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1 (i32.load (i32.shl (local.get x) (i32.const 3)))

To lower this code to x86-64, Cranelift must convert 32-bit
Wasm addresses into o�sets from an instance’s base address
in the target machine’s 64-bit address space. This conversion
requires zero-extending the 32-bit Wasm address, computing
the 64-bit address as base+zext(addr) (where addr is the
original 32-bit Wasm address, base is the base address for
the module’s memory region, and zext is a zero-extension).
Unfortunately, the Cranelift instruction selector lowered the
above Wasm code to x86-64 instructions that computed
base+zext(x)<<3 instead of base+zext(x<<3). This mis-
take lets attackers break out of the Wasm sandbox by giving
them access to an extra 3 signi�cant bits of native address

space. In Wasmtime [18], a popular Wasm engine that uses
Cranelift, this allows a guest Wasm instance to silently read
and write memory 6 to 34 GB away from its own sandbox.
Clearly, even simple bugs in instruction selection can create

security vulnerabilities.
Instruction selection is hard to get right because it bridges

the (large) semantic gap between the compiler’s intermedi-
ate representation (IR) and the processor’s instruction set
architecture (ISA).While some instruction-lowering rules are
simple—essentially one-to-one translations from an IR con-
struct to an equivalent ISA instruction—others are not. They
perform complex transformations to eke out instruction-
level performance improvements; account for operators that
exist in either the IR or the ISA—not both; and select di�erent
ISA instructions based on details of IR operations (e.g., their
bit-widths).
To help compiler developers automatically reason about

the correctness of their instruction-lowering rules, we present
Crocus. Crocus veri�es rules written in Cranelift’s ISLE
domain-speci�c language (DSL) for specifying how IR terms
translate to machine code sequences. To use Crocus, de-
velopers annotate their ISLE lowering rules with speci�ca-
tions; Crocus uses a Satis�ability Modulo Theories (SMT)
solver [11] to automatically verify full functional equivalence—
i.e., that a rule translates an IR instruction to a native code
sequence with equivalent semantics. Crocus allows develop-
ers to gradually annotate new rules, and to quickly update
annotations as rules evolve. This modularity is essential be-
cause Cranelift is an evolving production compiler: lowering
rules—and entire backends!—are subject to change. The an-
notation language has been designed in collaboration with
Cranelift engineers, to ensure that annotations can be co-
maintained without undue burden. To our knowledge, our
work with Crocus is the �rst formal veri�cation e�ort for
the instruction-lowering phase of an e�ciency-focused pro-
duction compiler.
In sum, in this paper, we:

1. Create Crocus, a framework for verifying instruction-
lowering rules in the ISLE domain-speci�c language.

2. Verify Cranelift’s implementation of all integer op-
erations in the latest major WebAssembly release—
1.0 [66]—for the ARM aarch64 Instruction Set Archi-
tecture (ISA).

3. Use Crocus to reproduce and detect previously-�xed
bugs (§4.3.3) and vulnerabilities (§4.3.1), including the
example bug from this section.

4. Use Crocus to help Cranelift developers identify (§4.4.1,
§4.4.2) and �x (§4.4.4) new bugs and under-speci�ed
compiler invariants (§4.4.3).

We begin by providing brief background on instruction low-
ering and the ISLE DSL (§2.1). Then, we present Crocus’s
design (§3), and evaluate its results on Cranelift (§4), a pro-
duction Wasm compiler backend. Finally, we discuss plans to
build on Crocus toward increasingly trustworthyWebAssem-
bly compilers (§6).

2 Background

This section provides background for understanding Cro-
cus veri�cation (§3) by describing the instruction lowering
problem (§2.1) and Cranelift’s ISLE domain-speci�c language
(DSL) for writing lowering rules (§2.2). Finally, it introduces
SMT solvers [11], the tools that power the Crocus veri�cation
engine (§2.4).

2.1 Instruction lowering

During instruction lowering, an instruction selector translates
the compiler’s intermediate representation (IR) to machine
instructions. The instruction selector’s job is to search for
a combination of machine instructions that (1) matches the
IR’s semantics and (2) performs well. A single-pass selector
that emits a �xed set of instructions for every IR operator
ful�lls the �rst goal but not the second: it allows transla-
tions of one IR instruction to # machine instructions, but
not more e�cient # -to-" translations. This design, for ex-
ample, precludes compiling a program with addition and
multiplication operations to machine code that uses a fast
multiply-add (madd) instruction.
Most modern instruction selectors do support more gen-

eral # -to-" matching; in fact, a good instruction selector
often embodies a good pattern matcher. It detects arrange-
ments of multiple operators in the IR that can be translated,
together, into machine instructions. In full generality, this is
an NP-hard combinatorial search problem; as a result, most
production compilers use heuristic shortcuts for practicality
(e.g., greedy pattern matching, as in the “maximal munch”
scheme [20]).
More complex ISAs and ISA extensions yield more com-

plex matching strategies. For an extreme example, data move-
ment instructions such as bit-permutation and swizzling vary
widely across ISAs, and lowering of a general permutation
operator sometimes requires a “solver”—or at least a bevy of
heuristic special cases to produce good code [55, 65, 70]. This
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is part of what makes instruction selection (and instruction
selection veri�cation!) interesting: it is not simply the task
of mapping mostly-equivalent operators, like translating IR
addition to the machine’s integer addition instruction. The
most subtle reasoning—and many bugs—occur when there is
a large semantic gap between the IR and ISA, and when pro-
ducing e�cient machine code is a �rst-order priority [53, 75].

Production compilers today use a mix of hand-written and
DSL-based descriptions of their instruction lowering rules:
e.g., LLVM [46] has a 46K-line C++ �le specifying x86-64

lowerings, while the Go compiler uses a term-rewriting DSL
where developers can specify expression-tree patterns [35].
In this paper, we focus on the Cranelift compiler’s lowering
DSL.

2.2 The ISLE lowering DSL

The Cranelift compiler project [17] introduced the ISLE
(Instruction Selection Lowering Expressions) domain-speci�c
language [3, 32, 33] in 2021 in order to replace handwritten
instruction-lowering code with declarative patterns. ISLE
is broadly a term-rewriting system [29, 72]. In the next sec-
tions, we give a brief overview, and then walk through an
example of instruction lowering in ISLE.

2.2.1 ISLE’s term rewriting for lowering. The main
body of a program in ISLE consists of a series of rules. These
rules are written in S-expression syntax and consist of a
left-hand side (LHS) and right-hand side (RHS). The LHS is
a pattern, and can use pattern-matching operators such as
wildcards, variable captures, or destructuring (matching a
term and then feeding its arguments to sub-patterns). The
RHS is an expression consisting of a tree of terms, possibly
using variables captured from the LHS. A rule indicates that
the RHS expression is produced whenever the instruction
selector encounters a term tree matching the LHS.
To express instruction lowering as term rewriting, ISLE

introduces a top-level term lower that takes an expression
tree as its argument. For example, to lower an integer add
operator (iadd) to the add instruction in the ISA (e.g., x86-64
or aarch64), one would write:2

1 (rule (lower (iadd ty x y))

2 (isa_add ty x y))

where iadd is de�ned in Cranelift IR and isa_add is de-
�ned amongst all available machine instructions in the ISA.

ISLE has a strict, static type system that operates on types
de�ned in ISLE (some ofwhich are external, Cranelift-de�ned
types, such as Rust enums for instructions’ opcodes). Nested
terms on both the left- and right-hand sides must typecheck
(i.e., with return and argument values aligned). In addition,
the left- and right-hand side of a rule must have the same
type.

2Slightly simpli�ed for clarity; real rules di�erentiate on the values’ types.

Because of the type system’s restrictions, Cranelift ex-
presses all lowerings as rewrites from (lower (IR_term

...)) to term trees representing machine code expressions,
potentially passing throughmultiple intermediate terms. The
term lower is necessary because the LHS and RHS of a rule
must have the same type—but top-level LHS patterns return
IR Insts, while top-level RHS expressions return machine
Registers. The term lower, with type signature (decl lower

(Inst) Reg),3 does the Inst to Register conversion that
allows lowerings rules to type check by giving the LHS and
RHS the same type.
Finally, ISLE’s type system supports automatic type con-

versions. In the iadd example, such conversions apply to x

and y, which are variables of type Value bound by the left-
hand side of the rule. The RHS, in contrast, operates on x

and y Registers. To reconcile these incompatible types, the
ISLE compiler automatically inserts type conversions if a
conversion rule has already been speci�ed for a pair of types.
In this case, ISLE wraps the latter uses of x and y with the
user-de�ned term put_in_reg, which converts Values to
Regs.4

2.3 ISLE by example: lowering rotations

In this section, we walk through Cranelift’s lowerings for
a few speci�c instructions; this sets us up to verify such
lowerings in the next section (§3).
Consider the Wasm rotl and rotr (“rotate”) binary nu-

meric instructions, which shift the bits of a value left or
right with wraparound. Cranelift has corresponding rotl

and rotr IR operations. The ARM aarch64 ISA has a single
implementation of rotate—ROR—which has a corresponding
ISLE term named a64_rotr that includes an additional pa-
rameter to specify the 64-bit or 32-bit variants of the instruc-
tion.
A simple attempt at lowering rotr instructions to the

ARM aarch64 backend might look like this:

1 (rule

2 (lower (rotr x y))

3 (a64_rotr I64 x y))

This rule lowers to the 64-bit variant (I64) of a64_rotr. It
works properly for 64-bit values, but not for narrower values
(e.g., 32-bit or 8-bit values). This is because Cranelift operates
on narrow values ofF bits by placing them in 64-bit registers
but considering only their lowestF bits to be meaningful. To
see how the above rule is broken for 8-bit values, imagine it
matching in a situation where x is #b00000001. Placing this
value in a 64-bit register and attempting to right-shift it by
one moves the right-most 1 bit to the highest bit of 64—which
does not produce the expected result of #b10000000 as the
lowest eight bits!
Cranelift must instead special-case on narrow values:

3We elide an indirection via another type for clarity.
4We describe the semantics of put_in_reg in §3.1.2.
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1 (rule

2 (lower (has_type (fits_in_16 ty)

3 (rotr x y)))

4 (small_rotr ty (zext32 x) y))

This rule uses external helper terms has_type and fits_in_16
to predicate that this rule matches only on narrow types; if
the number of bits (ty) is larger than 16 bits, the rule will not
match. The helper terms are de�ned externally from ISLE,
in Rust code that returns the value’s type (has_type) and
checks the type against the integer sixteen (fits_in_16),
respectively. This rule also abstracts over types (lowering
the burden on the compiler engineer): the rule binds a new
variable, ty, to the type of the return value of rotr, and
passes ty through as an argument to the right-hand side.

