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Abstract— Wideband millimeter-wave communication systems
can be extended to provide radar-like sensing capabilities on
top of data communication, in a cost-effective manner. However,
the development of joint communication and sensing technology
is hindered by practical challenges, such as occlusions to the
line-of-sight path and clock asynchrony between devices. The
latter introduces time-varying timing and frequency offsets that
prevent the estimation of sensing parameters and, in turn, the
use of standard signal processing solutions. Existing approaches
cannot be applied to commonly used phased-array receivers,
as they build on stringent assumptions about the multipath
environment, and are computationally complex. We present
JUMP, the first system enabling practical bistatic and asyn-
chronous joint communication and sensing, while achieving
accurate target tracking and micro-Doppler extraction in realistic
conditions. Our system compensates for the timing offset by
exploiting the channel correlation across subsequent packets.
Further, it tracks multipath reflections and eliminates frequency
offsets by observing the phase of a dynamically-selected static
reference path. JUMP has been implemented on a 60 GHz exper-
imental platform, performing extensive evaluations of human
motion sensing, including non-line-of-sight scenarios. In our
results, JUMP attains comparable tracking performance to a
full-duplex monostatic system and similar micro-Doppler quality
with respect to a phase-locked bistatic receiver.
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I. INTRODUCTION

J
OINT Communication & Sensing (JCS) has emerged as

a potential game changer for next-generation wireless

networks, endowing communication systems with radar-like

capabilities to perceive their surroundings [1], [2]. Joint Com-

munication & Sensing (JCS) system designs are categorized in

radar-centric and communication-centric, depending on which

of the two functionalities is regarded as primary [3], [4].

Communication-centric JCS is the most promising approach

for a cost effective solution, as it leverages the ubiquitous

communication hardware and waveforms for sensing, adding

minimal overhead and modifications to existing devices and

protocols [5], [6]. To this end, communication-centric JCS

should maintain the typical wireless network configuration

of separated transmitter and receiver, with half-duplex capa-

bilities (bistatic configuration) [7], as opposed to impractical

full-duplex designs [8]. In this setting, sensing is performed by

repurposing the Channel Impulse Response (CIR) or Channel

State Information (CSI) estimation processes to extract infor-

mation about the environment [9]. This allows estimating

physical parameters such as the distance and velocity of nearby

targets of interest, as these are related to signal reflection

delays and Doppler shifts [10], [11]. However, a large-scale

adoption of bistatic JCS is impaired by the fact that network

nodes are asynchronous, i.e., they have different clock sources

and oscillators for the Radio Frequency (RF) front-end [5].

This asynchrony causes a time-varying Timing Offset (TO)

and Carrier Frequency Offset (CFO). The former appears

as a common delay shift for all propagation paths in the

CIR, preventing the correct estimation of actual path delays.

The latter is a random frequency shift that destroys phase

coherence across subsequent packets, hindering the estimation

of the Doppler shift and of the micro-Doppler (µD) effect.

The µD is a frequency modulation of the reflected signal

around the main Doppler frequency induced by movements

of a target or target components. It is the main signal feature

used in fine-grained wireless movement sensing, and has a vast

number of applications in target classification, human activity

recognition, pervasive healthcare, and person identification,

among others [12], [13], [14]. While existing communication

systems use algorithms to compensate for TO and CFO, they

treat the sensing parameters (delay and Doppler shift) as part

of the undesired offsets and remove them [15]. This makes
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such existing techniques unfit to our sensing purpose, as delay

and Doppler are the channel parameters that we use to describe

the physical environment. For these reasons, clock asynchrony

is the main obstacle to large-scale practical implementations

of JCS systems [5], [11], where TO and CFO due to clock

asynchrony are to be removed while retaining the delay and

the Doppler shift.

In this work, we design and implement JUMP, a JCS system

that solves the problem of asynchrony and enables bistatic

sensing in wideband communication systems, e.g., Millimeter-

Wave (mmWave) networks, which are particularly problematic

due to the high phase noise [16]. The system builds on two

main insights. First, JUMP exploits the slow change of the

CIR delay profile compared to the packet rate, and uses a fast

correlation-based method to estimate the relative TO across

subsequent packets. By compensating for the TO, it allows

for target localization and tracking without ambiguity, even

under frequent occlusions of the Line-of-Sight (LOS).

Second, it leverages the fact that the CFO is constant across

the different signal propagation paths for the same packet.

This property, paired with the accurate multipath resolution

of wideband signals, allows identifying static reference mul-

tipath components, whose frequency shift is only due to CFO

(being static, they do not contain the µD component). Hence,

the signal collected from these static paths is used to remove

the CFO from the sensing paths, which contain the µD

from the targets of interest. This allows aggregating phase-

coherent CIR estimates from subsequent packets, enabling µD

estimation despite the clock asynchrony.

