2024 |EEE 9th European Symposium on Security and Privacy (EuroS&P) | 979-8-3503-5425-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/EUROSP60621.2024.00029

2024 9th IEEE European Symposium on Security and Privacy (Euro&SP)

Practical Constructions for Single Input Functionality
against a Dishonest Majority

Zhelei Zhou
Zhejiang University
Hangzhou, China
zl_zhou@zju.edu.cn

Bingsheng Zhang
Zhejiang University
Hangzhou, China
bingsheng @ zju.edu.cn

Abstract—Single Input Functionality (SIF) is a special case of
MPC, where only one distinguished party called dealer holds
the secret input. SIF allows the dealer to complete a compu-
tation task and send to other parties their respective outputs
without revealing any additional information about its secret
input. SIF has many applications, including multiple-verifier
zero-knowledge and verifiable relation sharing, etc. Recently,
several works devote to round-efficient realization of SIF,
and achieve 2-round communication in the honest majority
setting (Applebaum et al., Crypto 2022; Baum et al., CCS
2022; Yang and Wang, Asiacrypt 2022).

In this work, we focus on concrete efficiency and propose
the first practical construction for SIF against a dishonest
majority in the preprocessing model; moreover, the online
phase of our protocol is only 2-round and is highly efficient,
as it requires no cryptographic operations and achieves
information theoretical security. For SIF among 5 parties,
our scheme takes 152.34ms (total) to evaluate an AES-128
circuit with 7.36ms online time. Compared to the state-of-
the-art (honest majority) solution (Baum et al., CCS 2022),
our protocol is roughly 2x faster in the online phase,
although more preprocessing time is needed. Compared to
the state-of-the-art generic MPC against a dishonest majority
(Wang et al.,, CCS 2017; Cramer et al., Crypto 2018), our
protocol outperforms them with respect to both total running
time and online running time.

1. Introduction

Single Input Functionality (SIF) has received a lot of
attention in the recent years [2]-[4], [37]. We can view
SIF as a special case of MPC, where only one distin-
guished party, called the dealer D, is allowed to hold a
private input w, while all other parties, called the verifiers
Vi,...,V,, have no private inputs. More concretely, let
(y1,---,Yn) + C(w) be the SIF they jointly compute;
after the execution, the i-th verifier V; obtains y; as its
private output.

The investigation of SIF can be traced back to the
work by Gennaro et al. [20]. Very recently, Applebaum
et al. [3] observe that SIF have two direct applications
— Multiple-Verifier Zero-Knowledge (MVZK) [4], [37] and

Zhelei Zhou, Bingsheng Zhang and Kui Ren are with the State Key
Laboratory of Blockchain and Data Security & Hangzhou High-Tech
Zone (Binjiang) Institute of Blockchain and Data Security, Hangzhou,
China. Bingsheng Zhang and Hong-Sheng Zhou are the corresponding
authors.

Virginia Commonwealth University

Kui Ren
Zhejiang University
Hangzhou, China
kuiren @ zju.edu.cn

Hong-Sheng Zhou

Richmond, USA
hszhou@vcu.edu

Verifiable Relation Sharing (VRS) [2]. Note that, as shown
in [3], MVZK can be viewed as a special case of VRS.

Multiple-Verifier Zero-Knowledge (MVZK). In a
MVZK protocol, a distinguished party called prover P,
who takes input as the statement x and the witness w,
and he wants to convince the n verifiers Vq,...,V,, that
R(z,w) = 1 for an NP relation R. It is easy to see that
MVZK can be implemented via SIF. Namely, let C be the
circuit that evaluates R (z, w). Then the parties can invoke
SIF to jointly evaluate C such that the verifiers can obtain
C(x,w) as their outputs.

Recently, several MVZK protocols [3], [4], [37] have
been constructed in the honest majority setting. More
precisely, in these constructions, the adversary is allowed
to corrupt the prover and the minority of the verifiers.
Among them, Applebaum et al. [3] focus more on the
theoretical side and show how to construct a 2-round
MVZK protocol in the plain model' using non-interactive
commitments. On the other hand, Baum er al. [4] and
Yang and Wang [37] provide highly efficient construc-
tions. More concretely, Yang and Wang [37] show how to
construct 2-round MVZK protocols in the random oracle
(RO) model, where the prover sends a single message to
each verifier in the first round, and the verifiers exchange
messages among them and make a decision in the second
round. Similarly, the MVZK protocols proposed by Baum
et al. [4] are also 2-round, but they are designed in the
preprocessing model?.

We must note that a variant of MVZK has been
investigated in the dishonest majority setting (i.e., the
prover and the majority of the verifiers can be malicious):
Lepinski et al. [29] introduce the notion of fair ZK, which
can be viewed as a strengthened version of MVZK in
the dishonest majority setting. More precisely, Lepinski et
al. extend the traditional ZK to the setting with multiple
verifiers and add a new security property called fairness,
which ensures the malicious verifiers who collude with the
malicious prover cannot learn anything beyond the validity
of the statement if the honest verifiers accept the proof.
However, their construction is only a feasibility result and
is far from being practical. On the one hand, their protocol

1. In the plain model, there is no setup.

2. In the preprocessing model, the protocol execution is divided into
two phases: (i) the preprocessing phase, where the inputs are unknown
to parties and some correlated randomness are generated; (ii) the online
phase, where the inputs are known to parties and the previously generated
randomness will be used to improve the performance of the computation.

© 2024, Zhelei Zhou. Under license to IEEE. 398
DOI 10.1109/EuroSP60621.2024.00029
Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

requires heavy cryptographic operations. On the other
hand, they assume an unrealistic network assumption: the
parties can only communicate through a broadcast channel
and unidirectional secure channels (from the verifiers to
the prover).

We emphasize that, the previous practical MVZK pro-
tocols are constructed in the honest majority setting [4],
[37]. How to construct a practical MVZK protocol in the
dishonest majority setting, is still an open problem.

Verifiable Relation Sharing (VRS). Analogously, in a
VRS protocol, we also consider a distinguished prover P
who holds a private input s, and n verifiers Vi,...,V,
who have no private inputs. The prover P shares the secret
s to the verifiers; denote the verifier V;’s share as x;, for
i € [n]. In addition, the prover P proves in zero-knowledge
that R(s,x1,...,2,) = 1 for an NP relation R. Clearly,
VRS can also be implemented via SIF. In particular, we
define a circuit (y1,...,y,) + C(s,x1,...,x,) such that
Yy, = x; for i € [n] if R(s,z1,...,2,) = 1; otherwise,
y; = L for i € [n], where L is a failure symbol. We
note that, as shown in [3], VRS implies many important
cryptographic primitives, such as MVZK, Verifiable Secret
Sharing (VSS) [13], and secure multicast [19].

Applebaum et al. show that a 2-round VRS protocol
can be constructed using non-interactive commitment as
a building block; their protocol allows the adversary to
corrupt the prover and up to ¢t < % verifiers [2]. The
same authors later improve the corruption threshold with-
out increasing the round complexity [3]. More precisely,
the protocol in [3] remains secure in the presence of a
corrupted prover and up to t < #E corrupted verifiers,
where € is a positive constant.

To the best of our knowledge, all the existing VRS
protocols in the literature assume an honest majority, and
constructing a practical VRS protocol against a dishonest
majority remains an open problem.

1.1. Our Results

In this work, we focus on concrete efficiency and
present the first practical construction for SIF against
a dishonest majority in the preprocessing model. The
online phase of our protocol is only 2-round and achieves
information theoretical security; as a result, our online
phase protocol is very fast. In addition, our protocol can be
proven secure in the Universal Composability (UC) frame-
work [12]. As mentioned before, both VRS and MVZK
can be viewed as special cases of SIF; as side products, we
also obtain the first practical MVZK and VRS protocols
against a dishonest majority in the preprocessing model,
which provides answers to the aforementioned open prob-
lems.

In the following, we will first provide a brief intuition
of our construction.

Intuition. In our design, we make extensive use of a par-
ticular form of correlated randomness, called Information-
Theoretic Message Authentication Codes (IT-MACs) [6],
[31]. Let IF)- be the extension field of a field F,. In order
to authenticate the random value x € IF},, we let the party
who holds the MAC key (A, K) € F2. compute the MAC
tag my; := K + A -z € F,. It is easy to see that a
malicious party who obtains m, but does not know the

399

MAC key, cannot produce another valid m, for 2’ # x
except for negligible probability when |F,-| is sufficiently
large. In the dishonest majority setting, IT-MACs are often
combined with secret shares [6], [16]. More concretely,
random values are shared among all the parties (e.g., for
a random =z, party P; obtains x; such that x = Z?:l),
and the shares are authenticated to each other using IT-
MACs. These random values are often used to mask the
wire values of the circuit.

Our key observation is that: in SIF, only the dealer
holds the private input w; revealing the random masked
value of w to the dealer does not compromise the se-
curity, as the dealer is already aware of w. In addition,
the random masked value is secretly shared among the
verifiers.

Following the above observation, we are able to design
a 2-round SIF. We will follow the “gate-by-gate” design
paradigm. The dealer first commits to its secret input w
by broadcasting § := w — x, where « is the random value
that is held by the dealer and shared among the verifiers.
Due to the linearity of shares, the verifiers transform the
shares of d into the shares of w. It is easy to see that all
addition gates of the circuit can be processed locally for
free. For the multiplication gates of the circuit, we use the
“Beaver triples” techniques [5]. More precisely, for each
multiplication gate with input wire indices «, 5 and output
wire index vy, we prepare three correlated random values
(a,b,c) such that ¢ = ab in advance, and we denote by
Wq, wg the input wire values and denote by w., the output
wire value. If we set 17 := wo, —a and v := wg — b, then
it is easy to see that

=Wy - wg = (Wq —a+a) - (wg—b+10b)
nv+n-b+rv-a+c

Wey

(1

In MPC protocols in the dishonest majority setting, such
as BDOZ-style MPC [6] and SPDZ-style MPC [16], par-
ties need to publicly open 7 and v first; then the parties
can obtain the shares of w, - wg based on Equation 1. To
process the multiplication gates, interactions between the
protocol parties are required; the overall round complexity
of BDOZ-style and SPDZ-style MPC protocols depend on
the circuit depth. In contrast, in our setting, we can simply
let the dealer broadcast n, v since wq, wg, a, b are known
by the dealer. Therefore, all multiplication gates can be
processed simultaneously at once! Notice that, the idea
that all multiplication gates can be sent simultaneously is
also used in the context of ZK, e.g. [25], [35], [36]. In
order to prevent the dealer from cheating in computing
n, v, we let the verifiers to open 7} := wo —a, vV := wg—b
and check if 7 = 1,7 = v hold in the following round.
For output gates, for instance, the i-th output gate that
belongs to V;, we denote by h; the output wire value,
and let other verifiers open their shares of h; to V;, so
V,; can recover its output h;. Notice that, the verifiers can
open their shares of output values and send the messages
that are used to check the multiplication gates in the same
round. As a result, the online phase of our SIF protocol
can be constructed within 2 rounds.

Comparisons. In Table 1, we compare our result with the
related state-of-the-art 2-round protocols. We implement
our protocol, and report our performance results in Sec-

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

tion 6.1 and the comparison results with other works in
Section 6.2, respectively.

TABLE 1: Comparison with related state-of-the-art 2-
round protocols.

Ref. Primitive Threshold Setup Security*
[37] MVZK t<g+1 RO it

[4] MVZK t<g+1 Prep. it

[3] SIF t< g+ 1t - csles
Ours SIF t<n-+1 Prep. it

* it: information-theoretical security; es: everlasting secu-
rity; cs: computational security.
T Here, € is a small positive constant.

