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Abstract

Language-level guarantees—like module runtime isolation
for WebAssembly (Wasm)—are only as strong as the compiler
that produces a final, native-machine-specific executable.
The process of lowering language-level constructions to ISA-
specific instructions can introduce subtle bugs that violate se-
curity guarantees. In this paper, we present Crocus, a system
for lightweight, modular verification of instruction-lowering
rules within Cranelift, a production retargetable Wasm na-
tive code generator. We use Crocus to verify lowering rules
that cover WebAssembly 1.0 support for integer operations
in the ARM aarch64 backend. We show that Crocus can
reproduce 3 known bugs (including a 9.9/10 severity CVE),
identify 2 previously-unknown bugs and an underspecified
compiler invariant, and help analyze the root causes of a
new bug.
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1 Introduction

WebAssembly [36] (Wasm) is a portable bytecode format
originally designed for the browser, with three main goals:
safety, speed, and portability. Wasm’s machine-independent
but low-level semantics make compilation and execution
fast on any platform; its type system and bounded memory
regions work together to prevent programs from reading or
writing data outside of their own heap (their sandbox). This
isolation guarantee is essential when users interact with the
web, because each click leads to untrusted code.

Isolation has made Wasm popular beyond the web, too.
Edge cloud services from Cloudflare [43], Vercel [71], and
Fastly [61], for example, run users’ Wasm code on large-scale
geographically-distributed content delivery networks. To im-
prove startup time, these Wasm-based services can co-locate
different untrusted code modules within the same process;
Wasm’s lightweight isolation enforcement takes the place of
more traditional, costly process- or VM-based isolation.

Unlike a process or VM, however, Wasm’s safety guar-
antees rely on the correctness of the underlying compiler.
The compiler inserts dynamic checks that confine a mod-
ule to its own memory region before generating native code
for that module. Code generation, then, is a pillar of every
Wasm-backed system’s trusted compute base: a single mis-
compilation, however seemingly benign or rare, could be
exploited to produce code that bypasses Wasm’s security
guarantees [22-24, 31]. Code generation bugs can let mali-
cious Wasm code steal data from—or corrupt the execution
of—completely unrelated modules or the host runtime itself.

As one example, a code generation CVE! in Cranelift [17],
a compiler backend used in several industrial Wasm run-
times, permitted this kind of sandbox escape [25]. The bug
was in Cranelift’s x86-64 instruction selection, which uses
addressing modes to implement complex address computa-
tions with a single instruction. x86-64 addressing modes can
apply small left shifts, so a single mov1 instruction is enough
to implement code like the following Wasm snippet:

1“Common Vulnerabilities and Exposures”, a designated list of publicly
disclosed security bugs.
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(i32.1load (i32.shl (local.get x) (i32.const 3)))

To lower this code to x86-64, Cranelift must convert 32-bit
Wasm addresses into offsets from an instance’s base address
in the target machine’s 64-bit address space. This conversion
requires zero-extending the 32-bit Wasm address, computing
the 64-bit address as base+zext (addr) (where addr is the
original 32-bit Wasm address, base is the base address for
the module’s memory region, and zext is a zero-extension).
Unfortunately, the Cranelift instruction selector lowered the
above Wasm code to x86-64 instructions that computed
base+zext (x)<<3 instead of base+zext(x<<3). This mis-
take lets attackers break out of the Wasm sandbox by giving
them access to an extra 3 significant bits of native address
space. In Wasmtime [18], a popular Wasm engine that uses
Cranelift, this allows a guest Wasm instance to silently read
and write memory 6 to 34 GB away from its own sandbox.
Clearly, even simple bugs in instruction selection can create
security vulnerabilities.

Instruction selection is hard to get right because it bridges
the (large) semantic gap between the compiler’s intermedi-
ate representation (IR) and the processor’s instruction set
architecture (ISA). While some instruction-lowering rules are
simple—essentially one-to-one translations from an IR con-
struct to an equivalent ISA instruction—others are not. They
perform complex transformations to eke out instruction-
level performance improvements; account for operators that
exist in either the IR or the ISA—not both; and select different
ISA instructions based on details of IR operations (e.g., their
bit-widths).

To help compiler developers automatically reason about
the correctness of their instruction-lowering rules, we present
Crocus. Crocus verifies rules written in Cranelift’s ISLE
domain-specific language (DSL) for specifying how IR terms
translate to machine code sequences. To use Crocus, de-
velopers annotate their ISLE lowering rules with specifica-
tions; Crocus uses a Satisfiability Modulo Theories (SMT)
solver [11] to automatically verify full functional equivalence—
i.e., that a rule translates an IR instruction to a native code
sequence with equivalent semantics. Crocus allows develop-
ers to gradually annotate new rules, and to quickly update
annotations as rules evolve. This modularity is essential be-
cause Cranelift is an evolving production compiler: lowering
rules—and entire backends!—are subject to change. The an-
notation language has been designed in collaboration with
Cranelift engineers, to ensure that annotations can be co-
maintained without undue burden. To our knowledge, our
work with Crocus is the first formal verification effort for
the instruction-lowering phase of an efficiency-focused pro-
duction compiler.

In sum, in this paper, we:

1. Create Crocus, a framework for verifying instruction-
lowering rules in the ISLE domain-specific language.
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2. Verify Cranelift’s implementation of all integer op-
erations in the latest major WebAssembly release—
1.0 [66]—for the ARM aarch64 Instruction Set Archi-
tecture (ISA).

3. Use Crocus to reproduce and detect previously-fixed
bugs (§4.3.3) and vulnerabilities (§4.3.1), including the
example bug from this section.

4. Use Crocus to help Cranelift developers identify (§4.4.1,
§4.4.2) and fix (§4.4.4) new bugs and under-specified
compiler invariants (§4.4.3).

We begin by providing brief background on instruction low-
ering and the ISLE DSL (§2.1). Then, we present Crocus’s
design (§3), and evaluate its results on Cranelift (§4), a pro-
duction Wasm compiler backend. Finally, we discuss plans to
build on Crocus toward increasingly trustworthy WebAssem-
bly compilers (§6).

2 Background

This section provides background for understanding Cro-
cus verification (§3) by describing the instruction lowering
problem (§2.1) and Cranelift’s ISLE domain-specific language
(DSL) for writing lowering rules (§2.2). Finally, it introduces
SMT solvers [11], the tools that power the Crocus verification
engine (§2.4).

2.1 Instruction lowering

During instruction lowering, an instruction selector translates
the compiler’s intermediate representation (IR) to machine
instructions. The instruction selector’s job is to search for
a combination of machine instructions that (1) matches the
IR’s semantics and (2) performs well. A single-pass selector
that emits a fixed set of instructions for every IR operator
fulfills the first goal but not the second: it allows transla-
tions of one IR instruction to N machine instructions, but
not more efficient N-to-M translations. This design, for ex-
ample, precludes compiling a program with addition and
multiplication operations to machine code that uses a fast
multiply-add (madd) instruction.

Most modern instruction selectors do support more gen-
eral N-to-M matching; in fact, a good instruction selector
often embodies a good pattern matcher. It detects arrange-
ments of multiple operators in the IR that can be translated,
together, into machine instructions. In full generality, this is
an NP-hard combinatorial search problem; as a result, most
production compilers use heuristic shortcuts for practicality
(e.g., greedy pattern matching, as in the “maximal munch”
scheme [20]).

More complex ISAs and ISA extensions yield more com-
plex matching strategies. For an extreme example, data move-
ment instructions such as bit-permutation and swizzling vary
widely across ISAs, and lowering of a general permutation
operator sometimes requires a “solver”—or at least a bevy of
heuristic special cases to produce good code [55, 65, 70]. This
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is part of what makes instruction selection (and instruction
selection verification!) interesting: it is not simply the task
of mapping mostly-equivalent operators, like translating IR
addition to the machine’s integer addition instruction. The
most subtle reasoning—and many bugs—occur when there is
a large semantic gap between the IR and ISA, and when pro-
ducing efficient machine code is a first-order priority [53, 75].

Production compilers today use a mix of hand-written and
DSL-based descriptions of their instruction lowering rules:
e.g., LLVM [46] has a 46K-line C++ file specifying x86-64
lowerings, while the Go compiler uses a term-rewriting DSL
where developers can specify expression-tree patterns [35].
In this paper, we focus on the Cranelift compiler’s lowering
DSL.