This rotate rule does not rewrite all the way to a machine
code term: instead, it uses an intermediate term, small_rotr.
small_rotr only ever exists in ISLE—not in the resulting
machine code—and is an intermediate step along the path to
a �nal machine code representation. Intermediate terms like
small_rotr let developers share logic across many di�erent
rules. As one example, Cranelift’s rotl (rotate left) rule for
narrow inputs also uses the small_rotr term. The compiler
uses a small_rotr with a negated rotate amount because
AArch64 does not have a distinct rotate left instruction:

1 (rule

2 (lower (has_type (fits_in_16 ty)

3 (rotl x y)))

4 (let ((neg_y Reg (a64_sub I32 (zero) y)))

5 (small_rotr ty (zext32 x) neg_y)))

This rule is the same as the previous one with two additions.
First, it uses a let clause to include another ISA instruction:
an AArch64 a64_sub subtraction instruction, negating the
value y by computing 0−y. Second, the rule wraps x on the
right-hand side with a call to zext32, which zero-extends
(that is, left-pads with zeros) the value of x up to 32 bits.
Finally, to lower small_rotr to ISA-level operations, the
Cranelift ISLE rules specify that narrow rotates can be com-
posed of aarch64-native left shift and right shift instructions
(not pictured). Thus, these ISLE rules lower a single IR in-
struction to multiple machine code instructions (a64_sub
followed by shift and bitwise or instructions).

2.4 Satis�ability Modulo Theories (SMT)

To verify lowering rules written in ISLE, Crocus uses an SMT
solver [28]. SMT solvers are tools that determine whether
logical formulas are satis�able for some assignment of values
to all variables in the formula. Unlike SAT formulas [56],
SMT formulas allow users to express higher-level statements
(e.g., “x < y[2]”) using a rich set of operators and types
(e.g., integers and arrays) that are de�ned in the SMT-LIB
standard [11]. Crocus lowers ISLE rules to SMT formulas in
the theory of bitvectors and integers; we discuss this further
in the next section.

3 Crocus Design

Crocus is a framework for verifying rewrite rules in the ISLE
domain-speci�c language for instruction selection. Crocus
uses an SMT solver [28] to show functional equivalence of
the left- and right-hand sides of individual rules.5 An equiv-
alent left and right side mean that the rule has preserved
IR semantics at the machine-code level; a di�ering left and
right side indicate a bug in the lowering.

The initial version of Crocus supports pure functions that
model computations on SSA-style values. This is in part
because Cranelift’s instruction selection pass comes before
register allocation, so it operates primarily on abstract, im-
mutable SSA values rather than on concrete, mutable ma-
chine registers (see Section 3). In practice, Crocus is able to
�nd nuanced bugs and raise the level of assurance in critical
code even with this restriction (see Section 4).

To verify lowering rules, compiler developers write anno-
tations on ISLE terms in Crocus’s annotation language (§3.1).
This language makes it simple to express term semantics
(e.g., that fits_in_16 means that a type can losslessly be
represented with 16 bits). Crocus consumes ISLE’s program
representation for rules, combines this with the compiled
annotations to create its own intermediate representation,
and performs type inference and monomorphization (§3.1.3).
Type inference is necessary for Crocus to lower its IR to an
SMT formula, a logical formula that asks whether a rule’s
right and left-hand sides are equivalent. Finally, Crocus feeds
the resulting formula into the SMT solver. If the right and
left-hand sides of a rule di�er, the solver returns a counter-
example showing a set of inputs that cause the divergence;
otherwise, the rule is veri�ed.
The annotation language has been designed in collabo-

ration with Cranelift engineers so that it �ts well into the
ISLE ecosystem and can be co-maintained with the lowering
rules. This constraint led us to co-locate annotations in the
main ISLE source �les. The choice of an annotation language

(instead of �xed semantics for a speci�c set of operators) is
motivated by how engineers use ISLE—supporting new ISA
instructions and backends often requires de�ning new exter-
nal helper terms that are not formally de�ned within either
the IR or ISA. These decisions make it more feasible for pro-
duction compiler engineers to engage with the veri�cation
e�ort.

In this section, we walk through the veri�cation pipeline,
from Crocus’s annotation language (§3.1) to how it con-
structs and customizes veri�cation conditions (§3.2).

3.1 The annotation language

It is impossible to verify functional correctness without pre-
cise semantics on terms within ISLE. While there are formal

5Though Crocus supports more general custom veri�cation conditions, as

we will describe later in this section.
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semantics for parts of certain ISAs (e.g., ARM [4] and In-
tel [27]), there are no semantics for Cranelift’s intermediate
representation—or for ISLE helper terms (e.g., has_type) and
intermediate terms (e.g., small_rotr). The challenge in spec-
ifying these semantics is that production compilers are living
software: engineers change rules, add rules, and occasionally
add entire new back-ends. To support modular veri�cation
of an evolving codebase, Crocus introduces an annotation
language that allows rule authors to de�ne speci�cations as
they go, introducing a term’s semantics inline, next to the
term itself.

For example, consider our Crocus annotation on the helper
term fits_in_16:6

1 (spec (fits_in_16 arg)

2 (provide (= result arg))

3 (require (<= arg 16)))

4 (decl fits_in_16 (Type) Type)

This speci�cation says that fits_in_16 is a partial iden-
tity function on the argument type Type—that is, for the
arguments on which fits_in_16 is de�ned, it returns the
argument itself. The function is speci�ed by the provide

clause (= result arg), which sets the return value equal
to the �rst argument; both variables are bound in the spec
signature. require clauses specify a preconditions on the
term. This precondition speci�es that the rule is a partial
function predicated on (<= arg 16)—the fact that the argu-
ment, which Crocus maps to the SMT-LIB theory of integers,
is less than or equal to 16. In ISLE, partial functions are used
to determine whether a rule matches: if any term on the
left-hand side is unde�ned, the rule does not match. In sum,
these three lines of speci�cation are enough to describe the
semantics of fits_in_16: it is a partial identity function that
returns the type argument arg, which matches if arg is a
type of less than or equal to 16 bits.

3.1.1 The annotation language grammar and seman-

tics. Figure 1 shows the Crocus annotation language gram-
mar. Figure 2 provides judgements that specify the typing
and semantics of Crocus’s annotation language. Most opera-
tions in the annotation grammar map directly to SMT-LIB
constructions. For example, + applied to a bitvector maps
to SMT-LIB’s bvadd bitvector addition function. Crocus pro-
vides a special result keyword expression which models
the value produced by the annotated term.
Crocus adds conveniences like switch and a variadic

concat operation, both of which desugar to folding SMT-
LIB’s �xed-argument ite (if-then-else) and concat (bitvec-
tor concatenation) operators. switch also adds a veri�ca-
tion condition that enforces that its branches are exhaustive,
which has helped surface faulty annotations.

Crocus provides constructs for introspecting on and mod-
ifying bitvector widths. widthof returns the width—often

6ISLE terms and speci�cation syntax lightly edited for clarity and brevity.

⟨annot⟩ ::= (spec ⟨sig⟩ (provide{⟨expr⟩}) [(require{⟨expr⟩})])

⟨sig⟩ ::= (⟨termname⟩ ⟨args⟩)

⟨termname⟩ ::= ⟨ident⟩

⟨args⟩ ::= {⟨bound⟩}

⟨bound⟩ ::= (⟨ident⟩ : ⟨type⟩) | ⟨ident⟩

⟨type⟩ ::= bv | bv ⟨int⟩ | Int | Bool

⟨width⟩ ::= ⟨int⟩ | ⟨expr⟩

⟨const⟩ ::= true | false | ⟨int⟩ | ⟨bitvector⟩

⟨expr⟩ ::= result | ⟨ident⟩ | ⟨const⟩ | (⟨encoding⟩ {⟨expr⟩})

| (⟨unop⟩ ⟨expr⟩) | (⟨binop⟩ ⟨expr⟩ ⟨expr⟩)

| (⟨conv⟩ ⟨width⟩ ⟨expr⟩) | (extract ⟨int⟩ ⟨int⟩ ⟨expr⟩)

| (int2bv ⟨width⟩ ⟨expr⟩) | (bv2int ⟨expr⟩) | (widthof ⟨expr⟩)

| (concat {⟨expr⟩}) | (if ⟨expr⟩ ⟨expr⟩ ⟨expr⟩)

| (switch ⟨expr⟩ {(⟨expr⟩ ⟨expr⟩)})

⟨unop⟩ ::= ! | ~ | -

⟨binop⟩ ::= = | != | >= | <= | < | > | sgt | sgte | slt | slte | ugt

| ugte | ult | ulte | + | - | * | sdiv | udiv | srem | urem | & | |

| xor | sdiv | rotl | rotr | shl | shr | ashr

⟨conv⟩ ::= signext| zeroext | convto

⟨encoding⟩ ::= cls | clz | rev | subs | popcnt

Figure 1. Crocus’s annotation language, which combines SMT-

LIB constructs with Crocus-speci�c constructs (e.g., convto and

widthof), conveniences such as switch, and custom encodings

such as cls (count leading sign). Figure 2 provides the semantics

for key terms in this annotation language.

only known directly at solving time (§3.2)—of a given bitvec-
tor value. convto changes thewidth of its bitvector argument
based on the �rst, integer argument.

Crocus also provides higher-level versions of SMT-LIB con-
structs. For example, SMT-LIB rotates must have statically-
provided widths; Crocus instead o�ers symbolic rotates,
which it implements with shift and bitvector logic instruc-
tions. Finally, Crocus includes keywords that map to custom
encodings in its backend: (1) cls and clz, which count the
number of leading sign and zero bits, respectively (§4.3.3),
(2) rev, which reverses the order of bits, (3) subs, which per-
forms subtraction-with-�ags, and (4) popcnt, which counts
the number of 1 bits.
provide blocks specify the semantics of a term, typically

by relating the returned value bound in the speci�cation
to one or more of the arguments. require blocks specify
preconditions, which are assumedwhen a term is used on the
left-hand side of a rule but checked—that is, veri�ed to hold—
when a term is used on the right-hand side of a rule. This is
analogous to more traditional Hoare-style veri�cation [9, 38],
where function preconditions may be assumed within the
body of a function but must be checked at function call site.