Existing bistatic sensing approaches use cross-antenna-

based TO and CFO compensation, using the signal at one

antenna of a Multiple Input Multiple Output (MIMO) receiver

as a reference [17], [18], [19], and [20]. JUMP solves several

practical problems associated with these methods: (i) it works

with commonly used phased-array receivers, which do not

allow access to the signal at each antenna; (ii) it preserves

the linearity of the signal and does not introduce cross-terms

that require complex estimation algorithms; (iii) it correctly

operates in weak LOS and Non-Line-of-Sight (NLOS) condi-

tions. Moreover, JUMP estimates the full µD spectrum of the

targets, including the contributions of their different moving

parts, not just their main Doppler frequency.

Unlike other JCS approaches, it is a practical solution that

neither requires full-duplex hardware capabilities, as in [6],

[8], [12], and [21], nor any synchronization between the

nodes, nor any modification to the underlying communication

standard. We stress that these qualities make JUMP appealing

in more general settings than just JCS, e.g., in bistatic radar

systems [5], [22], in case synchronization through fiber links

or Global Positioning Systems (GPS) signals is not viable.

We provide analytical insights into JUMP’s TO and

CFO removal performance, complemented by numerical

simulations. Moreover, we prototype it on a 60 GHz

IEEE 802.11ay-based Software Defined Radio (SDR) plat-

form. This implements independent transmitter and receiver

pairs, thus serving as a realistic testbed for asynchronous

JCS. In the implementation, we solve additional practical

issues, such as symbol-level synchronization, which is usually

neglected in JCS research [5]. To benchmark the system’s

target tracking and µD extraction capabilities, we conduct

a vast experimental campaign in two indoor environments,

performing people tracking and µD signature extraction. In the

dataset collection, we augment the testbed with additional

receivers in monostatic and bistatic phase-locked configura-

tions, enabling a comparison with alternative JCS approaches

from the literature.

The contributions of this work can be summarized as:

1. To the best of our knowledge, JUMP is the first system

that enables practical JCS for asynchronous transceivers in

realistic bistatic configurations, performing accurate target

tracking and µD extraction.

2. We design a correlation-based algorithm to compensate

for the relative TO across subsequent packets, attaining con-

sistent bistatic target tracking even in challenging multitarget

and NLOS scenarios.

3. We leverage the high multipath resolution of wideband

transceivers to remove the CFO using a reference propagation

path instead of a reference antenna, as done in the JCS

literature. This largely simplifies the estimation of the Doppler

spectrum, removing limiting assumptions on the multipath

environment, or the necessity of a MIMO antenna array.

4. We build two JUMP prototypes and collect a large dataset

of IEEE 802.11ay CIR measurements for human motion

tracking and µD extraction.

Our work shows promising results for bistatic asynchronous

JCS systems compared to monostatic full duplex and bistatic

phase-locked ones.

The manuscript is organized as follows. In Section II

we discuss the related work, while Section III introduces

the system model. JUMP is presented in Section IV, along

with a detailed explanation of each signal processing block.

Section V contains an analysis of the TO and CFO com-

pensation errors, complemented by numerical simulations.

In Section VI we describe the implementation of JUMP on

an experimental prototype. Section VII contains experimental

results demonstrating JUMP’s promising performance. Finally,

in Section VIII we underline key aspects of our design and

future research directions, while concluding remarks are given

in Section IX.

II. RELATED WORK

Full-duplex JCS. The use of full-duplex technology for JCS

has been advocated in several works. In [8] and [21] the

authors have investigated antenna arrays, beamforming, and

waveform design to enable full-duplex JCS in mmWave

5G systems. In [6] and [12], full-duplex has been used

as a practical solution to CFO for IEEE 802.11ay sens-

ing, presenting algorithms to detect multiple targets and

their µD signatures in indoor scenarios. However, full-duplex

entails strong self-interference, which remains a challenging

and unsolved problem in real communication systems, as it

requires self-interference cancellation techniques [8], which

are not yet a mature technology. As an alternative, the trans-

mitted power can be reduced to avoid saturating the receiver,

but this is only suitable for short-range indoor use [12].

Bistatic, asynchronous JCS. Some methods are available

to provide accurate synchronization between communication

network nodes [5], but require the use of GPS signals
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or the cooperation of devices. In systems including a sin-

gle transmitter-receiver pair or non-cooperating nodes, two

main methods have been proposed: Cross-Antenna Cross-

Correlation (CACC) [20] and Cross-Antenna Signal Ratio

(CASR) [17], [18], [19]. Both use the signal collected at

one of the receiver array’s antennas as a reference to remove

the TO and the CFO. These approaches have three main

drawbacks that are solved by JUMP. First, they require a

MIMO antenna array at the receiver, which is not available in

commercial mmWave systems, as phased-arrays are preferred

for their lower implementation cost and complexity. Second,

they entail a higher complexity in the estimation of the

sensing parameters, by doubling the number of parameters

or introducing non-linearity [19], [20]. Third, for their correct

operation, they require strong assumptions about the multipath

environment, such as the continuous presence of a dominant

LOS link between the transmitter and the receiver, or the

presence of a single sensing target [19] in the monitored space.

Contrarily, JUMP has no requirements for the receiver array

and handles environments with multiple moving targets and

LOS occlusions. Other techniques have been proposed that

rely on partially overlapping subbands to remove TO and

CFO, e.g., [23] and [24]. These require the availability of such

subbands, which is rarely the case, and they can not work with

Single Carrier (SC) systems.

