]. The
same authors later improve the corruption threshold with-
out increasing the round complexity [3]. More precisely,
the protocol in [3] remains secure in the presence of a
corrupted prover and up to t < n

2+✏ corrupted verifiers,
where ✏ is a positive constant.

To the best of our knowledge, all the existing VRS
protocols in the literature assume an honest majority, and
constructing a practical VRS protocol against a dishonest
majority remains an open problem.

1.1. Our Results

In this work, we focus on concrete efficiency and
present the first practical construction for SIF against
a dishonest majority in the preprocessing model. The
online phase of our protocol is only 2-round and achieves
information theoretical security; as a result, our online
phase protocol is very fast. In addition, our protocol can be
proven secure in the Universal Composability (UC) frame-
work [12]. As mentioned before, both VRS and MVZK
can be viewed as special cases of SIF; as side products, we
also obtain the first practical MVZK and VRS protocols
against a dishonest majority in the preprocessing model,
which provides answers to the aforementioned open prob-
lems.

In the following, we will first provide a brief intuition
of our construction.

Intuition. In our design, we make extensive use of a par-
ticular form of correlated randomness, called Information-
Theoretic Message Authentication Codes (IT-MACs) [6],
[31]. Let Fpr be the extension field of a field Fp. In order
to authenticate the random value x 2 Fp, we let the party
who holds the MAC key (�,K) 2 F2

pr compute the MAC
tag mx := K + � · x 2 Fpr . It is easy to see that a
malicious party who obtains mx but does not know the

MAC key, cannot produce another valid mx0 for x0
6= x

except for negligible probability when |Fpr | is sufficiently
large. In the dishonest majority setting, IT-MACs are often
combined with secret shares [6], [16]. More concretely,
random values are shared among all the parties (e.g., for
a random x, party Pi obtains xi such that x =

Pn
i=1 xi),

and the shares are authenticated to each other using IT-
MACs. These random values are often used to mask the
wire values of the circuit.

Our key observation is that: in SIF, only the dealer
holds the private input w; revealing the random masked
value of w to the dealer does not compromise the se-
curity, as the dealer is already aware of w. In addition,
the random masked value is secretly shared among the
verifiers.

Following the above observation, we are able to design
a 2-round SIF. We will follow the “gate-by-gate” design
paradigm. The dealer first commits to its secret input w
by broadcasting � := w�x, where x is the random value
that is held by the dealer and shared among the verifiers.
Due to the linearity of shares, the verifiers transform the
shares of � into the shares of w. It is easy to see that all
addition gates of the circuit can be processed locally for
free. For the multiplication gates of the circuit, we use the
“Beaver triples” techniques [5]. More precisely, for each
multiplication gate with input wire indices ↵,� and output
wire index �, we prepare three correlated random values
(a, b, c) such that c = ab in advance, and we denote by
w↵, w� the input wire values and denote by w� the output
wire value. If we set ⌘ := w↵ � a and ⌫ := w� � b, then
it is easy to see that

w� = w↵ · w� = (w↵ � a+ a) · (w� � b+ b)

= ⌘ · ⌫ + ⌘ · b+ ⌫ · a+ c
(1)

In MPC protocols in the dishonest majority setting, such
as BDOZ-style MPC [6] and SPDZ-style MPC [16], par-
ties need to publicly open ⌘ and ⌫ first; then the parties
can obtain the shares of w↵ ·w� based on Equation 1. To
process the multiplication gates, interactions between the
protocol parties are required; the overall round complexity
of BDOZ-style and SPDZ-style MPC protocols depend on
the circuit depth. In contrast, in our setting, we can simply
let the dealer broadcast ⌘, ⌫ since w↵, w� , a, b are known
by the dealer. Therefore, all multiplication gates can be
processed simultaneously at once! Notice that, the idea
that all multiplication gates can be sent simultaneously is
also used in the context of ZK, e.g. [25], [35], [36]. In
order to prevent the dealer from cheating in computing
⌘, ⌫, we let the verifiers to open ⌘̃ := w↵�a, ⌫̃ := w��b
and check if ⌘̃ = ⌘, ⌫̃ = ⌫ hold in the following round.
For output gates, for instance, the i-th output gate that
belongs to Vi, we denote by hi the output wire value,
and let other verifiers open their shares of hi to Vi, so
Vi can recover its output hi. Notice that, the verifiers can
open their shares of output values and send the messages
that are used to check the multiplication gates in the same
round. As a result, the online phase of our SIF protocol
can be constructed within 2 rounds.

Comparisons. In Table 1, we compare our result with the
related state-of-the-art 2-round protocols. We implement
our protocol, and report our performance results in Sec-

399

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

tion 6.1 and the comparison results with other works in
Section 6.2, respectively.

TABLE 1: Comparison with related state-of-the-art 2-
round protocols.

Ref. Primitive Threshold Setup Security?

[37] MVZK t < n
2 + 1 RO it

[4] MVZK t < n
3 + 1 Prep. it

[3] SIF t < n
2+✏ + 1† - cs/es

Ours SIF t < n+ 1 Prep. it

? it: information-theoretical security; es: everlasting secu-
rity; cs: computational security.

† Here, ✏ is a small positive constant.

Our construction for SIF is highly efficient: for SIF
among 5 parties, our construction takes 152.34ms (total) to
evaluate an AES-128 circuit with 7.36ms online time. We
compare the performance of our protocol with the state-
of-the-art MVZK protocol in the honest majority setting,
i.e. the Feta protocol by Baum et al. [4]3. When there are
5 parties (1 prover and 4 verifiers), Feta takes 18.25ms
to evaluate an AES-128 circuit with 16.24ms online time;
roughly, our protocol uses 2⇥ less online time than Feta,
although our protocol has a slower pre-processing phase.
In addition, we remark that, when the number of parties is
5, Feta only tolerates a single corrupted verifier while our
protocol can tolerate 3 corrupted verifiers. Furthermore,
Feta is specially designed for MVZK while our protocol
is for SIF, supporting MVZK, VRS and more.

To further demonstrate the efficiency of our protocol,
we also compare the performance of our SIF with that of
several MPC protocols in the dishonest majority setting.
When there are 3 parties, our protocol takes 302.43ms to
evaluate a SHA-256 circuit with only 7.20ms online time.
Compared to the state-of-the-art MPC protocols against
a dishonest majority [15], [34], our improvement ranges
from 1.2⇥ to 1.7⇥ w.r.t. the total running time, and ranges
from 2.2⇥ to 4.4⇥ w.r.t. the online phase running time.

1.2. Applications

Here we will discuss some application scenarios of
our SIF/MVZK/VRS protocols in the following.

VSS against a dishonest majority. As pointed out in [3],
SIF captures a very important cryptographic primitive, i.e.,
Verifiable Secret Sharing (VSS) [13]. In a VSS protocol,
when a malicious dealer makes dishonest behaviors, it
would be caught by the honest verifiers and the honest
verifiers will disqualify the dealer.

Typically, in a VSS protocol with an honest majority,
the honest verifiers can always reconstruct the secret if the
dealer acts honestly. When it comes to the dishonest ma-
jority setting, the security requirement is relaxed to capture
the security with abort [17], [30], since malicious verifiers
can always abort the protocol execution. As shown in [17],
[30], VSS can be used to construct general MPC protocols
against a dishonest majority. The authors of [17], [30]
propose VSS protocols against a dishonest majority in the

3. In Feta [4] two MVZK protocols have been constructed: in the first
protocol, up to t < n

3 verifiers can be corrupted, while in the second
protocol, up to t < n

4 verifiers are corrupted. In our paper, we only
refer to the former one.

commodity based model, where they assume a trusted au-
thority generates correlated randomness and delivers these
randomness to the protocol participants. Our protocol can
be used to build VSS against a dishonest majority in the
preprocessing model, where we also use correlated ran-
domness, and we present an efficient protocol to generate
these correlated randomness.

Private aggregation systems. In a private aggregation
system, there are a set of clients, who hold private data,
and a set of servers, who want to collect and aggregate
clients’ data. In Prio [14], a highly influential private ag-
gregation system, each client (acting as the prover) needs
to employ Secret-Shared Non-Interactive Proofs (SNIPs)
to prove to the servers (acting as the verifiers) that its
data is valid. However, the authors of [14] assume that the
malicious client cannot collude with the servers to ensure
the soundness; in addition, Prio can tolerate all-but-one
malicious servers for zero-knowledge property. Therefore,
our MVZK protocol against a dishonest majority could
be a more sound alternative to SNIPs, since our protocol
remains secure even if the malicious prover is allowed to
collude with the verifiers.

1.3. Paper Organization

In Section 2, we present the preliminaries that will be
used in this work. In Section 3, we provide the technical
overview for our protocols. In Section 4 and Section 5,
we give the full descriptions about our protocols for the
preprocessing phase and online phase protocols respec-
tively. In Section 6, we discuss the performance of our
protocols. In Section 7, we show more details about the
relevant work.

2. Preliminaries

2.1. Notation

We use � 2 N to denote the security parameter.
We say that a function negl : N ! N is negligible if
for every positive polynomial poly(·) and all sufficiently
large �, it holds that negl(�) < 1

poly(�) . We use the
abbreviation PPT to denote probabilistic polynomial-time.
We say that two distribution ensembles X = {X�}�2N
and Y = {Y�}�2N are statistically (resp. computationally
indistinguishable), which we denote by X

s
⇡ Y (resp.,

X
c
⇡ Y), if for any unbounded (resp., PPT) distinguisher

A there exists a negligible function negl s.t. |Pr[A(X�) =
1]�Pr[A(Y�) = 1]| = negl(�). We use x S to denote
that sampling x uniformly at random from a finite set S.
For n 2 N, we denote by [n] a set {1, . . . , n}. For a, b 2 Z
with a  b, we denote by [a, b] = {a, . . . , b}. We use bold
lower-case letters like x for vectors, and denote by xi the
i-th element of vector x.

We consider an extension field Fpr of a finite field
Fp, where p � 2 is a prime or a power of a prime and
r � 1 is an integer. We fix some monic, irreducible poly-
nomial f(X) of degree r and write Fpr ⇠= Fp[X]/f(X).
Therefore, every w 2 Fpr can be written uniquely as
w =

Pr
i=1 wi ·Xi�1 with wi 2 Fp for all i 2 [r]. Thus,

we could view the elements over Fpr equivalently as the
vectors in (Fp)r.

400

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

Based on field Fp, we can define a circuit C : Fm
p !

Fn
p as follows: First, the circuit C consists of a set of input

wires Iin and a set of output wires Iout, where |Iin| = m
and |Iout| = n. Second, the circuit C consists of a list of
gates of the form (↵,�, �, T), where ↵,� are the indices
of the input wires and � is the index of the output wire,
and T 2 {Add,Mult} is the type of the gate. If p = 2,
then C is a boolean circuit with Add = � and Mult = ^;
note that, one can compute x�1 to negate x in a boolean
circuit. If p � 2 is a prime or a power of a prime, then
C is an arithmetic circuit where Add/Mult corresponds to
addition/multiplication in Fp.