2.2 The ISLE lowering DSL

The Cranelift compiler project [17] introduced the ISLE
(Instruction Selection Lowering Expressions) domain-specific
language [3, 32, 33] in 2021 in order to replace handwritten
instruction-lowering code with declarative patterns. ISLE
is broadly a term-rewriting system [29, 72]. In the next sec-
tions, we give a brief overview, and then walk through an
example of instruction lowering in ISLE.

2.2.1 ISLE’s term rewriting for lowering. The main
body of a program in ISLE consists of a series of rules. These
rules are written in S-expression syntax and consist of a
left-hand side (LHS) and right-hand side (RHS). The LHS is
a pattern, and can use pattern-matching operators such as
wildcards, variable captures, or destructuring (matching a
term and then feeding its arguments to sub-patterns). The
RHS is an expression consisting of a tree of terms, possibly
using variables captured from the LHS. A rule indicates that
the RHS expression is produced whenever the instruction
selector encounters a term tree matching the LHS.

To express instruction lowering as term rewriting, ISLE
introduces a top-level term lower that takes an expression
tree as its argument. For example, to lower an integer add
operator (iadd) to the add instruction in the ISA (e.g., x86-64
or aarch64), one would write:?

(rule (lower (iadd ty x y))
(isa_add ty x y))

where iadd is defined in Cranelift IR and isa_add is de-
fined amongst all available machine instructions in the ISA.

ISLE has a strict, static type system that operates on types
defined in ISLE (some of which are external, Cranelift-defined
types, such as Rust enums for instructions’ opcodes). Nested
terms on both the left- and right-hand sides must typecheck
(i-e., with return and argument values aligned). In addition,
the left- and right-hand side of a rule must have the same

type.

2Slightly simplified for clarity; real rules differentiate on the values’ types.

S
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Because of the type system’s restrictions, Cranelift ex-
presses all lowerings as rewrites from (lower (IR_term
...)) to term trees representing machine code expressions,
potentially passing through multiple intermediate terms. The
term lower is necessary because the LHS and RHS of a rule
must have the same type—but top-level LHS patterns return
IR Insts, while top-level RHS expressions return machine
Registers. The term lower, with type signature (decl lower

(Inst) Reg),® does the Inst to Register conversion that
allows lowerings rules to type check by giving the LHS and
RHS the same type.

Finally, ISLE’s type system supports automatic type con-
versions. In the iadd example, such conversions apply to x
and y, which are variables of type Value bound by the left-
hand side of the rule. The RHS, in contrast, operates on x
and y Registers. To reconcile these incompatible types, the
ISLE compiler automatically inserts type conversions if a
conversion rule has already been specified for a pair of types.
In this case, ISLE wraps the latter uses of x and y with the
user-defined term put_in_reg, which converts Values to
Regs.*

2.3 ISLE by example: lowering rotations

In this section, we walk through Cranelift’s lowerings for
a few specific instructions; this sets us up to verify such
lowerings in the next section (§3).

Consider the Wasm rotl and rotr (“rotate”) binary nu-
meric instructions, which shift the bits of a value left or
right with wraparound. Cranelift has corresponding rotl
and rotr IR operations. The ARM aarch64 ISA has a single
implementation of rotate—ROR—which has a corresponding
ISLE term named a64_rotr that includes an additional pa-
rameter to specify the 64-bit or 32-bit variants of the instruc-
tion.

A simple attempt at lowering rotr instructions to the
ARM aarch64 backend might look like this:

(rule
(lower (rotr x y))
(ab4_rotr 164 x vy))

This rule lowers to the 64-bit variant (I164) of a64_rotr. It
works properly for 64-bit values, but not for narrower values
(e.g., 32-bit or 8-bit values). This is because Cranelift operates
on narrow values of w bits by placing them in 64-bit registers
but considering only their lowest w bits to be meaningful. To
see how the above rule is broken for 8-bit values, imagine it
matching in a situation where x is #b00000001. Placing this
value in a 64-bit register and attempting to right-shift it by
one moves the right-most 1 bit to the highest bit of 64—which
does not produce the expected result of #b10000000 as the
lowest eight bits!
Cranelift must instead special-case on narrow values:

3We elide an indirection via another type for clarity.
4We describe the semantics of put_in_reg in §3.1.2.
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(rule
(lower (has_type (fits_in_16 ty)

(rotr x y)))
(small_rotr ty (zext32 x) vy))

This rule uses external helper termshas_typeand fits_in_16
to predicate that this rule matches only on narrow types; if
the number of bits (ty) is larger than 16 bits, the rule will not
match. The helper terms are defined externally from ISLE,
in Rust code that returns the value’s type (has_type) and
checks the type against the integer sixteen (fits_in_16),
respectively. This rule also abstracts over types (lowering
the burden on the compiler engineer): the rule binds a new
variable, ty, to the type of the return value of rotr, and
passes ty through as an argument to the right-hand side.

This rotate rule does not rewrite all the way to a machine
code term: instead, it uses an intermediate term, small_rotr.
small_rotr only ever exists in ISLE—not in the resulting
machine code—and is an intermediate step along the path to
a final machine code representation. Intermediate terms like
small_rotr let developers share logic across many different
rules. As one example, Cranelift’s rotl (rotate left) rule for
narrow inputs also uses the small_rotr term. The compiler
uses a small_rotr with a negated rotate amount because
AArch64 does not have a distinct rotate left instruction:
(rule

(lower (has_type (fits_in_16 ty)

(rotl x vy)))
(let ((neg_y Reg (a64_sub I32 (zero) v)))
(small_rotr ty (zext32 x) neg_vy)))

This rule is the same as the previous one with two additions.
First, it uses a let clause to include another ISA instruction:
an AArch64 a64_sub subtraction instruction, negating the
value y by computing 0—y. Second, the rule wraps x on the
right-hand side with a call to zext32, which zero-extends
(that is, left-pads with zeros) the value of x up to 32 bits.
Finally, to lower small_rotr to ISA-level operations, the
Cranelift ISLE rules specify that narrow rotates can be com-
posed of aarch64-native left shift and right shift instructions
(not pictured). Thus, these ISLE rules lower a single IR in-
struction to multiple machine code instructions (a64_sub
followed by shift and bitwise or instructions).

2.4 Satisfiability Modulo Theories (SMT)

To verify lowering rules written in ISLE, Crocus uses an SMT
solver [28]. SMT solvers are tools that determine whether
logical formulas are satisfiable for some assignment of values
to all variables in the formula. Unlike SAT formulas [56],
SMT formulas allow users to express higher-level statements
(e.g., “x < y[2]”) using a rich set of operators and types
(e.g., integers and arrays) that are defined in the SMT-LIB
standard [11]. Crocus lowers ISLE rules to SMT formulas in
the theory of bitvectors and integers; we discuss this further
in the next section.
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3 Crocus Design

Crocus is a framework for verifying rewrite rules in the ISLE
domain-specific language for instruction selection. Crocus
uses an SMT solver [28] to show functional equivalence of
the left- and right-hand sides of individual rules.” An equiv-
alent left and right side mean that the rule has preserved
IR semantics at the machine-code level; a differing left and
right side indicate a bug in the lowering.

The initial version of Crocus supports pure functions that
model computations on SSA-style values. This is in part
because Cranelift’s instruction selection pass comes before
register allocation, so it operates primarily on abstract, im-
mutable SSA values rather than on concrete, mutable ma-
chine registers (see Section 3). In practice, Crocus is able to
find nuanced bugs and raise the level of assurance in critical
code even with this restriction (see Section 4).

To verify lowering rules, compiler developers write anno-
tations on ISLE terms in Crocus’s annotation language (§3.1).
This language makes it simple to express term semantics
(e.g., that fits_in_16 means that a type can losslessly be
represented with 16 bits). Crocus consumes ISLE’s program
representation for rules, combines this with the compiled
annotations to create its own intermediate representation,
and performs type inference and monomorphization (§3.1.3).
Type inference is necessary for Crocus to lower its IR to an
SMT formula, a logical formula that asks whether a rule’s
right and left-hand sides are equivalent. Finally, Crocus feeds
the resulting formula into the SMT solver. If the right and
left-hand sides of a rule differ, the solver returns a counter-
example showing a set of inputs that cause the divergence;
otherwise, the rule is verified.

The annotation language has been designed in collabo-
ration with Cranelift engineers so that it fits well into the
ISLE ecosystem and can be co-maintained with the lowering
rules. This constraint led us to co-locate annotations in the
main ISLE source files. The choice of an annotation language
(instead of fixed semantics for a specific set of operators) is
motivated by how engineers use ISLE—supporting new ISA
instructions and backends often requires defining new exter-
nal helper terms that are not formally defined within either
the IR or ISA. These decisions make it more feasible for pro-
duction compiler engineers to engage with the verification
effort.