Recently, a Kalman filter-based technique for removing the

TO in bistatic asynchronous JCS has been proposed [25]. Dif-

ferently from JUMP, however, [25] estimates the joint Doppler

plus CFO frequency shift, which does not contain useful

information about the target’s movement. JUMP can instead

remove the CFO and retain the Doppler shifts induced by

the multiple moving parts of the target, enabling fine-grained

sensing applications.

Bistatic sub-6 GHz Wi-Fi sensing. Several studies have pro-

posed ways to perform activity recognition [14], [26], [27]

using Wi-Fi Orthogonal Frequency Division Multiplexing

(OFDM) CSI. Indeed, most of the CFO removal techniques

described in the previous section have been originally pro-

posed for Wi-Fi. The main drawback of sub-7 GHz sensing

lies in its inherent low-ranging resolution, which is a direct

consequence of the relatively low transmission bandwidth (40-

80 MHz are typical values). There, reflected paths can only be

resolved with an accuracy of a few meters, which causes major

performance degradation with multiple concurrently moving

subjects [28].

mmWave bistatic JCS. A few works have addressed bistatic

JCS in mmWave systems, assuming synchronized transmitter

and receiver [29], [30], [31]. Others have focused on tracking

targets based on distance and Angle of Arrival (AoA), without

addressing sensing tasks that require phase analysis or aggre-

gation of signal samples over coherent processing intervals,

such as Doppler speed estimation [32]. JUMP instead per-

forms µD estimation in addition to tracking, and removes the

unrealistic assumption of having time-synchronized nodes.

Radar systems. Bistatic radar systems have been widely stud-

ied and adopted [22], [33], [34]. In the so-called active bistatic

radar setup, the TO and CFO are eliminated by connecting the

transmitter and the receiver through high-speed fiber links,

achieving phase locking, or exploiting GPS as the common

clock source. In the passive radar case, the receiver exploits

signals of opportunity from non-cooperative transmitters. Two

receiving channels are used, one receiving the direct LOS

signal and the other pointing towards the target of interest.

Then, offsets are removed by cross-correlating the LOS sig-

nal with the reflected one [35]. Besides requiring complex

implementation and being heavily dependent on the type of

transmitted signal, these systems cannot handle occlusions of

the LOS link [33].

III. BISTATIC SYSTEM MODEL

In this section, we introduce the bistatic system model.

A. CIR for Asynchronous Transceivers

The CIR estimation process consists of transmitting a pilot

signal from a transmitter (TX) device that, after being reflected

by nearby objects or humans, is collected at the receiver (RX).

The latter correlates the known pilot waveform with the

received one. The resulting CIR contains TO and CFO that

prevent accurate estimation of the targets’ parameters [5], [20].

In our model, we highlight (i) the role of TO and CFO, and

(ii) the impact of discretizing the CIR for wideband systems.

We use a SC CIR model to simplify the understanding of the

implementation and experimental results, which are based on

SC IEEE 802.11ay. However, JUMP is equally applicable to

OFDM-based JCS systems. The model is based on, e.g., [12]

and [36], but contains significant modifications to take into

account TO, CFO, and the bistatic geometry.

1) Timing Offset: In wireless communications the TX

and the RX clocks are not synchronized and thus exhibit

an unstable relative clock drift over time [5], [11]. In the

absence of an absolute timing reference, the RX performs

packet detection and coarse synchronization. For example,

in IEEE 802.11ad/ay packet detection is done with an auto-

correlation method which returns a rough estimation of the

start of the packet [37]. This operation does not yield a

synchronization at the symbol-level, thus a residual TO is

included into the channel estimate and removed via equaliza-

tion. Note that these operations are performed separately on

each packet, and the TO changes across subsequent packets

depending on the selected synchronization point. In JCS we

are interested in computing the exact delays of the signal

propagation paths, without the residual synchronization error,

as these are linked to the distance of the sensing targets. Hence,

including the TO in the channel estimates results in a wrong

estimation of the delays. Due to the time-varying nature of

the TO, the cumulative estimation error across time can add

up to tens of nanoseconds after just a few milliseconds [5].

This uncertainty in the delay easily leads to large errors in

estimating the target’s position (several meters), even within

short time intervals [11].

2) Frequency Offset: Clock drifts can be typically ignored

over the course of the preamble of a single communica-

tion packet, as their variation is negligible over short time

periods (micro-second level). Therefore, in communication

systems such as the IEEE 802.11ad/ay the CFO is estimated

and compensated for each packet separately. This is done

by computing the total phase error induced by the CFO
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Fig. 1. µD spectrogram affected by the CFO (a) compared to JUMP’s µD
(b). (c) shows the CIR magnitude for different BPs.

using an autocorrelation technique [37] and removing it from

the received samples. In JCS instead, we are interested in

retrieving the Doppler shift caused by the target’s movement

speed. Therefore, compensating for the CFO for each packet

separately is not a viable option, as this method removes the

CFO and the Doppler shift, as they both appear in the phase of

the received signal and they can not be easily separated. This

is further discussed in Section IV-C. In addition, estimating the

phase differences and Doppler shifts caused by moving targets

requires processing the received samples coherently across

subsequent packets. The CFO can not be considered constant

within such extended time intervals (several milliseconds), and

it makes the phase of signal samples across different packets

incoherent, preventing the estimation of Doppler shifts.