For example, small_rotr requires that the amount being
rotated has been zero-extended from the narrow starting
width to the full 64 bits of the register. This can be speci�ed
as:
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Convto-Same

Γ ⊢ 41 : �=C ⇝ # Γ ⊢ 42 : 1E (# ) ⇝ 4 ′2

Γ ⊢ (convto 41 42) : 1E (# ) ⇝ 4 ′2

Convto-Narrow

Γ ⊢ 41 : �=C ⇝ # Γ ⊢ 42 : 1E (") ⇝ 4 ′2 # < "

Γ ⊢ (convto 41 42) : 1E (# ) ⇝ (extract (# − 1) 0 4
′
2)

Convto-Wide

Γ ⊢ 41 : �=C ⇝ # Γ ⊢ 42 : 1E (") ⇝ 4 ′2 # > " 4 ′3 = (declare-fun fresh (_BitVec # −")); fresh

Γ ⊢ (convto 41 42) : 1E (# ) ⇝ (concat 4
′
3 4
′
2)

Concat

Γ ⊢ 41 : 1E (#1) ⇝ 4 ′1 . . . Γ ⊢ 4= : 1E (#=) ⇝ 4 ′
=

Γ ⊢ (concat 41 . . . 4=) : 1E (Σ#1 . . . #=) ⇝ (concat 4
′
1 (concat 4

′
2 (concat . . . 4

′
#
)))

Width-Of

Γ ⊢ 4 : 1E (# ) ⇝ 4 ′

Γ ⊢ (widthof 4) : �=C ⇝ #

Int2BV

Γ ⊢ 4 : �=C ⇝ 4 ′

Γ ⊢ (int2bv # 4) : 1E (# ) ⇝ (nat2bv # 4 ′)

ZeroExt

Γ ⊢ 41 : �=C ⇝ ⟨", �41
⟩ Γ ⊢ 42 : 1E (# ) ⇝ ⟨4

′
2, �42

⟩

Γ ⊢ (zeroext 41 42) : 1E (") ⇝ ⟨((_ zero_extend (" − # )) 4 ′2), �41
∪�42

∪ {# < "}⟩

SignExt

Γ ⊢ 41 : �=C ⇝ ⟨", �41
⟩ Γ ⊢ 42 : 1E (# ) ⇝ ⟨4

′
2, �42

⟩

Γ ⊢ (signext 41 42) : 1E (") ⇝ ⟨((_ sign_extend (" − # )) 4 ′2), �41
∪�42

∪ {# < "}⟩

Rotl

Γ ⊢ 41 : 1E (# ) ⇝ 4 ′1 Γ ⊢ 42 : 1E (# ) ⇝ 4 ′2 4 ′3 = (bvurem 4
′
2 (nat2bv # # ))

Γ ⊢ (rotl 41 42) : 1E (# ) ⇝ (bvor (bvshl 4
′
1 4
′
3) (bvlshr 4

′
1 (bvsub (nat2bv # # ) 4 ′3)))

Rotr

Γ ⊢ 41 : 1E (# ) ⇝ 4 ′1 Γ ⊢ 42 : 1E (# ) ⇝ 4 ′2 4 ′3 = (bvurem 4
′
2 (nat2bv # # ))

Γ ⊢ (rotr 41 42) : 1E (# ) ⇝ (bvor (bvlshr 4
′
1 4
′
3) (bvshl 4

′
1 (bvsub (nat2bv # # ) 4 ′3)))

Switch

Γ ⊢ 2 : C1 ⇝ ⟨2
′, �2⟩

Γ ⊢<1 : C1 ⇝ ⟨<
′
1, �<1

⟩ . . . Γ ⊢<= : C1 ⇝ ⟨<
′
=
, �<=

⟩ Γ ⊢ 41 : C2 ⇝ ⟨4
′
1, �41

⟩ . . . Γ ⊢ 4= : C2 ⇝ ⟨4
′
=
, �4=

⟩

Γ ⊢ (switch 2 (<1 41) . . . (<= 4=)) : C2 ⇝ ⟨(ite (= 2 ′ <′1) 4
′
1 (ite (= 2 ′ <′2) 4

′
2 (ite . . . 4 ′

=
))),

�2 ∪�<1
. . . �<=

∪�41
. . . �4=

∪ (bvor (= 2 ′ <′1) (bvor (= 2 ′ <′2) . . . (= 2 ′ <′
=
)))⟩

48 , 28 ,<8 ∈ expr 4 ′
8
, 2 ′

8
,<′

8
∈ QF_BV ∪ INTS ", # ∈ N

Figure 2. Typing and elaboration judgements for key terms in Crocus’s annotation language. Judgements take the form Γ ⊢ 4 : C ⇝ ⟨4 ′, �⟩,

where Γ is the typing context, 4 is an expression (<expr> in the grammar given in Figure 1), C is a type (<type>), 4 ′ is the expression’s

translation into the SMT-LIB theories of bitvectors (QF_BV) and integers (INTS), and � is a set of additional assertions that we add to

the veri�cation conditions. We elide the second component of the tuple when the assertions are solely the union of the assertions on

the expression’s subterms—that is, we write the shorthand judgement as Γ ⊢ (5 41 . . . 4=) : C ⇝ 4 ′ in place of the full judgement

Γ ⊢ (5 41 . . . 4=) : C ⇝ ⟨4
′, �41

∪�42
. . . �4=

⟩.

1 (require (switch ty

2 (8 (= (extract 63 8 x) (0:bv)))

3 (16 (= (extract 63 16 x) (0:bv)))))

This require clause speci�es that the type ty is 8 or 16,
and that the relevant bits beyond index ty have been zero-
extended. This must be proven true for a term that uses

small_rotr on the right-hand side, but is assumed true for
terms that rewrite from a small_rotr on the left-hand side.

3.1.2 The annotation language type system. Types in
Crocus are integers, booleans, and bitvectors. The Crocus an-
notation language must support polymorphism over bitvec-
tor widths, since most of Cranelift’s ISLE rules operation on
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its Value type, which is polymorphic over integer values in
the Cranelift intermediate representation. (§2.2).
For example, during preprocessing, ISLE automatically

inserts put_in_reg to implicitly convert Cranelift IR Value

s to machine code Regs—and because Values vary in width,
Crocus’s annotation language must provide a polymorphic
type signature to put_in_reg. In other words, put_in_reg
must reconcile the potentially narrow Value with the 64-
bit Reg. Crocus’s put_in_reg annotation uses convto to
reinterpret the polymorphic bitwidth of the argument as 64
bits:

1 (spec (put_in_reg arg)

2 (provide (= result (convto 64 arg))))

3 (decl put_in_reg (Value) Reg)

3.1.3 Type inference and monomorphization. The an-
notation language supports polymorphism over bitvector
types, but its target representation does not: all bitvector op-
erations in SMT-LIB operate on �xed-width bitvectors [60].
Therefore, Crocus must transform its high-level intermediate
representation, which allows polymorphic bitvector types,
into several SMT formulas, each over a di�erent set of bitvec-
tor widths. Crocus uses two passes of type inference to fully
resolve all bitvector widths and to monomorphize from each
rule into a set of SMT formulas, each with a speci�c concrete
type.
For each rule, we provide a set of possible type instantia-

tions for the root left-hand side term (that is, a set of possible
types for the argument and return values, based on Cranelift
semantics). For example, for a simple Cranelift IR type such
as iadd, the set of type instantiations is:

{(C, C) → C | C ∈ {88, 816, 832, 864}}

For a more complicated term that involves modifying the
Cranelift IR width of the input and output, we consider a
wider set of instantiations. For example, for extending values,
we consider multiple output types per argument type:

{(B) → 3 | B, 3 ∈ {88, 816, 832, 864}, 3 ≥ B}

Crocus then runs the two passes of type inference and
monomorphize for each type instantiation of a given rule.
The �rst inference pass produces an assignment of SMT types
(int, boolean, bitvector) for each variable in a term or its spec-
i�cation given the speci�c type instantiation. The �rst pass is
also able to resolve some bitvector widths to concrete widths
(e.g., bv32) using an implementation of uni�cation-based
type inference. However, in some cases (such as rules that
use intermediate terms on the LHS), the �rst pass is unable
to resolve all bitvector widths. In that case, we run a second,
solver-based type inference pass to iteratively resolve all pos-
sible assignments of widths to bitvectors. Figure 3 provides
high-level psuedocode for Crocus’s combined type inference
algorithm.

1 fn monomorphize ():

2 for ty_instantiation in ty_instantiations:

3 G ← ty_instantiation

4 // Unification -based type inference

5 G ← type_inference_pass_1(G)

6 // Solver -based type inference

7 type_set ← type_inference_pass_2(G)

8 if type_set.empty():

9 return InapplicableRule;

10 return run_correctness_queries(type_set)

11

12 fn type_inference_pass_1(G):

13 // Classic unification , omitted for brevity

14

15 fn type_inference_pass_2(G):

16 type_set ← initialize_with(G)

17 if undetermined bitvector types ts:

18 solver ← initialize_solver(G)

19 type_set ← resolve_unknown_tys(solver , ts)

20 return type_set

21

22 fn resolve_unknown_tys(solver , ts):

23 // Solve for undetermined bitvector types

24 match solver.check_sat ():

25 SAT =>

26 new_types = resolved_types(solver.model())

27 // Check whether another model with some

28 // distinct type is possible

29 solver.assert(or_many(new_types.map(

30 |(ty_var , concrete)|

31 not(eq(ty_var , concrete)))))

32 return [new_types]

33 + resolve_unknown_tys(solver , ts)

34 UNSAT => return []

35 UNKNOWN => ERROR()

Figure 3. High-level algorithm for Crocus’s monomorphization

and type inference, which produce a set of precisely-typed formulas

for each potentially-polymorphic rule. type_inference_pass_1

has a standard uni�cation-based implementation that we omit here.

First pass. The �rst pass Crocus runs is a variant of classic
uni�cation-based type inference [54] in order to rule out type
errors between annotations. This �rst pass yields an SMT
type (kind)—either an integer, boolean, or bitvector—for each
variable in both the speci�cation and the term it describes.