In this section, we walk through the verification pipeline,
from Crocus’s annotation language (§3.1) to how it con-
structs and customizes verification conditions (§3.2).

3.1 The annotation language

It is impossible to verify functional correctness without pre-
cise semantics on terms within ISLE. While there are formal

>Though Crocus supports more general custom verification conditions, as
we will describe later in this section.
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semantics for parts of certain ISAs (e.g., ARM [4] and In-
tel [27]), there are no semantics for Cranelift’s intermediate
representation—or for ISLE helper terms (e.g., has_type) and
intermediate terms (e.g., small_rotr). The challenge in spec-
ifying these semantics is that production compilers are living
software: engineers change rules, add rules, and occasionally
add entire new back-ends. To support modular verification
of an evolving codebase, Crocus introduces an annotation
language that allows rule authors to define specifications as
they go, introducing a term’s semantics inline, next to the
term itself.
For example, consider our Crocus annotation on the helper

term fits_in_16:°
(spec (fits_in_16 arg)

(provide (= result arg))

(require (<= arg 16)))
(decl fits_in_16 (Type) Type)

This specification says that fits_in_16 is a partial iden-
tity function on the argument type Type—that is, for the
arguments on which fits_in_16 is defined, it returns the
argument itself. The function is specified by the provide
clause (= result arg), which sets the return value equal
to the first argument; both variables are bound in the spec
signature. require clauses specify a preconditions on the
term. This precondition specifies that the rule is a partial
function predicated on (<= arg 16)—the fact that the argu-
ment, which Crocus maps to the SMT-LIB theory of integers,
is less than or equal to 16. In ISLE, partial functions are used
to determine whether a rule matches: if any term on the
left-hand side is undefined, the rule does not match. In sum,
these three lines of specification are enough to describe the
semantics of fits_in_16: it is a partial identity function that
returns the type argument arg, which matches if arg is a
type of less than or equal to 16 bits.

3.1.1 The annotation language grammar and seman-
tics. Figure 1 shows the Crocus annotation language gram-
mar. Figure 2 provides judgements that specify the typing
and semantics of Crocus’s annotation language. Most opera-
tions in the annotation grammar map directly to SMT-LIB
constructions. For example, + applied to a bitvector maps
to SMT-LIB’s bvadd bitvector addition function. Crocus pro-
vides a special result keyword expression which models
the value produced by the annotated term.

Crocus adds conveniences like switch and a variadic
concat operation, both of which desugar to folding SMT-
LIB’s fixed-argument ite (if-then-else) and concat (bitvec-
tor concatenation) operators. switch also adds a verifica-
tion condition that enforces that its branches are exhaustive,
which has helped surface faulty annotations.

Crocus provides constructs for introspecting on and mod-
ifying bitvector widths. widthof returns the width—often

®ISLE terms and specification syntax lightly edited for clarity and brevity.
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(annot) ::= (spec (sig) (provide{(expr)}) [(require{{expr)})])
(sig) == (({termname) (args))
(termname) == (ident)
(args) = {{bound)}
(bound) ::= ((ident) : (type)) | (ident)
(type) = bv |bv (int) | Int | Bool
(width) ::= (int) | (expr)
(const) == true | false | (int) | (bitvector)
(expr) == result | (ident) | (const) | ({encoding) {{expr)})
| ((unop) (expr)) | ((binop) (expr) (expr))
| ({conv)y (width) (expr)) | (extract (int) (int) (expr))
| (int2bv (width) (expr)) | (bv2int (expr)) | (widthof (expr))
| (concat {{expr)}) | (if (expr) (expr) {expr))
| (switch (expr) {((expr) (expr))})
(unopy == 1|~ |-
(binop) == =| !=|>=|<=|<|>|sgt|sgte|slt]|slte]|ugt
| ugte|ult|ulte|+|-|*|sdiv|udiv|srem|urem|&]| |
| xor|sdiv|rotl|rotr|shl|shr|ashr
{conv) =
(encoding) ::= cls|clz | rev | subs | popcnt

signext| zeroext | convto

Figure 1. Crocus’s annotation language, which combines SMT-
LIB constructs with Crocus-specific constructs (e.g., convto and
widthof), conveniences such as switch, and custom encodings
such as cls (count leading sign). Figure 2 provides the semantics
for key terms in this annotation language.

only known directly at solving time (§3.2)—of a given bitvec-
tor value. convto changes the width of its bitvector argument
based on the first, integer argument.

Crocus also provides higher-level versions of SMT-LIB con-
structs. For example, SMT-LIB rotates must have statically-
provided widths; Crocus instead offers symbolic rotates,
which it implements with shift and bitvector logic instruc-
tions. Finally, Crocus includes keywords that map to custom
encodings in its backend: (1) cls and clz, which count the
number of leading sign and zero bits, respectively (§4.3.3),
(2) rev, which reverses the order of bits, (3) subs, which per-
forms subtraction-with-flags, and (4) popcnt, which counts
the number of 1 bits.

provide blocks specify the semantics of a term, typically
by relating the returned value bound in the specification
to one or more of the arguments. require blocks specify
preconditions, which are assumed when a term is used on the
left-hand side of a rule but checked—that is, verified to hold—
when a term is used on the right-hand side of a rule. This is
analogous to more traditional Hoare-style verification [9, 38],
where function preconditions may be assumed within the
body of a function but must be checked at function call site.

For example, small_rotr requires that the amount being
rotated has been zero-extended from the narrow starting
width to the full 64 bits of the register. This can be specified
as:
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CONVTO-SAME CoNvTO-NARROW
I'te :Int~ N Tkey:bo(N) w e I'te :Int~» N T+ey:bo(M) ~ e, N<M
T+ (convto e; ez) : bo(N) ~ e [+ (convto e; ez) : bo(N) ~» (extract (N —1) 0 e;)

CoNvTO-WIDE
T'ke:Int~w N T +ep:bo(M) w e N>M e; = (declare-fun fresh (_BitVec N — M));fresh

T+ (convto e; ez) : bu(N) ~> (concat e e;)

CONCAT
Tkep:bo(Ny) w e ...Tke,:bo(N,) e,

Ik (concat ey ...e,) : bu(EN; ... N,) > (concat ef(concat e; (concat... ey)))

WiDTH-OF INT2BV
T'ke:bo(N)w e T'rte:Int~w e

I+ (widthof e) : Int ~» N T+ (int2bv N e) : bo(N) ~ (nat2bv N e’)
ZEROEXT

Tk e :Int ~ (M, Ag,) ['+ey:bu(N) ~ (e; Ae,)
[+ (zeroext e; ez) : bu(M) ~» (((_ zero_extend (M —N)) e;), Ae, UAe, U{N < M})

S1GNEXT
T ke :Int ~w (M, A,,) T +ey:bo(N) ~ (e;, Ae,)

[ + (signext e; ep) : bo(M) ~» (((_ sign_extend (M —N)) e;), A, UAe, U{N < M})

RoTL
T +ep:bo(N) w e T'+ey:bo(N) w e e; = (bvurem e, (nat2bv N N))
T'+ (rotl e ez) : bo(N) ~» (bvor (bvshl e; e;) (bvlshr e; (bvsub (nat2bv N N) e3)))

RoTr
T+ep:bo(N) ~ e T'key:bo(N) w e e; = (bvurem e, (nat2bv N N))

T+ (rotre; ez) : bo(N) ~» (bvor (bvlshr e; e;) (bvshl e; (bvsub (nat2bv N N) e3)))

SwritcH
Trc:tpw{c, A
Tkmy:ty~ (my, Am) ... TFmy ity ~ (my, Ay, Thep ity (e, Ag)...T ket w (e, Ae,)
T+ (switchc (myer)...(myen)) itz > {(ite (= ¢’ m]) e (ite (= ¢’ my) e, (ite ...e}))),
AcUAp, ... Am, UA,, ... A, U (bvor (= ¢’ m]) (bvor (= ¢’ my)...(= ¢’ m)))))

’

e, ci,m; €expr e, c;,m; € QF_BVUINTS M, NeN

Figure 2. Typing and elaboration judgements for key terms in Crocus’s annotation language. Judgements take the form T + e : t ~»> (e”, A),
where T is the typing context, e is an expression (<expr> in the grammar given in Figure 1), t is a type (<type>), e’ is the expression’s
translation into the SMT-LIB theories of bitvectors (QF_BV) and integers (INTS), and A is a set of additional assertions that we add to
the verification conditions. We elide the second component of the tuple when the assertions are solely the union of the assertions on
the expression’s subterms—that is, we write the shorthand judgement as T + (f e;...ep) : ¢ ~> e’ in place of the full judgement
Tk (fer...en):tm (e, Ay UA,, ... Ac,).