CFO is especially severe in mmWave systems. As an exam-

ple, it can reach hundreds of kHz with 60 GHz devices, while

for a target moving at 10 m/s the Doppler shift is 4 kHz. This is

shown in Fig. 1a, where we plot the CFO-affected normalized

Doppler spectrum and that obtained by JUMP from a walking

person. Without removing the CFO, the µD is completely

corrupted and does not carry any useful information about

the movement.

3) Transmitted Signal Model: We denote by s[i] the discrete

TX symbol sequence, by L the number of TX symbols, and

by ptx(t) the pulse-shaping filter. Assuming unit energy per

TX symbol and a sampling period equal to ∆Ä = 1/B, with

B the TX bandwidth, the SC TX signal is

x(t) =
L−1
∑

i=0

s[i]ptx (t− i∆Ä) . (1)

In a directional JCS system employing phased antenna arrays,

different Beam Patterns (BPs) are used to steer the signal

energy towards the intended direction. The TX signal is thus

multiplied by the analog beamforming vector, u, obtaining

x(t) = ux(t). In our simulations and implementation, s[i] is

a set of complementary Golay sequences used for channel esti-

mation in IEEE 802.11ay, as detailed in Section VI. However,

here we consider it to be a single sequence of pilot symbols

for the sake of generality.

4) CIR Model: We denote by N(t) the number of prop-

agation paths at time t, by ³m(t) the complex signal

attenuation coefficient of the m-th reflection, while and

Äm(t) is its delay. fD,m(t) is the Doppler frequency due

to the movement of the m-th reflector. Moreover, we call:

v the vector of phase shifts used at the RX phased array

(RX beamforming vector), ¹m, φm the Angle of Departure

(AoD) and AoA of the m-th reflection, respectively, and

atx(¹m),arx(φm) the corresponding TX and RX array steer-

ing vectors. Considering uniform linear arrays at the TX and

RX we have atx(¹) = [1, . . . , e−j(Mtx−1)Ã sin ¹]T, arx(¹) =

[1, . . . , e−j(Mrx−1)Ã sin ¹]T, where Mtx and Mrx are the num-

ber of antennas at the TX and RX, respectively. Given these

definitions, and calling ¶(·) the Dirac delta function, the

continuous-time CIR model is

h(t, Ä) =

N(t)
∑

m=1

Am(t)ej2ÃfD,m(t)t¶(Ä − Äm(t)), (2)

with Am(t) = ³m(t)vH
arx(φm) (atx(¹m))

H
u, where super-

script (·)H indicates the complex conjugate transpose. Note

that we include in the CIR model also the effect of TX and

RX beamforming, that are combined in the complex-valued

coefficients Am(t). ³m(t) instead accounts for the combined

effect of the propagation loss and the target’s Radar Cross

Section (RCS) [34].

5) Received Signal Model: The RX signal is the result of a

convolution between the TX signal and the CIR. In addition,

it is also affected by TO and CFO, which we denote by Äo(t)
and fo(t), respectively. The RX applies a receive filter, prx(t),
and we define p(t) = ptx(t) ∗ prx(t) to be the convolution

between the TX and RX filters. The noise-free RX signal is

y(t) =

N(t)
∑

m=1

Am(t)ej2Ã(fD,m(t)+fo(t))tx′(t− Äm(t) − Äo(t)),

(3)

with x′(t) =
∑L−1

i=0 s[i]p(t− i/B). Due to the presence of

TO, the TX signal is further delayed with respect to the

sole propagation time. The CFO instead causes an additional

frequency shift that is added to the Doppler effect. We remark

that TO and CFO are constant across the signal paths, and

hence they are independent of index m.

The RX signal is sampled with period ∆Ä , obtaining a

discrete sequence of samples for each packet. We denote

by T the time between two subsequent packets. In deriv-

ing the expression of the sampled RX signal we make the

following common assumptions: (i) the combined filter p(t)
satisfies the Nyquist condition, i.e., p(i∆Ä) = ¶[i] (Kronecker

delta function), and (ii) the number of propagation paths and

their parameters (amplitudes, Doppler shift, and delay) can

be considered constant within a short processing interval of

K packets, provided that T is sufficiently small that the

propagation environment changes slowly compared to it [11].

We stress that the TO and CFO instead vary in each packet,

hence they retain their dependence on time. The delay reso-

lution of the system after discretization is determined by the

sampling period ∆Ä , thus being inversely proportional to the

TX bandwidth. Due to the finite resolution, reflections with

delay difference below ∆Ä are not resolvable at the RX.