Crocus is not always able to resolve precise bitvector types
via the �rst uni�cation pass because types in ISLE are poly-
morphic at the time ISLE generates Rust for code generation
(e.g., the type Value does not have a speci�c width when
ISLE is being processed). For example, the width of the value
of small_rotr depends on the value of an argument passed
in, ty. Thus, Crocus �nishes resolving all bitwidths in a sec-
ond typing pass when necessary.

Second pass. During the second type inference pass, Cro-
cus uses an SMT solver to resolve unknown bitvector widths.
This pass takes terms and their speci�cations as input, along
with the types that the �rst inference pass resolved. It models
bitvectors as an over-approximation of their width (i.e., with
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bitwidth 64) and uses integer SMT variables to model the
widths of each subexpression.

Most terms on the right-hand side of Cranelift’s ISLE rules
operate on types modeling registers, instead of values in the
intermediate representation. Cranelift’s invariant for narrow
types placed in registers is that low bits are de�ned and high
bits are unde�ned, so we encode registers as 64-bit bitvectors
with potentially-unspeci�ed high bits.

For most rules, this second pass produces a single possible
type assignment. For some rules, there aremultiple valid type
assignments. We iteratively call the SMT solver to check if
there are multiple distinct type assignments that are possible
for a given rule and type instantiation (lines 15-20 of Figure 3),
similar to counter-example guided inductive synthesis [1].

3.2 Generating veri�cation conditions

Once Crocus has run type inference andmonomorphization—
yielding one or more precisely-typed rule representations—it
lowers those representations to sets of SMT formulas that
expresses equivalence of the right and left-hand sides of a
lowering rule. While the left-hand side of a rule frequently
has a narrow width, such a 32 bits, the right-hand side typi-
cally has the full register width of 64 bits. In discussion with
Cranelift engineers, we learned that Cranelift’s intended in-
variant is that the low bits of a register corresponding to a
given type must match the computed value, while the higher
bits (outside the value’s type) are unspeci�ed. Thus, Crocus’s
correctness check performs an equality comparison by com-
paring any narrow values (typically on the LHS) with an
extraction of the same number of low bits on register-width
values (typically on the RHS).

At a high level, when Crocus performs a correctness check,
there are three possible outcomes:

1. Success: the rule is veri�ed.
2. Failure with counterexample: the rule is broken,

and the solver provides a set of inputs that exposes the
bug, formatted in ISLE surface syntax.

3. Rule inapplicable: for the given type instantiation,
the rule does not match. This indicates that the rule
contains predicates on the left-hand side—or guarded
if/if-let clauses (see §4.4.4)—such that the rule never
matches on this type instantiation.

To produce these 3 outcomes, Crocus uses (at least) two SMT
queries. The �rst query determines if the rule is applica-
ble by querying the solver to see if there exists a model in
which all the necessary preconditions hold; if not, Crocus
produces a Rule inapplicable result. The second query de-
termines whether the lowering rule preserves equivalence;
if so, Success, and if not, Failure with counterexample.

For each query, Crocus’s formula for a given rule combines
the semantics and preconditions of Cranelift IR terms, ISA
terms, and external and intermediate terms—all provided
by annotations—with the semantics of the ISLE language

itself (e.g., if-let and other language constructs). Crocus
combines semantics across term annotations via a recursive
descent over the rule’s RHS and LHS, equating corresponding
arguments and return values.

3.2.1 The �rst query: applicability. Let 80 . . . 8=−1 be in-
put variables in the LHS of a rule, �!�( be the set of SMT
variables generated by the recursive descent on the LHS (and
analogously RHS), %!�( and '!�( be the set of provide and
require predicates in all annotations on the LHS (and anal-
ogously RHS). A rule is applicable if there are some inputs
such that the LHS and RHS are both de�ned:

∃{80, . . . , 8=−1} ∪ �
!�( ∪ �'�( |%!�( ∧ '!�( ∧ %'�( (1)

Recall that this query does not ask about equivalence; it asks
whether the rule applies at all, to at least one input. Including
the RHS SMT variables (�'�( ) and provide expressions
(%'�( ) in this initial query helps catch overly restrictive
annotations. For instance, a vacuously false assertion in a
provide annotation on the RHS should make the rule fail
the applicability check (otherwise, the next step would be
unable to �nd any counterexamples—because in �rst order
logic, false implies anything). Including %'�( in the query
makes such a rule fail at the applicability check.

The optional model distinctness check. The applicabil-
ity check succeeds as long as at least one assignment of input
terms is applicable—even if there is just one set of applicable
inputs. Crocus implements an optional check that looks for
distinct input sets (i.e., checks that multiple SMT models are
feasible in which every bitvector input term is distinct). Cro-
cus creates a formula that asserts that each bitvector input
di�ers from the one in the original model; if the query is
unsatis�able, there is only one set of matching inputs. This
check identi�ed a previously unknown bug where an ISLE
rule never �red in practice (§4.4.2).

3.2.2 The second query: equivalence. If the �rst query
succeeds, Crocus constructs another SMT query to determine

equivalence. Let A4BD;C!�( be the value returned by the out-

ermost LHS term and A4BD;C'�( be the value returned by
the outermost RHS term. A rule is correct if assuming (i) the
semantics of the LHS and RHS terms and (ii) preconditions of
the LHS implies (i) the equivalence of the LHS and (possibly
extracted low bits from) the RHS and (ii) preconditions on
the RHS terms:

∀{80, . . . , 8=−1} ∪�
!�( ∪�'�( |

(%!�( ∧ '!�( ∧ %'�( ) ⇒

(A4BD;C!�(
= A4BD;C'�( ) ∧ ''�( (2)

To convert this statement to an SMT query, Crocus uses
the standard technique of asking the solver if there are coun-
terexample inputs such that the veri�cation conditions do
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Total Success Timeout Inapplicable Failure

Rules 98 86 (all types) / 93 (any type) 10 (any type) / 5 (all types) N/A 2 (0)

Type Instantiations 377 245 28 104 4 (0)

Table 1. Veri�cation results for rules and type instantiations (because rules match on multiple possible types, potentially with di�erent

veri�cation results) for integer operations from WebAssembly 1.0 to ARM aarch64. Note that the failures all succeed with custom (rather

than bitvector equivalence) veri�cation conditions.

Q1 Can Crocus be applied to a meaningful set of ISLE
rules?

Q2 For test and benchmark suites for WebAssembly and
Rust, what proportion of invoked ISLE rules has Cro-
cus veri�ed?

Q3 Can Crocus reproduce prior, known Cranelift bugs?
Q4 Can Crocus help identify and �x new bugs?

We answerQ1 by verifying a natural subset of rules, those
necessary to compile (to aarch64) integer computations in
the latest major release of WebAssembly (“1.0” [66]). Crocus
has preliminary support for some x86-64 instructions (see
Section 4.3.1). Section 4.2 addresses Q2—we �nd that the
rules we verify comprise 19.8% of the lowering rules invoked
by the WebAssembly reference test suite.

To answerQ3, we choose two previously-discovered CVEs
in ISLE rules (out of 14 Wasmtime CVEs at the time of sub-
mission, 10 of which do not involve ISLE); we also select
an ISLE bug that was not assigned a CVE because it a�ects
non-Wasm types. We annotate the buggy rules and present
the counterexamples Crocus produces in Section 4.3.
Finally, in Section 4.4 we address Q4, outlining 2 new

faults (both patched) that Crocus discovered, Crocus uncov-
ering imprecise semantics, and 1 compiler mid-end bug that
Crocus helped root-cause and patch. These case studies high-
light that instruction-lowering rules are error-prone even
for experienced compiler engineers: many of the issues were
subtle interactions between constants, sign- and zero- exten-
sions, and tricky bitwidth-speci�c reasoning. Moreover, to
our knowledge, no new bugs have been discovered by any
other means (e.g., any Cranelift fuzzers [6]) in rules veri�ed
by Crocus.

4.1 Is Crocus applicable to real rules?

We use Crocus to verify the instruction-lowering rules for
all integer operations10 from WebAssembly’s 1.0 release to
the ARM aarch64 backend. In addition, we verify most of
the new integer operations in WebAssembly’s 2.0 version,
which is currently in draft status [67]. We choose these rules
because WebAssembly uses integers for addressing compu-
tations, which means that logical issues in integer codegen
most directly would lead to serious security vulnerabilities.
We verify aarch64 rules because this backend is less well-
tested than x86-64. The AArch64 backend rules we do not

10All operations de�ned under section “4.3.2 Integer Operations” of the

WebAssembly Speci�cation Release, 1.0

verify fall into four categories: (1) i128 types; (2) �oating
point; (3) SIMD (vector) instructions; and (4) side e�ects and
control �ow. We discuss further in Section 6.

Veri�cation requires 136 total annotations (approximately
1000 LOC). For some ISA terms, wemodify or cross-reference
formal semantics from SAIL-ISLA [4, 5], a symbolic execu-
tion engine for ISAs. For Cranelift IR and external Rust terms,
we refer to WebAssembly’s speci�cation, Cranelift documen-
tation, and the external Rust de�nitions.

In total, our veri�cation e�ort covers 98 distinct rules with
377 type invocations, since each rule is tested against 1 to 10
possible type assignments. For most rules, we consider all
Cranelift-supported integers up to 64 bits (i.e., i8, i16, i32,
and i64), though we note that WebAssembly 1.0 only sup-
ports 32-bit and 64-bit integers. rustc_codegen_cranelift,
an alternative backend for the Rust language, uses the nar-
rower types Crocus supports [10, 58].

Table 1 shows the veri�cation results for all 377 total type
invocations. Recall that the six veri�cation failures do not
represent real bugs, since the context in which they are used
does not require bitvector equivalence. With custom veri�-
cation conditions, these rules verify successfully. 349 of the
377 invocations complete together within 5 minutes on a lap-
top.11 The 10 rules that time out on some type instantiations
contain multiplication, division, remainder, and popcnt op-
erations on bitvectors, which are di�cult for SMT solvers
to reason about for wider widths [40].12 Each of these rules
fails with a counterexample within 10 seconds if we inject
a �aw in the rule logic. Figure 4 presents the cumulative
distribution function of veri�cation times for each rule run
in isolation as a Rust unit test (including the time for Rust
test initialization).

4.2 What proportion of invoked rules has Crocus

veri�ed?