2.2. Universal Composability

We formalize and analyze the security of our pro-
tocols in the Universal Composability (UC) framework
by Canetti [12]. In the following, we give a high-level
description for UC framework, and we refer readers to
see more details in [12].

In the UC framework, we define a protocol ⇧ to
be a computer program (or several programs) which is
intended to be executed by multiple parties. Every party
has a unique identity pair (pid, sid), where pid refers to
the Party ID (PID) and sid refers to the Session ID (SID).
Parties running with the same code and the same SID are
viewed to be in the same protocol session. The adversarial
behaviors are captured by the adversary A, who is able to
control the network and corrupt the parties. When a party
is corrupted by the adversary A, the adversary A obtains
its secret input and internal state.

The UC framework is based on the “simulation
paradigm” [21], a.k.a., the ideal/real world paradigm. In
the ideal world, the inputs of the parties are sent to an ideal
functionality F who will complete the computation task in
a trusted manner and send to each party its respective out-
put. The corrupted parties in the ideal world are controlled
by an ideal-world adversary S (a.k.a., the simulator). In
the real world, parties communicate with each other to
execute the protocol ⇧, and the corrupted parties are
controlled by the real-world adversary A. There is an
additional entity called environment Z , which delivers the
inputs to parties and receives the outputs generated by
those parties. The environment Z can communicate with
the real-world adversary A (resp. ideal-world adversary S)
and corrupt the parties through the adversary in the real
(resp. ideal) world. Roughly speaking, the security of a
protocol is argued by comparing the ideal world execution
to the real world execution. More precisely, for every PPT
adversary A attacking an execution of ⇧, there is a PPT
simulator S attacking the ideal process that interacts with
F (by corrupting the same set of parties), such that the
executions of ⇧ with A is indistinguishable from that
of F with S to Z . We denote by EXECF,S,Z (resp.
EXEC⇧,A,Z) the output of Z in the ideal world (resp.
real world) execution. Formally, we have the following
definition.

Definition 1. We say a protocol ⇧ UC-realizes the func-
tionality F , if for any PPT environment Z and any
PPT adversary A, there exists a PPT simulator S s.t.
EXEC⇧,A,Z

c
⇡ EXECF,S,Z .

We then describe the modularity which is appealing
in the UC framework: when a protocol calls subroutines,
these subroutines can be treated as separate entities and
their security can be analyzed separately by way of re-
alizing an ideal functionality. This makes the protocol
design and security analysis much simpler. Therefore, we
introduce the notion of “hybrid world”. A protocol ⇧ is
said to be realized “in the G-hybrid world” if ⇧ invokes
the ideal functionality G as a subroutine. Formally, we
have the following definition.

Definition 2. We say a protocol ⇧ UC-realizes the func-
tionality F in the G-hybrid world, if for any PPT envi-
ronment Z and any PPT adversary A, there exists a PPT
simulator S s.t. EXECG

⇧,A,Z

c
⇡ EXECF,S,Z .

Adversarial model. In this work, we consider malicious
static corruption, i.e., the adversary corrupts the parties
at the beginning of the protocol and the corrupted parties
may deviate from protocol instructions. We also consider
rushing adversaries, who may delay sending messages on
behalf of corrupted parties in a given round until the
messages sent by all the uncorrupted parties in that round
have been received.

Malicious, static and rushing adversaries are also con-
sidered in the relevant state-of-the-art work [3], [4], [37].
However, they additionally assume an honest majority
while we do not. More precisely, in our setting, when
there are a dealer and n verifiers, we allow the adversary
to corrupt the dealer and up to (n� 1) verifiers.

Secure communication model. In this work, we consider
simultaneous communication, and we assume the parties
are connected by pairwise secure channels and a broadcast
channel. These secure communication channels are also
needed in the relevant state-of-the-art work [3], [4], [37].

2.3. Single Input Functionalities

In [3], Applebaum et al. formally define Single Input
Functionalities (SIFs); there the majority of players are
assumed to be honest, and the SIFs are defined to capture
full security. In our paper, the majority of players can
be corrupted; we thus consider a relaxed version of their
SIFs, capturing security with abort.

A formal presentation of (the relaxed version of) the
functionality, FSIF, can be found in Figure 1. More con-
cretely, in a SIF, there are a dealer D and n verifiers
V1, . . . ,Vn. Without loss of generality, we assume that all
the parties hold a circuit C : Fm

p ! Fn
p while the dealer

D additionally holds a secret input w where |w| = m.
The functionality FSIF takes w from the dealer D, then
it computes y := C(w) and delivers yi to Vi for i 2 [n],
where yi is the i-th element of y.

2.4. Information-Theoretic Message Authentica-

tion Codes

Originating from the work by Beaver [5], who shows
how to use “Beaver triples” for designing efficient pro-
tocols in the dishonest majority setting, many MPC pro-
tocols make extensive use of correlated randomness for
better efficiency [6], [10], [15], [16], [18], [31], [33],
[34]. Among them, there is a powerful technique called

401

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

The functionality interacts with a dealer D, n verifiers
V1,. . . ,Vn and an adversary S. Let HV denote the set of
honest verifiers.
The functionality is parameterized by a circuit C where
C : Fm

p ! Fn
p .

Upon receiving (INPUT, sid,w) from D and (INPUT, sid)
from Vi for all i 2 [n] where w 2 Fm

p , do
• Compute y := C(w), and send (OUTPUT, sid, yi) to
V⇤

i for each V⇤
i /2 HV where yi is the i-th element of

y.
• Send (CONTINUE, sid) to the adversary S. For each
Vi 2 HV, upon receiving an input from S,
– If it is (CONTINUE, sid,Vi), send (OUTPUT, sid, yi)

to Vi.
– If it is (ABORT, sid,Vi), send (ABORT, sid) to Vi.

Functionality FSIF

Figure 1: The Functionality FSIF

Information-Theoretic Message Authentication Codes (IT-
MACs) which is used to authenticate the values, especially
the secret shares [6], [31].

In this subsection, we review the IT-MACs [36] over
the extension field Fpr where pr > 2�. For simplicity, we
assume there are two parties P1 and P2. Let � 2 Fpr be
the global MAC key held by P1. A value x 2 Fp known
by P2 is authenticated to P1 by having P1 hold a local
MAC key K and having P2 hold the corresponding MAC
tag MAC�,K(x) := K+�·x 2 Fpr . It is easy to see that a
malicious P⇤

2 who sees MAC�,K(x) for a chosen x cannot
produce a new valid MAC tag MAC�,K(x0) for x0

6=
x except with probability p�r < 2��. Furthermore, the
security of IT-MACs holds when an honest party has many
MAC keys that share the same � but with independently
random K, and we call such MAC keys consistent.

Another appealing advantage of IT-MACs is ad-
ditive homomorphism. More precisely, for consistent
keys (�,K1), . . . , (�,Kn), given the public coefficients
c1, . . . , cn, c 2 Fp, it holds that MAC�,K(y) :=

Pn
i=1 ci ·

MAC�,Ki(xi) 2 Fpr , where y :=
Pn

i=1 ci · xi + c 2 Fp

and K :=
Pn

i=1 ci ·Ki � c ·� 2 Fpr .

3. Technical Overview

Before giving the formal description of our construc-
tion, we first provide a technical overview of our design
in this section. Full descriptions of our protocols can be
found in Section 4 and Section 5, below.

3.1. Starting Point: BDOZ-Style MPC

Our starting point is the BDOZ-style MPC [6], [31]
which is designed in the preprocessing model; that is, the
parties first jointly prepare some correlated randomness in
the preprocessing phase, and those correlated randomness
will be “consumed” during the online phase to accelerate
the online computation. BDOZ-style MPC exploits the
merit of IT-MACs (cf. Section 2.4) to achieve malicious
security while preserving high performance during the
online phase.

Here we provide a high-level description for BDOZ-
style MPC. Suppose there are n parties P1, . . . ,Pn. In

the preprocessing phase, the parties jointly generate suf-
ficiently many random values. For instance, for random
x 2 Fp, each party Pi holds an additive share xi 2 Fp

such that x =
Pn

i=1 xi. For each ordered pair of parties
(Pi,Pj), Pi authenticates its own share (namely, xi) to
Pj , i.e., at the end of the preprocessing phase, Pi holds
xi 2 Fp and M j

xi
2 Fpr and Pj holds �j ,Kj

xi
2 (Fpr)2

such that M j
xi

= MAC�j ,K
j
xi
(xi) = Kj

xi
+�j ·xi 2 Fpr .

Given these authenticated shares, every party can share
its secret input easily. Suppose party Pi wants to share
its secret input w 2 Fp, other parties simply open their
random shares of x to Pi; After recovering x, Pi can
simply broadcast � := w � x 2 Fp to others. By the
additive homomorphism of IT-MACs, all the parties obtain
the shares of w.

Then the parties will execute the protocol for online
phase in the “gate-by-gate” paradigm. The addition gates
can be processed without interactions between the parties.
For each multiplication gate (↵,�, �,Mult), one authen-
ticated Beaver triples [5] (i.e., the authenticated shares
of a, b, c such that c = a · b) should be prepared in the
preprocessing phase. To compute w↵ · w� , each party Pi

holds the shares of input wire values w↵,i, w�,i and the
shares of the authenticated Beaver triple (ai, bi, ci); then
all the parties can open ⌘ := w↵�a and ⌫ := w��b. Since
w↵ ·w� = (w↵�a+a)·(w��b+b) = ⌘ ·⌫+⌘ ·b+⌫ ·a+c,
all the parties can compute the shares of w↵ · w� based
on the shared (a, b, c) and the public ⌘ and ⌫. Since
the process of multiplication gates involves interactions
between the parties, the round complexity of the online
phase of BDOZ-style MPC linearly depends on the circuit
depth.

3.2. Key Observations

BDOZ-style shares vs. SPDZ-style shares. Compared
with the BDOZ-style MPC, its follow-up, the SPDZ-style
MPC [16], is more popular in the community and has been
widely studied [15], [26]–[28]. In the SPDZ-style MPC,
the shares are formed in a different way: each party holds
a share of a single global MAC key; for a secret value x,
each party holds a share of x and a share of the MAC tag
on x. In most application scenarios, we prefer SPDZ-style
shares to BDOZ-style shares, since the size of SPDZ-style
shares is smaller; thus, it is more efficient to operate on
SPDZ-style shares. However, opening SPDZ-style shares
requires a “commit-and-open” procedure, which will in-
crease the round complexity. Since we are pursing for 2-
round online communication, BDOZ-style shares are more
suitable for our purpose.