Hence, out of the N true signal propagation paths, only

Nr f N resolvable paths appear in the RX signal. We index

such paths by variable n to distinguish them from the true

propagation paths. Due to sampling, the n-th path delay and

the TO are approximated as multiples of the sampling period,

Än = Än∆Ä and Äo(kT ) = Äo(kT )∆Ä .
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Although they cannot be distinguished in the delay domain,

unresolvable paths could be discerned based on the Doppler

shift. The n-th resolvable path is the superposition of Nn non-

resolvable paths, with N =
∑Nr

n=1Nn. The i-th RX symbol in

packet k ∈ [0, . . . ,K − 1] is

y[k, i] =
N

∑

n=1

h̃n(kT )s[i− Än − Äo(kT )], (4)

h̃n(kT ) =

Nn
∑

¿=1

An,¿e
j2Ã(fD,n,ν+fo(kT ))kT , (5)

where An,¿ and fD,n,¿ are the complex gain and the Doppler

frequency of the ¿-th superimposed path within resolvable

path n, respectively. In Eq. (4) we neglect fractional com-

ponents of the n-th path delay and the TO, since these

cause sensing errors which are below the resolution of the

system. Eq. (4) represents the noiseless RX symbols. In our

model, we consider y[k, i] to be affected by additive com-

plex white Gaussian noise distributed as CN (0, Ã2
w), where

Ã2
w is the noise variance. Recalling we assumed unit TX

symbol energy, the Signal-to-Noise Ratio (SNR) is denoted

by Γ = |h̃1(kT )|2/Ã2
w where h̃1(kT ) is the gain of the LOS

propagation path.

6) Estimated CIR Model: CIR estimation is carried out

by cross-correlating the received samples with the known

transmitted pilot sequence s[i]. This yields

h[k, ℓ] =

Nr
∑

n=1

h̃n(kT )Èn[ℓ− Än − Äo(kT )], (6)

for k ∈ [0, . . . ,K − 1], where Èn[ℓ] is the cross-correlation

of s[i] with its delayed and frequency-shifted version (due to

Doppler and CFO) for resolvable path n [34], [36]. In our

implementation, we use complementary Golay sequences

which exhibit perfect autocorrelation property when the fre-

quency shift is zero [38]. This condition does not hold in

Eq. (6), but such non-ideality can be neglected if the product of

the Doppler plus CFO frequency and L∆Ä (the duration of a

pilot sequence) is much smaller than 1, as shown in [36]. As an

example, with a CFO of 100 kHz, a Doppler shift of 4 kHz,

∆Ä = 0.568 ns, and L = 128 we get 0.008 j 1. It follows

that the estimated CIR at a specific time is represented as

a vector of complex channel gains, or taps, indexed by ℓ =
0, . . . , L−1. The ℓ-th tap is related to a corresponding distance,

dℓ = cℓ∆Ä , with c being the speed of light.

Note that, as a result of Eq. (6), the SNR on the peaks

of the estimated CIR is increased with respect to Γ as a

result of the coherent integration of the signal. We denote the

coherent integration gain by G. The exact gain depends on

the frequency shift of the received signal (due to Doppler and

CFO), and is upper bounded by G f L, which is the coherent

gain in case of no frequency shift [34].

In the following, the TX is considered to be directional,

whereas the RX is assumed to use a quasi-omnidirectional BP.

Note that this is coherent with how existing mmWave com-

mercial devices equipped with phased-arrays operate. This is

not restrictive, as our method also works in the symmetric case

Fig. 2. Schematic representation of the bistatic geometry.

where the RX listens to the signal using directional BPs, and

the TX is omnidirectional.

To account for the effect of analog TX beamforming,

we denote by hb[k, ℓ] the ℓ-th tap of the CIR at time kT
obtained using BP b, i.e., when the TX uses beamforming vec-

tor ub. The complex gain of a path is denoted by A¿,n,b, which

contains the antenna gain given by BP b along the direction

that points to reflector n, together with the propagation loss

and the RCS [34]. A visual representation of the magnitude

of the CIR for different BPs is shown in Fig. 1c.

B. Bistatic Sensing Configurations

Next, we detail how the bistatic geometry affects the mul-

tipath reflection delays and Doppler frequencies.

1) Bistatic Reflection Delay: We denote by Ä the relative

delay of a generic multipath reflection, measured relative to

the LOS propagation path along which the first signal copy

arrives at the RX. Also, we denote by dLOS the LOS distance

between the TX and the RX. dtx and drx are the distances

from the TX to the target and from the target to the RX,

respectively, as shown in Fig. 2. The following relation holds

cÄ = dtx + drx − dLOS, which states that the relative delay is

the time needed for the signal to propagate along the excess

length of the reflected path (dtx+drx) with respect to the LOS

path (dLOS). Note that all reflectors located on the ellipse with

focii coinciding with the TX and the RX will yield the same

measured relative delay due to having the same dtx+drx. This

elliptical region is usually termed iso-range contour. In Fig. 2,

we also represented the AoD of the reflection, called ¹, as the

angle formed by dtx and dLOS. Exploiting the geometric

relations shown in Fig. 2, we can relate dLOS, dtx, and drx

through the law of cosines

d2
rx = d2

tx + d2
LOS − 2dtxdLOS cos ¹. (7)

The distance of the reflector with respect to the TX, for a

given delay Ä , is obtained as

dtx(Ä) =
(cÄ + dLOS)2 − d2

LOS

2(cÄ + dLOS − dLOS cos ¹)
. (8)

The capability of a bistatic system to distinguish two

reflectors located at different distances (hence causing different

reflection delays) is termed range resolution. As described

next, this value depends on the CIR delay resolution ∆Ä .

