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Abstract— Wideband millimeter-wave communication systems
can be extended to provide radar-like sensing capabilities on
top of data communication, in a cost-effective manner. However,
the development of joint communication and sensing technology
is hindered by practical challenges, such as occlusions to the
line-of-sight path and clock asynchrony between devices. The
latter introduces time-varying timing and frequency offsets that
prevent the estimation of sensing parameters and, in turn, the
use of standard signal processing solutions. Existing approaches
cannot be applied to commonly used phased-array receivers,
as they build on stringent assumptions about the multipath
environment, and are computationally complex. We present
JUMP, the first system enabling practical bistatic and asyn-
chronous joint communication and sensing, while achieving
accurate target tracking and micro-Doppler extraction in realistic
conditions. Our system compensates for the timing offset by
exploiting the channel correlation across subsequent packets.
Further, it tracks multipath reflections and eliminates frequency
offsets by observing the phase of a dynamically-selected static
reference path. JUMP has been implemented on a 60 GHz exper-
imental platform, performing extensive evaluations of human
motion sensing, including non-line-of-sight scenarios. In our
results, JUMP attains comparable tracking performance to a
full-duplex monostatic system and similar micro-Doppler quality
with respect to a phase-locked bistatic receiver.
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I. INTRODUCTION

OINT Communication & Sensing (JCS) has emerged as
J a potential game changer for next-generation wireless
networks, endowing communication systems with radar-like
capabilities to perceive their surroundings [1], [2]. Joint Com-
munication & Sensing (JCS) system designs are categorized in
radar-centric and communication-centric, depending on which
of the two functionalities is regarded as primary [3], [4].
Communication-centric JCS is the most promising approach
for a cost effective solution, as it leverages the ubiquitous
communication hardware and waveforms for sensing, adding
minimal overhead and modifications to existing devices and
protocols [5], [6]. To this end, communication-centric JCS
should maintain the typical wireless network configuration
of separated transmitter and receiver, with half-duplex capa-
bilities (bistatic configuration) [7], as opposed to impractical
full-duplex designs [8]. In this setting, sensing is performed by
repurposing the Channel Impulse Response (CIR) or Channel
State Information (CSI) estimation processes to extract infor-
mation about the environment [9]. This allows estimating
physical parameters such as the distance and velocity of nearby
targets of interest, as these are related to signal reflection
delays and Doppler shifts [10], [11]. However, a large-scale
adoption of bistatic JCS is impaired by the fact that network
nodes are asynchronous, i.e., they have different clock sources
and oscillators for the Radio Frequency (RF) front-end [5].
This asynchrony causes a time-varying Timing Offset (TO)
and Carrier Frequency Offset (CFO). The former appears
as a common delay shift for all propagation paths in the
CIR, preventing the correct estimation of actual path delays.
The latter is a random frequency shift that destroys phase
coherence across subsequent packets, hindering the estimation
of the Doppler shift and of the micro-Doppler (uD) effect.
The puD is a frequency modulation of the reflected signal
around the main Doppler frequency induced by movements
of a target or target components. It is the main signal feature
used in fine-grained wireless movement sensing, and has a vast
number of applications in target classification, human activity
recognition, pervasive healthcare, and person identification,
among others [12], [13], [14]. While existing communication
systems use algorithms to compensate for TO and CFO, they
treat the sensing parameters (delay and Doppler shift) as part
of the undesired offsets and remove them [15]. This makes
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such existing techniques unfit to our sensing purpose, as delay
and Doppler are the channel parameters that we use to describe
the physical environment. For these reasons, clock asynchrony
is the main obstacle to large-scale practical implementations
of JCS systems [5], [11], where TO and CFO due to clock
asynchrony are to be removed while retaining the delay and
the Doppler shift.

In this work, we design and implement JUMP, a JCS system
that solves the problem of asynchrony and enables bistatic
sensing in wideband communication systems, e.g., Millimeter-
Wave (mmWave) networks, which are particularly problematic
due to the high phase noise [16]. The system builds on two
main insights. First, JUMP exploits the slow change of the
CIR delay profile compared to the packet rate, and uses a fast
correlation-based method to estimate the relative TO across
subsequent packets. By compensating for the TO, it allows
for target localization and tracking without ambiguity, even
under frequent occlusions of the Line-of-Sight (LOS).

Second, it leverages the fact that the CFO is constant across
the different signal propagation paths for the same packet.
This property, paired with the accurate multipath resolution
of wideband signals, allows identifying static reference mul-
tipath components, whose frequency shift is only due to CFO
(being static, they do not contain the pD component). Hence,
the signal collected from these static paths is used to remove
the CFO from the sensing paths, which contain the uD
from the targets of interest. This allows aggregating phase-
coherent CIR estimates from subsequent packets, enabling uD
estimation despite the clock asynchrony.

Existing bistatic sensing approaches use cross-antenna-
based TO and CFO compensation, using the signal at one
antenna of a Multiple Input Multiple Output (MIMO) receiver
as a reference [17], [18], [19], and [20]. JUMP solves several
practical problems associated with these methods: (i) it works
with commonly used phased-array receivers, which do not
allow access to the signal at each antenna; (ii) it preserves
the linearity of the signal and does not introduce cross-terms
that require complex estimation algorithms; (iii) it correctly
operates in weak LOS and Non-Line-of-Sight (NLOS) condi-
tions. Moreover, JUMP estimates the full uD spectrum of the
targets, including the contributions of their different moving
parts, not just their main Doppler frequency.

Unlike other JCS approaches, it is a practical solution that
neither requires full-duplex hardware capabilities, as in [6],
[8], [12], and [21], nor any synchronization between the
nodes, nor any modification to the underlying communication
standard. We stress that these qualities make JUMP appealing
in more general settings than just JCS, e.g., in bistatic radar
systems [5], [22], in case synchronization through fiber links
or Global Positioning Systems (GPS) signals is not viable.

We provide analytical insights into JUMP’s TO and
CFO removal performance, complemented by numerical
simulations. Moreover, we prototype it on a 60 GHz
IEEE 802.11ay-based Software Defined Radio (SDR) plat-
form. This implements independent transmitter and receiver
pairs, thus serving as a realistic testbed for asynchronous
JCS. In the implementation, we solve additional practical
issues, such as symbol-level synchronization, which is usually
neglected in JCS research [5]. To benchmark the system’s
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target tracking and pD extraction capabilities, we conduct
a vast experimental campaign in two indoor environments,
performing people tracking and pD signature extraction. In the
dataset collection, we augment the testbed with additional
receivers in monostatic and bistatic phase-locked configura-
tions, enabling a comparison with alternative JCS approaches
from the literature.

The contributions of this work can be summarized as:

1. To the best of our knowledge, JUMP is the first system
that enables practical JCS for asynchronous transceivers in
realistic bistatic configurations, performing accurate target
tracking and pD extraction.

2. We design a correlation-based algorithm to compensate
for the relative TO across subsequent packets, attaining con-
sistent bistatic target tracking even in challenging multitarget
and NLOS scenarios.

3. We leverage the high multipath resolution of wideband
transceivers to remove the CFO using a reference propagation
path instead of a reference antenna, as done in the JCS
literature. This largely simplifies the estimation of the Doppler
spectrum, removing limiting assumptions on the multipath
environment, or the necessity of a MIMO antenna array.

4. We build two JUMP prototypes and collect a large dataset
of IEEE 802.11ay CIR measurements for human motion
tracking and uD extraction.

Our work shows promising results for bistatic asynchronous
JCS systems compared to monostatic full duplex and bistatic
phase-locked ones.

The manuscript is organized as follows. In Section II
we discuss the related work, while Section III introduces
the system model. JUMP is presented in Section IV, along
with a detailed explanation of each signal processing block.
Section V contains an analysis of the TO and CFO com-
pensation errors, complemented by numerical simulations.
In Section VI we describe the implementation of JUMP on
an experimental prototype. Section VII contains experimental
results demonstrating JUMP’s promising performance. Finally,
in Section VIII we underline key aspects of our design and
future research directions, while concluding remarks are given
in Section IX.

II. RELATED WORK

Full-duplex JCS. The use of full-duplex technology for JCS
has been advocated in several works. In [8] and [21] the
authors have investigated antenna arrays, beamforming, and
waveform design to enable full-duplex JCS in mmWave
5G systems. In [6] and [12], full-duplex has been used
as a practical solution to CFO for IEEE 802.11ay sens-
ing, presenting algorithms to detect multiple targets and
their uD signatures in indoor scenarios. However, full-duplex
entails strong self-interference, which remains a challenging
and unsolved problem in real communication systems, as it
requires self-interference cancellation techniques [8], which
are not yet a mature technology. As an alternative, the trans-
mitted power can be reduced to avoid saturating the receiver,
but this is only suitable for short-range indoor use [12].