Our construction for SIF is highly efficient: for SIF
among 5 parties, our construction takes 152.34ms (total) to
evaluate an AES-128 circuit with 7.36ms online time. We
compare the performance of our protocol with the state-
of-the-art MVZK protocol in the honest majority setting,
i.e. the Feta protocol by Baum et al. [4]°. When there are
5 parties (1 prover and 4 verifiers), Feta takes 18.25ms
to evaluate an AES-128 circuit with 16.24ms online time;
roughly, our protocol uses 2% less online time than Feta,
although our protocol has a slower pre-processing phase.
In addition, we remark that, when the number of parties is
5, Feta only tolerates a single corrupted verifier while our
protocol can tolerate 3 corrupted verifiers. Furthermore,
Feta is specially designed for MVZK while our protocol
is for SIF, supporting MVZK, VRS and more.

To further demonstrate the efficiency of our protocol,
we also compare the performance of our SIF with that of
several MPC protocols in the dishonest majority setting.
When there are 3 parties, our protocol takes 302.43ms to
evaluate a SHA-256 circuit with only 7.20ms online time.
Compared to the state-of-the-art MPC protocols against
a dishonest majority [15], [34], our improvement ranges
from 1.2x to 1.7x w.r.t. the total running time, and ranges
from 2.2x to 4.4x w.r.t. the online phase running time.

1.2. Applications

Here we will discuss some application scenarios of
our SIF/MVZK/VRS protocols in the following.

VSS against a dishonest majority. As pointed out in [3],
SIF captures a very important cryptographic primitive, i.e.,
Verifiable Secret Sharing (VSS) [13]. In a VSS protocol,
when a malicious dealer makes dishonest behaviors, it
would be caught by the honest verifiers and the honest
verifiers will disqualify the dealer.

Typically, in a VSS protocol with an honest majority,
the honest verifiers can always reconstruct the secret if the
dealer acts honestly. When it comes to the dishonest ma-
jority setting, the security requirement is relaxed to capture
the security with abort [17], [30], since malicious verifiers
can always abort the protocol execution. As shown in [17],
[30], VSS can be used to construct general MPC protocols
against a dishonest majority. The authors of [17], [30]
propose VSS protocols against a dishonest majority in the

3. In Feta [4] two MVZK protocols have been constructed: in the first
protocol, up to ¢t < 2 verifiers can be corrupted, while in the second
protocol, up to t < verifiers are corrupted. In our paper, we only

h
4
refer to the former one.

400

commodity based model, where they assume a trusted au-
thority generates correlated randomness and delivers these
randomness to the protocol participants. Our protocol can
be used to build VSS against a dishonest majority in the
preprocessing model, where we also use correlated ran-
domness, and we present an efficient protocol to generate
these correlated randomness.

Private aggregation systems. In a private aggregation
system, there are a set of clients, who hold private data,
and a set of servers, who want to collect and aggregate
clients’ data. In Prio [14], a highly influential private ag-
gregation system, each client (acting as the prover) needs
to employ Secret-Shared Non-Interactive Proofs (SNIPs)
to prove to the servers (acting as the verifiers) that its
data is valid. However, the authors of [14] assume that the
malicious client cannot collude with the servers to ensure
the soundness; in addition, Prio can tolerate all-but-one
malicious servers for zero-knowledge property. Therefore,
our MVZK protocol against a dishonest majority could
be a more sound alternative to SNIPs, since our protocol
remains secure even if the malicious prover is allowed to
collude with the verifiers.

1.3. Paper Organization

In Section 2, we present the preliminaries that will be
used in this work. In Section 3, we provide the technical
overview for our protocols. In Section 4 and Section 5,
we give the full descriptions about our protocols for the
preprocessing phase and online phase protocols respec-
tively. In Section 6, we discuss the performance of our
protocols. In Section 7, we show more details about the
relevant work.

2. Preliminaries

2.1. Notation

We use A € N to denote the security parameter.
We say that a function negl : N — N is negligible if
for every positive polynomial poly(-) and all sufficiently
large), it holds that negl(\) < m We use the
abbreviation PPT to denote probabilistic polynomial-time.
We say that two distribution ensembles X = {X)}xen

and Y = {))}ren are statistically (resp. computationally
indistinguishable), which we denote by X 2y (resp.,
X~ Y), if for any unbounded (resp., PPT) distinguisher
A there exists a negligible function negl s.t. | Pr[A(X)) =
1] = Pr[A(Yy) = 1]] = negl()). We use = < S to denote
that sampling « uniformly at random from a finite set S.
For n € N, we denote by [n] aset {1,...,n}. Fora,b € Z
with a < b, we denote by [a, b] = {a,...,b}. We use bold
lower-case letters like « for vectors, and denote by z; the
i-th element of vector x.

We consider an extension field F,- of a finite field
F,, where p > 2 is a prime or a power of a prime and
r > 1 is an integer. We fix some monic, irreducible poly-
nomial f(X) of degree r and write F,,» = F,[X]/f(X).
Therefore, every w € IF,- can be written uniquely as
w=>_,w;- X't with w; € F,, for all i € [r]. Thus,
we could view the elements over F,- equivalently as the
vectors in (F))".

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

Based on field FF,,, we can define a circuit C : IE‘;” —
IF;L as follows: First, the circuit C consists of a set of input
wires Zi, and a set of output wires Z,, where |Z;,| = m
and |Zou:| = n. Second, the circuit C consists of a list of
gates of the form (a, 8,7, T), where «, 8 are the indices
of the input wires and + is the index of the output wire,
and T € {Add, Mult} is the type of the gate. If p = 2,
then C is a boolean circuit with Add = & and Mult = A;
note that, one can compute @ 1 to negate x in a boolean
circuit. If p > 2 is a prime or a power of a prime, then
C is an arithmetic circuit where Add/Mult corresponds to
addition/multiplication in IF),.

2.2. Universal Composability

We formalize and analyze the security of our pro-
tocols in the Universal Composability (UC) framework
by Canetti [12]. In the following, we give a high-level
description for UC framework, and we refer readers to
see more details in [12].

In the UC framework, we define a protocol II to
be a computer program (or several programs) which is
intended to be executed by multiple parties. Every party
has a unique identity pair (pid,sid), where pid refers to
the Party ID (PID) and sid refers to the Session ID (SID).
Parties running with the same code and the same SID are
viewed to be in the same protocol session. The adversarial
behaviors are captured by the adversary .4, who is able to
control the network and corrupt the parties. When a party
is corrupted by the adversary A, the adversary A obtains
its secret input and internal state.

The UC framework is based on the “simulation
paradigm” [21], a.k.a., the ideal/real world paradigm. In
the ideal world, the inputs of the parties are sent to an ideal
functionality 7 who will complete the computation task in
a trusted manner and send to each party its respective out-
put. The corrupted parties in the ideal world are controlled
by an ideal-world adversary S (a.k.a., the simulator). In
the real world, parties communicate with each other to
execute the protocol II, and the corrupted parties are
controlled by the real-world adversary A. There is an
additional entity called environment Z, which delivers the
inputs to parties and receives the outputs generated by
those parties. The environment Z can communicate with
the real-world adversary A (resp. ideal-world adversary S)
and corrupt the parties through the adversary in the real
(resp. ideal) world. Roughly speaking, the security of a
protocol is argued by comparing the ideal world execution
to the real world execution. More precisely, for every PPT
adversary A attacking an execution of II, there is a PPT
simulator S attacking the ideal process that interacts with
F (by corrupting the same set of parties), such that the
executions of II with A is indistinguishable from that
of F with § to Z. We denote by EXECr s = (resp.
EXECi, 4,2) the output of Z in the ideal world (resp.
real world) execution. Formally, we have the following
definition.

Definition 1. We say a protocol 11 UC-realizes the func-
tionality F, if for any PPT environment Z and any
PPT adversary A, there exists a PPT simulator S s.t.

EXECaz ~ EXECr s z.

401

We then describe the modularity which is appealing
in the UC framework: when a protocol calls subroutines,
these subroutines can be treated as separate entities and
their security can be analyzed separately by way of re-
alizing an ideal functionality. This makes the protocol
design and security analysis much simpler. Therefore, we
introduce the notion of “hybrid world”. A protocol II is
said to be realized “in the G-hybrid world” if IT invokes
the ideal functionality G as a subroutine. Formally, we
have the following definition.

Definition 2. We say a protocol 11 UC-realizes the func-
tionality F in the G-hybrid world, if for any PPT envi-
ronment Z and any PPT adversary A, there exists a PPT
simulator S s.t. EXECIQLA’Z ~ EXECr.s,z.

Adversarial model. In this work, we consider malicious
static corruption, i.e., the adversary corrupts the parties
at the beginning of the protocol and the corrupted parties
may deviate from protocol instructions. We also consider
rushing adversaries, who may delay sending messages on
behalf of corrupted parties in a given round until the
messages sent by all the uncorrupted parties in that round
have been received.

Malicious, static and rushing adversaries are also con-
sidered in the relevant state-of-the-art work [3], [4], [37].
However, they additionally assume an honest majority
while we do not. More precisely, in our setting, when
there are a dealer and n verifiers, we allow the adversary
to corrupt the dealer and up to (n — 1) verifiers.

Secure communication model. In this work, we consider
simultaneous communication, and we assume the parties
are connected by pairwise secure channels and a broadcast
channel. These secure communication channels are also
needed in the relevant state-of-the-art work [3], [4], [37].

2.3. Single Input Functionalities

In [3], Applebaum et al. formally define Single Input
Functionalities (SIFs); there the majority of players are
assumed to be honest, and the SIFs are defined to capture
full security. In our paper, the majority of players can
be corrupted; we thus consider a relaxed version of their
SIFs, capturing security with abort.

A formal presentation of (the relaxed version of) the
functionality, Fsr, can be found in Figure 1. More con-
cretely, in a SIF, there are a dealer D and n verifiers
V1,...,V,. Without loss of generality, we assume that all
the parties hold a circuit C : ;" — [while the dealer
D additionally holds a secret input w where |w| = m.
The functionality Fgr takes w from the dealer D, then
it computes y := C(w) and delivers y; to V; for i € [n],
where y; is the ¢-th element of y.

2.4. Information-Theoretic Message Authentica-
tion Codes

Originating from the work by Beaver [5], who shows
how to use “Beaver triples” for designing efficient pro-
tocols in the dishonest majority setting, many MPC pro-
tocols make extensive use of correlated randomness for
better efficiency [6], [10], [15], [16], [18], [31], [33],
[34]. Among them, there is a powerful technique called

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

,—[Functionality Fsi F} N\

The functionality interacts with a dealer D, n verifiers
Vi,...,V,, and an adversary S. Let Hy denote the set of
honest verifiers.

The functionality is parameterized by a circuit C where
C:Fy —Fp.

Upon receiving (INPUT, sid, w) from D and (INPUT, sid)

from V; for all ¢ € [n] where w € F}*, do

o Compute y := C(w), and send (OUTPUT,sid, y;) to
V; for each V; ¢ Hy where y; is the i-th element of
Y.

o Send (CONTINUE, sid) to the adversary S. For each
V; € Hv, upon receiving an input from S,
— If it is (CONTINUE,sid, V;), send (OUTPUT, sid, y;)

to V;.

— If it is (ABORT,sid, V;), send (ABORT,sid) to V.

Figure 1: The Functionality Fgr

Information-Theoretic Message Authentication Codes (IT-
MACs) which is used to authenticate the values, especially
the secret shares [6], [31].