The dealer can learn all correlated randomness. In a
conventional MPC setting, the BDOZ-style protocol uses
the authenticated shares of random values to mask the wire
values of the circuit to ensure the privacy, i.e., to make
sure that corrupted parties cannot recover the wire values.
Our key observation is that in the SIF setting, only the
dealer D has a private input w and other parties’ inputs
are public; therefore, even if all the correlated randomness
generated in the preprocessing phase are revealed to the
the dealer D, it does not compromise the overall security
of the SIF protocol. This is due to the fact that the dealer
D already knows her own input.

402

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

3.3. Our Techniques

Reducing the round complexity. Enlightened by the
observations above, we are able to reduce the round com-
plexity of the online phase of our construction; namely, we
can process all the multiplication gates at once within only
2 rounds! More precisely, we first let the dealer D eval-
uate the entire circuit. Then for each multiplication gate
(↵,�, �,Mult), we let the dealer D broadcast ⌘ := w↵�a
and ⌫ := w� � b to all the verifiers, where (a, b, c) is
the Beaver triple; note that, as discussed above, we let D
learn (a, b, c) in plaintext. After receiving the messages
from the dealer D, the verifiers can locally compute the
shares of w↵ · w� as it is done in the BDOZ-style MPC.
Finally, in order to check whether the dealer D deviates
from the protocol while computing the values ⌘ and ⌫
for a multiplication gate, the verifiers can jointly check
whether ⌘, ⌫ are computed correctly. Namely, the verifiers
will publicly open ⌘̃ := w↵�a and ⌫̃ := w��b using their
authenticated shares of w↵, w� , a, b, and then the verifiers
jointly check if ⌘̃ = ⌘ and ⌫̃ = ⌫. Clearly, the above can
be completed within 2 rounds.

Modified preprocessing protocol. Finally, we show how
to generate the BDOZ-style correlated randomness in our
setting. This can be achieved by the following steps:
• Step 1: Generate the authenticated shares of random

values x and Beaver triples (a, b, c) such that the dealer
D and the n verifiers jointly holds their shares.

• Step 2: Let the n verifiers open their shares of all
the correlated randomness to the dealer D, and then
D checks the validity of the shares w.r.t. their MACs
and recover them in plaintext.

• Step 3: Let the dealer D send its shares of all the cor-
related randomness to each verifier; then one verifier,
say V1, will add the dealer’s share to its own share;
the remaining (n� 1) verifiers will locally update the
corresponding MAC keys accordingly.

4. SIF against a Dishonest Majority: Prepro-

cessing Phase

As discussed in Section 3, our protocol will be de-
signed in the preprocessing model. In this section, we
mainly focus on how to design the protocol for preprocess-
ing phase. We first provide the BDOZ-style preprocessing
functionality F

BDOZ

Prep
, then describe our own preprocessing

functionality F
Ours

Prep
. Finally, we give our protocol ⇧Prep

for preprocessing phase which UC-realizes F
Ours

Prep
in the

F
BDOZ

Prep
-hybrid world.

4.1. BDOZ-Style Preprocessing Functionality

First of all, we provide a quick recap of the BDOZ-
style preprocessing phase [6], [31], [33], [34], and we
make some modifications to adapt to our setting, where
there are a dealer D and n verifiers V1, . . . ,Vn. We let
the dealer D (resp. each verifier Vi) hold its global MAC
keys �0 (resp. �i). To share a value x 2 Fp among
D,V1, . . . ,Vn, we will randomly select x0, x1, . . . , xn

Fp such that x :=
Pn

i=0 xi and give x0 to D and xi

to Vi for i 2 [n]. Furthermore, these shares are authen-
ticated to each other using IT-MACs. For example, to

authenticate Vi’s share (namely, xi) to Vj , we let Vj

hold a local MAC key Kj
xi

which is uniformly random;
meanwhile, we let Vi hold a MAC tag M j

xi
such that

M j
xi

:= MAC�j ,K
j
xi
(xi) = Kj

xi
+�j ·xi. When the parties

decide to make x public, the corrupted parties cannot lie
about their shares, since the corrupted parties cannot forge
a MAC tag except with a negligible probability. For better
presentation, we introduce the following notation JxKBDOZ

to denote the BDOZ-style shares of value x:

JxKBDOZ = {{xi, {�i,K
i
xj
,M j

xi
}j2[0,n]\{i}}i2[0,n]} ,

where {x0, {�0,K0
xj
,M j

x0
}j2[n]} (resp. {xi, {�i,Ki

xj
,

M j
xi
}j2[0,n]\{i}}) are privately held by the dealer D (resp.

each verifier Vi), and we use JxKBDOZ as shorthand when
it is not need to explicitly talk about the shares and MAC
tags. We call J·KBDOZ the BDOZ-style shares.

Notice that, authenticated Beaver triples (i.e., JaKBDOZ,
JbKBDOZ,JcKBDOZ such that c = ab) will also be generated
during the BDOZ-style preprocessing phase. Formally,
we present the functionality F

BDOZ

Prep
in Figure 2 which

captures the BDOZ-style preprocessing phase, and the
functionality F

BDOZ

Prep
is adapted from [6], [34].

4.2. Our Preprocessing Functionality

Unlike the BDOZ-style preprocessing phase where se-
crets are shared among all the parties, in our preprocessing
phase, we share secrets among the verifiers V1, . . . ,Vn

and let the dealer D hold the entire secrets. The shares’ au-
thentication among V1, . . . ,Vn follows the same method
as in Section 4.1. More precisely, for a secret x, we let
each verifier Vi hold a share xi and {Ki

xj
,M j

xi
}j2[n]\{i};

meanwhile, we let the dealer D hold the verifiers’ shares
x1, . . . , xn. Notice that, the verifiers’ MAC keys and
MAC tags are hidden from the dealer. In this way, the
dealer D can announce the secret x :=

Pn
i=1 xi by itself,

later the verifiers can open their shares to check if the
announcement is correct. Even if the malicious dealer
D

⇤ colludes with some verifiers, D⇤ cannot make a false
announcement without being detected, since the corrupted
verifiers cannot lie about their shares. For notation conve-
nience, we use the following way of representing x:

JxK = {{xi}i2[n], {xi, {�i,K
i
xj
,M j

xi
}j2[n]\{i}}i2[n]} ,

where {xi}i2[n] (resp. {xi, {�i,Ki
xj
,M j

xi
}j2[n]\{i}}) is

privately held by the prover P (resp. the verifier Vi), and
we use JxK as shorthand when it is not need to explicitly
talk about the shares and MAC tags.

For modularity, we assume that there is an ideal
functionality F

Ours

Prep
providing us with the above, and we

present the functionality F
Ours

Prep
in Figure 3. Similar to

F
BDOZ

Prep
depicted in Figure 2, our F

Ours

Prep
also generates

the authenticated Beaver triples, i.e., JaK, JbK, JcK such that
c = ab.

Operations on our J·K shares. By additive homomor-
phism of IT-MACs described in Section 2.4, when the
MAC keys are consistent (i.e., each party holds its own
single global MAC key and many independently random
local MAC keys), linear operations on our J·K shares can
be performed locally. For completeness, we present it in
Figure 4.

403

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

The functionality interacts with a dealer D, n verifiers V1, . . . ,Vn and an adversary S. Let H denote the set of the
honest parties.

Initial. Upon receiving (INIT, sid) from D and V1, . . . ,Vn, do
1) If D /2 H, receive �0 2 Fpr from the adversary S; otherwise, sample random �0 Fpr .
2) For i 2 [n]: If Vi /2 H, receive �i 2 Fpr from S; otherwise, sample random �i Fpr .
3) Return �0 to D and �i to Vi for each i 2 [n].
4) Store {�i}i2[0,n], and ignore the subsequent INIT command.

Singles. Upon receiving (SINGLES, sid, u) from D and V1, . . . ,Vn, for v 2 [u]:
1) Send (SINGLES, sid, v) to the adversary S, and wait for an input from S. If it is ABORT, return (ABORT, sid, v) to

every honest party and halt. If it is CONTINUE, continue the procedure.
2) Sample random x Fp and create JxKBDOZ as follows:

a) If D /2 H, receive x0 2 Fp and {K0
xj
,M j

x0
}j2[n] 2 (Fpr)

2n from S.
b) For i 2 [n]: If Vi /2 H, receive xi 2 Fp and {Ki

xj
,M j

xi
}j2[0,n]\{i} 2 (Fpr)

2n from S.
c) For each honest Vi 2 H, its share xi 2 Fp is chosen at random, subject to x =

Pn
i=0 xi. (Here we can regard

D as V0 for notation convenience.)
d) For each honest Vi 2 H and j 2 [0, n]\{i}, Ki

xj
is chosen as follows: if Vj 2 H, sample random Ki

xj
 Fpr ;

otherwise, set Ki
xj

:= M i
xj
��i · xj 2 Fpr . (Here we can regard D as V0 for notation convenience.)

e) For i 2 [0, n], j 2 [0, n] \ {i}: Compute M j
xi

:= MAC
�j ,K

j
xi
(xi) = Kj

xi
+�j · xi 2 Fpr .

f) Send {x0, {K
0
xj
,M j

x0
}j2[n]} to D and {xi, {K

i
xj
,M j

xi
}j2[0,n]\{i}} to each Vi for i 2 [n].

Triples. Upon receiving (TRIPLES, sid, u) from D and V1, . . . ,Vn, for v 2 [u]:
1) The same as step 1 in Singles procedure.
2) For each triple to create, the functionality samples a, b Fp and sets c := a · b 2 Fp, then it creates JaKBDOZ,

JbKBDOZ,JcKBDOZ, each as step 2 in Singles procedure.

Functionality F
BDOZ

Prep

Figure 2: The Functionality F
BDOZ

Prep
for BODZ-Style Preprocessing

The functionality interacts with a dealer D, n verifiers V1, . . . ,Vn and an adversary S. Let H denote the set of the
honest parties.

Initial. Upon receiving (INIT, sid) from D and V1, . . . ,Vn, do
1) For i 2 [n]: If Vi /2 H, receive �i 2 Fpr from S; otherwise, sample random �i Fpr .
2) Return �i to Vi for each i 2 [n].
3) Store {�i}i2[n], and ignore the subsequent INIT command.

Singles. Upon receiving (SINGLES, sid, u) from D and V1, . . . ,Vn, for v 2 [u]:
1) Send (SINGLES, sid, v) to the adversary S, and wait for an input from S. If it is ABORT, return (ABORT, sid, v) to

every honest party and halt. If it is CONTINUE, continue the procedure.
2) Sample random x Fp and create JxK as follows:

a) For i 2 [n]: If Vi /2 H, receive xi 2 Fp and {Ki
xj
,M j

xi
}j2[n]\{i} 2 (Fpr)

2n from S.
b) For each honest Vi 2 H, its share xi 2 Fp is chosen at random, subject to x =

Pn
i=1 xi.

c) For each honest Vi 2 H and j 2 [n] \ {i}, Ki
xj

is chosen as follows: if Vj 2 H, sample random Ki
xj
 Fpr ;

otherwise, set Ki
xj

:= M i
xj
��j · xj 2 Fpr .

d) For i 2 [n], j 2 [n] \ {i}: Compute M i
xj

:= MAC
�j ,K

j
xi
(xi) = Kj

xi
+�j · xi 2 Fpr .

e) Send {xi}i2[n] to D and {xi, {K
i
xj
,M j

xi
}j2[n]\{i}} to each verifier Vi.