We instrument Cranelift to determine what proportion of
invoked ISLE rules Crocus has veri�ed. 13 For theWebAssem-
bly reference test suite, Crocus veri�es 19.8% (50/253) of
the unique ISLE rules used during compilation. (We use a
version of the WebAssembly speci�cation’s test suite that

11We run experiments on a MacBook Pro Apple M2 Max, 12-core CPU,

32GB RAM, macOS 13.2.1.
12Timed out after 6 hours.
13The coverage numbers are based on a slighter earlier version of Cro-

cus forked at Wasmtime/Cranelift’s commit 9556cb190fd7b76c, where we

implemented basic tracing logic.
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corresponds to the language features in Wasm 1.0, which no-
tably excludes SIMD instructions.) To assess our coverage on
integer types narrower than those that Wasm supports, we
repeat this experiment on the rustc_codegen_cranelift
test suite, an alternative backend for the Rust compiler that
uses Cranelift as its code generator [10, 58]. Veri�ed rules
make up 15.8% (24/152) of the unique ISLE rules used during
compilation. These numbers will grow as we enhance Crocus
to additional memory operations and �oating point (§6).

4.3 Can Crocus detect known bugs?

To answer our third question, we use Crocus to detect three
known, recent Cranelift bugs. We select these bugs for their
severity and because they occur in ISLE rules in scope for
the current version of Crocus.

4.3.1 x86-64 addressing mode CVE (9.9/10 severity).

In under one second on a laptop, Crocus detects a previously-
discovered 2023 CVE in Cranelift’s x86-64 instruction lower-
ing that permitted a WebAssembly sandbox escape (§1) [25].
Crocus’s reproduction requires 13 new annotations to sup-
port terms in the x86-64 backend, which we had not previ-
ously covered (§4.1).
The bug appeared in this ISLE rule:14

1 (rule

2 (amode_add (Amode.ImmReg off base)

3 (uextend (ishl x

4 (iconst shft))))

5 (if (u32_lteq (u8_as_u32 shft) 3))

6 (Amode.ImmRegRegShift off base

7 (extend_reg x I64 (Extend.Zero)) shft))

This rule intends to take advantage of an x86-64 addressing
mode that allows shifts to be computedwithin the instruction
itself, before adding together address components. However,
the core problem with this rule (§1) is that the LHS performs
a shift on a 32-bit value (throwing away any bits that are
shifted left beyond 32 bits), while the RHS performs the shift
on a 64-bit value (throwing away bits shifted left beyond
64 bits), which lets the emitted shift modify bits beyond
WebAssembly’s e�ective address space.

To see how the problem manifests, we will walk through
the rule. The outermost LHS term, amode_add, is an interme-
diate term that earlier rules construct to model memory ad-
dress computations thatmay be able to be folded into address-
ing modes. The second argument of the match, (uextend
...), is a Cranelift IR value that is a zero-extended shift oper-
ation (ishl) with a statically known, constant shift amount
(shft). Conceptually, this corresponds to Wasm of the form:
(i64.extend_i32_u (i32.shl <x> (i32.const <shft>)

)). The rule’s if clause checks that the shift amount, shft,
is less than or equal to 3. If all the above conditions hold and
the rule matches, it emits a single addressing mode where
the value x to be shifted is zero-extended, shifted by the

14Lightly edited for brevity.

static shft amount, and added to the other components of
the computed address (base + off).

Crocus provides the following counterexample:15

1 (amode_add

2 (Amode.ImmReg

3 [off|# x30c04100]

4 [base|# x0000000000000000 ])

5 (uextend

6 (ishl [x|# xd0000920]

7 (iconst [shft|#x02])))) =>

8 (Amode.ImmRegRegShift

9 [off|# x30c04100]

10 (gpr_new [base|# x0000000000000000 ])

11 (extend_to_gpr [x|# xd0000920]

12 I64

13 Extend.Zero)

14 [shft|#x02])

15

16 #x0000_0000_70c0_6580 =>

17 #x0000_0003_70c0_6580

In this counterexample, the 32-bit value x, #xd0000920, has
the most signi�cant bit set. When x is shifted by the speci�ed
2 bits to the left, the results di�er on the LHS and RHS. As
expected, the LHS throws away the shifted bits after 32 bits
(e.g., the higher 32 bits of #x0000_0000_70c0_6580 are zero).
However, the RHS does not throw away the shifted bits after
32 bits, allowing non-zero bits beyond the expected e�ective
address space: #x0000_0003_70c0_6580!
The patch for this bug simply removes the rule entirely,

so we did not verify the patch with Crocus.

4.3.2 aarch64 unsigned divide CVE (moderate sever-

ity). Crocus reproduces a 2022 CVE in aarch64 instruction
lowering in which divides with constant divisors were mis-
compiled. In this case, trying to write annotations was enough
to highlight the root cause of the bug—that constant values,
when used as divisors, were not correctly sign- or zero-
extended according to signed or unsigned division.

The ISLE rules that matched on constant divisors for both
udiv and sdiv—unsigned and signed divide—used the term
imm on the RHS. imm models an immediate value that can be
encoded in a machine instruction itself, lowering both the
number of instructions and register pressure. At the time of
this CVE, the ISLE signature for imm was:

1 (decl imm (Type u64) Reg)

This term’s intention was to take the immediate’s value as a
u64 and place it in a register. When trying to annotate this
term and the terms for signed constant divisors, though, an
issue was immediately clear: imm provides no argument for
whether narrow values should be sign- or zero-extended.
Annotating zero-extension causes signed division to fail;
choosing sign-extension causes unsigned division to fail. In
practice, the external Rust implementation sign-extended, so

15Lightly edited for brevity.
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the bug surfaced in udiv instructions. The patched version
of imm takes in an argument for the type of extension, and
the rules for udiv and sdiv now successfully verify.16

4.3.3 aarch64 count-leading-sign bug. Crocus repro-
duces a pre-existing bug in the ISLE aarch64 lowering rule
for cls, the instruction that counts the number of leading
sign bits in a value (excluding the sign bit itself). The rule
for narrow cls instructions must extend its input values,
since Cranelift IR supports operations on narrow types like
i8 and i16, while aarch64 only supports operations on 32-
and 64-bit values. Unfortunately, the faulty version of the
rule failed to properly extend:

1 (rule

2 (lower (has_type I8 (cls x)))

3 (a64_sub_imm I32

4 (a64_cls I32 (zext32 x))

5 24))

This rule matches on cls computations over 8-bit values.
The RHS extends 8-bit x to 32 bits using zext32, and then
computes a64_cls on this wider value. Finally, it subtracts
24 bits (32 − 8) to obtain the leading bit count on the narrow
type. Crocus reports the following counterexample:

1 (lower (has_type I8 (cls [x|# b11111100 ])))

=>

2 (output_reg

3 (a64_sub_imm I32

4 (a64_cls I32

5 (zext32 [x|# b11111100 ]))

6 24))

7

8 #b00000101 => #b11111111

In this counterexample, the LHS correctly computes that the
value #b11111100 has 5 leading sign bits (1), excluding the
sign bit itself. The RHS, however, zero-extends this value to
32 bits, then counts the new leading sign (0) to produce 23,
and subtracts 24 to produce -1. The amended version of the
rule uses a sign-extend instead of a zero-extend, and Crocus
veri�es it successfully.

4.4 Can Crocus �nd new bugs?

This section outlines Crocus’s discoveries in Cranelift so far:
two bugs, both patched; a case of imprecise semantics; and a
root cause analysis.

4.4.1 Another addressing mode bug. Crocus discovered
a new correctness bug in an x86-64 addressing mode rule
related to the one discussed in §4.3.1 (which was not identi-
�ed by Cranelift engineers even in a subsequent close look
at addressing mode rules). This rule was identical except
that it did not have an explicit uextend (line 3 in §4.3.1)—the
same bug could surface on a direct load of a 32-bit address.
Cranelift developers determined that the bug would not be

16Though as noted previously, Crocus times out on some wide divisions.

triggered in practice because on 64-bit targets, all addresses
should be 64-bit typed, and frontends generate code in this
form. However, nothing in the compiler backend validated
this IR invariant and the bug could be triggered if frontend
implementations changed. Cranelift engineers patched this
issue immediately after we noti�ed them of Crocus’s result.

4.4.2 Flawed negated constant rules. Crocus found an
issue where 3 rules were unintentionally restricted to never
�re in practice. This was a performance issue—optimizations
did not apply as often as they should—but not a correctness
issue. The three buggy rules all, in various ways, attempted
but failed to �nd small, constant arguments that could be en-
coded in AArch64’s imm12 encoding. This is an optimization
because it is an alternative to the more expensive option of
using a separate load-immediate instruction.
This is one of the buggy rules Crocus discovered:

1 (rule

2 (lower (has_type (fits_in_64 ty)

3 (isub x (imm12_from_negated_value y))))

4 (a64_add_imm ty x y))

The imm12_from_negated_value term matches when the
second argument, after being negated, can be encoded into
AArch64’s 12-bit immediate format. Matching negated con-
stants allows a wider range of numbers to be encoded as
immediates—checking for negated values essentially dou-
bles the number of possible constants that can be encoded
in 12 bits.
When run on this rule, though, Crocus warns that there

are no distinct models—the rule only matches one set of
input values. The issue is in the (external Rust) implementa-
tion of imm12_from_negated_value:

1 Imm12:: maybe_from ((n as i64).wrapping_neg ()

as u64)

In Cranelift’s IR, all constant integers are represented with
Rust’s u64 type. This code takes the constant n’s underlying
u64 value, negates it, and checks if it �ts into an Imm12 im-
mediate. Unfortunately, for any width of integer narrower
than 64 bits, the only value this holds true for is zero! This is
because Cranelift has an informal invariant that when a neg-
ative narrow value is stored as a constant, its value should
be zero-extended—not sign-extended—into a u64 representa-
tion. Negating (wrapping_neg) a zero-extended constant al-
ways produces a 64-bit value with with left-�lled ones, which
will always fail the check Imm12::maybe_from because the
highest bits on the 64-bit value are set.
Crocus discovered that, while not incorrect, this rule was

useless—it nevermatched in practice. Ourmerged �x corrects
this rule to negate the narrow constant and then zero extend
the subsequent value.

4.4.3 Imprecise semantics for constants in Cranelift

IR. Crocus also found that Cranelift had under-speci�ed
semantics for integer constant representations in IR. While
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most Cranelift front-ends zero-extend narrow constant val-
ues to 64 bits, Crocus found that Cranelift’s own parser for
unit tests sign-extends. The issue we �led is the site of ongo-
ing discussion about enforcing clear semantics; since then, a
fuzzer discovered a bug in Cranelift’s mid-end optimizations
caused by the same imprecise semantics.