Bistatic, asynchronous JCS. Some methods are available
to provide accurate synchronization between communication
network nodes [5], but require the use of GPS signals
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or the cooperation of devices. In systems including a sin-
gle transmitter-receiver pair or non-cooperating nodes, two
main methods have been proposed: Cross-Antenna Cross-
Correlation (CACC) [20] and Cross-Antenna Signal Ratio
(CASR) [17], [18], [19]. Both use the signal collected at
one of the receiver array’s antennas as a reference to remove
the TO and the CFO. These approaches have three main
drawbacks that are solved by JUMP. First, they require a
MIMO antenna array at the receiver, which is not available in
commercial mmWave systems, as phased-arrays are preferred
for their lower implementation cost and complexity. Second,
they entail a higher complexity in the estimation of the
sensing parameters, by doubling the number of parameters
or introducing non-linearity [19], [20]. Third, for their correct
operation, they require strong assumptions about the multipath
environment, such as the continuous presence of a dominant
LOS link between the transmitter and the receiver, or the
presence of a single sensing target [19] in the monitored space.
Contrarily, JUMP has no requirements for the receiver array
and handles environments with multiple moving targets and
LOS occlusions. Other techniques have been proposed that
rely on partially overlapping subbands to remove TO and
CFO, e.g., [23] and [24]. These require the availability of such
subbands, which is rarely the case, and they can not work with
Single Carrier (SC) systems.

Recently, a Kalman filter-based technique for removing the
TO in bistatic asynchronous JCS has been proposed [25]. Dif-
ferently from JUMP, however, [25] estimates the joint Doppler
plus CFO frequency shift, which does not contain useful
information about the target’s movement. JUMP can instead
remove the CFO and retain the Doppler shifts induced by
the multiple moving parts of the target, enabling fine-grained
sensing applications.

Bistatic sub-6 GHz Wi-Fi sensing. Several studies have pro-
posed ways to perform activity recognition [14], [26], [27]
using Wi-Fi Orthogonal Frequency Division Multiplexing
(OFDM) CSI. Indeed, most of the CFO removal techniques
described in the previous section have been originally pro-
posed for Wi-Fi. The main drawback of sub-7 GHz sensing
lies in its inherent low-ranging resolution, which is a direct
consequence of the relatively low transmission bandwidth (40-
80 MHz are typical values). There, reflected paths can only be
resolved with an accuracy of a few meters, which causes major
performance degradation with multiple concurrently moving
subjects [28].

mmWave bistatic JCS. A few works have addressed bistatic
JCS in mmWave systems, assuming synchronized transmitter
and receiver [29], [30], [31]. Others have focused on tracking
targets based on distance and Angle of Arrival (AoA), without
addressing sensing tasks that require phase analysis or aggre-
gation of signal samples over coherent processing intervals,
such as Doppler speed estimation [32]. JUMP instead per-
forms pD estimation in addition to tracking, and removes the
unrealistic assumption of having time-synchronized nodes.
Radar systems. Bistatic radar systems have been widely stud-
ied and adopted [22], [33], [34]. In the so-called active bistatic
radar setup, the TO and CFO are eliminated by connecting the
transmitter and the receiver through high-speed fiber links,
achieving phase locking, or exploiting GPS as the common
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clock source. In the passive radar case, the receiver exploits
signals of opportunity from non-cooperative transmitters. Two
receiving channels are used, one receiving the direct LOS
signal and the other pointing towards the target of interest.
Then, offsets are removed by cross-correlating the LOS sig-
nal with the reflected one [35]. Besides requiring complex
implementation and being heavily dependent on the type of
transmitted signal, these systems cannot handle occlusions of
the LOS link [33].

III. BISTATIC SYSTEM MODEL

In this section, we introduce the bistatic system model.

A. CIR for Asynchronous Transceivers

The CIR estimation process consists of transmitting a pilot
signal from a transmitter (TX) device that, after being reflected
by nearby objects or humans, is collected at the receiver (RX).
The latter correlates the known pilot waveform with the
received one. The resulting CIR contains TO and CFO that
prevent accurate estimation of the targets’ parameters [5], [20].
In our model, we highlight (i) the role of TO and CFO, and
(ii) the impact of discretizing the CIR for wideband systems.
We use a SC CIR model to simplify the understanding of the
implementation and experimental results, which are based on
SC IEEE 802.11ay. However, JUMP is equally applicable to
OFDM-based JCS systems. The model is based on, e.g., [12]
and [36], but contains significant modifications to take into
account TO, CFO, and the bistatic geometry.

1) Timing Offset: In wireless communications the TX
and the RX clocks are not synchronized and thus exhibit
an unstable relative clock drift over time [5], [11]. In the
absence of an absolute timing reference, the RX performs
packet detection and coarse synchronization. For example,
in IEEE 802.11ad/ay packet detection is done with an auto-
correlation method which returns a rough estimation of the
start of the packet [37]. This operation does not yield a
synchronization at the symbol-level, thus a residual TO is
included into the channel estimate and removed via equaliza-
tion. Note that these operations are performed separately on
each packet, and the TO changes across subsequent packets
depending on the selected synchronization point. In JCS we
are interested in computing the exact delays of the signal
propagation paths, without the residual synchronization error,
as these are linked to the distance of the sensing targets. Hence,
including the TO in the channel estimates results in a wrong
estimation of the delays. Due to the time-varying nature of
the TO, the cumulative estimation error across time can add
up to tens of nanoseconds after just a few milliseconds [5].
This uncertainty in the delay easily leads to large errors in
estimating the target’s position (several meters), even within
short time intervals [11].

2) Frequency Offset: Clock drifts can be typically ignored
over the course of the preamble of a single communica-
tion packet, as their variation is negligible over short time
periods (micro-second level). Therefore, in communication
systems such as the IEEE 802.11ad/ay the CFO is estimated
and compensated for each packet separately. This is done
by computing the total phase error induced by the CFO
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Fig. 1. uD spectrogram affected by the CFO (a) compared to JUMP’s uD
(b). (c) shows the CIR magnitude for different BPs.

using an autocorrelation technique [37] and removing it from
the received samples. In JCS instead, we are interested in
retrieving the Doppler shift caused by the target’s movement
speed. Therefore, compensating for the CFO for each packet
separately is not a viable option, as this method removes the
CFO and the Doppler shift, as they both appear in the phase of
the received signal and they can not be easily separated. This
is further discussed in Section IV-C. In addition, estimating the
phase differences and Doppler shifts caused by moving targets
requires processing the received samples coherently across
subsequent packets. The CFO can not be considered constant
within such extended time intervals (several milliseconds), and
it makes the phase of signal samples across different packets
incoherent, preventing the estimation of Doppler shifts.

CFO is especially severe in mmWave systems. As an exam-
ple, it can reach hundreds of kHz with 60 GHz devices, while
for a target moving at 10 m/s the Doppler shift is 4 kHz. This is
shown in Fig. 1a, where we plot the CFO-affected normalized
Doppler spectrum and that obtained by JUMP from a walking
person. Without removing the CFO, the puD is completely
corrupted and does not carry any useful information about
the movement.

3) Transmitted Signal Model: We denote by s[i] the discrete
TX symbol sequence, by L the number of TX symbols, and
by pix(t) the pulse-shaping filter. Assuming unit energy per
TX symbol and a sampling period equal to AT = 1/B, with
B the TX bandwidth, the SC TX signal is

L-1
2(t) = slilpex (t — iAT). (1)
i=0
In a directional JCS system employing phased antenna arrays,
different Beam Patterns (BPs) are used to steer the signal
energy towards the intended direction. The TX signal is thus
multiplied by the analog beamforming vector, u, obtaining
x(t) = uz(¢). In our simulations and implementation, s[i] is
a set of complementary Golay sequences used for channel esti-
mation in IEEE 802.11ay, as detailed in Section VI. However,
here we consider it to be a single sequence of pilot symbols
for the sake of generality.

4) CIR Model: We denote by N(t) the number of prop-
agation paths at time ¢, by a,,(t) the complex signal
attenuation coefficient of the m-th reflection, while and
Tm(t) is its delay. fp.,(t) is the Doppler frequency due
to the movement of the m-th reflector. Moreover, we call:
v the vector of phase shifts used at the RX phased array
(RX beamforming vector), 6,,,¢,, the Angle of Departure
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(AoD) and AoA of the m-th reflection, respectively, and
atx(0m), arx(pm) the corresponding TX and RX array steer-
ing vectors. Considering uniform linear arrays at the TX and
RX we have ai () = [1,...,e I (Mu—Dmsin0]T 5 (9) =
[1,...,e /(M= D)msin 01T where M;, and M, are the num-
ber of antennas at the TX and RX, respectively. Given these
definitions, and calling §(-) the Dirac delta function, the
continuous-time CIR model is
N(t)
h(t,7) = D Am(D)e>r2rO5(r — 7 (1), (2)

m=1

with Ay, (£) = i () VM (om) (aex(0m ) 1, where super-
script ()" indicates the complex conjugate transpose. Note
that we include in the CIR model also the effect of TX and
RX beamforming, that are combined in the complex-valued
coefficients A,,(t). a,,(t) instead accounts for the combined
effect of the propagation loss and the target’s Radar Cross
Section (RCS) [34].