We define ´ as the bistatic angle, i.e., the angle formed

by the segments connecting the TX to the target and the

target to the RX. Due to the elliptical shape of the iso-

range contours, the range resolution depends on the bistatic
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Fig. 3. Block diagram of the proposed method.

angle as ∆d ≈ c∆Ä/(2 cos(´/2)) [33]. This is a crucial

aspect of bistatic systems. In practice, it prevents accurate

localization of the reflectors when they approach the LOS

segment, as ∆d → +∞ when ´ → Ã. The elliptical area

around the LOS segment in which the resolution degrades is

typically termed forward scattering region.

2) Bistatic SNR: In bistatic systems, for scattering-type

reflections, the expected SNR at the RX is inversely propor-

tional to the square of the product dtxdrx [33]. For this reason,

the locii of points along which the SNR is constant follow the

so-called Cassini ovals, as shown in Fig. 2. As such, compared

to a monostatic system, reflectors far from the TX device can

still yield high SNR if they are sufficiently close to the RX.

3) Bistatic µD Spectrum: Consider the bistatic µD spec-

trum of the n-th resolvable path of the CIR. According to

Eq. (6), it contains the contribution of Nn reflectors, each

having a possibly different speed, together with the CFO.

Moreover, the reflectors’ movement speed maps to a different

Doppler shift depending on the motion’s direction and the

bistatic angle. Denoting by µn,¿ the angle between the bisector

line of the bistatic angle ´n,¿ and the velocity vector of the

¿-th reflector superimposed resolvable path n, with magnitude

vn,¿ , we have [33]

fD,n,¿ =
2vn,¿

¼
cos µn,¿ cos

´n,¿

2
, (9)

where ¼ = c/fc is the wavelength of the carrier fc of

the TX signal. As a consequence, in a bistatic scenario, the

Doppler shift depends on the bistatic angle in addition to

the direction of motion. The standard method for extracting

the µD spectrum applies a Short Time Fourier Transform

(STFT) to windows of subsequent CIR estimates [12]. Taking

a processing window of K packets, the spectrum will present

peaks at frequencies fD,n,¿ . However, in our asynchronous

JCS setting, this approach is not directly applicable as the

Doppler frequency is added to the time-varying CFO. There-

fore, we cannot directly estimate the Doppler shift without

removing the CFO first.

IV. METHODOLOGY

This section presents JUMP, whose block diagram is shown

in Fig. 3. It includes three main steps, as described next.

1. Timing offset compensation: After obtaining the CIR in

the current timestep, we leverage the previous CIR to estimate

the relative random TO between the two, as detailed in

Section IV-A. The random TO is estimated by computing the

correlation between the CIR magnitude profiles with different

BPs, resulting in the candidate TOs, and then combining

them through a majority voting scheme (Section IV-A.1).

Subsequently, the current CIR is shifted in the delay domain,

compensating for the random offset (Section IV-A.2).

2. Multipath detection and tracking: Once the TO is

compensated for, we perform detection and tracking of the

multipath reflections in the environment. This is achieved by

extracting the peaks in the CIR magnitude, computing their

AoD, and smoothing the measurements with an Extended

Kalman Filter (EKF) tracking algorithm. Section IV-B pro-

vides a detailed description of this step. Finally, we select the

strongest static reflection from the set of tracked multipath

components by measuring the variance of its 2D location

estimated by the EKF (Section IV-B.5). We use this path to

remove the CFO from the other reflections.

3. µD extraction: To extract the µD signature of the sensing

targets, we compensate for the CFO by multiplying the CIR

by a complex exponential with the phase of the previously

selected static path (see Section IV-C). The key insight behind

this operation is that the CFO is the same on all the multipath

reflections. Subsequently, we apply STFT to the CIR to extract

the µD.

A. Timing Offset Compensation

Here, we propose a method to compensate for the TO

between two subsequent estimates of the CIR. We (reason-

ably) assume that, besides the reflections on the sensing

targets, the background contains multipath reflections on static

objects, which are slowly time-varying compared to the packet

transmission rate. In addition, we consider that the packet

transmission rate is high with respect to the movement speed

of the sensing targets, which is a common assumption for radar

and JCS. As a consequence, occlusions to the LOS lead to

a progressive and “slow” disappearance of the corresponding

path from the CIR, which happens over the course of several

CIR estimates.