4.4.4 Amid-end root cause analysis. While we designed
Crocus for ISLE’s lowering rules, we have found that it
can reason about backend-agnostic rewrites—rewrites in the
compiler “mid-end”—as well. In this case study, Crocus iden-
ti�ed the root cause of a new bug—a boolean optimization
rewriting false to true—before Cranelift engineers identi�ed
the root cause.
A Cranelift engineer ran Souper—a superoptimizer for

LLVM [57]—on a subset of Cranelift IR and discovered that
Cranelift was missing the boolean rewrite or(and(x, y),

not(y))== or(x, not(y)). To port this to ISLE, the engi-
neer wrote a new rule with an explicit guard to check the
for a bitwise-not between constants y and z:17

1 (rule

2 (simplify (bor (band x (iconst y))

3 (iconst z)))

4 (if (u64_eq z (u64_not y)))

5 (bor x z))

This rule passed code review and was merged, but broke an
integration test with a wasm trap error that did not point
to a root cause. Before the Cranelift engineers were able to
complete a manual investigation, we extended Crocus ana-
lyze this rule (e.g., added annotations for mid-end terms) in
under two hours. Crocus produced the following counterex-
ample:18

1 (bor (band [x|#b01] [y|#b10])

2 (iconst [z|#b00])) =>

3 (bor [x|#b01] [z|#b00])

4 #b00 => #b01

Crocus surfaces a subtle bug related to the semantics of
ISLE’s if construct. Recall that terms in ISLE are partial
functions. The semantics of ISLE’s terms with external Rust
implementations are that a match should continue if the
return value is Some(...) and should not match if any LHS
term returns None. Deceptively, because the Rust external
de�nition of term u64_eq in the prior rule returned Some

(false) instead of None (that is, the boolean was de�ned,
just false) this guard as written always allowed the match to
proceed!
To �x this bug, Cranelift engineers re-wrote the guard

to actually check for Some(true). Crocus’s analysis also
led Cranelift engineers to propose a longer-term solution—
redesigning semantics of if to avoid similar mistakes in the
future. Finally, after the patch was in, a Cranelift engineer

17Lightly edited for clarity and brevity.
18Example simpli�ed and truncated to 2 bits for brevity.

said, “this would have taken me so much longer without the
counterexample, really helpful!”

This case study has a another unexpected takeaway: this
bug occurred despite the optimization being harvested from
another formal-methods-based tool! While the Souper super-
optimizer is also based on the SMT theory of bitvectors, the
subtle interaction between Souper-IR and ISLE semantics
could not have been caught by Souper itself. This highlights
the bene�ts of Crocus’s tight integration with ISLE’s own
program representation: Crocus was able to root-cause this
bug because it must reason about core ISLE semantics.

5 Related work

Compiler veri�cation. Compiler veri�cation research
falls into two broad categories: lightweight veri�cation of
(parts of) existing compilers using solvers (e.g., [45, 47, 48]),
and clean-slate, foundational veri�cation using proof assis-
tants [13] (e.g., CompCert [44, 49]). Foundational veri�ca-
tion provides end-to-end correctness guarantees at the cost
of time and performance: typically, such veri�cation takes
experts many years [68], and makes serious optimizations
impractical. There are manually veri�ed lowering passes for
CompCert [50] and CakeML [34, 69], but not for production
compilers that consider performance �rst-class.
Other works use solver-backed methods to verify por-

tions of industrial compilers. Most closely related to Crocus,
Alive [52] veri�es LLVM [46] peephole optimization rules
written in a DSL. Alive’s main challenge is unde�ned be-
havior; in contrast, Crocus need not reason about unde�ned
behavior (because Cranelift IR was designed to avoid it), but
must instead reconcile IR and ISA types. Crocus also must
contend with a language for instruction selection where
engineers can (and do) build new operators within the in-
struction lowering language itself, whereas Alive reasons
about a subset of LLVM’s IR plus a small set of built-in pred-
icates (e.g., isPowerOf2) for conditioning on program val-
ues. Further a�eld, Alive2 [51] does translation validation
on LLVM IR, and VeRA [15] veri�es range analysis in the
Firefox JavaScript engine. Finally, Jitterbug [59] veri�es a
Just-In-Time (JIT) compiler from BPF to native code, in a
restricted setting where instruction selection entails simple
“macro expansion” of one instruction at a time. While Jit-
terbug requires a substantially smaller TCB than Crocus,
Crocus considers more complex backend instruction selec-
tion, with potentiallyM-to-N instead of just 1-to-N lowerings.
For example, Cranelift’s AArch64 backend is around 3,600
lines of ISLE and 10,000 lines of Rust compared to Jitter-
bug’s AArch64 JIT’s 653 lines in their DSL (or 1,025 lines
of equivalent C). While Crocus does not verify the entirety
of the backend, our setting within the context of the larger,
frequently-changing Cranelift project motivates our distinct
design decisions.
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WebAssembly veri�cation. VeriWasm proves that in-
dividual binaries (produced by a speci�c compiler) do not
violate Wasm’s safety guarantees [42]. VeriWasm does not
prove compiler correctness, though, and places restrictions
on how Wasm compilers can emit native code.19 In [14], the
authors present a non-optimizing compiler to x86-64 that
is veri�ed to preserve sandbox safety, and a non-optimizing
compiler from Wasm to Rust; in contrast, we verify the cor-
rectness of a production, optimizing compiler.
There is also work on mechanizing the Wasm speci�ca-

tion [73] and formalizing Wasm in the K framework [37].
Other veri�cation e�orts look beyond the language and
compiler: WaVE [41] veri�es that interactions between the
Wasm runtime and the host OS preserve safety guarantees;
SecWasm [12] extends Wasm’s guarantees using informa-
tion �ow control; [62] bring veri�ed cryptography to Wasm;
and CT-Wasm extends Wasm with constant-time guaran-
tees [74].

Synthesizing instruction selectors. The complexity of
instruction selection has inspired work on automatically
generating rules based on machine-language semantics. Be-
cause of their focus on portability vs. correctness, many
instruction selector generators use ad hoc search procedures
instead of solver-aided techniques [19, 21, 30, 39]. Others
use solver-aided synthesis: LibFIRM [16], for example, uses
SMT to synthesize new rules that cover about 75% of input
instructions; using an existing, handwritten rule set for the
rest. [26] uses a solver to generate high-coverage selection
rules for diverse target architectures. Rake [2] synthesizes
lowering rules from Halide [63] to digital signal processor
ISAs, but its focus is on capturing complex data movement
mechanics within vector registers instead of general-purpose
instruction semantics. Though many compilers use a DSL to
express instruction selection rules, to our knowledge Crocus
is the �rst tool for verifying existing rules by modeling DSL
semantics.

Formal semantics for ISAs. Several e�orts formalize
ISA semantics, including the SAIL language [4] and the K
Framework [27]. In future work, we plan to extend Crocus to
incorporate these existing semantic models to make it easier
to verify instruction selection for new targets.

6 Future work

Crocus annotations are currently trusted. We can address
this issue by deriving certain annotation from existing formal
models. For example, Crocus can integrate SAIL semantics
for aarch64 [4] and K framework semantics for x86-64 [27].
While neither Cranelift IR nor external Rust term de�nitions

19After discovering the amode bug described in the introduction, Cranelift

engineers tried to update VeriWasm to operate on the current version of

the backend, but determined it would be too large of an undertaking. See

h�ps://github.com/bytecodealliance/wasmtime/issues/6090.

have formal semantics, we can raise assurance in our speci�-
cations by, for example, verifying them against their external
Rust implementations [7, 8, 64].
Future work can extend Crocus to reason about �oating

point, more operations with side e�ects, some SIMD vector
instructions, and wider integers. Crocus already incorporates
annotations for some 128-bit vector instructions, because the
implementation of popcnt on aarch64 uses them. Crocus
can also be extended to automatically reason about rule prior-
ities and to cover other backends and the mid-end optimizer.

We areworking to upstreamCrocus intomainline Cranelift,
which raises research questions around usability: how can a
formal methods tool best support engineers who are experts
in their domain, but not necessarily in veri�cation? We hope
to explore these questions as we improve Crocus and as we
build on Crocus to create more comprehensive veri�cation
infrastructure for other parts of the compiler.

7 Conclusion

Language-based technologies such as WebAssembly promise
a more secure computing environment, where hosts can
safely sandbox untrusted code to limited segments of mem-
ory. This software-level isolation fundamentally places a
high burden on the compiler that produces the �nal exe-
cutable in a machine-speci�c ISA. Crocus is a tool for veri-
fying instruction-lowering rules in one such safety-critical
compiler: the Cranelift code generator. Crocus’s key selling
point is its modularity—Crocus’s annotation language allows
concise semantics of individual terms to be added alongside
de�nitions in ISLE, a feature-rich instruction-lowering DSL.
With Crocus, compiler developers can reduce the risk of
security-critical vulnerabilities in instruction lowering logic.

8 Acknowledgements

Thank you to Jamey Sharp, Nick Fitzgerald, Trevor Elliott,
Björn Roy Baron, Till Schneidereit, John Regehr, the mem-
bers of the BytecodeAlliance, participants in the Foundations
of WebAssembly Dagstuhl seminar, and the anonymous AS-
PLOS reviewers for their constructive feedback on this work.
Thank you to Michael McLoughlin for his help in testing
and improving our artifact. The �rst author was partially
supported by an NSF GRFP under DGE-1650441. The second
author was in part supported by the AAUW Selected Profes-
sions Fellowship. This research was also supported by NSF
grants 2124045 and CNS-2120642.



Lightweight, Modular Verification for WebAssembly-to-Native Instruction Selection ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A Artifact Appendix

A.1 Abstract

This appendix contains instructions for reproducing the em-
pirical results we present in this work.
Our linked archival artifact packages:

• The Crocus veri�cation tool: an SMT-based veri�ca-
tion tool for the ISLE instruction lowering domain-
speci�c language. Crocus is implemented as a fork of
the Wasmtime/Cranelift repository.
• Annotations and Rust tests that invoke Crocus on rules
in the ARM aarch64 backend (Table 1).
• Rust tests for six of the listed case studies (Section 4.3.1,
Section 4.3.2, Section 4.3.3, Section 4.4.1, Section 4.4.2,
Section 4.4.4), a Github issue for the 7th (Section 4.4.3).
• Python scripts to characterize the percent of rules we
have covered (Section 4.2) and the veri�cation run-
times (Figure 4).