In this subsection, we review the IT-MACs [36] over
the extension field IF,» where p” > 2*. For simplicity, we
assume there are two parties P; and Py. Let A € [F)» be
the global MAC key held by P;. A value € F,, known
by P5 is authenticated to P; by having P; hold a local
MAC key K and having P hold the corresponding MAC
tag MACa k() := K+A-z € F,r. It is easy to see that a
malicious P4 who sees MACa g () for a chosen x cannot
produce a new valid MAC tag MACa x(z') for o’ #
x except with probability p~" < 2~*. Furthermore, the
security of IT-MACs holds when an honest party has many
MAC keys that share the same A but with independently
random K, and we call such MAC keys consistent.

Another appealing advantage of IT-MACs is ad-
ditive homomorphism. More precisely, for consistent
keys (A, K1),...,(A, K,), given the public coefficients
Cly. .. cn,cer, it holds that MACa x (y) := Z:L 1Gie
M/—\CAK (z;) € Fpr, where y := >, ¢; -2, + ¢ € F)
and K :=) " ¢;-K;—c-A€Fp.

3. Technical Overview

Before giving the formal description of our construc-
tion, we first provide a technical overview of our design
in this section. Full descriptions of our protocols can be
found in Section 4 and Section 5, below.

3.1. Starting Point: BDOZ-Style MPC

Our starting point is the BDOZ-style MPC [6], [31]
which is designed in the preprocessing model; that is, the
parties first jointly prepare some correlated randomness in
the preprocessing phase, and those correlated randomness
will be “consumed” during the online phase to accelerate
the online computation. BDOZ-style MPC exploits the
merit of IT-MACs (cf. Section 2.4) to achieve malicious
security while preserving high performance during the
online phase.

Here we provide a high-level description for BDOZ-
style MPC. Suppose there are n parties Pq,...,P,. In

402

the preprocessing phase, the parties jointly generate suf-
ficiently many random values. For instance, for random
x € IFp, each party P; holds an additive share z; € F,
such that z = Y7 | x;. For each ordered pair of parties
(Pi,P;), P; authenticates its own share (namely, z;) to
P, i.e., at the end of the preprocessing phase, P; holds
z; € F, and MJ, € Fpr and P; holds A, K € (F, r)?
such that MJ = MACA K (xl) K] +Aj-x; € Fpyr
Given these authentlcated sﬁares every party can share
its secret input easily. Suppose party P; wants to share
its secret input w € IFp,, other parties simply open their
random shares of x to P;; After recovering x, P; can
simply broadcast § := w — x € F, to others. By the
additive homomorphism of IT-MAC:s, all the parties obtain
the shares of w.

Then the parties will execute the protocol for online
phase in the “gate-by-gate” paradigm. The addition gates
can be processed without interactions between the parties.
For each multiplication gate («, 3,~, Mult), one authen-
ticated Beaver triples [5] (i.e., the authenticated shares
of a,b,c such that ¢ = a - b) should be prepared in the
preprocessing phase. To compute w,, - wg, each party P;
holds the shares of input wire values w, ;, wg; and the
shares of the authenticated Beaver triple (az, bi, ¢;); then
all the parties can open 7 := w,—a and v := wg—>b. Since
W wg = (Wo—a+a)-(wg—b+b) =n-v+n-b+v-a+c,
all the parties can compute the shares of w, - wg based
on the shared (a,b,c) and the public n and v. Since
the process of multiplication gates involves interactions
between the parties, the round complexity of the online
phase of BDOZ-style MPC linearly depends on the circuit
depth.

3.2. Key Observations

BDOZ-style shares vs. SPDZ-style shares. Compared
with the BDOZ-style MPC, its follow-up, the SPDZ-style
MPC [16], is more popular in the community and has been
widely studied [15], [26]-[28]. In the SPDZ-style MPC,
the shares are formed in a different way: each party holds
a share of a single global MAC key; for a secret value z,
each party holds a share of = and a share of the MAC tag
on z. In most application scenarios, we prefer SPDZ-style
shares to BDOZ-style shares, since the size of SPDZ-style
shares is smaller; thus, it is more efficient to operate on
SPDZ-style shares. However, opening SPDZ-style shares
requires a “commit-and-open” procedure, which will in-
crease the round complexity. Since we are pursing for 2-
round online communication, BDOZ-style shares are more
suitable for our purpose.

The dealer can learn all correlated randomness. In a
conventional MPC setting, the BDOZ-style protocol uses
the authenticated shares of random values to mask the wire
values of the circuit to ensure the privacy, i.e., to make
sure that corrupted parties cannot recover the wire values.
Our key observation is that in the SIF setting, only the
dealer D has a private input w and other parties’ inputs
are public; therefore, even if all the correlated randomness
generated in the preprocessing phase are revealed to the
the dealer D, it does not compromise the overall security
of the SIF protocol. This is due to the fact that the dealer
D already knows her own input.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

3.3. Our Techniques

Reducing the round complexity. Enlightened by the
observations above, we are able to reduce the round com-
plexity of the online phase of our construction; namely, we
can process all the multiplication gates at once within only
2 rounds! More precisely, we first let the dealer D eval-
uate the entire circuit. Then for each multiplication gate
(a, 8,7, Mult), we let the dealer D broadcast := w, —a
and v := wg — b to all the verifiers, where (a,b,c) is
the Beaver triple; note that, as discussed above, we let D
learn (a,b,c) in plaintext. After receiving the messages
from the dealer D, the verifiers can locally compute the
shares of w, - wg as it is done in the BDOZ-style MPC.
Finally, in order to check whether the dealer D deviates
from the protocol while computing the values n and v
for a multiplication gate, the verifiers can jointly check
whether 7, v are computed correctly. Namely, the verifiers
will publicly open 7} := w, —a and U := wg —b using their
authenticated shares of w,, wg, a,b, and then the verifiers
jointly check if 7 =7 and ¥ = v. Clearly, the above can
be completed within 2 rounds.

Modified preprocessing protocol. Finally, we show how
to generate the BDOZ-style correlated randomness in our
setting. This can be achieved by the following steps:

o Step 1: Generate the authenticated shares of random
values x and Beaver triples (a, b, ¢) such that the dealer
D and the n verifiers jointly holds their shares.

e Step 2: Let the n verifiers open their shares of all
the correlated randomness to the dealer D, and then
D checks the validity of the shares w.r.t. their MACs
and recover them in plaintext.

« Step 3: Let the dealer D send its shares of all the cor-
related randomness to each verifier; then one verifier,
say V;, will add the dealer’s share to its own share;
the remaining (n — 1) verifiers will locally update the
corresponding MAC keys accordingly.

4. SIF against a Dishonest Majority: Prepro-
cessing Phase

As discussed in Section 3, our protocol will be de-
signed in the preprocessing model. In this section, we
mainly focus on how to design the protocol for preprocess-
ing phase. We first provide the BDOZ-style preprocessing
functionality }'PBYBSZ, then describe our own preprocessing
functionality fé?r‘;f. Finally, we give our protocol Ilpye
for preprocessing phase which UC-realizes]-",9,‘;;5 in the
f,?r'ggz-hybrid world.

4.1. BDOZ-Style Preprocessing Functionality

First of all, we provide a quick recap of the BDOZ-
style preprocessing phase [6], [31], [33], [34], and we
make some modifications to adapt to our setting, where
there are a dealer D and n verifiers Vy,...,V,,. We let
the dealer D (resp. each verifier V;) hold its global MAC
keys Ay (resp. A;). To share a value =z € F, among
D,Vy,...,V,, we will randomly select xq, z1,...,T,
F, such that z :=) ! jx; and give zo to D and z;
to V; for ¢ € [n]. Furthermore, these shares are authen-
ticated to each other using IT-MACs. For example, to

403

authenticate V;’s share (namely, x;) to V;, we let V;
hold a local MAC key K. which is uniformly random;
meanwhile, we let V; hold a MAC tag Mjc? such that
M = M/—\CAJ_’KJ{_ (z;) = KJ +Aj-x;. When the parties
decide to make x plublic, the corrupted parties cannot lie
about their shares, since the corrupted parties cannot forge
a MAC tag except with a negligible probability. For better
presentation, we introduce the following notation [2]gpoz
to denote the BDOZ-style shares of value z:

[z]epoz = {{zi, {As, Ky, M1 }jciomp (i Vicfon]}

where {zg, {Ao, ng M Yiem) (esp. {@i, {A, K;J_,
Mgl} jelo,m]\{i} }) are privately held by the dealer D (resp.
each verifier V;), and we use [z]gpoz as shorthand when
it is not need to explicitly talk about the shares and MAC
tags. We call [-]gpoz the BDOZ-style shares.

Notice that, authenticated Beaver triples (i.e., [a]gpoz,
[b]spoz.[c]spoz such that ¢ = ab) will also be generated
during the BDOZ-style preprocessing phase. Formally,
we present the functionality FE29 in Figure 2 which
captures the BDOZ-style preprocessing phase, and the

functionality f,?rggz is adapted from [6], [34].

4.2. Our Preprocessing Functionality

Unlike the BDOZ-style preprocessing phase where se-
crets are shared among all the parties, in our preprocessing
phase, we share secrets among the verifiers Vq,...,V,
and let the dealer D hold the entire secrets. The shares’ au-
thentication among V1, ...,V,, follows the same method
as in Section 4.1. More precisely, for a secret x, we let
each verifier V; hold a share x; and { K7, MJ }jecin)\ (i}
meanwhile, we let the dealer D hold the verifiers’ shares
Z1,...,ZTy. Notice that, the verifiers’ MAC keys and
MAC tags are hidden from the dealer. In this way, the
dealer D can announce the secret x := >, z; by itself,
later the verifiers can open their shares to check if the
announcement is correct. Even if the malicious dealer
D* colludes with some verifiers, D* cannot make a false
announcement without being detected, since the corrupted
verifiers cannot lie about their shares. For notation conve-
nience, we use the following way of representing x:

[2] = {{zi}icmp, (i {A0 KL ML Y e g} Yierml }

where {z;};c[, (resp. {xi,{Ai,K;j,Mgi}je[n]\{i}}) is
privately held by the prover P (resp. the verifier V;), and
we use [z] as shorthand when it is not need to explicitly
talk about the shares and MAC tags.

For modularity, we assume that there is an ideal
functionality FSU providing us with the above, and we

Prep
present the functionality]-'Sr“egs in Figure 3. Similar to
f,g)r‘é;“ also generates

]-'Er'gl?z depicted in Figure 2, our
the authenticated Beaver triples, i.e., [a], [b], [¢] such that
¢ = ab.

Operations on our [-] shares. By additive homomor-
phism of IT-MACs described in Section 2.4, when the
MAC keys are consistent (i.e., each party holds its own
single global MAC key and many independently random
local MAC keys), linear operations on our [-] shares can
be performed locally. For completeness, we present it in
Figure 4.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

,—[Functionality F BDOZ |

Prep J)
The functionality interacts with a dealer D, n verifiers V1,...,V,, and an adversary S. Let H denote the set of the
honest parties.
Initial. Upon receiving (INIT,sid) from D and Vi,...,V,, do

1) If D ¢ H, receive Ag € Fpr from the adversary S; otherwise, sample random Ag < Fpr.
2) For i € [n]: If V; ¢ H, receive A; € Fpr from S; otherwise, sample random A; < F,r.
3) Return Ag to D and A; to V; for each i € [n].

4) Store {Ai}ic[o,n], and ignore the subsequent INIT command.