Triples. Upon receiving (TRIPLES, sid, u) from D and V1, . . . ,Vn, for v 2 [u]:
1) The same as step 1 in Singles procedure.
2) For each triple to create, the functionality samples a, b Fp and sets c := ab 2 Fp, then it creates JaK, JbK, JcK,

each as step 2 in Singles procedure.

Functionality F
Ours

Prep

Figure 3: The Functionality F
Ours

Prep
for Preprocessing

4.3. Our Preprocessing Protocol

In this subsection, we show how to efficiently realize
our preprocessing functionality F

Ours

Prep
. Our key idea is

to convert BDOZ-style shares J·KBDOZ into our shares
J·K. We achieve this by letting the verifiers send their

shares to the dealer privately, so the dealer can obtain the
entire random values. After that, we let the dealer open
its (original) shares to the verifiers, so the verifiers can
update their shares locally. We present our protocol ⇧Ours

Prep

for preprocessing phase in Figure 5 and prove the security

404

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

Addition of shares: Given two consistent JxK and JyK (i.e., both JxK and JyK are generated under the same global
MAC keys), D,V1, . . . ,Vn obtain the consistent shares of z := x+ y 2 Fp by locally performing the followings:

• D computes zi := xi + yi 2 Fp for i 2 [n].
• For i 2 [n]: Each Vi computes zi := xi + yi 2 Fp,K

i
zj := Ki

xj
+Ki

yj 2 Fpr ,M
j
zi := M j

xi
+M j

yi 2 Fpr for
j 2 [n] \ {i}.

Multiplication by constants: Given JxK and a constant c 2 Fp, D,V1, . . . ,Vn obtain the consistent shares of z :=
c · x 2 Fp by locally performing the followings:

• D computes zi := c · xi 2 Fp for i 2 [n].
• For i 2 [n]: Each Vi computes zi := c · xi 2 Fp,K

i
zj := c ·Ki

xj
2 Fpr ,M

j
zi := c ·M j

xi
2 Fpr for j 2 [n] \ {i}.

Addition of constants: Given JxK and a constant c 2 Fp, D,V1, . . . ,Vn obtain the consistent shares of z := c+x 2 Fp

by locally performing the followings:
• D computes z1 := c+ x1 2 Fp and zi := xi 2 Fp for i 2 [2, n].
• V1 computes z1 := c+ x1 2 Fp,K

1
zj := K1

xj
2 Fpr ,M

j
z1 := M j

x1
2 Fpr for j 2 [2, n]. For i 2 [2, n]: Each Vi sets

zi := xi 2 Fp,K
i
zj := Ki

xj
2 Fpr ,M

j
zi := M j

xi
2 Fpr for j 2 [2, n] \ {i} and computes

Ki
z1 := Ki

x1
� c ·�i 2 Fpr , M1

zi := M1
xi
2 Fpr .

Local Operations

Figure 4: Local Operations on Our J·K Shares

through Theorem 1.

Theorem 1. Let Fpr be the underlying extension field
with pr > n · 2�. The protocol ⇧Prep depicted in Figure 5
UC-realizes the functionality F

Ours

Prep
depicted in Figure 3

with information theoretical security in the F
BDOZ

Prep
-hybrid

world, in the presence of a static malicious adversary
corrupting up to the dealer and (n� 1) verifiers.

Proof. We prove the security of the protocol ⇧Prep by
showing it is a UC-secure realization of F

Ours

Prep
. We de-

scribe the workflow of the simulator S in the ideal-world
with FPrep, the dummy dealer D̃ and the dummy verifiers
Ṽ1, . . . , Ṽn, and give a proof that for any adversary A

and any environment Z , the simulation in the ideal-
world EXEC

F
Ours

Prep
,S,Z is statistically indistinguishable from

the real-world execution EXEC
F

BDOZ

Prep

⇧Prep,A,Z . Notice that, here
we focus on Singles procedure, since Initial procedure
is trivial and Triples procedure fully relies on Singles

procedure.
When dealer is honest. In this case, we denote by HV the
set of the honest verifiers in the real-world execution and
|HV| � 1. The simulator S needs to simulate the honest
dealer and the honest verifiers. We describe the simulation
strategy of S as follows:
1) S emulates F

BDOZ

Prep
and waits for A to send its

input. If A sends ABORT, S simply halts; other-
wise, S receives {xi,�i, {Ki

xj
,M j

xi
}j2[0,n]\{i}} from

A for each malicious V
⇤

i /2 HV. Then S sends
{xi,�i, {Ki

xj
,M j

xi
}j2[0,n]\{i}} to FPrep for each

dummy Ṽ
⇤

i . After that, S picks a random x Fp and
honestly generates the rest of JxKBDOZ for the honest
dummy parties.

2) On behalf of the honest dealer, S waits for each
malicious V

⇤

i /2 HV to send x⇤

i ,M
0
x⇤
i
. Then S checks

if M0
x⇤
i
= K0

xi
+�0 · x⇤

i holds where K0
xi
,�0 are the

private information held by S . If not, S aborts.
3) On behalf of the honest dealer, S sends x0,M i

x0
to

each V
⇤

i /2 HV privately.

4) On behalf of the honest parties, S honestly updates
their shares, local MAC keys and MAC tags.
We prove the indistinguishability through the follow-

ing hybrids.

• Hybrid Hyb0: Real world execution EXEC
F

BDOZ

Prep

⇧Prep,A,Z .
• Hybrid Hyb1: Same as Hyb0, except that S executes

the step 1 in the simulation strategy above. Perfect
indistinguishability holds since S simply imitates the
adversary’s behavior by emulating F

BDOZ

Prep
.

• Hybrid Hyb2: Same as Hyb1, except that S executes
the step 2 in the simulation strategy above.
Lemma 1. Let Fpr be the underlying extension field
with pr > n · 2�. Hybrid Hyb2 is statistically indis-
tinguishable from Hyb1 with adversarial advantage at
most p�r.
Proof. If a malicious V⇤

i /2 HV is able to find a pair of
(x⇤

i ,M
0
x⇤
i
) such that M0

x⇤
i
= K0

xi
+�0 ·x⇤

i but x⇤

i 6= xi,
then the adversary will find the distinction. The reason
is that: in hybrid Hyb2, the honest dealer will output
x⇤

i ; while in the ideal world, the honest dealer will
output xi. By the properties of IT-MACs which is
described in Section 2.4, we know that any malicious
V
⇤

i /2 HV can forge such a valid pair (x⇤

i ,M
0
x⇤
i
) with

probability 1
|Fpr |

. Therefore, Hyb2 is statistically in-
distinguishable from Hyb1 with adversarial advantage
at most p�r.

• Hybrid Hyb3: Same as Hyb2, except that S executes
the step 3-4 in the simulation strategy above.
Lemma 2. Hybrid Hyb3 is perfectly indistinguishable
from Hyb2.
Proof. Here we argue that the outputs of the honest
parties in both ideal world and hybrid Hyb3 are per-
fectly indistinguishable. First of all, we talk about the
honest parties’ shares. Since the secret x is randomly
picked in both ideal world and hybrid Hyb3, even if the
adversary can choose its own share, the honest parties’
shares are still uniformly random conditioned on that
x is uniformly random. Secondly, since the global
MAC keys �i of each honest Vi 2 HV are chosen

405

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

Initial. On input (INIT, sid), P,V1, . . . ,Vn work as follows:
1) P,V1, . . . ,Vn send (INIT, sid) to F

BDOZ

Prep , which returns {�0
j}j2[n] to P and {�i

j}j2[0,n]\{i} to Vi for each i 2 [n].
2) Vi outputs {�i

j}j2[n]\{i} for each i 2 [n].
Singles. On input (SINGLES, sid, u), for each v 2 [n], P,V1, . . . ,Vn work as follows:
1) P,V1, . . . ,Vn send (SINGLES, sid, 1) to F

BDOZ

Prep , which returns either ABORT or [x]BDOZ to them. If it is the first
case, they simply abort. If it is the second case, P receives {x0, {K

0
xj
,mj(x0)}j2[n]} and each Vi receives

{xi, {K
i
xj
,mj(xi)}j2[0,n]\{i}}. Notice that, x =

Pn
i=0 xi.

2) For i 2 [n]: Vi opens its share to P by sending xi,m0(xi) to P over a private channel. Then P checks if
m0(xi) = K0

xi
+�0

i · xi holds. If not, P aborts.
3) P opens its share to V1, . . . ,Vn by sending x0,mi(x0) to each Vi over a private channel. Then Vi checks if

mi(x0) = Ki
x0

+�i
0 · x0 holds. If not, Vi aborts.

4) V1 updates its share and MAC tag by setting x0
1 := x1 + x0 and mi(x

0
1) := mi(x1) for i 2 [2, n]. For i 2 [2, n]:

Vi updates its local MAC keys by setting Ki
x0
1
:= Ki

x1
� x0 ·�

i
1. In this way, we create new authenticated shares

of x among the verifiers.
5) For notation convenience, P,V1, . . . ,Vn set x0

i := xi,mj(x
0
i) := mj(xi),K

j
x0
i
:= Kj

xi
for i 2 [2, n], j 2 [n] \ i.

Notice that, now x =
Pn

i=1 x
0
i

6) P outputs {x0
i}i2[n] and Vi outputs {x0

i, {K
i
x0
j
,mj(x

0
i)}j2[n]\{i}} for each i 2 [n].

Triples. On input (TRIPLES, sid, u), for each v 2 [n], P,V1, . . . ,Vn work as follows:
1) P,V1, . . . ,Vn send (TRIPLES, sid, 1) to F

BDOZ

Prep , which returns either ABORT or [a]BDOZ, [b]BDOZ, [c]BDOZ to them. If
it is the first case, they simply abort. If it is the second case, they receive [a]BDOZ, [b]BDOZ, [c]BDOZ such that
c = ab.

2) For each t 2 {a, b, c}, P,V1, . . . ,Vn convert [t]BDOZ to [t] as step 2-6 in Singles procedure.