A.2 Artifact check-list (meta-information)

• Algorithm: Satis�ability Modulo Theories (SMT), compiler

veri�cation, instruction selection.

• Output: Categorical veri�cation results, veri�cation times.

• Experiments: Rust test suite for veri�cation results, Rust

tests for 6 case studies, Github issue for 8th case study,

Python coverage experiment, Python CDF generation script.

• How much disk space required (approximately)?: 8 GB.

• How much time is needed to prepare work�ow (ap-

proximately)?: 15 minutes.

• How much time is needed to complete experiments

(approximately)?: 1-2 hours.

• Publicly available?: Yes.

• Code licenses?: MIT License.

• Archived?: Yes: h�ps://doi.org/10.5281/zenodo.10433722.

A.3 Description

A.3.1 How to access. We have made our artifact in two
formats:

• (Recommended) A Docker image with all software
dependencies pre-installed.
• Instructions to install the required open-source tools
from package managers and Github repositories.

The instructions to download our virtual image or install
from source can be found here:

h�ps://github.com/avanha�/asplos24-ae-crocus

A.3.2 Hardware dependencies. The majority of our eval-
uation requires only a CPU (we recommend one with at at
least 8GB RAM and 8GB available disk space).
To fully reproduce one result, our rule coverage experi-

ment (Section 4.2), we require a processorwithARM aarch64

(e.g., an M1 or M2 Mac). However, we have including pre-
saved build traces for aarch64 compilations as well as the
scripts to analyze them, in case a reviewer does not have
access to an ARM aarch64 machine.

A.3.3 Software dependencies. Our Docker image uses
an Ubuntu base image and should be usable across any host
OS that supports Docker without additional software depen-
dencies. Some results take the form of PDFs/images.
Our software dependencies if installing from source in-

clude Rust/Cargo, Python 3 (including some speci�c pack-
ages), and Z3.

A.3.4 Data sets. Not applicable. The rules we verify are
source code within the Wasmtime/Cranelift repository itself.

A.3.5 Models. Not applicable.

A.4 Installation

The Docker image has all requirements pre-installed. Full
instructions for either installation method can be found here:

h�ps://github.com/avanha�/asplos24-ae-crocus

A.5 Experiment work�ow

We provide Rust invocations and Python scripts and to re-
produce the results within our paper. We use a Python script
to wrap our Wasmtime 1.0-to-Arm-aarch64 rules (Table 1),
calculate rule counts, and print a LATEX- or ASCII-formatted
table. The case studies use direct Rust cargo invocations/tests
(or in one case, a link to the relevant Github issue). The
Python script for coverage compilers code with additional
debug tracing then computes statistics. The Python script
for veri�cation times runs and times Rust cargo unit tests
and produces the summary CDF.

A.6 Evaluation and expected results

Our goal with this artifact is to let other researchers repro-
duce the veri�cation results, charts, and tables within our pa-
per. This includes our Wasmtime 1.0-to-Arm-aarch64 rules
(Table 1) veri�cation results, case studies veri�cation results
(Section 4.3.1, Section 4.3.2, Section 4.3.3, Section 4.4.1, Sec-
tion 4.4.2, Section 4.4.4, Section 4.4.3), rule coverage results
(Section 4.2), and brief veri�cation runtime results (Figure 4).

The core veri�cation results should reproduce those in the
paper, although the speci�c counterexample bitvectors may
vary due to non-determinism in the underlying solver. The
veri�cation times are less central to this paper’s contribution,
but should fall fairly close to those reported in the evaluation
depending on the characteristics of the machine on which
experiments are run.

A.7 Methodology

Submission, reviewing and badging methodology:

• h�ps://www.acm.org/publications/policies/artifact-review-

badging

• h�p://cTuning.org/ae/submission-20201122.html

• h�p://cTuning.org/ae/reviewing-20201122.html



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Alexa VanHa�um, Monica Pardeshi, Chris Fallin, Adrian Sampson, and Fraser Brown

References
[1] Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and

Elizabeth Polgreen. Counterexample guided inductive synthesis mod-

ulo theories. In International Conference on Computer-Aided Veri�cation

(CAV), 2018. URL: h�ps://doi.org/10.1007/978-3-319-96145-3_15.

[2] Maaz Bin Safeer Ahmad, Alexander J. Root, Andrew Adams, Shoaib

Kamil, and Alvin Cheung. Vector instruction selection for digital signal

processors using program synthesis. In ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2022. URL: h�ps://doi.org/10.1145/3503222.3507714.

[3] Bytecode Alliance. ISLE language reference. h�ps://github.com/

bytecodealliance/wasmtime/blob/main/craneli�/isle/docs/language-

reference.md, 2023.

[4] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Was-

sell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krish-

naswami, and Peter Sewell. ISA semantics for ARMv8-A, RISC-V, and

CHERI-MIPS. In ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL), 2019. URL: h�ps://doi.org/10.1145/

3290384.

[5] Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte,

and Peter Sewell. Isla: Integrating full-scale ISA semantics and ax-

iomatic concurrency models. In International Conference on Computer-

Aided Veri�cation (CAV), 2021. URL: h�ps://doi.org/10.1007/978-3-030-

81685-8_14.

[6] Javier Cabrera Arteaga, Nicholas Fitzgerald, Martin Monperrus, and

Benoit Baudry. Wasm-mutate: Fuzzing WebAssembly compilers with

e-graphs. In E-Graph Research, Applications, Practices, and Human-

factors Symposium, 2022. URL: h�ps://www.jacarte.me/assets/pdf/

wasm_mutate.pdf.

[7] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J.

Summers. Leveraging Rust types for modular speci�cation and ver-

i�cation. In ACM SIGPLAN Conference on Object Oriented Program-

ming, Systems, Languages and Applications (OOPSLA), 2019. URL:

h�ps://doi.org/10.1145/3360573.

[8] Marek Baranowski, Shaobo He, and Zvonimir Rakamaric. Verifying

Rust programs with SMACK. 2018.

[9] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec#

programming system: An overview. In Construction and Analysis

of Safe, Secure, and Interoperable Smart Devices, 2005. URL: h�ps:

//doi.org/10.1007/978-3-540-30569-9_3.

[10] Björn Roy Baron et al. Cranelift codegen backend for Rust, 2023. URL:

h�ps://github.com/bjorn3/rustc_codegen_craneli�.

[11] Clark W. Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB

standard version 2.0. In Proceedings of the 8th International Workshop

on Satis�ability Modulo Theories (SMT), 2010. URL: h�ps://smtlib.cs.

uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf.

[12] Iulia Bastys, Maximilian Algehed, Alexander Sjösten, and Andrei

Sabelfeld. Secwasm: Information �ow control for WebAssembly. In

Static Analysis, 2022.

[13] Yves Bertot and Pierre Castéran. Interactive theorem proving and

program development: Coq’Art: the calculus of inductive constructions.

Springer Science & Business Media, 2013.

[14] Jay Bosamiya, Wen Shih Lim, and Bryan Parno. Provably-safe mul-

tilingual software sandboxing using WebAssembly. In USENIX Se-

curity Symposium, 2022. URL: h�ps://www.usenix.org/conference/

usenixsecurity22/presentation/bosamiya.

[15] Fraser Brown, John Renner, Andres Nötzli, Sorin Lerner, Hovav

Shacham, and Deian Stefan. Towards a veri�ed range analysis for

JavaScript JITs. In ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI), 2020.

[16] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. Synthesizing

an instruction selection rule library from semantic speci�cations. In

ACM/IEEE International Symposium on Code Generation and Optimiza-

tion (CGO), 2018. URL: h�ps://doi.org/10.1145/3168821.

[17] Bytecode Alliance. The Cranelift compiler. h�ps://github.com/

bytecodealliance/wasmtime/tree/main/craneli�, 2023.

[18] Bytecode Alliance. Wasmtime: A fast and secure runtime for We-

bAssembly. h�ps://wasmtime.dev, 2023.

[19] R. G. Cattell. Automatic derivation of code generators from machine

descriptions. ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), 1980. URL: h�ps://doi.org/10.1145/357094.357097.

[20] R G G Cattell. Formalization and Automatic Derivation of Code

Generators. PhD thesis, Carnegie Mellon University, 1978. h�ps:

//apps.dtic.mil/sti/pdfs/ADA058872.pdf.

[21] J. Ceng, M. Hohenauer, R. Leupers, G. Ascheid, H. Meyr, and G. Braun.

C compiler retargeting based on instruction semantics models. In

Design, Automation & Test in Europe (DATE), 2005.

[22] Alex Crichton. Data leakage between instances in the pooling

allocator. h�ps://github.com/bytecodealliance/wasmtime/security/

advisories/GHSA-wh6w-3828-g9qf, November 2022.

[23] Alex Crichton. Miscompilation of constant values in division on

aarch64. h�ps://github.com/bytecodealliance/wasmtime/security/

advisories/GHSA-7f6x-jwh5-m9r4, July 2022.

[24] Alex Crichton. Miscompilation of ‘i8x16.swizzle’ and ‘select’ with

v128 inputs. h�ps://github.com/bytecodealliance/wasmtime/security/

advisories/GHSA-jqwc-c49r-4w2x, 2022.

[25] Alex Crichton. Guest-controlled out-of-bounds read/write on

x8664. h�ps://github.com/bytecodealliance/wasmtime/security/

advisories/GHSA-�4p-7xrq-q5r8, 2023.

[26] Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri, Nes-

tan Tsiskaridze Bullock, Priyanka Raina, Clark Barrett, and Pat Hanra-

han. Synthesizing instruction selection rewrite rules from RTL using

SMT. In Formal Methods in Computer-Aided Design (FMCAD), 2022.

URL: h�ps://doi.org/10.34727/2022/isbn.978-3-85448-053-2_20.

[27] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S.

Adve, and Grigore Roşu. A complete formal semantics of x86-64 user-

level instruction set architecture. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2019. URL:

h�ps://doi.org/10.1145/3314221.3314601.

[28] Leonardo De Moura and Nikolaj Bjørner. Z3: An e�cient SMT solver.

In Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), 2008. URL: h�ps://dl.acm.org/doi/10.5555/1792734.1792766.