Singles. Upon receiving (SINGLES, sid, u) from D and Vi,...,V,, for v € [u]:

1) Send (SINGLES,sid,v) to the adversary S, and wait for an input from S. If it is ABORT, return (ABORT,sid, v) to
every honest party and halt. If it is CONTINUE, continue the procedure.
2) Sample random z + F,, and create [z]gpoz as follows:

a) If D ¢ H, receive zo € F,, and {ngMgO }iem) € (Fpr)®® from S.
b) For i € [n]: If V; ¢ H, receive x; € F, and {K;J.,Mii Yoy € (Fpr)®™ from S.

c) For each honest V; € H, its share z; € F, is chosen at random, subject to = > «;. (Here we can regard
D as Vj for notation convenience.)

d) For each honest V; € H and j € [0,n]\ {4}, K;'j is chosen as follows: if V; € H, sample random K;j — Fpr;
otherwise, set K. ;] = M;J — A -z € Fpr. (Here we can regard D as Vq for notation convenience.)

e) Fori €[0,n],j € [0,n]\ {i}: Compute M, :=MAC, . (z:) =K}, +A; z; € Fpr.

f) Send {xo,{ng,Mgﬂ}je[n]} to D and {xi,{K;].,Mgi}je[o,n]\{i}} to each V; for i € [n].

Triples. Upon receiving (TRIPLES, sid, u) from D and Vy,...,V,, for v € [u]:
1) The same as step 1 in Singles procedure.

2) For each triple to create, the functionality samples a,b +— I, and sets ¢ := a - b € Fp, then it creates [a]gpoz,
[b]epoz,[c]epoz, each as step 2 in Singles procedure.

Figure 2: The Functionality f,DBrEI?Z for BODZ-Style Preprocessing

,—[Functionality]—',9;;5} N

The functionality interacts with a dealer D, n verifiers V1,...,V,, and an adversary S. Let H denote the set of the
honest parties.

Initial. Upon receiving (INIT, sid) from D and Vi,...,V,, do

1) For i € [n]: If V; ¢ H, receive A; € Fp,r from S; otherwise, sample random A; < Fpr.
2) Return A; to V; for each i € [n].

3) Store {A;}icin, and ignore the subsequent INIT command.

Singles. Upon receiving (SINGLES, sid, u) from D and V1i,...,V,, for v € [u]:
1) Send (SINGLES,sid, v) to the adversary S, and wait for an input from S. If it is ABORT, return (ABORT, sid,v) to
every honest party and halt. If it is CONTINUE, continue the procedure.
2) Sample random x < I, and create [z] as follows:
a) For i € [n]: If V; ¢ H, receive z; € F, and {K;J.,Mgi Yiemngiy € (Fpr)®™ from S.
b) For each honest V; € H, its share z; € F,, is chosen at random, subject to = = 77" | ;. _
c) For each honest Vi € H and j € [n] \ {i}, Ky, is chosen as follows: if V; € H, sample random K < Fpr;
otherwise, set Ky := M, — A;-x; € Fpr. A
d) For i € [n],j € [n] \ {i}: Compute M, := MACA%K% (i) = K, + Aj - x; € Fpr.
e) Send {z;}ic[n) to D and {x;, {K;j,Mg{i}je[n]\{i}} to each verifier V.

Triples. Upon receiving (TRIPLES, sid, w) from D and Vi, ..., V,, for v € [u]:
1) The same as step 1 in Singles procedure.

2) For each triple to create, the functionality samples a,b < F,, and sets ¢ := ab € [F,, then it creates [a], [b], [],
each as step 2 in Singles procedure.

Figure 3: The Functionality .Fgr”e;f for Preprocessing

4.3. Our Preprocessing Protocol shares to the dealer privately, so the dealer can obtain the
entire random values. After that, we let the dealer open

In this subsection, we show how to efficiently realize its (original) shares to the verifiers, so the verifiers can
our preprocessing functionality FSa. Our key idea is update their shares locally. We present our protocol TI94's

. . - Prep
to convert BDOZ-style shares []gpoz into our shares for preprocessing phase in Figure 5 and prove the security

[-]. We achieve this by letting the verifiers send their

404

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

,—(Local Operations}

MAC keys), D, Vq,...

e D computes z; := z; +y; € F,, for i € [n].

€ [n]\ {i}.

c-x € Fp, by locally performing the followings:

o D computes z; :=c-x; € Fy, for i € [n].
o For i € [n]: Each V; computes z; :=c-x; € IFP,K

by locally performing the followings:

zz.—avze]Fp,KZ '*Kz EFP,M
K. =K. —c- A eIF,,,M; -—M1 € Fpr

Addition of shares: Given two consistent [z] and [y] (i.e., both [z] and [y] are generated under the same global
, V,, obtain the consistent shares of z := x + y € [, by locally performing the followings:

o For i € [n]: Each V; computes z; := x; +y; € FP,Kij = Kf:j +K.i € Fpr ,M’ = th + Mib € Fpr for

Multiplication by constants: Given [z] and a constant ¢ € Fp,, D, Vy,...

=c- Kl

Addition of constants: Given [z] and a constant ¢ € F,,, D, V1, ...

o D computes z1 :=c+x1 € Fp, and z; := x; € F), for i € [2,n].
o Vi computes z1 :=c+ 1 € IF,,,Kl = K1 € Fpr, M, := M3, € Fpr for j € [2,n]. For ¢ € [2,n]: Each V; sets
= MJ € Fpr for j € [2, n] \ {¢} and computes

,V,, obtain the consistent shares of z :

€ Fpr, M, :=c- Mj, € Fpr for j € [n] \ {i}.

,V,, obtain the consistent shares of z :=c+z € F)

Figure 4: Local Operations on Our [-] Shares

through Theorem 1.

Theorem 1. Let)~ be the underlying extension field
with p” > n - 2*\. The protocol Iprep depicted in Figure 5

UC-realizes the functionality ,9;;;5 depicted in Figure 3
with information theoretical security in the fE,EOZ-hybrid

world, in the presence of a static malicious adversary
corrupting up to the dealer and (n — 1) verifiers.

Proof. We prove the security of the protocol Ilp.p, by
showing it is a UC-secure realization of fgr‘;:f We de-
scribe the workflow of the simulator S in the ideal-world
with Fpep, the dummy dealer D and the dummy verifiers
Vi,...,V,, and give a proof that for any adversary A
and any environment Z, the simulation in the ideal-

world EXEC FOus.S, 2 is statistically indistinguishable from
BDOZ

the real-world execution EXEC” , . Notice that, here
Prep ;v

we focus on Singles procedure, since Initial procedure
is trivial and Triples procedure fully relies on Singles
procedure.

When dealer is honest. In this case, we denote by Hy the
set of the honest verifiers in the real-world execution and
|Hy| > 1. The simulator S needs to simulate the honest
dealer and the honest verifiers. We describe the simulation
strategy of S as follows:

1) S emulates .FE,‘ZPOZ and waits for 4 to send its

input. If A sends ABORT, S simply halts; other-
wise, S receives {z;, Ay, { K5, M7 }iefo,n)\ (i} } from
A for each mali_cious Vi ¢ Hy. Then S sends
{xZ,Az,{K M. }ieom\gir} to Fprep for each
dummy V* After that, S picks a random z < [F,, and
honestly generates the rest of [z]gpoz for the honest
dummy parties.

On behalf of the honest dealer, S waits for each
malicious V; ¢ Hy to send x}, M2. Then S checks
if MO* = KO + Ag - 7 holds where 9 ,Ag are the
private information held by S. If not, S aborts.

On behalf of the honest dealer, S sends xg, M;,O to
each V} ¢ Hy privately.

2)

3)

405

4) On behalf of the honest parties, S honestly updates
their shares, local MAC keys and MAC tags.

We prove the indistinguishability through the follow-
ing hybrids.
BDOZ

« Hybrid Hyb,: Real world execution EXECHE:’ Az

o Hybrid Hyb,: Same as Hyb,, except that S executes
the step 1 in the simulation strategy above. Perfect
indistinguishability holds since S simply imitates the
adversary’s behavior by emulating]:grlg;)z

o Hybrid Hyb,: Same as Hyb,, except that S executes
the step 2 in the simulation strategy above.

Lemma 1. Let F)- be the underlying extension field
with p" > n - 2*. Hybrid Hyb, is statistically indis-
tinguishable from Hyb, with adversarial advantage at
most p~".

Proof. If a malicious V; ¢ Hy is able to find a pair of
(zF, MO,)suchthatMO* = KQ +Ag-x} but z} # x;,
then the ‘adversary will ﬁnd the d1st1nct10n The reason
is that: in hybrid Hyb,, the honest dealer will output
x7; while in the ideal world, the honest dealer will
output z;. By the properties of IT-MACs which is
described in Section 2.4, we know that any malicious
V? ¢ Hy can forge such a valid pair (z, Mg;) with
probability ﬁ Therefore, Hyb, is statistically in-
distinguishablg from Hyb; with adversarial advantage
at most p~’ O

Hybrid Hyb;: Same as Hyb,, except that S executes
the step 3-4 in the simulation strategy above.

Lemma 2. Hybrid Hyb; is perfectly indistinguishable
from Hyb,.

Proof. Here we argue that the outputs of the honest
parties in both ideal world and hybrid Hyb; are per-
fectly indistinguishable. First of all, we talk about the
honest parties’ shares. Since the secret x is randomly
picked in both ideal world and hybrid Hybs, even if the
adversary can choose its own share, the honest parties’
shares are still uniformly random conditioned on that
x is uniformly random. Secondly, since the global
MAC keys A; of each honest V; € Hy are chosen

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

,—| Protocol IIpyep

Initial. On input (INIT,sid), P,V1,...,V, work as follows:

1 P,Vi,...,V, send (INIT,sid) to fPB,E,?Z, which returns {A%}ep)

2) V; outputs {A%} e g4y for each i € [n].

Singles. On input (SINGLES, sid, u), for each v € [n], P,V1,...

1) P,Vi,...,V, send (SINGLES,sid, 1) to Fgey*, which returns either ABORT or [z]gpoz to them. If it is the first
case, they simply abort. If it is the second case, P receives {zo, {KLJ m;(x0)}jem)} and each V; receives
{zs, {sz m;(2i)}jef0,n\ (i} }- Notice that, z =370 @;.

2) For i € [n]: V; opens its share to P by sending x;,mo(z;) to P over a private channel. Then P checks if
mo(z;) = K9, + AY - z; holds. If not, P aborts.

3) P opens its share to Vi,...,Vy, by sending xo,m;(xo0) to each V; over a private channel. Then V; checks if
mi(zo) = K, + Ag - ©o holds. If not, V; aborts

4) Vi updates its share and MAC tag by setting xl :=x1 + xo and m; () := m;(x1) for i € [2,n]. For i € [2,n]:

to P and {A%};c(0,n\ 4} to Vi for each i € [n].

,V,, work as follows:

V; updates its local MAC keys by setting K .
of x among the verifiers.

5) For notation convenience, P, V1,...,V,, set x}

Notice that, now = = >_; | j

6) P outputs {z}}icin)

T

1) P,Vi,...,V, send (TRIPLES,sid, 1) to .FPB,BSZ,
c = ab.

2) For each t € {a,b,c}, P,Vu,...

and V; outputs {xé,{Ki;,mj(ncg)

=Ki —

=i, m;(2}) = m;(z:), K?, == KJ, fori € [2,n],j € [n]\i.

, V., convert [t]gpoz to [t] as step 2-6 in Singles procedure.