5) Received Signal Model: The RX signal is the result of a
convolution between the TX signal and the CIR. In addition,
it is also affected by TO and CFO, which we denote by 7, (%)
and f,(t), respectively. The RX applies a receive filter, p,(t),
and we define p(t) = pix(t) * prx(t) to be the convolution
between the TX and RX filters. The noise-free RX signal is

N(t)
y(t) =Y Ap () IOty (1 — 1 (1) — 75(1)),
m=1

3)

with /() = Zf;ol sli]p(t — i/B). Due to the presence of
TO, the TX signal is further delayed with respect to the
sole propagation time. The CFO instead causes an additional
frequency shift that is added to the Doppler effect. We remark
that TO and CFO are constant across the signal paths, and
hence they are independent of index m.

The RX signal is sampled with period AT, obtaining a
discrete sequence of samples for each packet. We denote
by T the time between two subsequent packets. In deriv-
ing the expression of the sampled RX signal we make the
following common assumptions: (i) the combined filter p(t)
satisfies the Nyquist condition, i.e., p(iA71) = §[i] (Kronecker
delta function), and (ii) the number of propagation paths and
their parameters (amplitudes, Doppler shift, and delay) can
be considered constant within a short processing interval of
K packets, provided that T is sufficiently small that the
propagation environment changes slowly compared to it [11].
We stress that the TO and CFO instead vary in each packet,
hence they retain their dependence on time. The delay reso-
lution of the system after discretization is determined by the
sampling period AT, thus being inversely proportional to the
TX bandwidth. Due to the finite resolution, reflections with
delay difference below A7 are not resolvable at the RX.
Hence, out of the NN true signal propagation paths, only
N, < N resolvable paths appear in the RX signal. We index
such paths by variable n to distinguish them from the true
propagation paths. Due to sampling, the n-th path delay and
the TO are approximated as multiples of the sampling period,
Tn = pp AT and 7,(kT) = po(kT)AT.
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Although they cannot be distinguished in the delay domain,
unresolvable paths could be discerned based on the Doppler
shift. The n-th resolvable path is the superposition of N,, non-
resolvable paths, with N = ZnN;1 N,,. The i-th RX symbol in
packet k € [0,..., K —1] is

N
=" ha(kT)sli — pu — po(KT)], (@)
n=1
Nn,
ho(KT) = Z Ay, 727Dt fo(RT)KT )

v=1

where A, , and fp ., are the complex gain and the Doppler
frequency of the v-th superimposed path within resolvable
path n, respectively. In Eq. (4) we neglect fractional com-
ponents of the n-th path delay and the TO, since these
cause sensing errors which are below the resolution of the
system. Eq. (4) represents the noiseless RX symbols. In our
model, we consider y[k,¢] to be affected by additive com-
plex white Gaussian noise distributed as CN(0,02), where
02 is the noise variance. Recalling we assumed unit TX
symbol energy, the Signal-to-Noise Ratio (SNR) is denoted
by I' = |h1(kT)|?/o2 where hi(kT) is the gain of the LOS
propagation path.

6) Estimated CIR Model: CIR estimation is carried out
by cross-correlating the received samples with the known
transmitted pilot sequence s[¢]. This yields

H:Z

(ET)thn [l — pr, — po(KT)], (6)

for k € [0,..., K — 1], where ¢,[¢] is the cross-correlation
of s[i] with its delayed and frequency-shifted version (due to
Doppler and CFO) for resolvable path n [34], [36]. In our
implementation, we use complementary Golay sequences
which exhibit perfect autocorrelation property when the fre-
quency shift is zero [38]. This condition does not hold in
Eq. (6), but such non-ideality can be neglected if the product of
the Doppler plus CFO frequency and LA7T (the duration of a
pilot sequence) is much smaller than 1, as shown in [36]. As an
example, with a CFO of 100 kHz, a Doppler shift of 4 kHz,
A7 = 0.568 ns, and L = 128 we get 0.008 < 1. It follows
that the estimated CIR at a specific time is represented as
a vector of complex channel gains, or faps, indexed by ¢ =
0,...,L—1. The ¢-th tap is related to a corresponding distance,
dy = c¢lAT, with ¢ being the speed of light.

Note that, as a result of Eq. (6), the SNR on the peaks
of the estimated CIR is increased with respect to I' as a
result of the coherent integration of the signal. We denote the
coherent integration gain by G. The exact gain depends on
the frequency shift of the received signal (due to Doppler and
CFO), and is upper bounded by G < L, which is the coherent
gain in case of no frequency shift [34].

In the following, the TX is considered to be directional,
whereas the RX is assumed to use a quasi-omnidirectional BP.
Note that this is coherent with how existing mmWave com-
mercial devices equipped with phased-arrays operate. This is
not restrictive, as our method also works in the symmetric case
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Cassini ovals

Fig. 2. Schematic representation of the bistatic geometry.

where the RX listens to the signal using directional BPs, and
the TX is omnidirectional.

To account for the effect of analog TX beamforming,
we denote by hylk,¢] the ¢-th tap of the CIR at time kT
obtained using BP b, i.e., when the TX uses beamforming vec-
tor u,. The complex gain of a path is denoted by A, ,, 5, which
contains the antenna gain given by BP b along the direction
that points to reflector n, together with the propagation loss
and the RCS [34]. A visual representation of the magnitude
of the CIR for different BPs is shown in Fig. 1c.

B. Bistatic Sensing Configurations

Next, we detail how the bistatic geometry affects the mul-
tipath reflection delays and Doppler frequencies.

1) Bistatic Reflection Delay: We denote by 7 the relative
delay of a generic multipath reflection, measured relative to
the LOS propagation path along which the first signal copy
arrives at the RX. Also, we denote by drog the LOS distance
between the TX and the RX. di, and d,, are the distances
from the TX to the target and from the target to the RX,
respectively, as shown in Fig. 2. The following relation holds
¢t = dix + dpx — dpos, Which states that the relative delay is
the time needed for the signal to propagate along the excess
length of the reflected path (dx + d,«x) with respect to the LOS
path (dr,os). Note that all reflectors located on the ellipse with
focii coinciding with the TX and the RX will yield the same
measured relative delay due to having the same dyy + d,«. This
elliptical region is usually termed iso-range contour. In Fig. 2,
we also represented the AoD of the reflection, called 6, as the
angle formed by dix and dros. Exploiting the geometric
relations shown in Fig. 2, we can relate dros, dix, and dyx
through the law of cosines

d% = d? + d? o5 — 2dixdros cosf. (7)

The distance of the reflector with respect to the TX, for a
given delay T, is obtained as

(e + dros)? — dios

dix = .
wx(7) 2(er + dros — dros cos )

®)

The capability of a bistatic system to distinguish two
reflectors located at different distances (hence causing different
reflection delays) is termed range resolution. As described
next, this value depends on the CIR delay resolution Ar.
We define § as the bistatic angle, i.e., the angle formed
by the segments connecting the TX to the target and the
target to the RX. Due to the elliptical shape of the iso-
range contours, the range resolution depends on the bistatic
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Fig. 3. Block diagram of the proposed method.

angle as Ad =~ cAt/(2cos(8/2)) [33]. This is a crucial
aspect of bistatic systems. In practice, it prevents accurate
localization of the reflectors when they approach the LOS
segment, as Ad — +oo when § — 7. The elliptical area
around the LOS segment in which the resolution degrades is
typically termed forward scattering region.

2) Bistatic SNR: In bistatic systems, for scattering-type
reflections, the expected SNR at the RX is inversely propor-
tional to the square of the product dyyd,« [33]. For this reason,
the locii of points along which the SNR is constant follow the
so-called Cassini ovals, as shown in Fig. 2. As such, compared
to a monostatic system, reflectors far from the TX device can
still yield high SNR if they are sufficiently close to the RX.

3) Bistatic uD Spectrum: Consider the bistatic uD spec-

trum of the n-th resolvable path of the CIR. According to
Eq. (6), it contains the contribution of N, reflectors, each
having a possibly different speed, together with the CFO.
Moreover, the reflectors’ movement speed maps to a different
Doppler shift depending on the motion’s direction and the
bistatic angle. Denoting by -, ,, the angle between the bisector
line of the bistatic angle 3, , and the velocity vector of the
v-th reflector superimposed resolvable path n, with magnitude
Up,v, We have [33]
% COS Yp, COS %, 9)
where A = c¢/f. is the wavelength of the carrier f. of
the TX signal. As a consequence, in a bistatic scenario, the
Doppler shift depends on the bistatic angle in addition to
the direction of motion. The standard method for extracting
the puD spectrum applies a Short Time Fourier Transform
(STFT) to windows of subsequent CIR estimates [12]. Taking
a processing window of K packets, the spectrum will present
peaks at frequencies fp .. However, in our asynchronous
JCS setting, this approach is not directly applicable as the
Doppler frequency is added to the time-varying CFO. There-
fore, we cannot directly estimate the Doppler shift without
removing the CFO first.

fD,n,u =

IV. METHODOLOGY

This section presents JUMP, whose block diagram is shown
in Fig. 3. It includes three main steps, as described next.
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1. Timing offset compensation: After obtaining the CIR in
the current timestep, we leverage the previous CIR to estimate
the relative random TO between the two, as detailed in
Section IV-A. The random TO is estimated by computing the
correlation between the CIR magnitude profiles with different
BPs, resulting in the candidate TOs, and then combining
them through a majority voting scheme (Section IV-A.1).
Subsequently, the current CIR is shifted in the delay domain,
compensating for the random offset (Section IV-A.2).