Protocol ⇧Prep

Figure 5: Our Protocol ⇧Prep for Preprocessing Phase in the F
BDOZ

Prep
-Hybrid World

randomly in both ideal world and hybrid H3, they
are also uniformly random. Thirdly, for each honest
Vi 2 HV, its local MAC keys Ki

xj
is computed as

follows: if Vj 2 HV, sample random Ki
xj
 Fp;

otherwise, set Ki
xj

:= M i
xj
� �j · xj 2 Fpr . Since

�j is uniformly random, in both case, honest parties’
local MAC keys are perfectly indistinguishable in both
ideal world and hybrid Hyb3. Finally, since the MAC
tags are deterministic conditioned on the shares, global
MAC keys and local MAC keys, the honest parties’
MAC tags are also perfectly indistinguishable in both
ideal world and hybrid H3. In conclusion, Hyb3 is
perfectly indistinguishable from Hyb3.

Hybrid Hyb3 is identical to the ideal world execution
EXEC

F
Ours

Prep
,S,Z . In conclusion, when the dealer is hon-

est, EXEC
F

Ours

Prep
,S,Z is statistically indistinguishable from

EXEC
F

BDOZ

Prep

⇧Prep,A,Z with adversarial advantage at most p�r.

When dealer is malicious. In this case, we also denote
by HV the set of the malicious verifiers in the real-
world execution and |HV| � 1. The simulator S needs to
simulate the honest verifiers. We describe the simulation
strategy of S as follows:

1) S emulates FBDOZ

Prep
using the same strategy as in Step 1

in the previous case.
2) On behalf of each honest verifier Vi 2 HV, S sends

xi,M0
xi

to malicious D
⇤.

3) On behalf of each honest verifier Vi 2 HV, S waits
for D

⇤ to send x⇤

0,M
i
x⇤
0
. Then S checks if M i

x⇤
0
=

Ki
x0

+ �i · x⇤

0 holds where Ki
x0
,�i are the private

information held by S . If not, S aborts.
4) On behalf of the honest parties, S honestly updates

their shares, local MAC keys and MAC tags.

We prove the indistinguishability through the follow-
ing hybrids.

• Hybrid Hyb0: Real world execution EXEC
F

BDOZ

Prep

⇧Prep,A,Z .
• Hybrid Hyb1: Same as Hyb0, except that S executes

the step 1 in the simulation strategy above. Perfect
indistinguishability holds since S simply imitates the
adversary’s behavior by emulating F

BDOZ

Prep
.

• Hybrid Hyb2: Same as Hyb1, except that S executes
the step 2-3 in the simulation strategy above.
Lemma 3. Let Fpr be the underlying extension field
with pr > n · 2�. Hybrid Hyb2 is statistically indis-
tinguishable from Hyb1 with adversarial advantage at
most 2��.
Proof. If the malicious D

⇤ is able to find a pair
of (x⇤

0,M
i
x⇤
0
) such that M i

x⇤
0
= Ki

x0
+ �i · x⇤

0 but
x⇤

0 6= x0 for any Vi 2 HV, then the adversary will
find the distinction. The reason is that: in hybrid H2,
the malicious dealer will cause inconsistent output of
the honest verifiers (i.e., make the honest Vi update
its representations with x⇤

0 while make other honest
ones update their representations with x0); while in
the ideal world, the malicious dealer cannot do that.
By the properties of IT-MACs which is described
in Section 2.4, we know that any malicious D

⇤ can
forge such a valid pair (x⇤

0,M
i
x⇤
0
) with probability

1
|Fpr |

. Since the adversary can only corrupt the dealer
and attempt to forge such a valid pair for n honest
verifiers, the overall adversarial probability is at most

n
|Fpr |

< 2��.

• Hybrid Hyb3: Same as Hyb2, except that S executes
the step 4 in the simulation strategy above. Perfect
indistinguishability holds due to the similar argument
as in Lemma 2.

406

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

Hybrid Hyb3 is identical to the ideal world execution
EXEC

F
Ours

Prep
,S,Z . In conclusion, when the prover is mali-

cious, EXEC
F

Ours

Prep
,S,Z is statistically indistinguishable from

EXEC
F

BDOZ

Prep

⇧Prep,A,Z with advantage at most 2��.

5. SIF against a Dishonest Majority: Main

Protocol

In this section, we aim to provide the main protocol for
SIF against a dishonest majority. Since we have described
how to realize the preprocessing phase in Section 4, here
we mainly focus on the online phase. The intuition of our
protocol for online phase can be found in Section 3. We
give a high-level description of our protocol for online
phase in the following.

We design our protocol for online phase in the “gate-
by-gate” paradigm. The dealer D who holds the secret
input w 2 Fm

p first commits to all input wire values to
the verifiers V1, . . . ,Vn by consuming m random val-
ues {JµiK}i2[m] produced by FPrep. More precisely, for
each i 2 Iin, D broadcasts the masked input wire value
�i := wi � µi to all verifiers. Then V1, . . . ,Vn obtain
the shares of input wire value by computing JwiK :=
JµiK + �i. As discussed in Section 4.2, J·K is additively
homomorphic; therefore, addition gates can be processed
for free. For each multiplication gate, one authenticated
Beaver triple (JaiK, JbiK, JciK) such that ci = ai · bi will
be consumed to ensure the multiplication gate will be
processed properly. This technique is originated from the
work by Beaver [5]. More precisely, for each multipli-
cation gate (↵,�, �,Mult), D broadcasts ⌘i := w↵ � ai
and ⌫i := w� � bi to the verifiers, where w↵ and w�

are the input wires values of this gate. By the following
eqution w↵ · w� = (w↵ � ai + ai) · (w� � bi + bi) =
(⌘i+ai) · (⌫i+ bi) = ⌘i ·⌫i+⌘i · bi+⌫i ·ai+ ci, it is clear
that if D acts honestly, the verifiers are able to reconstruct
the shares of output wire value Jw�K by locally computing
⌘i ·⌫i+⌘iJbiK+⌫iJaiK+JciK. If D acts maliciously, i.e., D
broadcasts the false ⌘i or ⌫i, the verifiers are able to detect
this malicious behavior by opening J⌘̃iK := Jw↵K � JaiK
and J⌫̃iK := Jw�K � JbiK to each other, and checking if
⌘̃i = ⌘i and ⌫̃i = ⌫i hold. Finally, the verifiers hold the
shares of output wire values {JhiK}i2[n]. In order to let Vi

obtain its own output, other verifiers simply open JhiK to
Vi. Notice that, during the protocol execution, the honest
verifiers would abort if any check fails or any verifier fails
to open its share.

Formally, we present our main protocol ⇧SIF, which
captures both preprocessing phase and online phase, in
Figure 6 and prove the security through Theorem 2.

Theorem 2. Let Fpr be the underlying extension field with
pr > n · 2�. The protocol ⇧SIF depicted in Figure 6 UC-
realizes the functionality FSIF depicted in Figure 1 with
information theoretical security in the FOurs

Prep
-hybrid world,

in the presence of a static malicious adversary corrupting
up to the dealer and (n� 1) verifiers.

Proof. We leave the formal proof in Appendix A.1.

Efficiency analysis. Assume the circuit has m input
wires and s multiplication gates. Let n be the number

of verifiers. We analyze both the computation and com-
munication efficiency of our online phase protocol in the
following:
• Computation: Here we measure the computation cost by

the number of multiplication operations, since addition
operations are for free. The dealer D only requires
s multiplications, which is extremely efficient. Each
verifier Vi requires 4ns +m multiplications, which is
also very efficient.

• Communication: Here we measure the communication
cost by the number of field elements sent by each party.
The dealer D sends m+2s filed elements to the verifiers
over a broadcast channel. Each verifier Vi sends 4s field
elements to another verifier Vj over a private channel.

6. Implementation and Evaluation

We implement a prototype of our protocols in C++,
and conduct a benchmark on various circuit evaluations.
Our code is available at https://github.com/ZheleiZhou/
SIF-Implmentation. The performance of our protocols
is reported in Section 6.1. Notice that, there are three
state-of-the-art works in the literature [3], [4], [37] are
closely related to our protocol. Among them, only Feta is
implemented by the authors and reported the performance
in their paper; therefore, we compare the efficiency of our
protocols with Feta [4] in Section 6.2. We then compare
the performance of our SIF protocols with the state-of-
the-art generic MPC protocols in the dishonest majority
setting (cf. Section 6.2).

We present experimental validation of the efficiency of
our protocols over well-known boolean circuits. Note that,
our protocols can support both arithmetic and boolean
circuits. Hereby, we report the benchmark results over
boolean circuits (AES-128 and SHA-256) in order to have
a fair comparison between our work and Feta [4]. (They
only provide the benchmark results on boolean circuit
evaluation in their paper.)

We instantiate the BDOZ-style preprocessing function-
ality F

BDOZ

Prep
over extension field Fpr for boolean circuits

with the offline protocol in [34]. We set p = 2 and
r = 128, which provides at least 40-bit statistical security.
All experiments are executed on a machine with Intel
Xeon Silver 4214 CPU at 2.20GHz and 128 GB Mem-
ory, running Ubuntu 20.04.5 LTS. The network setting is
exactly the same as in [4], i.e. at a delay of 0.6ms and
bandwidth of 10Gbit/s. Each experiment is run 40 times
and the median is taken.

6.1. Performance of Our Protocols

Table 2 illustrates the running time of our protocol
w.r.t. AES-128 and SHA-256 evaluation. The numbers of
verifiers are 2, 4, 7, respectively. We report the evaluation
results in 4 dimensions: preprocessing time, dealer time,
verifier time and proof size. The numbers of running
time consist of both computation time and communication
time. The proof size refers to the size of the message
that the dealer sends to each verifier. The running time is
reported in millisecond (ms) and the proof size is reported
in KiloByte (KB).

As shown in Table 2, the performance of our protocols
is highly efficient: when there are single prover and 4

407

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

Inputs: The dealer D and the verifiers V1, . . . ,Vn hold a circuit C : Fm
p ! Fn

p . We denote by Iin the input wires of C

and denote by Iout the output wires of C. We assume the circuit C has s multiplication gates. The dealer D also holds a
secret input w in (Fp)

m.

Preprocessing Phase. Both the concrete structure of the circuit and the witness are unknown.
1) D,V1, . . . ,Vn send (INIT, sid) to FPrep, which returns �i 2 Fpr to Vi for each i 2 [n].
2) D,V1, . . . ,Vn send (SINGLES, sid,m) to FPrep, which returns {JµiK}i2[m] to them. More precisely, for each

i 2 [m], D holds {µi,1, . . . , µi,n} such that µi =
Pn

j=1 µi,j ; meanwhile, each Vj holds {µi,j , {K
j
µi,k

,

Mk
µi,j

}k2[n]\{j}}. D computes µi :=
Pn

j=1 µi,j 2 Fp for each i 2 [m].
3) D,V1, . . . ,Vn send (TRIPLES, sid, s) to FPrep, which returns {JaiK, JbiK, JciK}i2[t] to them where ci = aibi. More

precisely, for each i 2 [s] and ⇢i 2 {ai, bi, ci}, D holds {⇢i,1, . . . , ⇢i,n} such that ⇢i =
Pn

j=1 ⇢i,j ; meanwhile, each
Vj holds {⇢i,j , {K

j
⇢i,k ,M

k
⇢i,j}k2[n]\{j}}. D computes ⇢i :=

Pn
j=1 ⇢i,j 2 Fp for each i 2 [s] and ⇢i 2 {ai, bi, ci}.