Consider two subsequent CIR estimates obtained from

packets k and k − 1 using the same BP b, and denote the

magnitude of the CIR by rb[k, ℓ] = |hb[k, ℓ]|. If the two

estimates are obtained at a sufficiently high sampling rate T ,

the propagation paths due to reflections on static objects do

not change significantly, producing similar CIR magnitude

profiles (envelopes). TO is expressed as Äo(kT ) = Äo(kT )∆Ä
with Äo[k] ∈ {0, 1, . . . , L− 1}, as in Section III-A.5, defining

Äo[k] ≜ Äo(kT ). Therefore, our assumption about the slowly

varying multipath environment can be written as rb[k, ℓ +
Äo[k]] ≈ rb[k−1, ℓ]. This equality means that the CIR envelope

is preserved between subsequent time steps. It is just shifted

by Äo[k] in the path delay dimension, and this shift Äo[k] is

constant across all BPs but varies on a per packet basis (with

index k).
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In the following, we propose our method to estimate Äo[k]
and then use it to compensate for the TO, and shift the CIR

back to a standard timing reference.

1) Estimation of the Timing Offset: Due to the similarity

of the CIR envelopes in subsequent packets, a good esti-

mate of the shift Äo[k] can be obtained by maximizing the

cross-correlation between the two CIRs magnitudes as follows

Ä̂b[k] = arg max
Ä

L−1
∑

ℓ=0

rb[k, ℓ+ Ä]rb[k − 1, ℓ]. (10)

In Eq. (10), the estimate Ä̂b[k] depends on the BP used in

the estimation of the CIR, although Äo[k] is the same across

all BP. As such, a more robust estimate considers the P CIR

estimates obtained for each packet, one per BP. We turn Ä̂b[k]
onto a one-hot vector representation Λ̂b[k] ∈ {0, 1}L, which

equals 1 at index Ä̂b[k] and 0 elsewhere. Then, we use majority

voting over the BPs Ä̂b[k], b = 1, . . . , P , i.e.,

Ä̂o[k] = arg max
i

P
∑

b=1

Λ̂b,i[k], (11)

where Λ̂b,i[k] is the i-th component of Λ̂b[k]. Eq. (11) com-

bines the estimated offsets from all the directions illuminated

by the TX BPs. This procedure improves the robustness of the

final decision, ignoring outlying Ä̂b[k] that can be produced by

BPs pointing in directions without static reflectors.

When transitioning from a LOS situation to a NLOS one,

due to occlusion from a moving obstacle, Äo[k] can be large.

This is caused by the fact that the first packet copy to be

detected at the RX will not travel along the (blocked) LOS.

Still, the remaining static multipath reflections in the CIR

are expected to remain constant, especially when considering

a combination of all the BPs like in Eq. (11). Therefore,

our method reliably estimates the relative TO even in such

cases, as proven by our NLOS results in Section V and in

Section VII.

2) CIR Shift: Upon obtaining an estimate of the TO, its

effect is compensated for by shifting the CIR in the delay

domain by Ä̂o(kT ) = Ä̂o[k]∆Ä . In practice, this is implemented

as a shift of the CIR along indices ℓ = 0, . . . , L− 1 by Ä̂o[k]
positions. The corrected CIR is obtained as

hc
b[k, ℓ] = hb[k, ℓ− Ä̂o[k]], ∀ℓ = 0, 1, . . . , L′ − 1, (12)

where L′ < L is the length of the CIR portion of interest,

which depends on the size of the monitored environment. The

CIR taps having negative index after Eq. (12) are removed.

The CIR estimated from the previous packet and hc
b[k, ℓ] are

aligned, thus allowing the computation of delays relative to

the same reference point.

3) Initialization: Suppose that the sensing operation starts

in a LOS condition. The direct path between the TX and

RX is the first path to be detected at the RX. In this case,

we initialize the CIR alignment process with respect to the

LOS. Subsequent CIR estimates are shifted to compensate for

the TO as previously described, allowing consistent tracking

of the locations of the reflectors. If, instead, the LOS is

unavailable when the sensing process starts, the CIR alignment

is initialized with the first reflection that arrives at the RX. This

introduces an offset in the obtained delays, which is corrected

a-posteriori when the first packet traveling along the LOS path

is detected. Therefore, having visible LOS during at least one

timestep enables consistent tracking of the reflections.

B. Multipath Detection and Tracking

All the CIR estimates get the same timing reference using

the TO compensation method from Section IV-A, which is

represented by the first CIR tap in hc
b[k, ℓ]. As commonly

done in JCS systems, we assume that the LOS distance, dLOS,

and the relative orientation between the TX and the RX,

³, are known a priori. dLOS can be estimated by applying

localization methods to the RX node, for example, [39], while

³ is typically obtained from a beam alignment protocol [38].

Unlike existing approaches, we are interested in tracking both

the dynamic and the static multipath components in the CIR,

as the latter are used to remove the CFO. This makes the

detection and tracking much more challenging as we want

to preserve the information about the static objects in the

environment, so clutter mitigation cannot be applied.

1) Delay Measurement by Peak Detection: The compu-

tation of the position of the peaks in the CIR magnitude

after the alignment step of Section IV-A yields the relative

delay of the reflection with respect to the LOS, Ä . To reliably

detect CIR peaks in the presence of clutter and background

noise, we apply the Cell-Averaging Constant False-Alarm Rate

(CA-CFAR) algorithm to the CIR magnitude after the TO

compensation, denoted by rcb[k, ℓ] [34]. This operation consists

of computing a dynamic threshold using a moving window.