1 (require (switch ty small_rotr on the right-hand side, but is assumed true for

2 (8 (= (extract 63 8 x) (@:bv))) terms that rewrite from a small_rotr on the left-hand side.
3 (16 (= (extract 63 16 x) (@:bv)))))

3.1.2 The annotation language type system. Types in
Crocus are integers, booleans, and bitvectors. The Crocus an-
notation language must support polymorphism over bitvec-
tor widths, since most of Cranelift’s ISLE rules operation on

This require clause specifies that the type ty is 8 or 16,
and that the relevant bits beyond index ty have been zero-
extended. This must be proven true for a term that uses
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its Value type, which is polymorphic over integer values in
the Cranelift intermediate representation. (§2.2).

For example, during preprocessing, ISLE automatically
inserts put_in_reg to implicitly convert Cranelift IR Value
s to machine code Regs—and because Values vary in width,
Crocus’s annotation language must provide a polymorphic
type signature to put_in_reg. In other words, put_in_reg
must reconcile the potentially narrow Value with the 64-
bit Reg. Crocus’s put_in_reg annotation uses convto to
reinterpret the polymorphic bitwidth of the argument as 64
bits:

(spec (put_in_reg arg)
(provide (= result (convto 64 arg))))
(decl put_in_reg (Value) Reg)

3.1.3 Type inference and monomorphization. The an-
notation language supports polymorphism over bitvector
types, but its target representation does not: all bitvector op-
erations in SMT-LIB operate on fixed-width bitvectors [60].
Therefore, Crocus must transform its high-level intermediate
representation, which allows polymorphic bitvector types,
into several SMT formulas, each over a different set of bitvec-
tor widths. Crocus uses two passes of type inference to fully
resolve all bitvector widths and to monomorphize from each
rule into a set of SMT formulas, each with a specific concrete
type.

For each rule, we provide a set of possible type instantia-
tions for the root left-hand side term (that is, a set of possible
types for the argument and return values, based on Cranelift
semantics). For example, for a simple Cranelift IR type such
as iadd, the set of type instantiations is:

{(t,1) - t | t € {i8,i16,i32,i64}}

For a more complicated term that involves modifying the
Cranelift IR width of the input and output, we consider a
wider set of instantiations. For example, for extending values,
we consider multiple output types per argument type:

{(s) > d|sde{i8i16,i32,i64}, d > s}

Crocus then runs the two passes of type inference and
monomorphize for each type instantiation of a given rule.
The first inference pass produces an assignment of SMT types
(int, boolean, bitvector) for each variable in a term or its spec-
ification given the specific type instantiation. The first pass is
also able to resolve some bitvector widths to concrete widths
(e.g., bv32) using an implementation of unification-based
type inference. However, in some cases (such as rules that
use intermediate terms on the LHS), the first pass is unable
to resolve all bitvector widths. In that case, we run a second,
solver-based type inference pass to iteratively resolve all pos-
sible assignments of widths to bitvectors. Figure 3 provides
high-level psuedocode for Crocus’s combined type inference
algorithm.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

237

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

fn monomorphize():

for ty_instantiation in ty_instantiations:
G « ty_instantiation
// Unification-based type inference
G « type_inference_pass_1(G)
// Solver-based type inference
type_set « type_inference_pass_2(G)
if type_set.empty():

return InapplicableRule;

return run_correctness_queries(type_set)

fn type_inference_pass_1(G):
// Classic unification, omitted for brevity

fn type_inference_pass_2(G):
type_set « initialize_with(G)
if undetermined bitvector types ts:
solver « initialize_solver(G)

type_set « resolve_unknown_tys(solver, ts)
return type_set
fn resolve_unknown_tys(solver, ts):
// Solve for undetermined bitvector types
match solver.check_sat():
SAT =>
new_types = resolved_types(solver.model())

// Check whether another model with some
// distinct type is possible
solver.assert(or_many(new_types.map(
| (ty_var, concrete)|
not(eq(ty_var, concrete)))))
return [new_types]
+ resolve_unknown_tys(solver,
UNSAT => return []
UNKNOWN => ERROR ()

ts)

Figure 3. High-level algorithm for Crocus’s monomorphization
and type inference, which produce a set of precisely-typed formulas
for each potentially-polymorphic rule. type_inference_pass_1
has a standard unification-based implementation that we omit here.

First pass. The first pass Crocus runs is a variant of classic
unification-based type inference [54] in order to rule out type
errors between annotations. This first pass yields an SMT
type (kind)—either an integer, boolean, or bitvector—for each
variable in both the specification and the term it describes.

Crocus is not always able to resolve precise bitvector types
via the first unification pass because types in ISLE are poly-
morphic at the time ISLE generates Rust for code generation
(e.g., the type Value does not have a specific width when
ISLE is being processed). For example, the width of the value
of small_rotr depends on the value of an argument passed
in, ty. Thus, Crocus finishes resolving all bitwidths in a sec-
ond typing pass when necessary.

Second pass. During the second type inference pass, Cro-
cus uses an SMT solver to resolve unknown bitvector widths.
This pass takes terms and their specifications as input, along
with the types that the first inference pass resolved. It models
bitvectors as an over-approximation of their width (i.e., with
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bitwidth 64) and uses integer SMT variables to model the
widths of each subexpression.

Most terms on the right-hand side of Cranelift’s ISLE rules
operate on types modeling registers, instead of values in the
intermediate representation. Cranelift’s invariant for narrow
types placed in registers is that low bits are defined and high
bits are undefined, so we encode registers as 64-bit bitvectors
with potentially-unspecified high bits.

For most rules, this second pass produces a single possible
type assignment. For some rules, there are multiple valid type
assignments. We iteratively call the SMT solver to check if
there are multiple distinct type assignments that are possible
for a given rule and type instantiation (lines 15-20 of Figure 3),
similar to counter-example guided inductive synthesis [1].

3.2 Generating verification conditions

Once Crocus has run type inference and monomorphization—
yielding one or more precisely-typed rule representations—it
lowers those representations to sets of SMT formulas that
expresses equivalence of the right and left-hand sides of a
lowering rule. While the left-hand side of a rule frequently
has a narrow width, such a 32 bits, the right-hand side typi-
cally has the full register width of 64 bits. In discussion with
Cranelift engineers, we learned that Cranelift’s intended in-
variant is that the low bits of a register corresponding to a
given type must match the computed value, while the higher
bits (outside the value’s type) are unspecified. Thus, Crocus’s
correctness check performs an equality comparison by com-
paring any narrow values (typically on the LHS) with an
extraction of the same number of low bits on register-width
values (typically on the RHS).

At ahigh level, when Crocus performs a correctness check,
there are three possible outcomes:

1. Success: the rule is verified.

2. Failure with counterexample: the rule is broken,
and the solver provides a set of inputs that exposes the
bug, formatted in ISLE surface syntax.

3. Rule inapplicable: for the given type instantiation,
the rule does not match. This indicates that the rule
contains predicates on the left-hand side—or guarded
if/if-let clauses (see §4.4.4)—such that the rule never
matches on this type instantiation.

To produce these 3 outcomes, Crocus uses (at least) two SMT
queries. The first query determines if the rule is applica-
ble by querying the solver to see if there exists a model in
which all the necessary preconditions hold; if not, Crocus
produces aRule inapplicable result. The second query de-
termines whether the lowering rule preserves equivalence;
if so, Success, and if not, Failure with counterexample.

For each query, Crocus’s formula for a given rule combines
the semantics and preconditions of Cranelift IR terms, ISA
terms, and external and intermediate terms—all provided
by annotations—with the semantics of the ISLE language
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itself (e.g., if-1let and other language constructs). Crocus
combines semantics across term annotations via a recursive
descent over the rule’s RHS and LHS, equating corresponding
arguments and return values.

3.2.1 The first query: applicability. Let iy .. .i,—; be in-
put variables in the LHS of a rule, ALHS be the set of SMT
variables generated by the recursive descent on the LHS (and
analogously RHS), PXS and REHS be the set of provide and
require predicates in all annotations on the LHS (and anal-
ogously RHS). A rule is applicable if there are some inputs
such that the LHS and RHS are both defined:

Fip, ... in-1} U ALHS U ARHS|pLHS p RLHS A pRHS (1)

Recall that this query does not ask about equivalence; it asks
whether the rule applies at all, to at least one input. Including
the RHS SMT variables (ARS) and provide expressions
(PRHS) in this initial query helps catch overly restrictive
annotations. For instance, a vacuously false assertion in a
provide annotation on the RHS should make the rule fail
the applicability check (otherwise, the next step would be
unable to find any counterexamples—because in first order
logic, false implies anything). Including P*® in the query
makes such a rule fail at the applicability check.