Online Phase. Now the concrete structure of the circuit and the witness are known by the parties.
Round 1: The dealer D works as follows:
1) For i 2 Iin: D broadcasts �i := wi � µi 2 Fp to all verifiers, where wi is i-th element in w.
2) For each gate (↵,�, �, T), D evaluates the circuit C in a predefined topological order:

a) If T = Add, D computes w� := w↵ + w� 2 Fp, where w↵, w� , w� are the wire values correspond to the wire
indices ↵,�, � of this gate.

b) If T = Mult and it is the i-th multiplication gate, D computes w� := w↵ · w� 2 Fp first, then broadcasts
⌘i := w↵ � ai 2 Fp and ⌫i := w� � bi 2 Fp to all verifiers.

Round 2: The verifiers V1, . . . ,Vn work as follows:
3) For i 2 Iin: the verifiers compute JwiK := JµiK + �i using the received �i 2 Fp.
4) For each gate (↵,�, �, T), the verifiers evaluate the circuit C in a predefined topological order:

a) If T = Add, the verifiers compute Jw�K := Jw↵K + Jw�K.
b) If T = Mult and it is the i-th multiplication gate, the verifiers compute Jw�K := JciK + ⌘iJbiK + ⌫iJaiK + ⌘i · ⌫i

using the received ⌘i, ⌫i 2 Fp.
5) The verifiers perform the followings to check the multiplication gates: For i-th multiplication gate (↵,�, �,Mult),

the verifiers open J⌘̃iK := Jw↵K� JaiK and J⌫̃iK := Jw�K� JbiK to each other. Then the verifiers check if ⌘̃i = ⌘i
and ⌫̃i = ⌫i hold. The verifiers will abort if any verifier fails to open its share or any check fails

6) The verifiers perform the followings to obtain their output: For i 2 Iout with authenticated output wire value JhiK,
the verifiers open JhiK to Vi. If any verifier fails to open its share, Vi aborts; otherwise, Vi outputs hi.

Protocol ⇧SIF

Figure 6: Our Main Protocol ⇧SIF in the F
Ours

Prep
-Hybrid World

TABLE 2: The Performance of our protocols.

#Verifiers
2 4 7

AES-128

Preprocessing Time (ms) 96.28 144.98 213.55
Dealer Time (ms) 0.22 0.27 0.41
Verifier Time (ms) 2.04 7.09 20.91
Proof Sizes (KB) 12.75 12.75 12.75

SHA-256

Preprocessing Time (ms) 295.23 452.75 623.86
Dealer Time (ms) 0.75 0.86 1.04
Verifier Time (ms) 6.45 22.01 66.89
Proof Sizes (KB) 44.84 44.84 44.84

verifiers, it takes 152.34ms to evaluate an AES-128 circuit,
in which online running time (the sum of dealer time and
verifier time) is merely 7.36ms. Notice that, the dealer
running time of our protocol is extremely fast, since in
addition to evaluating the entire circuit in plaintext, the
extra computation cost for dealer is 1 addition (resp.
2 additions) per input wire (resp. AND gate), which is
almost for free.

Microbenchmark. From Table 2, we found that the most
time-consuming step of our protocols lies in the prepro-
cessing phase. As discussed in Section 4, our prepro-
cessing phase can be divided into two parts: the first
part involves generating the BDOZ-style shares J·KBDOZ

and the second part involves converting J·KBDOZ into the
shares J·K as required by our SIF protocol. The gener-
ation of BDOZ-style shares can also be divided in two
components: triples generation (i.e., the generation of the
Beaver triples in F

BDOZ

Prep
) and singles generation (i.e., the

generation of the single random values in F
BDOZ

Prep
). To

figure out which part is the most time-consuming, we
conduct a microbenchmark of our preprocessing protocol
and plot the results in Figure 7. As shown in Figure 7, the
cost of the preprocessing procedure mainly comes from
the triples generations.

In this work, we instantiate the BDOZ-style shares
generation protocol with the realization proposed by Wang
et al. [34]. We notice that the recent work by Yang
et al. [38] mainly focuses on speeding up the triples
generation in BDOZ-style shares. Compared to [34], their
improvement ranges from roughly 4⇥ to 6⇥. Moreover,
they also reduce the communication cost for the rest
of the preprocessing protocol by roughly 1.3⇥ without
increasing the cost for the online phase; thus, they obtain
a more efficient BMR-style MPC than [34]. Since our
preprocessing protocol is designed in a modular fashion, if
we instantiated the BDOZ-style shares generation protocol
with that by Yang et al. [38], our preprocessing time could
be benefited by the same magnitude of improvement. We
make an estimation of the running time according to

408

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

(a) Evaluation on AES-128 (b) Evaluation on SHA-256

Figure 7: Microbenchmark of our preprocessing protocol. “Triples Generation” refers to the time taken to generate all
the Beaver triples in F

BDOZ

Prep
; “Singles Generation” refers to the time taken to generate all the single random values in

F
BDOZ

Prep
; “Conversion” refers to the time taken to convert J·KBDOZ into the shares J·K that we need.

the improvement reported in [38] and put the results in
Table 3. As shown in Table 3, for SIF among 3 parties,
our protocol (combined with [38]) is expected to take only
25.83ms preprocessing time for AES-128 evaluation and
80.95ms for SHA-256 evaluation. Compared to the run-
ning time of our SIF protocol using preprocessing protocol
realized by [34], this is a roughly 3.7⇥ improvement.

TABLE 3: The performance comparison of preprocessing
phase among WRK [34], YWZ [38] and ours. The number
of parties is set as n = 3.

Protocol
Triples Generation

Time (ms)
Total Preprocesing

Time (ms)

AES-128

WRK [34] 100.34 119.19
YWZ [38]† 25.21 39.72

Ours + [34]§ 94.09 96.28
Ours + [38]†, § 23.64 25.83

SHA-256

WRK [34] 290.01 345.61
YWZ [38]† 72.87 115.64

Ours + [34]§ 286.18 295.23
Ours + [38]†, § 71.90 80.95

† At the time of submission, the code of YWZ is not publicly available;
therefore, the numbers in “YWZ [38]” and “Ours + [38]” rows are
estimated according to the improvement that reported in [38].

§ “Ours + [34]” (resp. “Ours + [38]”) refers to the combination of our
protocol and [34] (resp. [38]).

It is worth to mention that since our SIF protocol uses
BDOZ-type preprocessing in a blackbox fashion, should
there be any faster and better ideas to generate the BDOZ-
type shares in the coming future, the preprocessing time
of our SIF protocol can also be benefited.

6.2. Comparison with Relevant Works

Comparison with MVZK in the honest majority set-

ting. Here we compare the performance of our protocols
with the state-of-the-art MVZK protocol in the honest
majority setting, i.e., the Feta protocol proposed by Baum
et al. [4]. We stress that, Feta is specifically designed for
MVZK, while our SIF protocol can be applied not only to
MVZK, but also to other applications, such as VRS. The
comparison results are depicted in Table 4. The numbers
for Feta reported in Table 4 are taken in their published

paper. Our protocol is evaluated on the same hardware
and network configuration as in [4].

TABLE 4: Performance comparison between ours and
Feta [4]. We set the number of verifiers n = 4, in this
case, Feta only tolerates a single corrupted verifier while
our protocol can tolerate 3 corrupted verifiers.

Protocol Threshold
Prep.

Time(ms)
Online

Time(ms)
Proof

Size(KB)

AES-128
Feta [4] t<n

3 +1 2.01 16.24 2.75

Ours t<n+1 144.98 7.36 12.75

SHA-256
Feta [4] t<n

3 +1 3.41 47.07 8.60

Ours t<n+1 452.75 22.87 44.84

As shown in Table 4, our protocol is roughly 2⇥
faster in the online phase compared to Feta, when there
are single prover and 4 verifiers. The main drawback
of our protocol lies in the time-consuming preprocessing
phase, compared to Feta. However, our protocol is in the
dishonest majority setting (the corruption threshold of our
protocol is t < n + 1), while Feta assumes an honest
majority (the corruption threshold of Feta is t < n

3 + 1);
typically, the protocols against a dishonest majority are
less efficient than the protocols that assume an honest
majority. Furthermore, in the following paragraph, we will
show that our preprocessing phase is faster than some
state-of-the-art generic MPC protocols against a dishonest
majority.

Comparison with generic MPC in the dishonest major-

ity setting. To further demonstrate the efficiency of our
protocol, we compare our SIF protocols with the state-
of-the-art (SOTA) generic MPC protocols over boolean
circuits in the dishonest majority setting, i.e., the WRK

protocol by Wang et al. [34] and the SPDZ2k protocol by
Cramer et al. [15]. The WRK protocol [34] represents the
SOTA of BMR-style MPC, and the SPDZ2k protocol [15]
represents the SOTA of SPDZ-style MPC.

As shown in Figure 8, our protocol outperforms WRK

and SPDZ2k in running times. The reported numbers
are evaluated by ourselves (the codes of WRK and
SPDZ2k can be found in [32] and [26], respectively),
using the same network and hardware configurations. For
SIF among three parties, our protocol takes 302.43ms to

409

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

(a) Number of Parties = 3 (b) Number of Parties = 4 (c) Number of Parties = 5

Figure 8: Performance comparison among WRK [34], SPDZ2k [15] and ours.

evaluate a SHA-256 circuit with 7.20ms online running
time; while WRK (resp. SPDZ2k) takes 361.75ms (resp.
523.49ms) to evaluate the same circuit with 16.13ms
(resp. 31.85ms) online running time. In this case, our
improvement for total running time ranges from 1.2⇥ to
1.7⇥ and our improvement for online running time ranges
from 2.2⇥ to 4.4⇥.

7. Related Work

Here we will review the closely related work in the
literature, including multiple-verifier zero-knowledge, dis-
tribute zero-knowledge and verifiable relation sharing.