}je[n]\{i}} for each 7 € [n]
Triples. On input (TRIPLES, sid, u), for each v € [n], P, V1,...

which returns either ABORT or [a]gpoz, [b]spoz, [¢]spoz to them. If
it is the first case, they simply abort. If it is the second case, they receive [a]spoz, [b]spoz. [¢]spoz such that

xo - Al. In this way, we create new authenticated shares

, Vo, work as follows:

Figure 5: Our Protocol Ilp, for Preprocessing Phase in the

randomly in both ideal world and hybrid Hs, they
are also uniformly random. Thirdly, for each honest
Vi € Hy, its local MAC keys K is computed as
follows: if V; € Hy, sample random Ki +— F;
otherwise, set Kl = MZ —Aj-x; € IF . Since
A; is uniformly random in both case, honest parties’
local MAC keys are perfectly indistinguishable in both
ideal world and hybrid Hyb,. Finally, since the MAC
tags are deterministic conditioned on the shares, global
MAC keys and local MAC keys, the honest parties’
MAC tags are also perfectly indistinguishable in both
ideal world and hybrid Hs. In conclusion, Hyb; is
perfectly indistinguishable from Hyb,. O

Hybrid Hyb, is identical to the ideal world execution
EXECFours s.z- In conclusion, when the dealer is hon-
est, EXE&}-Ours s,z Is statistically indistinguishable from

]_-BDOZ
EXEC ™ * A,z With adversarial advantage at most p~".
When dealer is malicious. In this case, we also denote
by Hy the set of the malicious verifiers in the real-
world execution and |Hy| > 1. The simulator S needs to
simulate the honest verifiers. We describe the simulation
strategy of S as follows:

1) S emulates F29% using the same strategy as in Step 1

in the previous case.

J’_'BDOZ

prep -Hybrid World

We prove the indistinguishability through the follow-
ing hybrids.
. .]_-BDOZ
o Hybrid Hyb,: Real world execution EXECHE:L AZ
o Hybrid Hyb,: Same as Hyb,, except that S executes
the step 1 in the simulation strategy above. Perfect
indistinguishability holds since & simply imitates the
adversary’s behavior by emulating]_-grlgé)z
Hybrid Hyb,: Same as Hyb,, except that S executes
the step 2-3 in the simulation strategy above.

Lemma 3. Let F,» be the underlying extension field
with p" > n - 2*. Hybrid Hyb, is statistically indis-
tinguishable from Hyb, with adversarial advantage at
most 27,

Proof. If the malicious D* is able to find a pair
of (xO,MZ) such that MZ* = K. + A; -z but
xy # To for any V; € ’HV, then the adversary will
find the distinction. The reason is that: in hybrid Ho,
the malicious dealer will cause inconsistent output of
the honest verifiers (i.e., make the honest V; update
its representations with z§ while make other honest
ones update their representations with x(); while in
the ideal world, the malicious dealer cannot do that.
By the properties of IT-MACs which is described
in Section 2.4, we know that any malicious D* can
forge such a valid pair (z§, ML,) with probability

2) On behalf of each honest verifier V; € Hy, S sends |F T Since the adversary can only corrupt the dealer
x;, M2 to malicious D*. and attempt to forge such a valid pair for n honest
3) On behalf of each honest verifier V; € Hy, S waits Veriﬁers the overall adversarial probability is at most
for D* to send xj, M;.. Then S checks if M. = o <27 A N
K, + A; - x5 holds where K, ,A; are the private o Hybrid Hyb;: Same as Hyb,, except that S executes
information held by S. If not, S aborts. the step 4 in the simulation strategy above. Perfect
4) On behalf of the honest parties, S honestly updates indistinguishability holds due to the similar argument

their shares, local MAC keys and MAC tags.

406

as in Lemma 2.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

Hybrid Hyb; is identical to the ideal world execution
EXECzou: 5 z. In conclusion, when the prover is mali-
. repl . - - . < - .
cious, EXEC zous 5 7 is statistically indistinguishable from
]_-BDOZ Prep
Prep D

EXECy;® 4z with advantage at most 2.

5. SIF against a Dishonest Majority: Main
Protocol

In this section, we aim to provide the main protocol for
SIF against a dishonest majority. Since we have described
how to realize the preprocessing phase in Section 4, here
we mainly focus on the online phase. The intuition of our
protocol for online phase can be found in Section 3. We
give a high-level description of our protocol for online
phase in the following.

We design our protocol for online phase in the “gate-
by-gate” paradigm. The dealer D who holds the secret
input w € F* first commits to all input wire values to
the verifiers Vq,...,V, by consuming m random val-
ues {[ui]}iem) produced by Fprep. More precisely, for
each ¢ € Z;,, D broadcasts the masked input wire value
d; := w; — p; to all verifiers. Then Vq,...,V,, obtain
the shares of input wire value by computing [w;] :=
[1:] + 9;. As discussed in Section 4.2, [-] is additively
homomorphic; therefore, addition gates can be processed
for free. For each multiplication gate, one authenticated
Beaver triple ([a;], [0:], [¢:]) such that ¢; = a; - b; will
be consumed to ensure the multiplication gate will be
processed properly. This technique is originated from the
work by Beaver [5]. More precisely, for each multipli-
cation gate («, 8,7, Mult), D broadcasts 7; := w, — a;
and v; = wg — b; to the verifiers, where w, and wg
are the input wires values of this gate. By the following
eqution we - wg = (Wo — a; + a;) - (wg — b; +b;) =
(mi+a;) - (vi+b;) =n;i-vi+n;-bi+v;-a; + ¢, it is clear
that if D acts honestly, the verifiers are able to reconstruct
the shares of output wire value [w,] by locally computing
1; - v +1:[0:] +vifa:] + [e;]. If D acts maliciously, i.e., D
broadcasts the false n; or v;, the verifiers are able to detect
this malicious behavior by opening [7;] := [wa] — [ai]
and [#;] := [wg] — [b:] to each other, and checking if
7; = n; and U; = v; hold. Finally, the verifiers hold the
shares of output wire values {[/;] };c[n). In order to let V;
obtain its own output, other verifiers simply open [h;] to
V;. Notice that, during the protocol execution, the honest
verifiers would abort if any check fails or any verifier fails
to open its share.

Formally, we present our main protocol Ilsg, which
captures both preprocessing phase and online phase, in
Figure 6 and prove the security through Theorem 2.

Theorem 2. Let IF - be the underlying extension field with
p" > n - 2>, The protocol Tl depicted in Figure 6 UC-
realizes the functionality Fs\r depicted in Figure 1 with
information theoretical security in the]:Sr‘éﬁ'-hybrid world,
in the presence of a static malicious adversary corrupting
up to the dealer and (n — 1) verifiers.

Proof. We leave the formal proof in Appendix A.1. [J

Efficiency analysis. Assume the circuit has m input
wires and s multiplication gates. Let n be the number

407

of verifiers. We analyze both the computation and com-
munication efficiency of our online phase protocol in the
following:

Computation: Here we measure the computation cost by
the number of multiplication operations, since addition
operations are for free. The dealer D only requires
s multiplications, which is extremely efficient. Each
verifier V; requires 4ns + m multiplications, which is
also very efficient.

Communication: Here we measure the communication
cost by the number of field elements sent by each party.
The dealer D sends m+2s filed elements to the verifiers
over a broadcast channel. Each verifier V; sends 4s field
elements to another verifier V; over a private channel.

6. Implementation and Evaluation

We implement a prototype of our protocols in C++,
and conduct a benchmark on various circuit evaluations.
Our code is available at https://github.com/ZheleiZhou/
SIF-Implmentation. The performance of our protocols
is reported in Section 6.1. Notice that, there are three
state-of-the-art works in the literature [3], [4], [37] are
closely related to our protocol. Among them, only Feta is
implemented by the authors and reported the performance
in their paper; therefore, we compare the efficiency of our
protocols with Feta [4] in Section 6.2. We then compare
the performance of our SIF protocols with the state-of-
the-art generic MPC protocols in the dishonest majority
setting (cf. Section 6.2).

We present experimental validation of the efficiency of
our protocols over well-known boolean circuits. Note that,
our protocols can support both arithmetic and boolean
circuits. Hereby, we report the benchmark results over
boolean circuits (AES-128 and SHA-256) in order to have
a fair comparison between our work and Feta [4]. (They
only provide the benchmark results on boolean circuit
evaluation in their paper.)

We instantiate the BDOZ-style preprocessing function-
ality FER9% over extension field F,- for boolean circuits
with the offline protocol in [34]. We set p 2 and
r = 128, which provides at least 40-bit statistical security.
All experiments are executed on a machine with Intel
Xeon Silver 4214 CPU at 2.20GHz and 128 GB Mem-
ory, running Ubuntu 20.04.5 LTS. The network setting is
exactly the same as in [4], i.e. at a delay of 0.6ms and
bandwidth of 10Gbit/s. Each experiment is run 40 times
and the median is taken.

6.1. Performance of Our Protocols

Table 2 illustrates the running time of our protocol
w.r.t. AES-128 and SHA-256 evaluation. The numbers of
verifiers are 2, 4, 7, respectively. We report the evaluation
results in 4 dimensions: preprocessing time, dealer time,
verifier time and proof size. The numbers of running
time consist of both computation time and communication
time. The proof size refers to the size of the message
that the dealer sends to each verifier. The running time is
reported in millisecond (ms) and the proof size is reported
in KiloByte (KB).

As shown in Table 2, the performance of our protocols
is highly efficient: when there are single prover and 4

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

,—| Protocol Il <

Inputs: The dealer D and the verifiers V1, ...,V,, hold a circuit C : IF‘Z“ — IF;L. We denote by Zi, the input wires of C
and denote by Z,.: the output wires of C. We assume the circuit C has s multiplication gates. The dealer D also holds a
secret input w in (Fp)™.

Preprocessing Phase. Both the concrete structure of the circuit and the witness are unknown.

1) D,Vi,...,V, send (INIT,sid) to Fprep, Which returns A; € Fpr to V; for each i € [n].

2) D,Vi,...,Vn send (SINGLES, sid, m) to Fprep, Which returns {[[1t;] }ic[m] to them. More precisely, for each
i € [m], D holds {1, ..., pin} such that p; = 3% | p1; ;3 meanwhile, each V; holds {5, { K,
M}’fiﬁj}ke[n]\{j}}. D computes ju; := Y ", p1i,j € Fp for each i € [m)].

3) D,Vi,...,V, send (TRIPLES,sid, s) to Fprep, Which returns {[a;], [b:], [ci]}ic[y to them where ¢; = a;b;. More
precisely, for each i € [s] and p; € {ai, bi,ci}, D holds {pi,1,...,pin} such that p; = > 7| pi,;; meanwhile, each

V; holds {p; ;, {K} Mﬁi’j}ke[n]\{j}}. D computes p; := 377, pi,; € Fp for each i € [s] and p; € {ai, bs, ci}.

Pik?

Online Phase. Now the concrete structure of the circuit and the witness are known by the parties.
Round I: The dealer D works as follows:

1) For ¢ € Zin: D broadcasts §; := w; — p; € Fp to all verifiers, where w; is i-th element in w.
2) For each gate (o, 8,7, T), D evaluates the circuit C in a predefined topological order:
a) If T'= Add, D computes w := wq + wp € F,, where wq, wg, w-, are the wire values correspond to the wire
indices «, 3, of this gate.
b) If T'= Mult and it is the ¢-th multiplication gate, D computes w, := wq - wg € [Fp, first, then broadcasts
;i = wq — a; € Fp and v; := wg — b; € Fy, to all verifiers.