2. Multipath detection and tracking: Once the TO is
compensated for, we perform detection and tracking of the
multipath reflections in the environment. This is achieved by
extracting the peaks in the CIR magnitude, computing their
AoD, and smoothing the measurements with an Extended
Kalman Filter (EKF) tracking algorithm. Section IV-B pro-
vides a detailed description of this step. Finally, we select the
strongest static reflection from the set of tracked multipath
components by measuring the variance of its 2D location
estimated by the EKF (Section IV-B.5). We use this path to
remove the CFO from the other reflections.

3. uD extraction: To extract the uD signature of the sensing
targets, we compensate for the CFO by multiplying the CIR
by a complex exponential with the phase of the previously
selected static path (see Section IV-C). The key insight behind
this operation is that the CFO is the same on all the multipath
reflections. Subsequently, we apply STFT to the CIR to extract
the uD.

A. Timing Offset Compensation

Here, we propose a method to compensate for the TO
between two subsequent estimates of the CIR. We (reason-
ably) assume that, besides the reflections on the sensing
targets, the background contains multipath reflections on static
objects, which are slowly time-varying compared to the packet
transmission rate. In addition, we consider that the packet
transmission rate is high with respect to the movement speed
of the sensing targets, which is a common assumption for radar
and JCS. As a consequence, occlusions to the LOS lead to
a progressive and “slow” disappearance of the corresponding
path from the CIR, which happens over the course of several
CIR estimates.

Consider two subsequent CIR estimates obtained from
packets k and k& — 1 using the same BP b, and denote the
magnitude of the CIR by 74[k,¢] = |hylk,£]|. If the two
estimates are obtained at a sufficiently high sampling rate 7',
the propagation paths due to reflections on static objects do
not change significantly, producing similar CIR magnitude
profiles (envelopes). TO is expressed as 7,(kT") = po(kT)AT
with po[k] € {0,1,..., L — 1}, as in Section III-A.5, defining
polk] £ po(KT). Therefore, our assumption about the slowly
varying multipath environment can be written as ry[k, ¢ +
Polk]] = mp[k—1, ¢]. This equality means that the CIR envelope
is preserved between subsequent time steps. It is just shifted
by polk] in the path delay dimension, and this shift p,[k] is
constant across all BPs but varies on a per packet basis (with
index k).
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In the following, we propose our method to estimate p,[k]
and then use it to compensate for the TO, and shift the CIR
back to a standard timing reference.

1) Estimation of the Timing Offset: Due to the similarity
of the CIR envelopes in subsequent packets, a good esti-
mate of the shift p,[k] can be obtained by maximizing the
cross-correlation between the two CIRs magnitudes as follows

L—1
pulk] = argmaerb[k,g—i—p}rb[k— 1,¢.  (10)
P =0

In Eq. (10), the estimate py[k] depends on the BP used in
the estimation of the CIR, although p,[k] is the same across
all BP. As such, a more robust estimate considers the P CIR
estimates obtained for each packet, one per BP. We turn k]
onto a one-hot vector representation A,[k] € {0,1}%, which
equals 1 at index py[k] and O elsewhere. Then, we use majority
voting over the BPs py[k],b=1,..., P, ie.,
P
Polk] = arg max Z Ay i[K],
‘ b=1

Y

where Ab,i[k] is the i-th component of A, [k]. Eq. (11) com-
bines the estimated offsets from all the directions illuminated
by the TX BPs. This procedure improves the robustness of the
final decision, ignoring ourlying pp[k] that can be produced by
BPs pointing in directions without static reflectors.

When transitioning from a LOS situation to a NLOS one,
due to occlusion from a moving obstacle, p,[k] can be large.
This is caused by the fact that the first packet copy to be
detected at the RX will not travel along the (blocked) LOS.
Still, the remaining static multipath reflections in the CIR
are expected to remain constant, especially when considering
a combination of all the BPs like in Eq. (11). Therefore,
our method reliably estimates the relative TO even in such
cases, as proven by our NLOS results in Section V and in
Section VII.

2) CIR Shift: Upon obtaining an estimate of the TO, its
effect is compensated for by shifting the CIR in the delay
domain by 7, (kT) = po[k]A7. In practice, this is implemented
as a shift of the CIR along indices £ =0,...,L — 1 by po[k]
positions. The corrected CIR is obtained as

Kk, €] = hylk, € — polk]), V€=0,1,...,L' —1,

where L’ < L is the length of the CIR portion of interest,
which depends on the size of the monitored environment. The
CIR taps having negative index after Eq. (12) are removed.
The CIR estimated from the previous packet and hjf[k,¢] are
aligned, thus allowing the computation of delays relative to
the same reference point.

3) Initialization: Suppose that the sensing operation starts
in a LOS condition. The direct path between the TX and
RX is the first path to be detected at the RX. In this case,
we initialize the CIR alignment process with respect to the
LOS. Subsequent CIR estimates are shifted to compensate for
the TO as previously described, allowing consistent tracking
of the locations of the reflectors. If, instead, the LOS is
unavailable when the sensing process starts, the CIR alignment
is initialized with the first reflection that arrives at the RX. This

(12)

9765

introduces an offset in the obtained delays, which is corrected
a-posteriori when the first packet traveling along the LOS path
is detected. Therefore, having visible LOS during at least one
timestep enables consistent tracking of the reflections.

B. Multipath Detection and Tracking

All the CIR estimates get the same timing reference using
the TO compensation method from Section IV-A, which is
represented by the first CIR tap in hf[k,{]. As commonly
done in JCS systems, we assume that the LOS distance, dr,os,
and the relative orientation between the TX and the RX,
«, are known a priori. dr,og can be estimated by applying
localization methods to the RX node, for example, [39], while
« 1is typically obtained from a beam alignment protocol [38].
Unlike existing approaches, we are interested in tracking both
the dynamic and the static multipath components in the CIR,
as the latter are used to remove the CFO. This makes the
detection and tracking much more challenging as we want
to preserve the information about the static objects in the
environment, so clutter mitigation cannot be applied.

1) Delay Measurement by Peak Detection: The compu-
tation of the position of the peaks in the CIR magnitude
after the alignment step of Section IV-A yields the relative
delay of the reflection with respect to the LOS, 7. To reliably
detect CIR peaks in the presence of clutter and background
noise, we apply the Cell-Averaging Constant False-Alarm Rate
(CA-CFAR) algorithm to the CIR magnitude after the TO
compensation, denoted by 77 [k, ¢] [34]. This operation consists
of computing a dynamic threshold using a moving window.
We call p the index of a generic peak returned by CA-CFAR
at time k7. The delay of the corresponding reflection is then
obtained as 7 = pAT.

2) Angle-of-Departure Estimation: Upon receiving the sig-
nal reflected from an object in the environment, the RX
computes the corresponding AoD relative to the TX, 6, using a
modified version of the algorithm proposed in [40]. The latter
computes the correlation between each BP shape and the CIR
profile for a specific channel tap and requires that the TX BP
shapes be known or estimated in advance. Unlike [40], how-
ever, in our system model more than one reflection can overlap
in the same peak in the CIR magnitude, allowing multiple AoD
to be detected for a single peak p in the delay domain, and
collecting them into set ©,. In the following, the time index
k is omitted to simplify the notation. We call g,(#) the gain

of BP b along direction 6, and r[{] = [7$[(],...,r$[¢]]T the
vector of CIR magnitudes for a specific £.
Our AoD estimation algorithm computes
P ]2
Op=120€0,ms t Y g(0) rilr] s>dp, (13)
2P e I3

where ¢ is a threshold value used to adjust the sensitivity to
multiple peaks in the correlation profile of the AoD.

3) Distance Estimation: To track the position of the targets
with respect to the TX, we compute diy(7) in Eq. (8) for
7 = pAr for each peak. Note that dy, depends on p (already
estimated) and dpog (assumed to be known) and 6, which
belongs to set ©,. Hence, a set of candidate target locations
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is obtained for each CIR peak p, by collecting all pairs (diy, 6),
with @ € ©,. A set of measurement vectors z = [di,0]"
collects all such pairs, for all the identified peaks p, and
represents the input of an EKF [41] that tracks the Cartesian
position of the targets relative to the TX.