Multiple-Verifier Zero-Knowledge (MVZK). In a
MVZK protocol, the prover who holds (x,w) 2 R can
convince n verifiers that x is true at once. The no-
tion of MVZK was first introduced by Burmester and
Desmedt [11]. Later, Abe et al. propose a 2-round MVZK
protocol for circuit satisfiability in the presence of a
malicious adversary corrupting a prover and up to t < n

3
verifiers [1]; the corruption threshold of their protocol
can be improved to t < n

2 + 1 at the cost of increasing
round complexity. Lepinski et al. introduce the notion of
fair zero-knowledge proof [29], which can be regarded
as a MVZK protocol against a dishonest majority. More
concretely, they extend the ZK functionality to obtain the
fairness, which states that if an honest verifier accepts
the proof, then it is assured that all other verifiers cannot
learn anything beyond the validity of the statement, even
if they maliciously collude with the corrupted prover.
The ZK protocol by Groth and Ostrovsky [22], [23] can
be transformed in a 2-round MVZK protocol, and its
corruption threshold is t < n

2 + 1.
Very recently, there are three papers [3], [4], [37]

studying 2-round MVZK protocols. Among them, the
protocol by Applebaum et al. [3] is the only that provides
the full security, i.e., the honest parties are guaranteed
to receive the output. More precisely, the protocol by
Applebaum et al. [3] assumes non-interactive commitment
and its corruption threshold is t < n

2+✏ + 1, where ✏ is
a small positive constant. However, Applebaum et al. [3]
focus on a theoretical perspective, and their protocol is
not practical. In contrast, the protocols by Yang and
Wang [37] and Baum et al. [4] are designed to achieve
practical efficiency, but their protocols provide weaker
security guarantees than [3]. Yang and Wang [37] propose
2-round MVZK protocols assuming a random oracle in
the corruption threshold of t < n

2 + 1; but their protocols

only achieve security with abort. Baum et al. [4] employ
a stronger assumption (i.e., the preprocessing model) to
construct a 2-round MVZK protocol in the corruption
threshold of t < n

3+1, and their protocol achieves security
with identifiable abort (i.e., when the honest parties do not
obtain their output, they can identify the cheaters) which
is stronger than [37].

Distributed Zero-Knowledge (dZK). The concept of
dZK was proposed by Boneh et al. [7]. In dZK, there is a
distinguished prover holding (x,w) 2 R and the statement
x is shared among the verifiers. In dZK, the prover is
allowed to convince the verifiers that x is correct in zero-
knowledge even if the verifiers do not know the entire x.
The main difference between dZK and MVZK is that: in
dZK, the statement x is distributed between the verifiers
and no verifier knows the entire statement x; in contrast,
in MVZK, each verifier knows the entire statement x.

Boneh et al. [7] give two 2-round dZK constructions
under RO model in two different settings: (i) in their first
construction, the adversary can corrupt the prover and up
to t < n

2 verifiers; (ii) in their second construction, the
adversary can corrupt the prover or up to t < n verifiers.
Several follow-up works [8]–[10] demonstrate that dZKs
are quite useful in the context of MPC. Concretely, these
works showed how to compile semi-honest MPC protocols
into malicious ones using dZKs. In recent work by Hazay
et al. [24], they strengthen the formalization of [7] by
adding strong completeness, which can prevent corrupted
verifiers from framing the honest prover, i.e., causing
the proof of a correct claim to fail. They call their new
formalization strong-complete dZK. Hazay et al. construct
their strong-complete dZK in the corruption threshold of
t < n�2

6 + 1, assuming an ideal coin-flipping. While the
constructions in [7] only achieve security with abort, the
construction by Hazay et al. can achieve full security.

Verifiable Relation Sharing (VRS). VRS allows the
prover to share its input x to multiple verifiers; at the
same time, the prover needs to prove in zero-knowledge
that the shared data satisfies some properties. The main
difference between VRS and dZK is that: in VRS, the
prover is allowed to choose the statement and the verifiers’
shares; while in dZK, the prover has no control over the
statement and verifiers’ shares.

To our knowledge, the first VRS was implicitly studied
by Gennaro et al. [20] in the context of SIF; their 2-round
protocol achieves perfect security and full security in the
plain model, and its corruption threshold is t < n

6 + 1.
Applebaum et al. improve the corruption threshold to

410

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

t < n
3 + 1 at the cost of degrading the perfect security

to computational security [2]. Later, the same authors
improve the corruption threshold to t < n

2+✏+1, where ✏ is
a small positive constant [3]. Although dZK and VRS are
quite different, Hazay et al. show a connection between
these two primitives [24]. More precisely, under a certain
restricted condition (i.e., the relations are robust, and
we refer readers to see the definition of robust relations
in [24]), Hazay et al. show a construction of VRS from
dZK as well as a construction of dZK from VRS without
further computational assumptions; and both constructions
are at the cost of one additional round.

8. Conclusion

In this paper, we propose the first practical construc-
tion for SIF against a dishonest majority in the prepro-
cessing model. Our online phase protocol is only 2-round
and is information theoretically secure. As side products,
we also obtain the first practical 2-round MVZK and
VRS protocol against a dishonest majority in the pre-
processing model. To demonstrate the practicality of our
constructions, we implement our protocols and conduct
extensive experiments. The performance of our protocol
is competitive, compared to the state-of-the-art relevant
work [4] in the honest majority setting and the MPC
protocols [15], [34] in the dishonest majority setting.
Subsequent Work. Subsequent to this work, we find that
the online round complexity of practical protocols for
the SIF can be further reduced, and we propose the first
practical 1-round SIF protocol in the preprocessing model
in [39]. We observe that existing practical SIF solutions
share the same online communication pattern: the dealer
sends the messages to the verifiers in the first round, and
the verifiers communicate with each other to check if the
dealer’s messages are correct in the next round(s). In order
to achieve a 1-round online communication for the SIF,
in our subsequent work, our new idea is to push all the
verifiers’ communication to the preprocessing phase. More
details can be found in [39].

Acknowledgment. The authors thank Zehao Li for his
assistance in the protocol implementation.

Bingsheng Zhang is supported by the National Key
R&D Program of China (No. 2021YFB3101601), the
National Natural Science Foundation of China (Grant No.
62072401 and No. 62232002), and Input Output (iohk.io).
Hong-Sheng Zhou is supported in part by NSF grant CNS-
1801470, and a Google Faculty Research Award. This
work is supported by Hangzhou Leading Innovation and
Entrepreneurship Team (TD2020003).

References

[1] Masayuki Abe, Ronald Cramer, and Serge Fehr. Non-interactive
distributed-verifier proofs and proving relations among commit-
ments. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501
of LNCS, pages 206–223. Springer, Heidelberg, December 2002.

[2] Benny Applebaum, Eliran Kachlon, and Arpita Patra. The re-
siliency of MPC with low interaction: The benefit of making
errors (extended abstract). In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020, Part II, volume 12551 of LNCS, pages 562–
594. Springer, Heidelberg, November 2020.

[3] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable
relation sharing and multi-verifier zero-knowledge in two rounds:
Trading NIZKs with honest majority - (extended abstract). In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part IV, volume 13510 of LNCS, pages 33–56. Springer, Heidel-
berg, August 2022.

[4] Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and
Nigel P. Smart. Feta: Efficient threshold designated-verifier zero-
knowledge proofs. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 293–306. ACM
Press, November 2022.

[5] Donald Beaver. Efficient multiparty protocols using circuit ran-
domization. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 420–432. Springer, Heidelberg, August 1992.

[6] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Za-
karias. Semi-homomorphic encryption and multiparty computation.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632
of LNCS, pages 169–188. Springer, Heidelberg, May 2011.

[7] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Zero-knowledge proofs on secret-shared data via fully
linear PCPs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
67–97. Springer, Heidelberg, August 2019.

[8] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical
fully secure three-party computation via sublinear distributed zero-
knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
869–886. ACM Press, November 2019.

[9] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient
fully secure computation via distributed zero-knowledge proofs.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 244–276. Springer, Hei-
delberg, December 2020.

[10] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Sublinear
GMW-style compiler for MPC with preprocessing. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826
of LNCS, pages 457–485, Virtual Event, August 2021. Springer,
Heidelberg.

[11] Mike Burmester and Yvo Desmedt. Broadcast interactive proofs
(extended abstract). In Donald W. Davies, editor, EUROCRYPT’91,
volume 547 of LNCS, pages 81–95. Springer, Heidelberg, April
1991.

[12] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In 42nd FOCS, pages 136–145. IEEE
Computer Society Press, October 2001.

[13] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awer-
buch. Verifiable secret sharing and achieving simultaneity in the
presence of faults (extended abstract). In 26th FOCS, pages 383–
395. IEEE Computer Society Press, October 1985.

[14] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In 14th USENIX sym-
posium on networked systems design and implementation (NSDI
17), pages 259–282, 2017.

[15] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and
Chaoping Xing. SPD Z2k : Efficient MPC mod 2k for dishonest
majority. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 769–798.
Springer, Heidelberg, August 2018.

[16] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, Au-
gust 2012.

[17] Rafael Dowsley, Jorn MULLER-QUADE, Akira Otsuka, Goichiro
Hanaoka, Hideki Imai, and Anderson CA Nascimento. Universally
composable and statistically secure verifiable secret sharing scheme
based on pre-distributed data. IEICE transactions on fundamentals
of electronics, communications and computer sciences, 94(2):725–
734, 2011.

411

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

[18] Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, Yifan
Song, and Chenkai Weng. Superpack: Dishonest majority mpc
with constant online communication. In Carmit Hazay and Martijn
Stam, editors, Advances in Cryptology – EUROCRYPT 2023, pages
220–250, Cham, 2023. Springer Nature Switzerland.

[19] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The
round complexity of verifiable secret sharing and secure multicast.
In 33rd ACM STOC, pages 580–589. ACM Press, July 2001.

[20] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin.
On 2-round secure multiparty computation. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 178–193. Springer,
Heidelberg, August 2002.

[21] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game or A completeness theorem for protocols with
honest majority. In Alfred Aho, editor, 19th ACM STOC, pages
218–229. ACM Press, May 1987.

[22] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string
model. In Alfred Menezes, editor, CRYPTO 2007, volume 4622
of LNCS, pages 323–341. Springer, Heidelberg, August 2007.

[23] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string
model. Journal of Cryptology, 27(3):506–543, July 2014.

[24] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor
Weiss. Your reputation’s safe with me: Framing-free distributed
zero-knowledge proofs. TCC 2023. https://eprint.iacr.org/2022/
1523.

[25] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537.
ACM Press, October 2018.

[26] Marcel Keller. MP-SPDZ: A versatile framework for multi-party
computation. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 1575–1590. ACM
Press, November 2020.

[27] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
Faster malicious arithmetic secure computation with oblivious
transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 830–842. ACM Press, October 2016.

[28] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:
Making SPDZ great again. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 158–189. Springer, Heidelberg, April / May 2018.

[29] Matt Lepinski, Silvio Micali, and abhi shelat. Fair-zero knowledge.
In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 245–
263. Springer, Heidelberg, February 2005.

[30] Anderson C. A. Nascimento, Jörn Müller-Quade, Akira Otsuka,
Goichiro Hanaoka, and Hideki Imai. Unconditionally non-
interactive verifiable secret sharing secure against faulty majorities
in the commodity based model. In Markus Jakobsson, Moti Yung,
and Jianying Zhou, editors, ACNS 04, volume 3089 of LNCS, pages
355–368. Springer, Heidelberg, June 2004.

[31] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi,
and Sai Sheshank Burra. A new approach to practical active-secure
two-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 681–700.
Springer, Heidelberg, August 2012.