The optional model distinctness check. The applicabil-
ity check succeeds as long as at least one assignment of input
terms is applicable—even if there is just one set of applicable
inputs. Crocus implements an optional check that looks for
distinct input sets (i.e., checks that multiple SMT models are
feasible in which every bitvector input term is distinct). Cro-
cus creates a formula that asserts that each bitvector input
differs from the one in the original model; if the query is
unsatisfiable, there is only one set of matching inputs. This
check identified a previously unknown bug where an ISLE
rule never fired in practice (§4.4.2).

3.2.2 The second query: equivalence. If the first query
succeeds, Crocus constructs another SMT query to determine
equivalence. Let result*™* be the value returned by the out-
ermost LHS term and result®’S be the value returned by
the outermost RHS term. A rule is correct if assuming (i) the
semantics of the LHS and RHS terms and (ii) preconditions of
the LHS implies (i) the equivalence of the LHS and (possibly
extracted low bits from) the RHS and (ii) preconditions on
the RHS terms:

V{io, ..., in1} UALHS U ARHS)
(result™S = result®HS) A RRES  (2)

To convert this statement to an SMT query, Crocus uses
the standard technique of asking the solver if there are coun-
terexample inputs such that the verification conditions do
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not hold (by switching the quantifier to an existential and
negating the implication).

Verification conditions for narrow widths. ISLE’s type
system itself conveys to Crocus which bits are demanded to
produce the right verification conditions. For many rule and
type instantiation pairings, the expression result“HS (the
returned value from the outermost LHS term) has a width
narrower than 64 bits. The RHS, however, typically operates
on register-width values with 64 bits. In such cases of mis-
matched widths, the condition Crocus verifies aligns with
Cranelift IR’s intended invariant: that the lower bits of the
register are equivalent to the Cranelift IR semantics on the
narrow width. We implement this condition in Crocus by
adding an annotation on the output_reg term, which an
ISLE compiler pass inserts as an automatic type conversion:
(spec (output_reg x)

(provide (= result

(convto (widthof result) x))))
(decl output_reg (Reg) InstOutput)

The convto in this annotation narrows the bits of Reg in con-
sideration to the bit demanded by the width of the InstOutput
(which models the potentially narrow Cranelift IR type). In
practice, this often produces an extract of the low bits of

the RHS ISA term before comparing to the LHS IR term.

Optional custom verification conditions and assump-
tions. Some compiler transformations in isolation intention-
ally break strict equivalence. For example, Cranelift attempts
to rewrite comparisons that include a statically-known argu-
ment to prefer an even integer immediate: as a mathematical
identity, A > B+1 — A—1 > B — A > B. This rewrite
is profitable because even values are more likely to fit in
AArch64’s 12-bit immediate encodings, improving code size.

The rule that implements this identity is closely tied to
how comparisons are emitted to machine code. On AArché64,
comparisons are done by a subtraction-with-flags and then
comparing those flags again the condition code for the spe-
cific comparison (in this example, > vs >). The relevant rule
acts on terms that that produce the ISLE type FlagsAndCC,
rather than a boolean value directly. Since the mathematical
identity changes the values of the flags and the condition
code and Crocus currently considers rules individually, Cro-
cus reports a verification failure on this and similar rules.

Optionally, users can run Crocus with custom verification
conditions instead of checking strict bitvector equality of the
LHS and RHS. In this case, Crocus can encode the logic that
flattens flags and a condition code into a boolean in order to
prove that the boolean result of the comparison maintains
equivalence. Users can also provide Crocus with additional
assumptions on input values, which we use to encode cases
where a rule would not match due to ISLE’s priority seman-
tics. With addition assumptions A, and custom verification
conditions C,,, the correctness statement becomes:
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Figure 4. The cumulative distribution function (cdf) of verifica-
tion times for each rule run in isolation. Rules where some type
instantiations time out are split into two separate tests (one that
terminates and one that times out) for this figure.

in1} UAFHS Y ARHS g A |

(PLHS A RLHS A PRHS) = Cm A RRHS (3)

Vo, ..

3.3 Implementation and trust model

Crocus is implemented in 15,825 lines’ of Rust as a fork
of the Cranelift/Wasmtime codebase [18].> We run Crocus
queries as a Rust test suite in continuous integration on our
Wasmtime fork. Crocus is designed to be useful to compiler
engineers who are not experts in verification tooling; Crocus
lifts counterexamples from the SMT model back into ISLE
syntax to make debugging easier. Crocus can also test rules
against specific concrete inputs (i.e., run as an interpreter),
allowing developers to test their annotations against their
expectations.

Caveats and the trusted code base. Crocus is limited
to reasoning about individual rewrite rules written in ISLE;
it reasons about correctness in instruction lowering itself,
but trusts other passes in the Cranelift compiler and Wasm
runtime. Cranelift and the Wasmtime engine invoke instruc-
tion selection after WebAssembly safety checks are inserted,
but prior to a couple final compiler stages (e.g., register al-
location).” Crocus also trusts the semantics of ISLE terms
as written in the annotation language (though our provide
and require distinction and concrete tests help find bad
specifications). For example, we found that an old version
of Crocus did not require condition codes to fall into a valid
range. Finally, Crocus currently reasons about each rule indi-
vidually. Support for verifying properties over multiple rules
(e.g., reasoning about rule priorities) is future work.

4 Evaluation
This section answers the following evaluation questions:

"Plus 26,465 lines for our auto-generated annotation language parser.
3Currently forked at commit ba6c9fe2129b3d5c, some empirical results
are based on commit 9556cbh190fd7b76c.

9Cranelift also has a distinct symbolic translation validation checker for
register allocation; this shows how engineers can take an ensemble approach
to applying formal methods in a production setting.
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Total Success Timeout Inapplicable | Failure
Rules 98 86 (all types) / 93 (any type) | 10 (any type) / 5 (all types) N/A 2 (0)
Type Instantiations || 377 245 28 104 4 (0)

Table 1. Verification results for rules and type instantiations (because rules match on multiple possible types, potentially with different
verification results) for integer operations from WebAssembly 1.0 to ARM aarch64. Note that the failures all succeed with custom (rather

than bitvector equivalence) verification conditions.

Q1 Can Crocus be applied to a meaningful set of ISLE
rules?

Q2 For test and benchmark suites for WebAssembly and
Rust, what proportion of invoked ISLE rules has Cro-
cus verified?

Q3 Can Crocus reproduce prior, known Cranelift bugs?

Q4 Can Crocus help identify and fix new bugs?

We answer Q1 by verifying a natural subset of rules, those
necessary to compile (to aarch64) integer computations in
the latest major release of WebAssembly (“1.0” [66]). Crocus
has preliminary support for some x86-64 instructions (see
Section 4.3.1). Section 4.2 addresses Q2—we find that the
rules we verify comprise 19.8% of the lowering rules invoked
by the WebAssembly reference test suite.

To answer Q3, we choose two previously-discovered CVEs
in ISLE rules (out of 14 Wasmtime CVEs at the time of sub-
mission, 10 of which do not involve ISLE); we also select
an ISLE bug that was not assigned a CVE because it affects
non-Wasm types. We annotate the buggy rules and present
the counterexamples Crocus produces in Section 4.3.

Finally, in Section 4.4 we address Q4, outlining 2 new
faults (both patched) that Crocus discovered, Crocus uncov-
ering imprecise semantics, and 1 compiler mid-end bug that
Crocus helped root-cause and patch. These case studies high-
light that instruction-lowering rules are error-prone even
for experienced compiler engineers: many of the issues were
subtle interactions between constants, sign- and zero- exten-
sions, and tricky bitwidth-specific reasoning. Moreover, to
our knowledge, no new bugs have been discovered by any
other means (e.g., any Cranelift fuzzers [6]) in rules verified
by Crocus.