4) Target Tracking (EKF): The EKF takes the measurement
vectors z as input and, based on their evolution, obtains esti-
mates of the states of the targets. The state is defined as the z, y
position of a target and its velocity components along the two
axes, X = [z, y,4,9]". A constant-velocity model is adopted to
approximate the targets’ movement, where we denote by F' the
state transition matrix and by w, v the state and measurement
noises, respectively. The tracking process operates following
the EKF model equations xy4+; = Fx; + wyi and z, =
g(xx) + vk, where g(x) = [/22 + y2,arctan (y/z)]"
the non-linear function relating the current state to the cur-
rent measurements. For measurements-to-tracks association,
we adopt the cheap-nearest-neighbors joint probabilistic data
association filter [42], [43], while to handle the initialization
and termination of tracks, we use the method described in [44].
Such track management strategy filters out most false targets
by taking into account the tracks’ evolution across time, and
allows quick initialization of new tracks whenever new targets
enter the monitored area.

5) Static Path Selection: As described in Section IV-B.4,
the state of each tracked multipath component contains an
estimate of the current location of the reflector, i.e., the state
components x and y. To identify a reliable static path, we first
compute the mean location across the last K tracking steps
for all the tracked reflectors. Then, we obtain the variance
of the locations in the K frames with respect to this mean
value. We select the reflectors with a variance under a certain
threshold o'ghr for all the K frames. These are candidate
reference paths, as their location is stable around a fixed
position. The strongest path among them is the one providing
the most reliable CIR phase value, having higher SNR. This
path serves as a reference in the subsequent CFO removal.

C. uD Spectrogram Extraction

Here, we detail our CFO removal strategy and subsequent
uD spectrum extraction. To compute the uD spectrograms of
the tracked reflectors, we identify the CIR taps associated
with the corresponding multipath components. This requires
mapping the EKF states of the tracked components to the cor-
responding element of the CIR in the delay and angle domains.
First, an estimate of the distance between the target and TX is
dix = \/22 + 2. Then, denoting by « the angle between the
TX and the RX, in the Cartesian reference system of the TX,
an estimate of the AoD is given by 6 = | arctan (y/z) — «l.
Using thX and é we obtain an estimate of the distance between
the target and the RX

dry = \/ dix + @2 o — 2d10sdsx cos 6. (14)

Once th and chX are known, we estimate the CIR tap con-
taining the reflection of the target through the estimated delay
associated with a path of length dtx + drx, as 7T = (dtX + drx

dros)/c. From this estimate, the CIR tap corresponding to
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each target is obtained as the one minimizing the delay differ-
ence with 7, i.e., / = arg min, |7 — /A7|. Similarly, we select
the BP pointing in the direction of the target, b, as the one
having the strongest gain along the direction 6.

The key idea behind our CFO correction method is that
the term f,(kT) is constant in all multipath components
of the CIR. Therefore, we can isolate the CFO component from
the reference static path and remove it from the reflections
on the sensing targets. The static reference path, which could
either be the LOS path or a reflection on a stationary object
(e.g., a wall), is identified as detailed in Section IV-B.5. Its
corresponding CIR tap, Zs, is obtained as detailed above.
Neglecting the BP index, the expression of the /4-th CIR tap,
corresponding to the static path, is

helk, bs] = hp, (KT) = Ay, e??™ o KTRT

15)
where ng is the index of the static path in 1,...,V;. Note
that since the path is static, even if it is a result of the
superposition of multiple unresolvable reflections, these cannot
be distinguished in the Doppler domain since their Doppler
shift is equal to zero. As a result, Eq. (15) shows that the ll—th
tap contains a single complex exponential component, whose
phase only contains the CFO, without additional Doppler
frequencies. Therefore, the offset can be removed from any
other CIR tap corresponding to a target, with indices é, b,
by computing

B L
Wk )= —t——=>"A

Aejzﬂ'fD,nt,VkT’
ejéhc[k,fs]

ng,v,b

(16)

where /h¢[k,l;] = arctan (h‘é[k,@]/h‘;[ij) represents

the phase of the reference path, letters I and Q denote the
in-phase and quadrature components of h° [k,és], and ny is
the index of the resolvable path corresponding to the target.
The pD spectrum of h%[k,g] contains the time-varying
contribution of the different reflections superimposing in CIR
tap l, as specified by Eq. (9). To compute it, we take the
squared magnitude of the STFT of the cleaned CIR n,
obtaining S;[w,q,f] = [STFT{, [k, 0]}|2, where w and
q are the dlscrete frequency and STFT time-frame indices,
respectively. Finally, for a tracked target, the 4D spectrum is
obtained by combining () CIR taps preceding and following

{, as uD[w,q] = Z?? S;lw,q, /). This accounts for the
extension of the target, Wthh may exceed the system’s ranging
resolution.

We stress that, through Eq. (16), JUMP effectively removes
the CFO without affecting fp p, . (kT) (the Doppler term).
Conversely, standard CFO removal methods used in commu-
nication systems compensate for the cumulative phase error
caused by the CFO. This is done by following, e.g., the tech-
nique in [37]. Considering a single packet, we drop index k
and denote by f, the CFO, and by fp the Doppler shift from a
reflector. This causes a phase error of ¢, = 27(f, + fp)mAT,
which increases linearly with time across subsequent samples
in the packet preamble (here indexed by m). Then, the phase of
the autocorrelation of the received signal at lag M amounts
to M¢,, where M is the length of the pilot sequence used
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Fig. 4. Schematic representation of the bistatic geometry with a moving RX.

in the preamble (e.g., a Golay sequence in IEEE 802.11ay).
This means that the cumulative phase error can be estimated
by computing the phase of such autocorrelation, and dividing
it by M. However, the estimated ¢, contains fp, and it is
therefore useless from a JCS perspective. For JCS, we instead
aim at removing f,, while retaining fp.

D. Impact of RX Mobility

One of the key assumptions we made so far is that TX and
RX are static, as only in this case static reference paths can
be identified and used to remove the CFO. In this section,
we discuss the impact of movements of the RX on JUMP.
We show that if: (i) the RX is capable of estimating the AoA
of the received multipath components, and (ii) an onboard
sensor (e.g., an accelerometer on a mobile device) is available
that can estimate the RX velocity, then the effect of RX motion
can be compensated for. A full analysis of TX and RX motion
is however beyond the scope of this paper, and constitutes a
primary future research direction.

Consider the scenario in Fig. 4, where the RX device is
moving with velocity v, and angles: 7, with respect to the
extension of the segment connecting TX and RX, and &, with
respect to the extension of the segment connecting the sensing
target and the RX. We assume the RX and the target velocities
to be constant within a short processing time interval.

As a result of the RX motion, the phase of CIR along the
propagation path caused by the target (sensing path) is given
by ¢ (KT) = 27 [fo.0,u + Fis + fo(KT)] KT, where fi5, =
“x cos ¢ is the Doppler shift caused by the movement of the
RX on the sensing path, indexed by n;. The phase of the
CIR along the direct TX-RX path is ¢s(kT) = 27[f5 +
fo(KT)JET, where f5 = *x cosn is the Doppler frequency
caused by the RX along the TX-RX path. The expressions of
¢t (kT) and ¢4(kT) highlight that the Doppler shift caused
by the RX movement is different along the TX-RX path and
the target-RX path, due to the different angles n and &. This
prevents aggregating the RX movement Doppler to the CFO
and removing it by using the phase of the static path. Indeed,
if one uses Eq. (16) directly, the resulting phase of the sensing
path, ¢}, contains a residual frequency offset that depends on
Urx, 1), and &, i.e.,

G1(KT) = 2 [ fo.n, + 5= (cos§ — cosn) | AT.

Note that from the geometry in Fig. 4, by calling the AoA of
the sensing path ¢, we have £ = ¢ + 7. It follows that if the RX
can estimate the AoA, é , and its own movement speed vector
(e.g., from an onboard accelerometer), U, 7, the additional

7)
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offset in Eq. (17) can be compensated for by multiplying the
CIR by a complex exponential with phase —27 f’;\" [cos(C+7)—
cos 7j]kT. An accurate estimate of vy, ¢, and 7 allows JUMP
to recover the correct Doppler frequency of the target. Errors
on the estimation of v,, ¢, and n can lead to a residual phase
error, which is amplified by the presence of the wavelength A
in the denominator of Eq. (17). At mmWave frequencies, due
to the short wavelength, JUMP’s robustness to RX movements
heavily depends on the quality of the external velocity estimate
from the RX accelerometer.

V. ANALYSIS AND NUMERICAL SIMULATION

In this section, we analyze the TO and CFO compensation
capabilities of JUMP by providing insights on the residual
timing and phase errors, as well as numerical simulations to
validate our claims. We take IEEE 802.11ay as a reference,
as it is also used in our testbed implementation. In this context,
channel estimation fields appended to the packets are called
beam-training (TRN) fields [38]. A TRN field includes 6
TRN units, each made of complementary Golay sequences of
L = 128 samples modulated with Binary Phase-Shift Keying
(BPSK), which can be transmitted using different antenna BPs.