[32] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-
toolkit: Efficient MultiParty computation toolkit. https://github.
com/emp-toolkit, 2016.

[33] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated
garbling and efficient maliciously secure two-party computation.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 21–37. ACM Press,
October / November 2017.

[34] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale
secure multiparty computation. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 39–56. ACM Press, October / November 2017.

[35] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In 2021
IEEE Symposium on Security and Privacy, pages 1074–1091. IEEE
Computer Society Press, May 2021.

[36] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quick-
Silver: Efficient and affordable zero-knowledge proofs for circuits
and polynomials over any field. In Giovanni Vigna and Elaine Shi,
editors, ACM CCS 2021, pages 2986–3001. ACM Press, November
2021.

[37] Kang Yang and Xiao Wang. Non-interactive zero-knowledge proofs
to multiple verifiers. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part III, volume 13793 of LNCS, pages 517–
546. Springer, Heidelberg, December 2022.

[38] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC
from improved triple generation and authenticated garbling. In Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1627–1646. ACM Press, November 2020.

[39] Zhelei Zhou, Bingsheng Zhang, Hong-Sheng Zhou, and Kui Ren.
Single-input functionality against a dishonest majority: Practical
and round-optimal. Cryptology ePrint Archive, Paper 2024/305,
2024. https://eprint.iacr.org/2024/305.

A. Security Proofs

A.1. Proof of Theorem 2

Theorem 2. Let Fpr be the underlying extension field
with pr > n · 2�. The protocol ⇧SIF depicted in Figure 6
UC-realizes the functionality FSIF depicted in Figure 1
with information-theoretical security in the F

Ours

Prep
-hybrid

world, in the presence of a static malicious adversary
corrupting up to the dealer and (n� 1) verifiers.

Proof. We prove the security of the protocol ⇧SIF by
showing it is a UC-secure realization of FSIF. We de-
scribe the workflow of the simulator S in the ideal-world
with FSIF, the dummy dealer D̃ and the dummy verifiers
Ṽ1, . . . , Ṽn, and give a proof that for any adversary A

and any environment Z , the simulation in the ideal-world
EXECFSIF,S,Z is statistically indistinguishable from the
real-world execution EXEC

F
Ours

Prep

⇧SIF,A,Z .

When the dealer is honest. In this case, we denote by HV

the set of the honest verifiers in the real-world execution
and |HV| � 1. The simulator S simulates the honest dealer
and the honest verifiers, emulates FPrep for A, and needs
to simulate the view of A without knowing the secret input
w of the dealer. We describe the strategy of S as follows:
1) S receives (OUTPUT, sid, yi) from FSIF for each cor-

rupted dummy verifier Ṽ⇤

i .
2) In the preprocessing phase: For a randomly picked

x 2 {(µi)i2[m], (ai, bi, ci)i2[s]}, S emulates F
Ours

Prep

for A and waits for A to send its input. If A sends
ABORT, S simply halts; otherwise, S receives xi,�i

and {Ki
xj
,M j

xi
}j2[n]\{i} from A for each V

⇤

i /2 HV.
After that, S honestly generates the rest of JxK for the
honest parties.

3) In Round 1 of the online phase, for i-th input wire
where i 2 [m], S picks w0

i Fp as input wire. Then
S acts as the honest dealer to execute the round 1
protocol using the randomly picked {w0

i}i2[m].
4) In Round 2 of the online phase, S acts as the honest

verifiers to execute the round 2 protocol honestly,
except that when the malicious V

⇤

i /2 HV want to

412

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

obtain its output hi, S performs the followings tricks
to make V

⇤

i believe hi = yi, where yi is the received
output of the dummy Ṽ

⇤

i : Since S acts as the honest
dealer previously, S knows each output share hi,j

held by each malicious verifier V
⇤

j /2 HV. Then S

picks h0

i,j for each honest verifier Vj 2 HV, such thatP
j s.t. Vj /2HV

hi,j +
P

j s.t. Vj2HV
h0

i,j = yi. After that,
S generates the new valid MAC tags {Mk

h0
i,j
}k2[n]\{j}

for each honest verifier Vj 2 HV (S is able to
do so since S emulates FPrep and knows the global
MAC keys for each party). In this way, at the time
of opening the output [hi], S can make V

⇤

i believe
hi = yi. Notice that, we are dealing with the rushing
adversary A, which means that the adversary A can
delay its messages until it receives the messages from
the honest parties. In other words, the adversary A

can send its messages after S sending its simulated
messages described above. Notice that, S would abort
if the adversary A forges its MAC tags for its new
maliciously generated shares that would make the
honest verifier output a false result.

5) During the simulation, for each honest verifier Vi 2

HV in the real-world execution, if the adversary A at-
tempts to cause it abort, S will send (ABORT, sid, Ṽi)
to FSIF to make the dummy Ṽi; otherwise, S will send
(CONTINUE, sid, Ṽi) to FSIF.
We prove the indistinguishability through the follow-

ing hybrids.

• Hybrid Hyb0: Real-world execution EXEC
F

Ours

Prep

⇧SIF,A,Z .
• Hybrid Hyb1: Same as Hyb0, except that S executes

step 1-3 in the simulation above.
Lemma 4. Hybrid Hyb1 is perfectly indistinguishable
from Hyb0.
Proof. Since S emulates FPrep for A honestly, the
adversary cannot distinguish between hybrid H1 and
the ideal world. As for the round 1 of the protocol,
since µi is uniformly random picked, it perfectly hides
the input value wi. Therefore, the adversary A cannot
compute w0

i to compare it with the real input value
that the environment Z feeds to the honest dummy
dealer D̃. In a word, hybrid Hyb1 is perfectly indistin-
guishable from Hyb0.

• Hybrid Hyb2: Same as Hyb1, except that S executes
step 4-5 in the simulation above.
Lemma 5. Let Fpr be the underlying extension field
with pr > n · 2�. Hybrid Hyb2 is statistically indis-
tinguishable from Hyb1 with adversarial advantage at
most p�r.
Proof. The adversary A will find the distinction when
the simulator S aborts, which occurs when A forges
its MAC tags for its new maliciously generated shares
that would make any honest verifier Vi outputs hi

that is deviated from the received output yi of the
dummy Ṽi, i.e. hi 6= yi. By the properties of IT-MACs
which is described in Section 2.4, we know that the
malicious verifiers cannot forge the MAC tags, unless
the malicious verifiers know the global MAC keys of
the honest verifiers, which occurs with probability at
most p�r. In conclusion, Hyb2 is statistically indis-
tinguishable from Hyb1 with adversarial advantage at
most p�r.

Hybrid Hyb2 is the ideal-world execution EXECFSIF,S,Z .
In conclusion, when the dealer is honest, EXECFSIF,S,Z

is statistically indistinguishable from EXEC
F

Ours

Prep

⇧SIF,A,Z with
adversarial advantage at most p�r.

When the dealer is malicious. In this case, we also
denote by HV the set of the honest verifiers in the real-
world execution and |HV| � 1. The simulator S simulates
the honest verifiers, emulates FPrep for A, and needs to
extract the secret input w from adversary’s messages. We
describe the simulation strategy of S as follows:

1) In the preprocessing phase: S prepares the correlated
randomness using the same strategy as in Step 2 in the
previous case.

2) In the online phase, S simply acts as the honest verifiers
to execute the protocol ⇧SIF and obtains the result hi

for each honest Vi 2 HV. S extracts the witness w
as follows. For each input value mask �i that A sends,
S recovers the input value wi := �i + µi 2 Fp; note
that, S emulates FPrep for A previously, so S knows
µi. In this way, S obtains the whole witness w. Then
S computes y := C(w) and aborts if yi 6= hi for any
Vi 2 HV. If yi = hi holds for any Vi 2 HV, S sends
(PROVE, sid, C,w) to FSIF on behalf of the corrupted
dummy dealer D̃⇤.

3) During the simulation, for each honest verifier Vi 2 HV

in the real-world execution, if the adversary A attempts
to cause it abort, S will send (ABORT, sid, Ṽi) to
FSIF to make the dummy Ṽi; otherwise, S will send
(CONTINUE, sid, Ṽi) to FSIF.

We prove the indistinguishability through the follow-
ing hybrids.

• Hybrid Hyb0: Real-world execution EXEC
F

Ours

Prep

⇧SIF,A,Z .
• Hybrid Hyb1: Same as Hyb0, except that S executes

step 1-3 in the simulation above.
Lemma 6. Let Fpr be the underlying extension field
with pr > n · 2�. Let C be the circuit with s mul-
tiplication gates. Let n be the number of verifiers.
Hybrid H2 is statistically indistinguishable from H1

with adversarial advantage at most 2s+1
n·2� .

Proof. The adversary A will find the distinction when
the simulator S aborts. Note that, S aborts when
yi 6= hi for any Vi 2 HV, where hi is the output
of the honest Vi in the real-world execution while yi
is the output of the dummy honest Ṽi in the ideal-
world execution. In the following, we will show that
the probability of S aborting is at most 2s+1

n·2� .
First of all, we prove that all the values on the
wires in the circuit are correct when the verification
checks pass. It is trivial that the values associated with
the input wires and the output wires of the addition
gates are computed correctly. Therefore, we focus the
multiplication gates. Note that, when the malicious
dealer D

⇤ cheats in the i-th multiplication gate, i.e.,
produce false ⌘i and ⌫i. It will be detected due to
the checks performed in step 5 of ⇧SIF, unless the
malicious dealer collude with some malicious verifiers
and the malicious verifiers succeed to forge new MAC
tags. By the properties of IT-MACs which is described
in Section 2.4, we know that the malicious verifiers
cannot forge the MAC tags, unless the malicious
verifiers know the global MAC keys of the honest

413

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

verifiers, which occurs with probability at most 1
|Fpr |

.
Since there are two new MAC tags that the malicious
verifiers have to forge in each multiplication gates, and
there are total s multiplication gates in the circuit,
the probability of the adversary A cheating in the
multiplication gates without being detected is 2s

|Fpr |
.

Now, we assume that all the values on the wires in the
circuit are correct. If C(w) = y but any honest Vi in
the real-world execution output hi 6= yi, then the ad-
versary A must corrupt some verifiers and forge their
MAC tags when it is the time to open [hi] to Vi, so
the adversary A is able to put an influence the output
value hi such that hi 6= yi. This event would occur
with probability at most 1

|Fpr |
. In conclusion, hybrid

Hyb1 is statistically indistinguishable from Hyb0 with
adversarial advantage at most 2s+1

|Fpr |
< 2s+1

n·2� .
Hybrid Hyb1 is the ideal-world execution EXECFSIF,S,Z .
In conclusion, when the dealer is honest, EXECFSIF,S,Z

is statistically indistinguishable from EXEC
F

Ours

Prep

⇧SIF,A,Z with
adversarial advantage at most 2s+1

n·2� .

414

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