Round 2: The verifiers V1, ...,V, work as follows:

3) For i € Tiy: the verifiers compute [w;] := [u:] + ; using the received 0; € Fp.

4) For each gate (a, 3,7, T), the verifiers evaluate the circuit C in a predefined topological order:

a) If T'= Add, the verifiers compute [w,] := [wa] + [ws]-
b) If 7= Mult and it is the i-th multiplication gate, the verifiers compute [w~] := [c:] + n:[b:] + via:] + n: - vi
using the received 7;,v; € F,,.

5) The verifiers perform the followings to check the multiplication gates: For i-th multiplication gate («, 3,7, Mult),
the verifiers open [[7};] := [wa] — [a:] and [75] := [wgs] — [bs] to each other. Then the verifiers check if 7j; = 7,
and 7; = v; hold. The verifiers will abort if any verifier fails to open its share or any check fails

6) The verifiers perform the followings to obtain their output: For i € Zo,: with authenticated output wire value [h;],
the verifiers open [h;] to V;. If any verifier fails to open its share, V; aborts; otherwise, V; outputs h;.

FRurs_Hybrid World

Figure 6: Our Main Protocol Ilgr in the Prep

TABLE 2: The Performance of our protocols. and the second part involves converting [-]|gpoz into the

shares [-] as required by our SIF protocol. The gener-

#Verifiers
3 2 - ation of BDOZ-style shares can also be divided in two
components: triples generation (i.e., the generation of the
Preprocessing Time (ms) 96.28 14498 213.55 . . BDOZ . . .
, Beaver triples in F5_’“) and singles generation (i.e., the
AES-128 Dealer Time (ms) 0.22 0.27 0.41 . rep . BDOZ
Verifier Time (ms) 204 "9 2091 generation of .the smgl§ random val}les in]-'Prep). To
Proof Sizes (KB) 275 1275 1275 figure out Whlch part is the most time-consuming, we
Preprocessing Time (ms) 29523 45275 623.86 conduct a mlcroben.chm.ark of our preprocessing protocol
SHASG Dealer Time (ms) 075 0.86 1.04 and plot the results in Figure 7. As shown in Figure 7, the
i Verifier Time (ms) 6.45 2201 66.89 cost of the preprocessing procedure mainly comes from
Proof Sizes (KB) 4484 4484 4484 the triples generations.

verifiers, it takes 152.34ms to evaluate an AES-128 circuit,
in which online running time (the sum of dealer time and
verifier time) is merely 7.36ms. Notice that, the dealer
running time of our protocol is extremely fast, since in
addition to evaluating the entire circuit in plaintext, the
extra computation cost for dealer is 1 addition (resp.
2 additions) per input wire (resp. AND gate), which is
almost for free.

Microbenchmark. From Table 2, we found that the most
time-consuming step of our protocols lies in the prepro-
cessing phase. As discussed in Section 4, our prepro-
cessing phase can be divided into two parts: the first
part involves generating the BDOZ-style shares [-]spoz

408

In this work, we instantiate the BDOZ-style shares
generation protocol with the realization proposed by Wang
et al. [34]. We notice that the recent work by Yang
et al. [38] mainly focuses on speeding up the triples
generation in BDOZ-style shares. Compared to [34], their
improvement ranges from roughly 4x to 6x. Moreover,
they also reduce the communication cost for the rest
of the preprocessing protocol by roughly 1.3x without
increasing the cost for the online phase; thus, they obtain
a more efficient BMR-style MPC than [34]. Since our
preprocessing protocol is designed in a modular fashion, if
we instantiated the BDOZ-style shares generation protocol
with that by Yang et al. [38], our preprocessing time could
be benefited by the same magnitude of improvement. We
make an estimation of the running time according to

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

EX3 Triples Generation
-4 I Singles Generation
ZZ1 Conversion

1754 03¢ o0
= KX RN
— 1504 B Y K
2 SRR %% T %o%e M %%
£ 2o T 2o2o T Yo 2o I %%
S 125 BN % % B o %% BN ¢ %% I o %0
2 o T %02 T 2o 2o I %%
E 05 T 0o T o 0% R o202 T 0%
£ oo T oo R %% T oo [%%
° S0 20 T %% N %% T 0% N %%
2100 >
e I s T 020 T % T %% T %% T %%
< Y RY RY RO R
ER I %% I o %0 X TR o %0 % N o 0% RN 0 0% BN %%
D0 TN %' TN % % TN 0 %o I %% I %%

020% I o %% N 0% % M o %% N 0% % I o %
Do TN o % I % % TN 0 % TN %% I %0 %
00X M o oo N 0% T o 0% N 0 %% N o %0*
R I 0 %% I 0% S B o %o % I ¢ % % I o %o O RN 4 %%
B IR IR KA BRA B
00X T o 5o ST ¢ %o % N o %% B ¢ %0 % NN 0%
ELE T %% IR % % TN %% RN % % TR %o %0 N %%

i
o

R
%%

3%
B
K
&

%

O

£
£
K
g
o

IS
n
o
N

#Verifier

(a) Evaluation on AES-128

EX3J Triples Generation
11 Singles Generation
ZZ1 Conversion

600 q

a
XX XN
SRR

XXX
XXX
A

RS

9.
0%
XXX
XK

500

";'

K
R
K

400 4

%
K
R
K

I
KA

<
£

5
%
K

3001 g
X
X

<l
2

Running Time (ms)
2
1%
X
&

%!
o

%
%!
X

XX

X3

0%
<%

K&,
Yo%
%R
XX
be%
<>

X
Pade!

KK
O
KL

200

.,‘
X
2
8
2
%

2
8
R
%

X
020

%
020

9.

XX
XX
3%

2009
X
X X
%
RL
XX >
%
XX >
2%

1%
[

100 A

X%
%%
%
K

R
R
2
K

IS
o
o
<

%%

"
R

#Verifier

(b) Evaluation on SHA-256

Figure 7: Microbenchmark of our preprocessing protocol. “Triples Generation” refers to the time taken to generate all

the Beaver triples in FE20%;
]:BDOZ.
Prep

the improvement reported in [38] and put the results in
Table 3. As shown in Table 3, for SIF among 3 parties,
our protocol (combined with [38]) is expected to take only
25.83ms preprocessing time for AES-128 evaluation and
80.95ms for SHA-256 evaluation. Compared to the run-
ning time of our SIF protocol using preprocessing protocol
realized by [34], this is a roughly 3.7 improvement.

“Singles Generation” refers to the time taken to generate all the single random values in
“Conversion” refers to the time taken to convert [-]gpoz into the shares [-] that we need.

paper. Our protocol is evaluated on the same hardware
and network configuration as in [4].

TABLE 4: Performance comparison between ours and
Feta [4]. We set the number of verifiers n = 4, in this
case, Feta only tolerates a single corrupted verifier while
our protocol can tolerate 3 corrupted verifiers.

TABLE 3: The performance comparison of preprocessing Protocol Threshold P Online Proof
phase among WRK [34], YWZ [38] and ours. The number Time(ms) Time(ms) Size(KB)
of parties is set as n = 3. AES-128 Feta [4] t< g+l 2.01 16.24 2.75
Ours t<n+1 144.98 7.36 12.75
Protocol Triples Generation Total Preprocesing SHA-256 Feta [4] <+l 34 47.07 8.60
Time (ms) Time (ms) Ours t<n+1 45275 22.87 44.84
WRK [34] 100.34 119.19))
ABs.1os | YWZ 3817 2521 39.72 As. shown in Table 4, our protocol is roughly 2x
Ours + 3415 94.09 96.28 faster in the online phase compared to Feta, when there
Ours + [38]7 % 23.64 25.83 are single prover and 4 verifiers. The main drawback
WRK [34] 290.01 345.61 of our protocol lies in the time-consuming preprocessing
SHAs6 | YWZ 1381 72.87 115.64 phase, compared to Feta. However, our protocol is in the
Ours + [34]° 286.18 295.23 dishonest majority setting (the corruption threshold of our
Ours + [38]" * 7190 80.95 protocol is ¢ < n + 1), while Feta assumes an honest

T At the time of submission, the code of YWZ is not publicly available;
therefore, the numbers in “YWZ [38]” and “Ours + [38]” rows are
_estimated according to the improvement that reported in [38].

§ “Ours + [34]” (resp. “Ours + [38]”) refers to the combination of our
protocol and [34] (resp. [38]).

It is worth to mention that since our SIF protocol uses
BDOZ-type preprocessing in a blackbox fashion, should
there be any faster and better ideas to generate the BDOZ-
type shares in the coming future, the preprocessing time
of our SIF protocol can also be benefited.

6.2. Comparison with Relevant Works

Comparison with MVZK in the honest majority set-
ting. Here we compare the performance of our protocols
with the state-of-the-art MVZK protocol in the honest
majority setting, i.e., the Feta protocol proposed by Baum
et al. [4]. We stress that, Feta is specifically designed for
MVZK, while our SIF protocol can be applied not only to
MVZK, but also to other applications, such as VRS. The
comparison results are depicted in Table 4. The numbers
for Feta reported in Table 4 are taken in their published

409

majority (the corruption threshold of Feta is ¢t < 7 + 1);
typically, the protocols against a dishonest majority are
less efficient than the protocols that assume an honest
majority. Furthermore, in the following paragraph, we will
show that our preprocessing phase is faster than some
state-of-the-art generic MPC protocols against a dishonest
majority.

Comparison with generic MPC in the dishonest major-
ity setting. To further demonstrate the efficiency of our
protocol, we compare our SIF protocols with the state-
of-the-art (SOTA) generic MPC protocols over boolean
circuits in the dishonest majority setting, i.e., the WRK
protocol by Wang et al. [34] and the SPDZ,:. protocol by
Cramer et al. [15]. The WRK protocol [34] represents the
SOTA of BMR-style MPC, and the SPDZ,: protocol [15]
represents the SOTA of SPDZ-style MPC.

As shown in Figure 8, our protocol outperforms WRK
and SPDZyx in running times. The reported numbers
are evaluated by ourselves (the codes of WRK and
SPDZsy. can be found in [32] and [26], respectively),
using the same network and hardware configurations. For
SIF among three parties, our protocol takes 302.43ms to

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

253 SPDZy-Prep
721 SPDZy-Online
PSZ3 WRK-Prep
WRK-Online
EZ3 Ours-Prep
Ours-Online

252 SPDZy-Prep
[Z2 SPDZy-Online
PSZ WRK-Prep
WRK-Online
£ Ours-Prep
Ours-Online

g
8

IS
8
8

g
g
KRS
S
29583

R
K
000

RILIR
XX
202030 % %

Running Time (ms)
.
3
g
KRS
R
202562
unning Time (ms)

12!

3
g
R
XX
&K

,v
!
0%}

&

,v
5%
%!

O
XX

o

253 SPDZy-Prep
2 SPDZy-Online
PSZ WRK-Prep
WRK-Online
EZ3 Ours-Prep
Ours-Online

v,v
KR
oedete%s!

X%
RS
%5
29588
3%
K
%

o
AR

R
oo

5
O
(XK

XK
o%

o%%
0%
XXX

RRIRRRRRKS
s
S
XXX
3K

XX
020
0.0

%
%
%

%S
%

-
3%
KL

Running Time (ms)

,v
&
25K
X%
%S
RS
%
5
e:
0
o

v
3585
3RXS
<
RS
3L

X

SRR
3R
B
K58
Yo %e%e%e!