In the simulations, we set B = 1.76 GHz (as in a standard
IEEE 802.11ay channel), hence A7 = 0.57 ns and Ad =
17 cm. The inter-packet transmission time is 7' = 0.27 ms.
We generate 10* CIR realizations with a random number of
scatterers between 2 and 10. Each scatterer is located at a
random distance from the TX, chosen uniformly at random
in [1.5,10] m. The CIR taps’ amplitudes are computed using
the bistatic radar equation [34], with a random RCS for
the scatterers in the interval [—20,10] dBsm (dB per square
meter). The transmitted signal is a single IEEE 802.11ay TRN
field, for a total length of 768 symbols. To evaluate JUMP’s
performance in intermittent LOS/NLOS conditions, in some of
the simulations we modulate the CIR amplitude for the LOS
path with an exponential profile which decreases to zero. This
simulates the blockage due to scatterers passing between the
TX and the RX.

The TO and the phase shift due to CFO are obtained as
uniform random variables in the intervals [0,20A7] s and
[0, 27], respectively.

A. TO Compensation Error Analysis

We consider errors in the estimation of the relative TO from
Eq. (10). This is a conservative approach, in that we do not
account for the subsequent robustness improvement brought
by the majority voting scheme in Eq. (11). For simplicity,
we neglect the time index k, following our assumption that
the channel profile can be considered static in the short time
between two subsequent packets.

The accuracy of the relative TO estimate in Eq. (10) depends
on (i) the relative location of the CIR peaks, and (ii) their
sharpness. Indeed, cross terms due to the multiplication of
CIR peaks caused by different propagation paths may result in
strong, secondary cross-correlation peaks that cause ambiguity
in the TO estimation. Moreover, despite the perfect autocorre-
lation properties of Golay sequences, in practice the CIR peaks
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Fig. 5. Ambiguity function of the CIR amplitude profiles obtained from real
data for LOS and intermittent LOS/NLOS (a zoom around =£5 ns is shown
on the right). Different curves represent different channel realizations, for a
total of 1000.

are not exact Kronecker delta functions, but have a non-zero
width. This is caused by multiple factors, among which are the
imperfect symbol synchronization (that causes a small error in
the sampling point at the RX) and the fact that extended targets
cause multiple reflections that overlap in the same or adjacent
delay bins. However, because the CIR profiles depend on the
underlying physical environment, which can be very different
depending on the scenario, TO errors are difficult to model
analytically without making restrictive assumptions.

For this reason, we take an alternative approach using
the concept of Ambiguity Function (AF) in radar signal
processing [34]. The AF is defined as the cross-correlation
of a waveform with its delayed and frequency shifted versions
and it measures the sharpness of the main correlation peak
and the secondary peaks level. In our setting, we compute
the AF of the CIR amplitude profiles used in Eq. (10),
hence Doppler shift has no impact and the AF reduces to
the autocorrelation of each CIR amplitude profile. The ideal
AF in this situation is a Kronecker delta centered in zero.
We obtain the AF of the CIR profiles in simulation and
using real measurements from our testbed implementation and
setup described in Section VI and Section VII. The resulting
normalized AF for 1000 CIR profiles is shown in Fig. 5 for
LOS and intermittent LOS/NLOS scenarios. In both real and
simulated CIRs, the LOS AF exhibits a sharp peak at O ns,
which is well contained within the delay resolution of the
system, shown by the black dashed lines. In LOS/NLOS, the
AF shows a higher noise floor, which is due to the lower
amplitude of the NLOS peaks. Nevertheless, the main peak
is still clear and sharp around O ns, showing the robustness
of our approach. Note that the difference between simulated
and real measurements is due to the much higher channel
variability that can be obtained in simulation. The simulated
AF is a more general assessment of JUMP’s robustness for
diverse channel realizations. Fig. 6a and Fig. 6b show the
TO estimation Root Mean Squared Error (RMSE) varying the
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SNR and the system bandwidth, respectively. JUMP achieves
an RMSE lower than the delay resolution A7 (black dashed
line) for an SNR of —5 dB in LOS and 0 dB in LOS/NLOS.
This is sufficient to correctly estimate the integer part of
the TO. Note that this is exactly the purpose of JUMP’s TO
compensation method: we are not interested in estimating the
TO itself, but only in computing the correct integer shift to be
applied to consecutive CIR profiles to obtain consistent range
measurements. At higher SNR values, the error converges to
the standard deviation of the fractional part of the true TO
used in the simulations (black dotted line). This is expected
since the fractional part of the TO is neglected in Eq. (10).

Fig. 6b shows the TO compensation RMSE varying the
TX bandwidth, B, for an SNR of 5 dB. In LOS, the gain
from using a larger B scales similarly to the delay resolution.
Conversely, in LOS/NLOS conditions JUMP cannot make
full use of larger bands due to the worse actual SNR, and
thus the error does not improve with the delay resolution
beyond 2 GHz.

B. CFO Removal Error Analysis

JUMP removes the CFO using the phase of the static
reference path. Such phase is affected by noise on the RX
signal, which causes a residual phase error on the sensing path.
We use expression Zh¢[k,{s] = arctan (th [k,ll]/h?[k‘,és})
introduced in Section IV-C to compute the residual phase
error variance, 0%,.. The variance of h§[k, /] and hg,[k, (]
is 02/(2G), and 02,. can be obtained by propagating the
error induced by noise through the expression of Zh<[k, (],
as shown, e.g., in [45]. For low 02 /(2G), this gives

) o2 1 |hy (k)
g c = =~ - ~ )
oG ek, )2 2GT [helk, 442

(18)

where we recall that h(kT) is the gain of the LOS path.
Eq. (18) shows the dependency of the residual phase error
on the power of the CIR tap corresponding to the reference
path used for the CFO removal. This is validated by the
simulation result in Fig. 6c. We show the residual CFO for
different values of the SNR on the received signal, in both
LOS and intermittent LOS/NLOS conditions. We also plot
the theoretical error standard deviation from Eq. (18) in the
LOS case for G = L (rescaled by 277T") with a black dashed
line, which matches well with the simulation result for higher
values of the SNR. The best performance is obtained using the
LOS path as the reference since it is typically much stronger
than any first order reflection. Nevertheless, JUMP shows
excellent CFO estimation even in intermittent LOS/NLOS,
where a static first order reflection is used as described in
Section IV-B.5. Finally, in Fig. 6d we report the residual CFO
distributions obtained fixing the SNR to 5 dB and changing
the TX bandwidth B between 350 MHz and 3.52 GHz. The
results demonstrate that the resulting error is independent of
the bandwidth, as expressed by Eq. (18). This makes our CFO
removal approach also applicable to communication systems
with lower bandwidth (e.g., 4G-LTE and 5G-NR), provided
that a reference path can be identified.
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We report the results for LOS and intermittent LOS/NLOS conditions.

C. Impact on Communication: Overhead

To perform sensing, JUMP requires obtaining: (i) CIR
estimates covering the full angular space in order to detect
and track the targets, and (ii) CIR estimates obtained with
TX BPs pointing towards the targets of interest, with suf-
ficient granularity to achieve a sufficient maximum Doppler
frequency fi'** = 1/(27T). Condition (i) is easily satisfied
by beam training operations that are commonly performed
in mmWave systems to align the TX and RX beams for
communication. As an example, in IEEE 802.11ay a full
beam sweep is done periodically (e.g., every 100 ms) by
appending TRN units to the packets. Due to typical human
movement speeds being in the order of 1—4 meters per second,
the beam training frequency is sufficient to fulfill JUMP’s
requirements without adding any overhead to the communi-
cation protocol. Condition (ii) instead demands that additional
channel estimation fields are appended to communication
packets during normal traffic. Specifically, JUMP needs one
additional field per target, and one field for the reference static
path, transmitted using a BP that illuminates the corresponding
direction. This adds overhead to the communication protocol,
as shown in Fig. 7. We plot the overhead introduced by
adding 1 to 12 TRN units, which corresponds to sensing up
to 11 targets concurrently, plus the reference path. Different
colors correspond to different Physical layer Service Data
Unit (PSDU) sizes used in the standard [38], while solid and
dashed lines refer to Modulation and Coding Schemes (MCSs)
8 and 12, respectively. The overhead is computed as the ratio
between the length of the added PHY layer symbols in the
TRN units and the total number of symbols in the packet,
considering the payload plus PHY and MAC headers [38].
For PSDU sizes 66 kB to 4194 kB the overhead is less
than 3%, with 11 targets, which is a negligible impact on
communication. Note that in practical scenarios, given the
limited TX range at mmWave frequencies, it is unlikely to
sense such a high number of targets concurrently. For PSDU
4 kB, the overhead can reach 10-30%. However, note that
this PSDU size should be avoided anyways in IEEE 802.11ay
deployments, as due to the high rates available in mmWave
communication it yields a very low MAC layer efficiency.
Specifically, with a PSDU of 4 kB, the MAC efficiency is
74% solely because of the MAC and PHY layers overheads.