4.1 Is Crocus applicable to real rules?

We use Crocus to verify the instruction-lowering rules for
all integer operations'” from WebAssembly’s 1.0 release to
the ARM aarch64 backend. In addition, we verify most of
the new integer operations in WebAssembly’s 2.0 version,
which is currently in draft status [67]. We choose these rules
because WebAssembly uses integers for addressing compu-
tations, which means that logical issues in integer codegen
most directly would lead to serious security vulnerabilities.
We verify aarch64 rules because this backend is less well-
tested than x86-64. The AArch64 backend rules we do not

10 All operations defined under section “4.3.2 Integer Operations” of the
WebAssembly Specification Release, 1.0
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verify fall into four categories: (1) i128 types; (2) floating
point; (3) SIMD (vector) instructions; and (4) side effects and
control flow. We discuss further in Section 6.

Verification requires 136 total annotations (approximately
1000 LOC). For some ISA terms, we modify or cross-reference
formal semantics from SAIL-ISLA [4, 5], a symbolic execu-
tion engine for ISAs. For Cranelift IR and external Rust terms,
we refer to WebAssembly’s specification, Cranelift documen-
tation, and the external Rust definitions.

In total, our verification effort covers 98 distinct rules with
377 type invocations, since each rule is tested against 1 to 10
possible type assignments. For most rules, we consider all
Cranelift-supported integers up to 64 bits (i.e., 18, 116, 132,
and 164), though we note that WebAssembly 1.0 only sup-
ports 32-bit and 64-bit integers. rustc_codegen_cranelift,
an alternative backend for the Rust language, uses the nar-
rower types Crocus supports [10, 58].

Table 1 shows the verification results for all 377 total type
invocations. Recall that the six verification failures do not
represent real bugs, since the context in which they are used
does not require bitvector equivalence. With custom verifi-
cation conditions, these rules verify successfully. 349 of the
377 invocations complete together within 5 minutes on a lap-
top.!! The 10 rules that time out on some type instantiations
contain multiplication, division, remainder, and popcnt op-
erations on bitvectors, which are difficult for SMT solvers
to reason about for wider widths [40].1? Each of these rules
fails with a counterexample within 10 seconds if we inject
a flaw in the rule logic. Figure 4 presents the cumulative
distribution function of verification times for each rule run
in isolation as a Rust unit test (including the time for Rust
test initialization).

4.2 What proportion of invoked rules has Crocus
verified?

We instrument Cranelift to determine what proportion of
invoked ISLE rules Crocus has verified. '* For the WebAssem-
bly reference test suite, Crocus verifies 19.8% (50/253) of
the unique ISLE rules used during compilation. (We use a
version of the WebAssembly specification’s test suite that

1'We run experiments on a MacBook Pro Apple M2 Max, 12-core CPU,
32GB RAM, macOS 13.2.1.

2Timed out after 6 hours.

3The coverage numbers are based on a slighter earlier version of Cro-
cus forked at Wasmtime/Cranelift’s commit 9556cb190fd7b76c, where we
implemented basic tracing logic.
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corresponds to the language features in Wasm 1.0, which no-
tably excludes SIMD instructions.) To assess our coverage on
integer types narrower than those that Wasm supports, we
repeat this experiment on the rustc_codegen_cranelift
test suite, an alternative backend for the Rust compiler that
uses Cranelift as its code generator [10, 58]. Verified rules
make up 15.8% (24/152) of the unique ISLE rules used during
compilation. These numbers will grow as we enhance Crocus
to additional memory operations and floating point (§6).

4.3 Can Crocus detect known bugs?

To answer our third question, we use Crocus to detect three
known, recent Cranelift bugs. We select these bugs for their
severity and because they occur in ISLE rules in scope for
the current version of Crocus.

4.3.1 x86-64 addressing mode CVE (9.9/10 severity).
In under one second on a laptop, Crocus detects a previously-
discovered 2023 CVE in Cranelift’s x86-64 instruction lower-
ing that permitted a WebAssembly sandbox escape (§1) [25].
Crocus’s reproduction requires 13 new annotations to sup-
port terms in the x86-64 backend, which we had not previ-
ously covered (§4.1).

The bug appeared in this ISLE rule:'*
(rule

(amode_add (Amode.ImmReg off base)

(uextend (ishl x
(iconst shft))))
(if (u32_lteq (u8_as_u32 shft) 3))
(Amode . ImmRegRegShift off base
(extend_reg x 164 (Extend.Zero)) shft))

This rule intends to take advantage of an x86-64 addressing
mode that allows shifts to be computed within the instruction
itself, before adding together address components. However,
the core problem with this rule (§1) is that the LHS performs
a shift on a 32-bit value (throwing away any bits that are
shifted left beyond 32 bits), while the RHS performs the shift
on a 64-bit value (throwing away bits shifted left beyond
64 bits), which lets the emitted shift modify bits beyond
WebAssembly’s effective address space.

To see how the problem manifests, we will walk through
the rule. The outermost LHS term, amode_add, is an interme-
diate term that earlier rules construct to model memory ad-
dress computations that may be able to be folded into address-
ing modes. The second argument of the match, (uextend
...),is a Cranelift IR value that is a zero-extended shift oper-
ation (ishl) with a statically known, constant shift amount
(shft). Conceptually, this corresponds to Wasm of the form:
(i64.extend_i32_u (i32.shl <x> (i32.const <shft>)
)). The rule’s if clause checks that the shift amount, shft,
is less than or equal to 3. If all the above conditions hold and
the rule matches, it emits a single addressing mode where
the value x to be shifted is zero-extended, shifted by the

141Lightly edited for brevity.

1
1
1
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static shft amount, and added to the other components of
the computed address (base + off).
Crocus provides the following counterexample:'®
1 (amode_add
2 (Amode . ImmReg
3 [of f |#x30c04100]
4 [base |#x00000000000000001])
5 (uextend
(ishl [x|#xd0000920]
7 (iconst [shft|#x02]1)))) =>
(Amode . ImmRegRegShift
[of f |#x30c04100]
(gpr_new [base |#x000000000000000017)
1 (extend_to_gpr [x|#xd0000920]
2 164
3 Extend. Zero)
[shft|#x02])
6 #X0000_0000_70c0_6580 =>
7 #X0000_0003_70c0_6580

In this counterexample, the 32-bit value x, #xd0000920, has
the most significant bit set. When x is shifted by the specified
2 bits to the left, the results differ on the LHS and RHS. As
expected, the LHS throws away the shifted bits after 32 bits
(e.g., the higher 32 bits of #x0000_0000_70c0_6580 are zero).
However, the RHS does not throw away the shifted bits after
32 bits, allowing non-zero bits beyond the expected effective
address space: #x0000_0003_70c0_6580!

The patch for this bug simply removes the rule entirely,
so we did not verify the patch with Crocus.

4.3.2 aarch64 unsigned divide CVE (moderate sever-
ity). Crocus reproduces a 2022 CVE in aarch64 instruction
lowering in which divides with constant divisors were mis-
compiled. In this case, trying to write annotations was enough
to highlight the root cause of the bug—that constant values,
when used as divisors, were not correctly sign- or zero-
extended according to signed or unsigned division.

The ISLE rules that matched on constant divisors for both
udiv and sdiv—unsigned and signed divide—used the term
imm on the RHS. imm models an immediate value that can be
encoded in a machine instruction itself, lowering both the
number of instructions and register pressure. At the time of
this CVE, the ISLE signature for imm was:

(decl imm (Type u64) Reg)

This term’s intention was to take the immediate’s value as a
u64 and place it in a register. When trying to annotate this
term and the terms for signed constant divisors, though, an
issue was immediately clear: imm provides no argument for
whether narrow values should be sign- or zero-extended.
Annotating zero-extension causes signed division to fail;
choosing sign-extension causes unsigned division to fail. In
practice, the external Rust implementation sign-extended, so

B Lightly edited for brevity.
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the bug surfaced in udiv instructions. The patched version
of imm takes in an argument for the type of extension, and
the rules for udiv and sdiv now successfully verify.'®

4.3.3 aarch64 count-leading-sign bug. Crocus repro-
duces a pre-existing bug in the ISLE aarch64 lowering rule
for cls, the instruction that counts the number of leading
sign bits in a value (excluding the sign bit itself). The rule
for narrow cls instructions must extend its input values,
since Cranelift IR supports operations on narrow types like
i8 and 116, while aarch64 only supports operations on 32-
and 64-bit values. Unfortunately, the faulty version of the
rule failed to properly extend:
(rule
(lower (has_type I8 (cls x)))
(a64_sub_imm I32
(a64_cls I32 (zext32 x))
24))

This rule matches on cls computations over 8-bit values.
The RHS extends 8-bit x to 32 bits using zext32, and then
computes a64_cls on this wider value. Finally, it subtracts
24 bits (32 — 8) to obtain the leading bit count on the narrow
type. Crocus reports the following counterexample:
(lower (has_type I8 (cls [x|#b111111001)))
=>
(output_reg
(a64_sub_imm I32
(ab4_cls 132
(zext32 [x|#b111111001))
24))

#b00000R101 => #b11111111

In this counterexample, the LHS correctly computes that the
value #b11111100 has 5 leading sign bits (1), excluding the
sign bit itself. The RHS, however, zero-extends this value to
32 bits, then counts the new leading sign (0) to produce 23,
and subtracts 24 to produce -1. The amended version of the
rule uses a sign-extend instead of a zero-extend, and Crocus
verifies it successfully.