90
X

%5

%5

o
0%}
%

%

e
X
1%

96%6%% 0% %%

PRY
IRXXK

S
X
6%

R
o
%S

AES-128

«
z

iA-2

6

(a) Number of Parties = 3

Figure 8: Performance comparison among WRK [34],

evaluate a SHA-256 circuit with 7.20ms online running
time; while WRK (resp. SPDZyx) takes 361.75ms (resp.
523.49ms) to evaluate the same circuit with 16.13ms
(resp. 31.85ms) online running time. In this case, our
improvement for total running time ranges from 1.2x to
1.7x and our improvement for online running time ranges
from 2.2x to 4.4x.

7. Related Work

Here we will review the closely related work in the
literature, including multiple-verifier zero-knowledge, dis-
tribute zero-knowledge and verifiable relation sharing.

Multiple-Verifier Zero-Knowledge (MVZK). In a
MVZK protocol, the prover who holds (z,w) € R can
convince n verifiers that = is true at once. The no-
tion of MVZK was first introduced by Burmester and
Desmedt [11]. Later, Abe et al. propose a 2-round MVZK
protocol for circuit satisfiability in the presence of a
malicious adversary corrupting a prover and up to ¢ < %
verifiers [1]; the corruption threshold of their protocol
can be improved to ¢ < 5 + 1 at the cost of increasing
round complexity. Lepinski et al. introduce the notion of
fair zero-knowledge proof [29], which can be regarded
as a MVZK protocol against a dishonest majority. More
concretely, they extend the ZK functionality to obtain the
fairness, which states that if an honest verifier accepts
the proof, then it is assured that all other verifiers cannot
learn anything beyond the validity of the statement, even
if they maliciously collude with the corrupted prover.
The ZK protocol by Groth and Ostrovsky [22], [23] can
be transformed in a 2-round MVZK protocol, and its
corruption threshold is ¢ < 5 + 1.

Very recently, there are three papers [3], [4], [37]
studying 2-round MVZK protocols. Among them, the
protocol by Applebaum et al. [3] is the only that provides
the full security, i.e., the honest parties are guaranteed
to receive the output. More precisely, the protocol by
Applebaum et al. [3] assumes non-interactive commitment
and its corruption threshold is ¢ < QLJFE + 1, where € is
a small positive constant. However, Applebaum et al. [3]
focus on a theoretical perspective, and their protocol is
not practical. In contrast, the protocols by Yang and
Wang [37] and Baum er al. [4] are designed to achieve
practical efficiency, but their protocols provide weaker
security guarantees than [3]. Yang and Wang [37] propose
2-round MVZK protocols assuming a random oracle in
the corruption threshold of £ < 5 + 1; but their protocols

(b) Number of Parties = 4

410

o
z
»
19
b
£y

SHA-256

(c) Number of Parties = 5

SPDZ,x [15] and ours.

only achieve security with abort. Baum et al. [4] employ
a stronger assumption (i.e., the preprocessing model) to
construct a 2-round MVZK protocol in the corruption
threshold of ¢+ < % +1, and their protocol achieves security
with identifiable abort (i.e., when the honest parties do not
obtain their output, they can identify the cheaters) which
is stronger than [37].

Distributed Zero-Knowledge (dZK). The concept of
dZK was proposed by Boneh et al. [7]. In dZK, there is a
distinguished prover holding (x,w) € R and the statement
x is shared among the verifiers. In dZK, the prover is
allowed to convince the verifiers that x is correct in zero-
knowledge even if the verifiers do not know the entire z.
The main difference between dZK and MVZK is that: in
dZK, the statement x is distributed between the verifiers
and no verifier knows the entire statement x; in contrast,
in MVZK, each verifier knows the entire statement .
Boneh et al. [7] give two 2-round dZK constructions
under RO model in two different settings: (i) in their first
construction, the adversary can corrupt the prover and up
to t < 5 verifiers; (ii) in their second construction, the
adversary can corrupt the prover or up to ¢ < n verifiers.
Several follow-up works [8]-[10] demonstrate that dZKs
are quite useful in the context of MPC. Concretely, these
works showed how to compile semi-honest MPC protocols
into malicious ones using dZKs. In recent work by Hazay
et al. [24], they strengthen the formalization of [7] by
adding strong completeness, which can prevent corrupted
verifiers from framing the honest prover, i.e., causing
the proof of a correct claim to fail. They call their new
formalization strong-complete dZK. Hazay et al. construct
their strong-complete dZK in the corruption threshold of
t < "T_Q + 1, assuming an ideal coin-flipping. While the
constructions in [7] only achieve security with abort, the
construction by Hazay ef al. can achieve full security.

Verifiable Relation Sharing (VRS). VRS allows the
prover to share its input x to multiple verifiers; at the
same time, the prover needs to prove in zero-knowledge
that the shared data satisfies some properties. The main
difference between VRS and dZK is that: in VRS, the
prover is allowed to choose the statement and the verifiers’
shares; while in dZK, the prover has no control over the
statement and verifiers’ shares.

To our knowledge, the first VRS was implicitly studied
by Gennaro et al. [20] in the context of SIF; their 2-round
protocol achieves perfect security and full security in the
plain model, and its corruption threshold is ¢ < & + 1.
Applebaum et al. improve the corruption threshold to

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

t < 5 + 1 at the cost of degrading the perfect security
to computational security [2]. Later, the same authors
improve the corruption threshold to ¢t < 2%_6 +1, where € is
a small positive constant [3]. Although dZK and VRS are
quite different, Hazay et al. show a connection between
these two primitives [24]. More precisely, under a certain
restricted condition (i.e., the relations are robust, and
we refer readers to see the definition of robust relations
in [24]), Hazay et al. show a construction of VRS from
dZK as well as a construction of dZK from VRS without
further computational assumptions; and both constructions
are at the cost of one additional round.

8. Conclusion

In this paper, we propose the first practical construc-
tion for SIF against a dishonest majority in the prepro-
cessing model. Our online phase protocol is only 2-round
and is information theoretically secure. As side products,
we also obtain the first practical 2-round MVZK and
VRS protocol against a dishonest majority in the pre-
processing model. To demonstrate the practicality of our
constructions, we implement our protocols and conduct
extensive experiments. The performance of our protocol
is competitive, compared to the state-of-the-art relevant
work [4] in the honest majority setting and the MPC
protocols [15], [34] in the dishonest majority setting.

Subsequent Work. Subsequent to this work, we find that
the online round complexity of practical protocols for
the SIF can be further reduced, and we propose the first
practical I-round SIF protocol in the preprocessing model
in [39]. We observe that existing practical SIF solutions
share the same online communication pattern: the dealer
sends the messages to the verifiers in the first round, and
the verifiers communicate with each other to check if the
dealer’s messages are correct in the next round(s). In order
to achieve a 1-round online communication for the SIF,
in our subsequent work, our new idea is to push all the
verifiers’ communication to the preprocessing phase. More
details can be found in [39].

Acknowledgment. The authors thank Zehao Li for his
assistance in the protocol implementation.

Bingsheng Zhang is supported by the National Key
R&D Program of China (No. 2021YFB3101601), the
National Natural Science Foundation of China (Grant No.
62072401 and No. 62232002), and Input Output (iohk.io).
Hong-Sheng Zhou is supported in part by NSF grant CNS-
1801470, and a Google Faculty Research Award. This
work is supported by Hangzhou Leading Innovation and
Entrepreneurship Team (TD2020003).

References

[1] Masayuki Abe, Ronald Cramer, and Serge Fehr. Non-interactive
distributed-verifier proofs and proving relations among commit-
ments. In Yuliang Zheng, editor, ASTACRYPT 2002, volume 2501

of LNCS, pages 206-223. Springer, Heidelberg, December 2002.

[2] Benny Applebaum, Eliran Kachlon, and Arpita Patra. The re-
siliency of MPC with low interaction: The benefit of making
errors (extended abstract). In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020, Part II, volume 12551 of LNCS, pages 562—

594. Springer, Heidelberg, November 2020.

411

(3]

(4]

(51

(6]

(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable
relation sharing and multi-verifier zero-knowledge in two rounds:
Trading NIZKs with honest majority - (extended abstract). In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part 1V, volume 13510 of LNCS, pages 33-56. Springer, Heidel-
berg, August 2022.

Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and
Nigel P. Smart. Feta: Efficient threshold designated-verifier zero-
knowledge proofs. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 293-306. ACM
Press, November 2022.

Donald Beaver. Efficient multiparty protocols using circuit ran-
domization. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 420-432. Springer, Heidelberg, August 1992.

Rikke Bendlin, Ivan Damgard, Claudio Orlandi, and Sarah Za-
karias. Semi-homomorphic encryption and multiparty computation.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632
of LNCS, pages 169-188. Springer, Heidelberg, May 2011.

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Zero-knowledge proofs on secret-shared data via fully
linear PCPs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
67-97. Springer, Heidelberg, August 2019.

Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical
fully secure three-party computation via sublinear distributed zero-
knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
869-886. ACM Press, November 2019.

Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient
fully secure computation via distributed zero-knowledge proofs.
In Shiho Moriai and Huaxiong Wang, editors, ASTACRYPT 2020,
Part 111, volume 12493 of LNCS, pages 244-276. Springer, Hei-
delberg, December 2020.

Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Sublinear
GMW-style compiler for MPC with preprocessing. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826
of LNCS, pages 457485, Virtual Event, August 2021. Springer,
Heidelberg.

Mike Burmester and Yvo Desmedt. Broadcast interactive proofs
(extended abstract). In Donald W. Davies, editor, EUROCRYPT’91,
volume 547 of LNCS, pages 81-95. Springer, Heidelberg, April
1991.

Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In 42nd FOCS, pages 136-145. IEEE
Computer Society Press, October 2001.

Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awer-
buch. Verifiable secret sharing and achieving simultaneity in the
presence of faults (extended abstract). In 26th FOCS, pages 383—
395. IEEE Computer Society Press, October 1985.

Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In /4th USENIX sym-
posium on networked systems design and implementation (NSDI
17), pages 259-282, 2017.

Ronald Cramer, Ivan Damgérd, Daniel Escudero, Peter Scholl, and
Chaoping Xing. SPD Z,}: Efficient MPC mod 2k for dishonest
majority. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 769-798.
Springer, Heidelberg, August 2018.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643-662. Springer, Heidelberg, Au-
gust 2012.

Rafael Dowsley, Jorn MULLER-QUADE, Akira Otsuka, Goichiro
Hanaoka, Hideki Imai, and Anderson CA Nascimento. Universally
composable and statistically secure verifiable secret sharing scheme
based on pre-distributed data. IEICE transactions on fundamentals
of electronics, communications and computer sciences, 94(2):725—
734, 2011.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

(34]

Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, Yifan
Song, and Chenkai Weng. Superpack: Dishonest majority mpc
with constant online communication. In Carmit Hazay and Martijn
Stam, editors, Advances in Cryptology — EUROCRYPT 2023, pages
220-250, Cham, 2023. Springer Nature Switzerland.

Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The
round complexity of verifiable secret sharing and secure multicast.
In 33rd ACM STOC, pages 580-589. ACM Press, July 2001.

Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin.
On 2-round secure multiparty computation. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 178-193. Springer,
Heidelberg, August 2002.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game or A completeness theorem for protocols with
honest majority. In Alfred Aho, editor, /9th ACM STOC, pages
218-229. ACM Press, May 1987.

Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string
model. In Alfred Menezes, editor, CRYPTO 2007, volume 4622
of LNCS, pages 323-341. Springer, Heidelberg, August 2007.

Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string
model. Journal of Cryptology, 27(3):506-543, July 2014.

Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor
Weiss. Your reputation’s safe with me: Framing-free distributed
zero-knowledge proofs. TCC 2023. https://eprint.iacr.org/2022/
1523.

Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525-537.
ACM Press, October 2018.

Marcel Keller. MP-SPDZ: A versatile framework for multi-party
computation. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 1575-1590. ACM
Press, November 2020.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
Faster malicious arithmetic secure computation with oblivious
transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 830-842. ACM Press, October 2016.

Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:
Making SPDZ great again. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 158-189. Springer, Heidelberg, April / May 2018.

Matt Lepinski, Silvio Micali, and abhi shelat. Fair-zero knowledge.
In Joe Kilian, editor, 7CC 2005, volume 3378 of LNCS, pages 245—
263. Springer, Heidelberg, February 2005.

Anderson C. A. Nascimento, Jorn Miiller-Quade, Akira Otsuka,
Goichiro Hanaoka, and Hideki Imai. Unconditionally non-
interactive verifiable secret sharing secure against faulty majorities
in the commodity based model. In Markus Jakobsson, Moti Yung,
and Jianying Zhou, editors, ACNS 04, volume 3089 of LNCS, pages
355-368. Springer, Heidelberg, June 2004.

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi,
and Sai Sheshank Burra. A new approach to practical active-secure
two-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 681-700.
Springer, Heidelberg, August 2012.

Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-
toolkit: Efficient MultiParty computation toolkit. https:/github.
com/emp-toolkit, 2016.

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated
garbling and efficient maliciously secure two-party computation.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 21-37. ACM Press,
October / November 2017.

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale
secure multiparty computation. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 39-56. ACM Press, October / November 2017.

412

[35] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In 2021
IEEE Symposium on Security and Privacy, pages 1074—1091. IEEE
Computer Society Press, May 2021.

[36] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quick-
Silver: Efficient and affordable zero-knowledge proofs for circuits
and polynomials over any field. In Giovanni Vigna and Elaine Shi,
editors, ACM CCS 2021, pages 2986-3001. ACM Press, November

2021.

[37] Kang Yang and Xiao Wang. Non-interactive zero-knowledge proofs
to multiple verifiers. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part III, volume 13793 of LNCS, pages 517-

546. Springer, Heidelberg, December 2022.

[38] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC
from improved triple generation and authenticated garbling. In Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,

ACM CCS 2020, pages 1627-1646. ACM Press, November 2020.

Zhelei Zhou, Bingsheng Zhang, Hong-Sheng Zhou, and Kui Ren.
Single-input functionality against a dishonest majority: Practical
and round-optimal. Cryptology ePrint Archive, Paper 2024/305,
2024. https://eprint.iacr.org/2024/305.

[39]

A. Security Proofs

A.1l. Proof of Theorem 2

Theorem 2. Let)~ be the underlying extension field
with p” > n - 2. The protocol Il depicted in Figure 6
UC-realizes the functionality Fsig depicted in Figure 1
with information-theoretical security in the F&g;s-hybrid
world, in the presence of a static malicious adversary

corrupting up to the dealer and (n — 1) verifiers.

Proof. We prove the security of the protocol Ilsr by
showing it is a UC-secure realization of Fgir. We de-
scribe the workflow of the simulator S in the ideal-world
with Fgig, the dummy dealer D and the dummy verifiers
Vi,...,V,, and give a proof that for any adversary A
and any environment Z, the simulation in the ideal-world
EXECxy s,z is statistically indistinguishable from the

Ours

: Prep
real-world execution EXECst, Az

When the dealer is honest. In this case, we denote by Hy
the set of the honest verifiers in the real-world execution
and |Hy| > 1. The simulator S simulates the honest dealer
and the honest verifiers, emulates Fpe, for A, and needs
to simulate the view of A without knowing the secret input
w of the dealer. We describe the strategy of S as follows:

1) S receives (OUTPUT,sid, y;) from Fsjr for each cor-
rupted dummy verifier V.

In the preprocessing phase: For a randomly picked
© € {(ui)iemm)s (@i, bis ci)ieis]}, S emulates FSure
for A and waits for A to send its input. If A sends
ABORT, S simply halts; otherwise, S receives x;, A;
and {K}_, M] }jen)\ (i) from A for each V; ¢ Hy.
After that, S honestly generates the rest of [x] for the
honest parties.

In Round 1 of the online phase, for i-th input wire
where i € [m], S picks wj < F,, as input wire. Then
S acts as the honest dealer to execute the round 1
protocol using the randomly picked {w;};c -

In Round 2 of the online phase, S acts as the honest
verifiers to execute the round 2 protocol honestly,
except that when the malicious V} ¢ Hy want to

2)

3)

4)

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

5)

obtain its output h;, S performs the followings tricks
to make V; believe h; = y;, where y; is the received
output of the dummy V}: Since S acts as the honest
dealer previously, S knows each output share h; ;
held by each malicious verifier V* ¢ Hy. Then S
picks h’ for each honest verifier V € ’HV, such that
Z]stvéth”—kZ]stVeth’ . After that,
S generates the new valid MAC tags {M n } ken\{5}

for each honest verifier V; € Hy (S is able to
do so since S emulates ,Fprep and knows the global
MAC keys for each party). In this way, at the time
of opening the output [h;], S can make V! believe
h; = y;. Notice that, we are dealing with the rushing
adversary A, which means that the adversary A can
delay its messages until it receives the messages from
the honest parties. In other words, the adversary A
can send its messages after S sending its simulated
messages described above. Notice that, S would abort
if the adversary A forges its MAC tags for its new
maliciously generated shares that would make the
honest verifier output a false result.

During the simulation, for each honest verifier V; €
Hy in the real-world execution, if the adversary A at-
tempts to cause it abort, S will send (ABORT, sid, V;)
to FsiF to make the dummy V;; otherwise, S will send
(CONTINUE, sid, V;) to FsiF.

We prove the indistinguishability through the follow-

ing hybrids.

Ouvs

Hybrid Hyb,: Real-world execution EXECH;’:" Az
Hybrid Hyb1 Same as Hyb,,, except that S executes
step 1-3 in the simulation above.

Lemma 4. Hybrid Hyb, is perfectly indistinguishable
Jfrom Hyb.

Proof. Since S emulates Fpre, for A honestly, the
adversary cannot distinguish between hybrid #; and
the ideal world. As for the round 1 of the protocol,
since ; is uniformly random picked, it perfectly hides
the input value w;. Therefore, the adversary A cannot
compute w) to compare it with the real input value
that the environment Z feeds to the honest dummy
dealer D. In a word, hybrid Hyb, is perfectly indistin-
guishable from Hyb,. O
Hybrid Hyb,: Same as Hyb,, except that S executes
step 4-5 in the simulation above.

Lemma 5. Let F,r be the underlying extension field
with p" > n - 2*. Hybrid Hyb, is statistically indis-
tinguishable from Hyb, with adversarial advantage at
most p~".

Proof. The adversary A will find the distinction when
the simulator S aborts, which occurs when A forges
its MAC tags for its new maliciously generated shares
that would make any honest verifier V; outputs h;
that is deviated from the received output y; of the
dummy V,, i.e. h; # y;. By the properties of IT-MACs
which is described in Section 2.4, we know that the
malicious verifiers cannot forge the MAC tags, unless
the malicious verifiers know the global MAC keys of
the honest verifiers, which occurs with probability at
most p~". In conclusion, Hyb, is statistically indis-
tinguishable from Hyb, with adversarial advantage at
most p~". O

413

Hybrid Hyb, is the ideal-world execution EXECx,, s z.
In conclusion, when the dealer is honest, EXEC]—'5|,:7S z

Ours

is statistically indistinguishable from EXEC, v A,z With
adversarial advantage at most p—"

Msie,

When the dealer is malicious. In this case, we also
denote by Hy the set of the honest verifiers in the real-
world execution and [Hy| > 1. The simulator S simulates
the honest verifiers, emulates Fpr., for A, and needs to
extract the secret input w from adversary’s messages. We
describe the simulation strategy of S as follows:

1y

2)

3)

In the preprocessing phase: S prepares the correlated
randomness using the same strategy as in Step 2 in the
previous case.
In the online phase, S simply acts as the honest verifiers
to execute the protocol Ilgr and obtains the result h;
for each honest V; € Hy. S extracts the witness w
as follows. For each input value mask ¢; that A sends,
S recovers the input value w; := ; + u; € Fp; note
that, S emulates Fpye, for A previously, so S knows
;. In this way, S obtains the whole witness w. Then
S computes y := C(w) and aborts if y; # h; for any
V; € Hy. If y; = h; holds for any V; € Hy, S sends
(PROVE, sid, C,w) to Fgsir on behalf of the corrupted
dummy dealer D*.
During the simulation, for each honest verifier V; € Hy
in the real-world execution, if the adversary A attempts
to cause it abort, S will send (ABORT,sid,V;) to
FsiF to make the dummy V;; otherwise, S will send
(CONTINUE, sid, V;) to Fse.

We prove the indistinguishability through the follow-

ing hybrids.

Ours

« Hybrid Hyb,: Real-world execution EXEC Fs"e" Az
« Hybrid Hyb1 Same as Hyb,, except that S executes

step 1-3 in the simulation above.

Lemma 6. Let F),» be the underlying extension field
with p" > n - 2>\ Let C be the circuit with s mul-
tiplication gates. Let n be the number of verifiers.
Hybrid Hy is statistically indistinguishable from H;
with adversarial advantage at most 315;&1

Proof. The adversary A will find the distinction when
the simulator S aborts. Note that, S aborts when
y; # h; for any V; € Hy, where h; is the output
of the honest V; in the real-world execution while y;
is the output of the dummy honest V; in the ideal-
world execution. In the following, we will show that
the probability of S aborting is at most 25+,

First of all, we prove that all the Values on the
wires in the circuit are correct when the verification
checks pass. It is trivial that the values associated with
the input wires and the output wires of the addition
gates are computed correctly. Therefore, we focus the
multiplication gates. Note that, when the malicious
dealer D* cheats in the i-th multiplication gate, i.e.,
produce false 7; and v;. It will be detected due to
the checks performed in step 5 of IlgF, unless the
malicious dealer collude with some malicious verifiers
and the malicious verifiers succeed to forge new MAC
tags. By the properties of IT-"MACs which is described
in Section 2.4, we know that the malicious verifiers
cannot forge the MAC tags, unless the malicious
verifiers know the global MAC keys of the honest

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

verifiers, which occurs with probability at most m%‘.
Since there are two new MAC tags that the malicious
verifiers have to forge in each multiplication gates, and
there are total s multiplication gates in the circuit,
the probability of the adversary .4 cheating in the
multiplication gates without being detected is ‘FZST‘.

Now, we assume that all the values on the wires in the
circuit are correct. If C(w) = y but any honest V; in
the real-world execution output h; # y;, then the ad-
versary A must corrupt some verifiers and forge their
MAC tags when it is the time to open [h;] to V;, so
the adversary A is able to put an influence the output
value h; such that h; # y;. This event would occur
with probability at most \IF;%I In conclusion, hybrid
Hyb, is statistically indistinguishable from Hyb, with

adversarial advantage at most |2]§+1| < 24
- :

Hybrid Hyb, is the ideal-world execution EXECx,. s =.
In conclusion, when the dealer is honest, EXECx,, s =

. . e Fous .
is statistically indistinguishable from EXEC[* , - with
adversarial advantage at most ff;l O

414

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 07,2024 at 16:02:16 UTC from IEEE Xplore. Restrictions apply.