Finally, we underline that in this paper we do not consider
the irregularity of the inter-packet times in communication
systems. We address this in a separate work, [6], proposing a

102
e~ — -0~ —~0-—"-0
1 e B e e e
10 - ,:‘/'o/.’
‘o ——A-———~4A
g -— e i e
2 10° g re— A—/—A—,"’Ai:il —=me=———f===l
Q A oa— o _a--a--" —a—a—a—n—*"
= A m- : . l/.—_—:—_—: A S SRR G ':
B gl b e e T e——e—
& 07 Gt et
) i:}v —e—PSDU: 4 kB —+—PSDU: 66 kB
1072 4

—s— PSDU: 262 kB —e— PSDU: 4194 kB

e B
1 2 3 4 5 6 7 8 9

No. TRN units
Fig. 7. Overhead introduced by JUMP on the IEEE 802.11ay PHY layer

packet, as a function of the number of added TRN units, for different PSDU
sizes. Solid lines correspond to MCS 8, while dashed lines represent MCS 12.

\ \ \
10 11 12

Baseband
Nodes

Phase-locked

oca\ Oscillators

' Bistatic
(Sync) RX4,

Bistatic
(Async) RX1

Fig. 8. Testbed components.

method to reconstruct D signatures from the irregular CIR
estimates obtained from communication packets.

VI. IMPLEMENTATION

JUMP’s prototype is based on the 60 GHz SC
IEEE 802.11ay standard [38], maintaining its packet structure.
CIR estimation is performed by using trailing TRN fields.

1) Testbed Design: Our implementation is a customization
of MIMORPH [46], an open-source project for mmWave
experimentation inclusing a Xilinx Radio Frequency System
on a Chip (RFSoC) board and Sivers’ mmWave front-end [47].
Fig. 8 shows the main components of our testbed. The
MIMORPH Field Programmable Gate Array (FPGA) logic
was modified to allow its operation as a TX, RX, or both
functionalities simultaneously. In this way, we can emu-
late a monostatic JCS system, which we use as a baseline
for comparison. The Analog-to-Digital Converters (ADCs)
and Digital-to-Analog Converters (DACs) on the board are
configured to operate at 3.52 GHz sampling frequency,
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fulfilling the requirements of mmWave Wi-Fi standards (IEEE
802.11ad/ay), with 1.76 GHz of RF bandwidth.

The TX implements a loopback memory that feeds the
DACs with the I/Q symbols to be transmitted, which are
loaded from an external processor. To enable AoD estimation
(Section IV-B.2), we implement a real-time antenna reconfig-
uration mechanism that allows to sweep through different BPs
in the TRN fields of a single packet, as in [46].

At the RX, after downconversion and sampling, packet
detection is performed by searching for peaks in the autocor-
relation of the received signal [40], [48]. In communication
between asynchronous devices, in addition to TO and CFO,
the non-ideal sampling point at the RX causes a symbol
timing offset. This introduces Inter-Symbol Interference (ISI).
Although this is generally neglected in the JCS literature [5],
[11], in our experiments we found that it affects uD quality.
To avoid this, we implement a symbol synchronization block
including a configurable fractional delay filter, based on a
Farrow structure [49], followed by a fast Golay correlator [48].
After proper sampling point selection and subsequent down-
sampling, the I/Q symbols are fed to the onboard RAM.

2) Different Testbed Configurations: Our implementation
includes a TX, two JUMP receivers, RX1-2, and two receivers,
RX3-4, which we use to assess and compare JUMP’s per-
formance against monostatic and phase-locked configurations.
JUMP’s RXs are completely independent of the TX, as they do
not share any clock source or oscillators. The monostatic RX,
denoted by RX3, is located in the same location as the TX,
as shown in Fig. 8. For the monostatic case, the RFSoC board
concurrently operates as TX and RX (i.e., as a full-duplex
system). To remove the CFO, the local oscillator is fed from
the TX antenna to the RX3 antenna (Fig. 8). The direct LOS
from TX to RX3 provides a reliable reference to align the CIR
estimates, removing the TO. With RX4, a phase-locked version
of the bistatic JCS system was implemented. This is similar
to the monostatic RX3, but in this case, RX4 is co-located
with JUMP’s receiver, RX1. Similarly to the monostatic case,
we phase-locked the mmWave front-ends by sharing the TX
local oscillator signal through a cable, thus eliminating the
CFO. RX4 is used as a reference to assess the quality of the
JUMP reconstructed puD spectrum.

3) System Parameters: We use the same values of B and
T used in the simulation in Section V. For uD extraction,
we apply STFT with a Hanning window of size W = 256.
This yields a maximum resolvable Doppler frequency of
e = 1/(2T) = 1851.85 Hz and a resolution of Afp =
1/(WT) = 14.47 Hz. The velocity corresponding to such
bistatic Doppler frequency depends on v and 3 as per Eq. (9).
For the AoD measurements, we set ¥ to 0.7 multiplied by the
maximum correlation value in Eq. (13). This allows capturing
the AoD of different reflections in the same CIR tap while
rejecting peaks due to sidelobes of the BPs. K = 100 frames
are used for the selection of the static reference path, with a
variance threshold o2, . = 0.005 m? (see Section IV-B.5). For
the puD spectrum, we use () = 2, considering channel taps in
a (bistatic) range of £QAd = £34 cm from the target, which
we empirically found to be suitable for human sensing, given
typical human body sizes.
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VII. EXPERIMENTAL RESULTS

JUMP was tested on the tasks of people tracking and uD
extraction, in two different indoor environments to verify the
system effectiveness under different conditions. The test areas
are research laboratories, denoted by Envl, of dimensions
5 x 8 m, and Env2, of dimensions 6 x 7 m. Fig. 9 shows
them, along with the position of the TX and RX nodes. The
placement of the RXs with respect to the TX, in terms of rela-
tive distance and orientation, is shown in Fig. 9 for Env1 and
Env2. We use Envl for baseline evaluations, using a single
JUMP receiver, denoted by RX. In Env2 instead, we perform
comparisons with the monostatic and phase-locked systems,
using RX1 and RX3-4, and we evaluate the performance of
a multistatic JUMP deployment using RX1-2 concurrently.
To reconstruct the ground truth movement trajectory of the
subjects, we mark the floor at specific locations in the two
environments and instruct them to move across the markers.
To perform measurements under NLOS conditions, we use
rectangular panels of absorbing material interposed between
the TX and RX to block the LOS signal. This is used to
simulate common occlusions of the LOS that can happen in
dynamic environments, caused, e.g., by other subjects moving
around. We collect over 60 CIR sequences in Envl and Env2,
each with duration of about 12 seconds (40k packets).

A. Bistatic Tracking Accuracy

To evaluate JUMP’s tracking accuracy, we compute the
RMSE of the estimated movement trajectory of the subjects
with respect to the ground truth. Fig. 10 shows the tracks
outputted by the EKF in a LOS setting in Envl for three
different movement trajectories of a single person. Along with
the tracks, we plot the ground truth with a solid black line and
the measurement vectors, z, with gray dots. Moreover, we also
represent the body width of the subject during the movement
with a black solid rectangle. The body width is non-negligible
due to the high delay resolution of our system. Although it is
not possible to know the exact reflection point of the signal
on the subject’s body, we expect the collected measurements
to be biased towards the body side that is facing the TX/RX
pair. This is clearly visible in Fig. 10. To account for the bias
introduced by the body width, in the following analysis we
compute the tracking error with respect to the trajectory of the
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body side facing the TX/RX, as this is more representative of
the true tracking accuracy of the system. The body size was
measured for each subject involved in the experiments.

1) LOS Tracking: As a baseline result, we compute the
average RMSE for different measurement sequences obtained
in Env1, obtaining a median RMSE of 8.5 cm, as shown in the
first boxplot of Fig. 11a. This result provides a first assessment
of the capability of our system to compensate for the TO due
to clock asynchrony between TX and the RX. In Fig. 11b,
we show the RMSE obtained when tracking a subject sitting
down and standing up at three different locations: 3.7, 2.8,
and 2 m in front of the TX. We observe that, on the one hand,
distant targets cause reflections with high dcd;x product,
which are harder to detect and track due to low SNR. On the
other hand, targets too close to the LOS link have the bistatic
angle (8 close to m, yielding a lower-ranging resolution. For
these reasons, the median tracking errors in the first and third
cases are higher than in the second one.

2) Impact of NLOS: In the second boxplot in Fig. 1la
we show the RMSE distribution obtained in intermittent
LOS/NLOS conditions. In collecting these CIR measurements,
we block the LOS link using the absorbing panel intermit-
tently for time intervals of approximately 1 — 2 s. This test
is very challenging in terms of TO compensation, as the
received packet can be detected from one of the reflections on
surrounding objects, thus presenting a possibly large relative
shift between subsequent packets. Still, our approach can
successfully remove the TO, obtaining a median RMSE of
10.9 cm, with the third quartile of the error distribution being
less than 20 cm.

3) Comparison With a Monostatic System: In Fig. 12 we
compare our system with a monostatic sensing configuration
(see Fig. 12b). This evaluation provides a comparison with
existing approaches in the literature that adopt full-duplex
monostatic sensing systems, e.g., [8] and [12]. In addition,

9771

1.0 = Tr. RX3 ] Body width
= Tr. RX1 Meas.
-= T
. 08 rue
8 o
= 0.6 m RX1
8 §| A
= I
2
E] 0.4 Pr
02 - Bistatic
— Monostatic 0 A’I‘X/RX?,
0.0 T T ) ' '
0.0 0.2 0.4 0.6 —2.5 0.0 2.5
Tracking RMSE [m)] X [m]
(a) RMSE CDFE. (b) Example trajectory.
Fig. 12.  Monostatic vs. bistatic tracking RMSE comparison.
==+ True [ Body width === True [ Body width
=== Track 1 Meas. === Track 1 Meas.
== Track 2 = Track 2
41 41 —
ol
i
21 (i] -2 N = — }
ol ATX | ol ‘TX |
-2 0 2 -2 0 2
x [m] x [m]
Fig. 13. Multitarget tracking in Env1.