4.4 Can Crocus find new bugs?

This section outlines Crocus’s discoveries in Cranelift so far:
two bugs, both patched; a case of imprecise semantics; and a
root cause analysis.

4.4.1 Another addressing mode bug. Crocus discovered
a new correctness bug in an x86-64 addressing mode rule
related to the one discussed in §4.3.1 (which was not identi-
fied by Cranelift engineers even in a subsequent close look
at addressing mode rules). This rule was identical except
that it did not have an explicit uextend (line 3 in §4.3.1)—the
same bug could surface on a direct load of a 32-bit address.
Cranelift developers determined that the bug would not be

19Though as noted previously, Crocus times out on some wide divisions.
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triggered in practice because on 64-bit targets, all addresses
should be 64-bit typed, and frontends generate code in this
form. However, nothing in the compiler backend validated
this IR invariant and the bug could be triggered if frontend
implementations changed. Cranelift engineers patched this
issue immediately after we notified them of Crocus’s result.

4.4.2 Flawed negated constant rules. Crocus found an
issue where 3 rules were unintentionally restricted to never
fire in practice. This was a performance issue—optimizations
did not apply as often as they should—but not a correctness
issue. The three buggy rules all, in various ways, attempted
but failed to find small, constant arguments that could be en-
coded in AArch64’s imm12 encoding. This is an optimization
because it is an alternative to the more expensive option of
using a separate load-immediate instruction.

This is one of the buggy rules Crocus discovered:
(rule

(lower (has_type (fits_in_64 ty)

(isub x (imm12_from_negated_value y))))
(a64_add_imm ty x y))

The imm12_from_negated_value term matches when the
second argument, after being negated, can be encoded into
AArch64’s 12-bit immediate format. Matching negated con-
stants allows a wider range of numbers to be encoded as
immediates—checking for negated values essentially dou-
bles the number of possible constants that can be encoded
in 12 bits.

When run on this rule, though, Crocus warns that there
are no distinct models—the rule only matches one set of
input values. The issue is in the (external Rust) implementa-
tion of imm12_from_negated_value:
Imm12::maybe_from((n as i64).wrapping_neg()

as u64)

In Cranelift’s IR, all constant integers are represented with
Rust’s u64 type. This code takes the constant n’s underlying
u64 value, negates it, and checks if it fits into an Imm12 im-
mediate. Unfortunately, for any width of integer narrower
than 64 bits, the only value this holds true for is zero! This is
because Cranelift has an informal invariant that when a neg-
ative narrow value is stored as a constant, its value should
be zero-extended—not sign-extended—into a u64 representa-
tion. Negating (wrapping_neg) a zero-extended constant al-
ways produces a 64-bit value with with left-filled ones, which
will always fail the check Imm12: :maybe_from because the
highest bits on the 64-bit value are set.

Crocus discovered that, while not incorrect, this rule was
useless—it never matched in practice. Our merged fix corrects
this rule to negate the narrow constant and then zero extend
the subsequent value.

4.4.3 Imprecise semantics for constants in Cranelift
IR. Crocus also found that Cranelift had under-specified
semantics for integer constant representations in IR. While
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most Cranelift front-ends zero-extend narrow constant val-
ues to 64 bits, Crocus found that Cranelift’s own parser for
unit tests sign-extends. The issue we filed is the site of ongo-
ing discussion about enforcing clear semantics; since then, a
fuzzer discovered a bug in Cranelift’s mid-end optimizations
caused by the same imprecise semantics.

4.4.4 Amid-endrootcause analysis. While we designed
Crocus for ISLE’s lowering rules, we have found that it
can reason about backend-agnostic rewrites—rewrites in the
compiler “mid-end”—as well. In this case study, Crocus iden-
tified the root cause of a new bug—a boolean optimization
rewriting false to true—before Cranelift engineers identified
the root cause.

A Cranelift engineer ran Souper—a superoptimizer for
LLVM [57]—on a subset of Cranelift IR and discovered that
Cranelift was missing the boolean rewrite or (and(x, v),
not(y))== or(x, not(y)). To port this to ISLE, the engi-
neer wrote a new rule with an explicit guard to check the
for a bitwise-not between constants y and z:'7
(rule

(simplify (bor (band x (iconst y))
(iconst z)))

(if (u64_eq z (u64_not y)))

(bor x z))

This rule passed code review and was merged, but broke an
integration test with a wasm trap error that did not point
to a root cause. Before the Cranelift engineers were able to
complete a manual investigation, we extended Crocus ana-
lyze this rule (e.g., added annotations for mid-end terms) in
under two hours. Crocus produced the following counterex-
ample:'®
(bor (band [x|#b01] [y|#b101])

(iconst [z |#bo0])) =>
(bor [x|#b01] [z|#bo0])
#b0o => #bo1

Crocus surfaces a subtle bug related to the semantics of
ISLE’s if construct. Recall that terms in ISLE are partial
functions. The semantics of ISLE’s terms with external Rust
implementations are that a match should continue if the
return value is Some(. . .) and should not match if any LHS
term returns None. Deceptively, because the Rust external
definition of term u64_eq in the prior rule returned Some
(false) instead of None (that is, the boolean was defined,
just false) this guard as written always allowed the match to
proceed!

To fix this bug, Cranelift engineers re-wrote the guard
to actually check for Some(true). Crocus’s analysis also
led Cranelift engineers to propose a longer-term solution—
redesigning semantics of if to avoid similar mistakes in the
future. Finally, after the patch was in, a Cranelift engineer

7Lightly edited for clarity and brevity.
18Example simplified and truncated to 2 bits for brevity.
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said, “this would have taken me so much longer without the
counterexample, really helpful!”

This case study has a another unexpected takeaway: this
bug occurred despite the optimization being harvested from
another formal-methods-based tool! While the Souper super-
optimizer is also based on the SMT theory of bitvectors, the
subtle interaction between Souper-IR and ISLE semantics
could not have been caught by Souper itself. This highlights
the benefits of Crocus’s tight integration with ISLE’s own
program representation: Crocus was able to root-cause this
bug because it must reason about core ISLE semantics.

5 Related work

Compiler verification. Compiler verification research
falls into two broad categories: lightweight verification of
(parts of) existing compilers using solvers (e.g., [45, 47, 48]),
and clean-slate, foundational verification using proof assis-
tants [13] (e.g., CompCert [44, 49]). Foundational verifica-
tion provides end-to-end correctness guarantees at the cost
of time and performance: typically, such verification takes
experts many years [68], and makes serious optimizations
impractical. There are manually verified lowering passes for
CompCert [50] and CakeML [34, 69], but not for production
compilers that consider performance first-class.

Other works use solver-backed methods to verify por-
tions of industrial compilers. Most closely related to Crocus,
Alive [52] verifies LLVM [46] peephole optimization rules
written in a DSL. Alive’s main challenge is undefined be-
havior; in contrast, Crocus need not reason about undefined
behavior (because Cranelift IR was designed to avoid it), but
must instead reconcile IR and ISA types. Crocus also must
contend with a language for instruction selection where
engineers can (and do) build new operators within the in-
struction lowering language itself, whereas Alive reasons
about a subset of LLVM’s IR plus a small set of built-in pred-
icates (e.g., isPower0f2) for conditioning on program val-
ues. Further afield, Alive2 [51] does translation validation
on LLVM IR, and VeRA [15] verifies range analysis in the
Firefox JavaScript engine. Finally, Jitterbug [59] verifies a
Just-In-Time (JIT) compiler from BPF to native code, in a
restricted setting where instruction selection entails simple
“macro expansion” of one instruction at a time. While Jit-
terbug requires a substantially smaller TCB than Crocus,
Crocus considers more complex backend instruction selec-
tion, with potentially M-to-N instead of just 1-to-N lowerings.
For example, Cranelift’s AArch64 backend is around 3,600
lines of ISLE and 10,000 lines of Rust compared to Jitter-
bug’s AArch64 JIT’s 653 lines in their DSL (or 1,025 lines
of equivalent C). While Crocus does not verify the entirety
of the backend, our setting within the context of the larger,
frequently-changing Cranelift project motivates our distinct
design decisions.
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WebAssembly verification. VeriWasm proves that in-
dividual binaries (produced by a specific compiler) do not
violate Wasm’s safety guarantees [42]. VeriWasm does not
prove compiler correctness, though, and places restrictions
on how Wasm compilers can emit native code.'’ In [14], the
authors present a non-optimizing compiler to x86-64 that
is verified to preserve sandbox safety, and a non-optimizing
compiler from Wasm to Rust; in contrast, we verify the cor-
rectness of a production, optimizing compiler.