[29] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In

Handbook of Theoretical Computer Science, Volume B: Formal Models

and Sematics, 1991.

[30] João Dias and Norman Ramsey. Automatically generating instruction

selectors using declarative machine descriptions. 2010. URL: h�ps:

//doi.org/10.1145/1706299.1706346.

[31] Chris Fallin. Memory access due to code generation �aw in Cranelift

module. h�ps://github.com/bytecodealliance/wasmtime/security/

advisories/GHSA-hpqh-2wqx-7qp5, May 2021.

[32] Chris Fallin. RFC: Design of the ISLE instruction-selector DSL. h�ps:

//github.com/bytecodealliance/rfcs/pull/15, August 2021.

[33] Chris Fallin. Cranelift’s instruction selector DSL, ISLE: Term-rewriting

made practical. h�ps://cfallin.org/blog/2023/01/20/craneli�-isle/, Jan-

uary 2023.

[34] Anthony Fox, Magnus O Myreen, Yong Kiam Tan, and Ramana Kumar.

Veri�ed compilation of CakeML to multiple machine-code targets.

2017. URL: h�ps://doi.org/10.1145/3018610.3018621.

[35] Go Authors. Go compiler backend lowering rules. h�ps://github.com/

golang/go/tree/master/src/cmd/compile/internal/ssa/_gen, 2023.

[36] Andreas Haas, Andreas Rossberg, Derek L Schu�, Ben L Titzer, Michael

Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien.

Bringing the web up to speed with WebAssembly. In ACM SIGPLAN

Conference on Programming Language Design and Implementation

(PLDI), 2017. URL: h�ps://doi.org/10.1145/3062341.3062363.



Lightweight, Modular Verification for WebAssembly-to-Native Instruction Selection ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[37] Rikard Hjort. Formally verifying WebAssembly with KWasm,

2020. URL: h�ps://odr.chalmers.se/server/api/core/bitstreams/

a06be182-a12e-46ce-94d3-c�7a5dc42ba/content.

[38] C. A. R. Hoare. An axiomatic basis for computer programming. In

Communications of the ACM (CACM), 1969. URL: h�ps://doi.org/10.

1145/363235.363259.

[39] Roger Hoover and Kenneth Zadeck. Generating machine speci�c opti-

mizing compilers. In ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL), 1996. URL: h�ps://doi.org/10.1145/

237721.237779.

[40] Susmit Jha, Rhishikesh Limaye, and Sanjit A. Seshia. Beaver: Engineer-

ing an e�cient SMT solver for bit-vector arithmetic. InComputer Aided

Veri�cation, 2009. URL: h�ps://doi.org/10.1007/978-3-642-02658-4_53.

[41] Evan Johnson, Evan Laufer, Zijie Zhao, Dan Gohman, Shravan

Narayan, Stefan Savage, Deian Stefan, and Fraser Brown. WaVe: a

veri�ably secure WebAssembly sandboxing runtime. In IEEE Security

and Privacy (Oakland), 2023. URL: h�ps://doi.ieeecomputersociety.

org/10.1109/SP46215.2023.00114.

[42] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser

Brown, Sorin Lerner, Tyler McMullen, Stefan Savage, and Deian Stefan.

Trust but verify: SFI safety for native-compiled Wasm. 2021. URL:

h�ps://cseweb.ucsd.edu/~lerner/papers/wasm-sfi-ndss2021.pdf.

[43] Kenton Varda. WebAssembly on Cloud�are workers. h�ps://blog.

cloudflare.com/webassembly-on-cloudflare-workers/, 2018.

[44] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.

CakeML: A veri�ed implementation of ML. In ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), 2014. URL:

h�ps://doi.org/10.1145/2578855.2535841.

[45] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. Proving opti-

mizations correct using parameterized program equivalence. In ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI), 2009. URL: h�ps://doi.org/10.1145/1542476.1542513.

[46] Chris Lattner and Vikram Adve. LLVM: A compilation framework for

lifelong program analysis & transformation. InACM/IEEE International

Symposium on Code Generation and Optimization (CGO), 2004. URL:

h�ps://doi.org/10.1109/CGO.2004.1281665.

[47] Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically prov-

ing the correctness of compiler optimizations. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI),

2003. URL: h�ps://doi.org/10.1145/781131.781156.

[48] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Auto-

mated soundness proofs for data�ow analyses and transformations

via local rules. In ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL), 2005. URL: h�ps://doi.org/10.1145/

1047659.1040335.

[49] Xavier Leroy. Formal veri�cation of a realistic compiler. Com-

munications of the ACM (CACM), 52(7):107–115, 2009. URL: h�ps:

//doi.org/10.1145/1538788.1538814.

[50] Xavier Leroy. A formally veri�ed compiler back-end. Journal of

Automated Reasoning, 43(4):363–446, 2009. URL: h�ps://doi.org/10.

1007/s10817-009-9155-4.

[51] Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and

John Regehr. Alive2: bounded translation validation for LLVM. InACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI), 2021. URL: h�ps://doi.org/10.1145/3453483.3454030.

[52] Nuno P Lopes, DavidMenendez, SantoshNagarakatte, and John Regehr.

Provably correct peephole optimizations with Alive. In ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion (PLDI), 2015.

[53] Nuno P. Lopes and John Regehr. Future directions for optimizing

compilers. 2018. URL: h�ps://arxiv.org/pdf/1809.02161.pdf.

[54] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algo-

rithm. In ACM Transactions on Programming Languages and Systems

(TOPLAS), 1982. URL: h�ps://doi.org/10.1145/357162.357169.

[55] Charith Mendis and Saman Amarasinghe. GoSLP: Globally optimized

superword level parallelism framework. In ACM SIGPLAN Conference

on Object Oriented Programming, Systems, Languages and Applications

(OOPSLA), 2018. URL: h�ps://doi.org/10.1145/3276480.

[56] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,

and Sharad Malik. Cha�: Engineering an e�cient SAT solver. In

Proceedings of the 38th Annual Design Automation Conference, 2001.

URL: h�ps://doi.org/10.1145/378239.379017.

[57] Manasij Mukherjee, Pranav Kant, Zhengyang Liu, and John Regehr.

Data�ow-based pruning for speeding up superoptimization. In ACM

SIGPLAN Conference on Object Oriented Programming, Systems, Lan-

guages and Applications (OOPSLA), 2020. URL: h�ps://doi.org/10.1145/

3428245.

[58] Joshua Nelson. Using rustc_codegen_cranelift for debug

builds. h�ps://blog.rust-lang.org/inside-rust/2020/11/15/Using-

rustc_codegen_craneli�.html, November 2020.

[59] Luke Nelson, Jacob Van Ge�en, Emina Torlak, and Xi Wang. Speci�-

cation and veri�cation in the �eld: Applying formal methods to BPF

just-in-time compilers in the Linux kernel. In USENIX Symposium

on Operating Systems Design and Implementation (OSDI), 2020. URL:

h�ps://dl.acm.org/doi/abs/10.5555/3488766.3488769.

[60] Aina Niemetz, Mathias Preiner, Andrew Reynolds, Yoni Zohar, Clark

Barrett, and Cesare Tinelli. Towards bit-width-independent proofs

in SMT solvers. In International Conference on Automated Deduction

(CADE), 2019. URL: h�ps://doi.org/10.1007/978-3-030-29436-6_22.

[61] Pat Hickey. Lucet takes WebAssembly beyond the browser |

Fastly. h�ps://www.fastly.com/blog/announcing-lucet-fastly-native-

webassembly-compiler-runtime, 2019.

[62] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and

Karthikeyan Bhargavan. Formally veri�ed cryptographic web applica-

tions inWebAssembly. In IEEE Symposium on Security and Privacy (SP),

2019. URL: h�ps://doi.ieeecomputersociety.org/10.1109/SP.2019.00064.

[63] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman P. Amarasinghe. Halide: A language

and compiler for optimizing parallelism, locality, and recomputation

in image processing pipelines. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI), 2013. URL:

h�ps://doi.org/10.1145/2491956.2462176.

[64] Alastair Reid, Luke Church, Shaked Flur, Sarah de Haas, Maritza John-

son, and Ben Laurie. Towards making formal methods normal: meeting

developers where they are. 2020.

[65] Gang Ren, Peng Wu, and David Padua. Optimizing data permutations

for SIMD devices. page 118–131, 2006. URL: h�ps://doi.org/10.1145/

1133981.1133996.

[66] Andreas Rossberg. WebAssembly Speci�cation Release

1.0. h�ps://webassembly.github.io/JS-BigInt-integration/core/

_download/WebAssembly.pdf, 2019.

[67] Andreas Rossberg. WebAssembly Speci�cation Release 2.0 Draft Draft

2023-04-08. h�ps://webassembly.github.io/spec/core/_download/

WebAssembly.pdf, 2023.

[68] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W.

Appel. Compositional CompCert. In ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (POPL), 2015. URL:

h�ps://doi.org/10.1145/2775051.2676985.

[69] Yong Kiam Tan, Magnus O Myreen, Ramana Kumar, Anthony Fox,

Scott Owens, and Michael Norrish. The veri�ed CakeML compiler

backend. Journal of Functional Programming, 29, 2019. URL: h�ps:

//cakeml.org/jfp19.pdf.

[70] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt,

and Adrian Sampson. Vectorization for digital signal processors via

equality saturation. In ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS),

2021. URL: h�ps://doi.org/10.1145/3445814.3446707.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Alexa VanHa�um, Monica Pardeshi, Chris Fallin, Adrian Sampson, and Fraser Brown

[71] Vercel Inc. Using WebAssembly (Wasm) at the edge. h�ps://vercel.

com/docs/concepts/functions/edge-functions/wasm, 2023.

[72] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. Building

program optimizers with rewriting strategies. In ACM International

Conference on Functional Programming (ICFP), 1998. URL: h�ps://doi.

org/10.1145/289423.289425.

[73] Conrad Watt. Mechanising and verifying the WebAssembly speci�ca-

tion. 2018. URL: h�ps://doi.org/10.1145/3167082.

[74] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian

Stefan. CT-Wasm: Type-driven secure cryptography for the web

ecosystem. In ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL), 2019. URL: h�ps://doi.org/10.1145/

3290390.

[75] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and

understanding bugs in C compilers. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2011. URL:

h�ps://doi.org/10.1145/1993498.1993532.