—=- True 1 Body width
Track 1 Meas.
= Track 2

Bistatic Doppler freq. [kHz]

2.7 5.4
Time [s]

Time [s]
(b) Extracted uD.

x [m]

(a) Tracking.

Fig. 14.  uD extracted in a multitarget scenario.

it allows evaluating the impact of the resolution as a function
of the bistatic angle (see Section III-B). For this, we concur-
rently collect CIR sequences using RX3 and RX1, having the
subject walk along different linear trajectories. Fig. 12a shows
the empirical RMSE Cumulative Distribution Function (CDF)
obtained with the monostatic and bistatic systems. Although
less accurate, our system performs similarly to the monostatic
configuration. This is because bistatic systems produce better
sensing SNR in the region around RX1, which instead is a low
SNR region for RX3. When multiple trajectories and locations
are considered, our results show that this compensates for the
degradation in the bistatic range resolution.

4) Multitarget Scenario: Finally, we evaluate the tracking
accuracy when multiple subjects concurrently move in the
environment. Fig. 13 shows two example results obtained with
two subjects when one is walking and the other is sitting
down/standing up repeatedly (left), and when both are walking
on different trajectories (right). The system can accurately
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track multiple targets obtaining the RMSE distributions shown
in the last two boxplots of Fig. 11a. We report the results
for both the LOS and the intermittent LOS-NLOS -cases.
The median RMSE slightly degrades compared to the single
subject case (14 cm), due to the more frequent outliers caused
by the more challenging multi-target tracking task.

B. Micro-Doppler Quality

Next, we evaluate the quality of the uD signatures obtained
with our CFO removal technique in Env2. The puDs shown
here and in the rest of this section are obtained as log uD[w, q],
and normalized frame-wise in the interval [0, 1]. Darker colors
correspond to lower energy levels, while lighter ones represent
high energy. We show an example result in Fig. 14, with
two subjects, one sitting down and standing up (Track 1) and
one walking (Track 2). Notice that the pD signatures after
the removal of the CFO contain a strong center frequency
due to the torso’s movement and sidebands due to the limbs.
To provide a ground-truth reference for the uD spectrograms,
we co-locate JUMP’s receiver RX1 and the phase-locked RX4
at coordinates (1.8,3.3) m.

1) Comparison With a Phase-Locked System: In Fig. 15,
the puD of our system is compared with the phase-locked
system for three different activities: (a) walking, (b) sit-
ting/standing, and (c) hand gestures. These tests are performed
in a LOS setting. The cleaned p:D reflects the phase-locked one
very accurately, even for fine-grained Doppler shifts involved
in hand gestures. To quantitatively evaluate the difference
between the phase-locked spectra and JUMP’s ones, we com-
pute the frame-wise, masked RMSE of the spectrograms, after
temporally aligning them. A direct computation of the RMSE
would not give a clear indication of the quality of the uD, as it
would equally weigh differences in the background noise floor
and the body uD contribution. For this reason, we apply a 2D
Gaussian filter, with parameter o = 2, to the phase-locked uD

(b) Sitting.

Phase-locked

Time [s]

(b) W/o. reflector.
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to filter out background noise, as shown in Fig. 17 (right).
Then we restrict the RMSE computation to the spectrogram
elements in which the filtered spectrogram lies over a threshold
of 0.45. The RMSE distribution over all the collected frames
is reported in Fig. 17 (LOS). For completeness, we also report
the standard RMSE, calculated over the entire spectrogram.
2) Impact of NLOS: In NLOS situations, our algorithm
removes the CFO using the strongest static multipath reflec-
tion as a reference. Depending on the corresponding signal’s
strength and reflector’s location, the resulting ;D spectrum can
be of higher or lower quality. In Fig. 16, we show two uD
spectrogram examples obtained in Env2 using the same setup
described above. We intermittently block this evaluation’s LOS
link using the absorbing panel. The NLOS regions in the uD
are highlighted using white dashed rectangles. In Fig. 16b,
we used the standard Env2 setup, without reflectors close
to the testbed devices, while in Fig. 16¢c, we placed a metal
locker at 4.8 m in front of the TX. In the first case, the uD
reconstruction is particularly challenging, as the algorithm’s
reference multipath reflections are weak due to the large
distance of the reflectors. Despite this, our method successfully
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recovers the D in 3 out of 4 LOS occlusion events, while the
spectrum appears corrupted during the first one. We verified,
as exemplified in Fig. 16c, that when the metal locker is
present on the scene, the uD corruption no longer occurs,
as the algorithm can always find a reliable and strong reflection
for removing the CFO. Quantitative results for this scenario are
reported in Fig. 17, without (w/0) and with (w) the reflector.
In the worst case of NLOS without reflectors, JUMP obtains
a normalized RMSE of 0.07.

C. Multistatic Scenario

The proposed method easily scales to multiple RXs, allow-
ing thorough and robust sensing of the environment. In Fig. 18,
we show two measurement sequences obtained by concur-
rently operating RX1 and RX2 in Env2, with a subject
walking (a-b) and performing hand gestures (c-d). In the first
case, the subject starts moving close to the TX-RX2 LOS, thus
yielding a noisy uD. However, the spectrum obtained from
RX1 does not show noisy regions thanks to the better position
of RX1 to capture the movement. In addition, the shape of
the uD is slightly different due to the different viewpoints for
RX1-2. This effect is captured even more clearly in Fig. 18b,
where the subject is waving his arms in front of RX1 and RX2,
with the torso oriented midway between TX and RX2. In this
position, the full movement of the arms is not clearly visible
to RX1, as it is blocked by the subject’s back. This results
in very different uD patterns that provide richer information
about the movement.

VIII. DISCUSSION AND FUTURE WORK

1) Multistatic Data Fusion: The results provided in
Section VII-C pave the way for multistatic data fusion across
multiple receivers. As shown in Fig. 18, each JUMP receiver
returns an independent view of the physical environment to be
monitored. Leveraging multiple receivers would then provide
a means to improve tracking accuracy, e.g., by combining their
estimated tracks to solve possible occlusion events. Moreover,
multiple receivers usually have different observation angles for
the same targets. The fusion of uD spectrum features coming
from such diverse viewpoints allows for enhanced diversity
and, overall, for an improved understanding of the underlying
movement, especially for extended targets with many moving
parts. Target identification or motion recognition algorithms
can exploit such enhanced feature representations to boost
their performance.
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2) NLOS Operation: Our target tracking accuracy results
in the presence of NLOS events show that, for indoor human
sensing, our assumption that most background reflections
remain constant in between subsequent tracking frames holds.
Moreover, when blocked, the LOS path gradually disappears
across subsequent CIR estimations, yielding correct and clear
correlation peaks. In general, however, the tradeoff between
inter-packet time and the level of dynamicity in the envi-
ronment plays a key role. As shown in [12], a minimum
packet rate has to be ensured to accurately capture the Doppler
spectrum of the physical targets, to avoid aliasing and low res-
olution. In the case of very challenging dynamic environments,
with few static reflections, the JUMP correlation approach
could be replaced by optimization-based association mecha-
nisms between multipath reflections appearing in different CIR
estimates. This aspect, and the possible improvements that it
may bring, are left to future investigations.

3) Mobility: The analysis in Section IV-D shows that
JUMP’s CFO removal step can be extended to also compensate
for RX movement. However, this requires estimating the
RX velocity vector using external sensors (e.g., an onboard
accelerometer). The resulting compensation is highly sensitive
to errors in such estimation, which may degrade performance
in practical settings. Therefore, we identify mobility as a key
challenge for future JCS research that needs further attention.
Interesting solutions may involve enhancing the accelerometer
estimate using information from the wireless channel.

IX. CONCLUDING REMARK

The problem of integrating sensing functionalities in bistatic
asynchronous communication systems is addressed in this
paper. For that, we designed and prototyped JUMP, a JCS
scheme that overcomes timing and frequency offsets due
to clock asynchrony following two main pathways. First,
it leverages the correlation in the channel propagation paths
across different packets, second, it identifies a static refer-
ence path whose phase is used to remove the frequency
offset from the reflections on sensing targets. An extensive
CIR measurement campaign has been carried out targeting
indoor human movement sensing, using a 60 GHz IEEE
802.11ay-based implementation of the system. Results show
that JUMP is competitive with synchronous full-duplex and
phase-locked solutions. It achieves a median worst-case mul-
titarget tracking error of 14 cm and a human pD spectrum
normalized reconstruction error of 0.07 in intermittent NLOS
conditions.
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