There is also work on mechanizing the Wasm specifica-
tion [73] and formalizing Wasm in the K framework [37].
Other verification efforts look beyond the language and
compiler: WaVE [41] verifies that interactions between the
Wasm runtime and the host OS preserve safety guarantees;
SecWasm [12] extends Wasm’s guarantees using informa-
tion flow control; [62] bring verified cryptography to Wasm;
and CT-Wasm extends Wasm with constant-time guaran-
tees [74].

Synthesizing instruction selectors. The complexity of
instruction selection has inspired work on automatically
generating rules based on machine-language semantics. Be-
cause of their focus on portability vs. correctness, many
instruction selector generators use ad hoc search procedures
instead of solver-aided techniques [19, 21, 30, 39]. Others
use solver-aided synthesis: LibFIRM [16], for example, uses
SMT to synthesize new rules that cover about 75% of input
instructions; using an existing, handwritten rule set for the
rest. [26] uses a solver to generate high-coverage selection
rules for diverse target architectures. Rake [2] synthesizes
lowering rules from Halide [63] to digital signal processor
ISAs, but its focus is on capturing complex data movement
mechanics within vector registers instead of general-purpose
instruction semantics. Though many compilers use a DSL to
express instruction selection rules, to our knowledge Crocus
is the first tool for verifying existing rules by modeling DSL
semantics.

Formal semantics for ISAs. Several efforts formalize
ISA semantics, including the SAIL language [4] and the K
Framework [27]. In future work, we plan to extend Crocus to
incorporate these existing semantic models to make it easier
to verify instruction selection for new targets.

6 Future work

Crocus annotations are currently trusted. We can address
this issue by deriving certain annotation from existing formal
models. For example, Crocus can integrate SAIL semantics
for aarch64 [4] and K framework semantics for x86-64 [27].
While neither Cranelift IR nor external Rust term definitions

19 After discovering the amode bug described in the introduction, Cranelift
engineers tried to update VeriWasm to operate on the current version of
the backend, but determined it would be too large of an undertaking. See
https://github.com/bytecodealliance/wasmtime/issues/6090.
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have formal semantics, we can raise assurance in our specifi-
cations by, for example, verifying them against their external
Rust implementations [7, 8, 64].

Future work can extend Crocus to reason about floating
point, more operations with side effects, some SIMD vector
instructions, and wider integers. Crocus already incorporates
annotations for some 128-bit vector instructions, because the
implementation of popcnt on aarch64 uses them. Crocus
can also be extended to automatically reason about rule prior-
ities and to cover other backends and the mid-end optimizer.

We are working to upstream Crocus into mainline Cranelift,
which raises research questions around usability: how can a
formal methods tool best support engineers who are experts
in their domain, but not necessarily in verification? We hope
to explore these questions as we improve Crocus and as we
build on Crocus to create more comprehensive verification
infrastructure for other parts of the compiler.

7 Conclusion

Language-based technologies such as WebAssembly promise
a more secure computing environment, where hosts can
safely sandbox untrusted code to limited segments of mem-
ory. This software-level isolation fundamentally places a
high burden on the compiler that produces the final exe-
cutable in a machine-specific ISA. Crocus is a tool for veri-
fying instruction-lowering rules in one such safety-critical
compiler: the Cranelift code generator. Crocus’s key selling
point is its modularity—Crocus’s annotation language allows
concise semantics of individual terms to be added alongside
definitions in ISLE, a feature-rich instruction-lowering DSL.
With Crocus, compiler developers can reduce the risk of
security-critical vulnerabilities in instruction lowering logic.
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A Artifact Appendix
A.1 Abstract

This appendix contains instructions for reproducing the em-
pirical results we present in this work.
Our linked archival artifact packages:

e The Crocus verification tool: an SMT-based verifica-
tion tool for the ISLE instruction lowering domain-
specific language. Crocus is implemented as a fork of
the Wasmtime/Cranelift repository.

e Annotations and Rust tests that invoke Crocus on rules
in the ARM aarch64 backend (Table 1).

e Rust tests for six of the listed case studies (Section 4.3.1,
Section 4.3.2, Section 4.3.3, Section 4.4.1, Section 4.4.2,
Section 4.4.4), a Github issue for the 7th (Section 4.4.3).

e Python scripts to characterize the percent of rules we
have covered (Section 4.2) and the verification run-
times (Figure 4).

A.2 Artifact check-list (meta-information)

Algorithm: Satisfiability Modulo Theories (SMT), compiler

verification, instruction selection.

e Output: Categorical verification results, verification times.

Experiments: Rust test suite for verification results, Rust

tests for 6 case studies, Github issue for 8th case study,

Python coverage experiment, Python CDF generation script.

o How much disk space required (approximately)?: 8 GB.

e How much time is needed to prepare workflow (ap-
proximately)?: 15 minutes.

e How much time is needed to complete experiments
(approximately)?: 1-2 hours.

e Publicly available?: Yes.

e Code licenses?: MIT License.

e Archived?: Yes: https://doi.org/10.5281/zenodo.10433722.

A3

A.3.1 How to access. We have made our artifact in two
formats:

Description

e (Recommended) A Docker image with all software
dependencies pre-installed.

e Instructions to install the required open-source tools
from package managers and Github repositories.

The instructions to download our virtual image or install
from source can be found here:

https://github.com/avanhatt/asplos24-ae-crocus

A.3.2 Hardware dependencies. The majority of our eval-
uation requires only a CPU (we recommend one with at at
least 8GB RAM and 8GB available disk space).

To fully reproduce one result, our rule coverage experi-
ment (Section 4.2), we require a processor with ARM aarch64
(e.g., an M1 or M2 Mac). However, we have including pre-
saved build traces for aarch64 compilations as well as the
scripts to analyze them, in case a reviewer does not have
access to an ARM aarch64 machine.
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A.3.3 Software dependencies. Our Docker image uses
an Ubuntu base image and should be usable across any host
OS that supports Docker without additional software depen-
dencies. Some results take the form of PDFs/images.

Our software dependencies if installing from source in-
clude Rust/Cargo, Python 3 (including some specific pack-
ages), and Z3.

A.3.4 Data sets. Not applicable. The rules we verify are
source code within the Wasmtime/Cranelift repository itself.

A.3.5 Models. Not applicable.

A.4 Installation

The Docker image has all requirements pre-installed. Full
instructions for either installation method can be found here:

https://github.com/avanhatt/asplos24-ae-crocus

A.5 Experiment workflow

We provide Rust invocations and Python scripts and to re-
produce the results within our paper. We use a Python script
to wrap our Wasmtime 1.0-to-Arm-aarch64 rules (Table 1),
calculate rule counts, and print a EIgX- or ASCII-formatted
table. The case studies use direct Rust cargo invocations/tests
(or in one case, a link to the relevant Github issue). The
Python script for coverage compilers code with additional
debug tracing then computes statistics. The Python script
for verification times runs and times Rust cargo unit tests
and produces the summary CDF.

A.6 Evaluation and expected results

Our goal with this artifact is to let other researchers repro-
duce the verification results, charts, and tables within our pa-
per. This includes our Wasmtime 1.0-to-Arm-aarch64 rules
(Table 1) verification results, case studies verification results
(Section 4.3.1, Section 4.3.2, Section 4.3.3, Section 4.4.1, Sec-
tion 4.4.2, Section 4.4.4, Section 4.4.3), rule coverage results
(Section 4.2), and brief verification runtime results (Figure 4).

The core verification results should reproduce those in the
paper, although the specific counterexample bitvectors may
vary due to non-determinism in the underlying solver. The
verification times are less central to this paper’s contribution,
but should fall fairly close to those reported in the evaluation
depending on the characteristics of the machine on which
experiments are run.

A.7 Methodology

Submission, reviewing and badging methodology:

e https://www.acm.org/publications/policies/artifact-review-

badging
e http://cTuning.org/ae/submission-20201122.html
e http://cTuning.org/ae/reviewing-20201122.html
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