We call p the index of a generic peak returned by CA-CFAR

at time kT . The delay of the corresponding reflection is then

obtained as Ä = p∆Ä .

2) Angle-of-Departure Estimation: Upon receiving the sig-

nal reflected from an object in the environment, the RX

computes the corresponding AoD relative to the TX, ¹, using a

modified version of the algorithm proposed in [40]. The latter

computes the correlation between each BP shape and the CIR

profile for a specific channel tap and requires that the TX BP

shapes be known or estimated in advance. Unlike [40], how-

ever, in our system model more than one reflection can overlap

in the same peak in the CIR magnitude, allowing multiple AoD

to be detected for a single peak p in the delay domain, and

collecting them into set Θp. In the following, the time index

k is omitted to simplify the notation. We call gb(¹) the gain

of BP b along direction ¹, and r[ℓ] = [rc1[ℓ], . . . , r
c
P [ℓ]]T the

vector of CIR magnitudes for a specific ℓ.
Our AoD estimation algorithm computes

Θp =

{

¹ ∈ [0, Ã] s. t.

P
∑

b=1

gb(¹)
rcb[p]

2

||r[p]||22
> ϑ

}

, (13)

where ϑ is a threshold value used to adjust the sensitivity to

multiple peaks in the correlation profile of the AoD.

3) Distance Estimation: To track the position of the targets

with respect to the TX, we compute dtx(Ä) in Eq. (8) for

Ä = p∆Ä for each peak. Note that dtx depends on p (already

estimated) and dLOS (assumed to be known) and ¹, which

belongs to set Θp. Hence, a set of candidate target locations
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is obtained for each CIR peak p, by collecting all pairs (dtx, ¹),
with ¹ ∈ Θp. A set of measurement vectors z = [dtx, ¹]

T

collects all such pairs, for all the identified peaks p, and

represents the input of an EKF [41] that tracks the Cartesian

position of the targets relative to the TX.

4) Target Tracking (EKF): The EKF takes the measurement

vectors z as input and, based on their evolution, obtains esti-

mates of the states of the targets. The state is defined as the x, y
position of a target and its velocity components along the two

axes, x = [x, y, ẋ, ẏ]T. A constant-velocity model is adopted to

approximate the targets’ movement, where we denote by F the

state transition matrix and by w,v the state and measurement

noises, respectively. The tracking process operates following

the EKF model equations xk+1 = Fxk + wk and zk =

g(xk) + vk, where g(x) = [
√

x2 + y2, arctan (y/x)]T is

the non-linear function relating the current state to the cur-

rent measurements. For measurements-to-tracks association,

we adopt the cheap-nearest-neighbors joint probabilistic data

association filter [42], [43], while to handle the initialization

and termination of tracks, we use the method described in [44].

Such track management strategy filters out most false targets

by taking into account the tracks’ evolution across time, and

allows quick initialization of new tracks whenever new targets

enter the monitored area.

5) Static Path Selection: As described in Section IV-B.4,

the state of each tracked multipath component contains an

estimate of the current location of the reflector, i.e., the state

components x and y. To identify a reliable static path, we first

compute the mean location across the last K tracking steps

for all the tracked reflectors. Then, we obtain the variance

of the locations in the K frames with respect to this mean

value. We select the reflectors with a variance under a certain

threshold Ã2
thr for all the K frames. These are candidate

reference paths, as their location is stable around a fixed

position. The strongest path among them is the one providing

the most reliable CIR phase value, having higher SNR. This

path serves as a reference in the subsequent CFO removal.

C. µD Spectrogram Extraction

Here, we detail our CFO removal strategy and subsequent

µD spectrum extraction. To compute the µD spectrograms of

the tracked reflectors, we identify the CIR taps associated

with the corresponding multipath components. This requires

mapping the EKF states of the tracked components to the cor-

responding element of the CIR in the delay and angle domains.

First, an estimate of the distance between the target and TX is

d̂tx =
√

x2 + y2. Then, denoting by ³ the angle between the

TX and the RX, in the Cartesian reference system of the TX,

an estimate of the AoD is given by ¹̂ = | arctan (y/x) − ³|.
Using d̂tx and ¹̂, we obtain an estimate of the distance between

the target and the RX

d̂rx =

√

d̂tx + d2
LOS − 2dLOSd̂tx cos ¹̂. (14)

Once d̂tx and d̂rx are known, we estimate the CIR tap con-

taining the reflection of the target through the estimated delay

associated with a path of length d̂tx + d̂rx, as Ä̂ = (d̂tx + d̂rx−
dLOS)/c. From this estimate, the CIR tap corresponding to

each target is obtained as the one minimizing the delay differ-

ence with Ä̂ , i.e., ℓ̂ = arg minℓ |Ä̂ − ℓ∆Ä |. Similarly, we select

the BP pointing in the direction of the target, b̂, as the one

having the strongest gain along the direction ¹̂.

The key idea behind our CFO correction method is that

the term fo(kT ) is constant in all multipath components

of the CIR. Therefore, we can isolate the CFO component from

the reference static path and remove it from the reflections

on the sensing targets. The static reference path, which could

either be the LOS path or a reflection on a stationary object

(e.g., a wall), is identified as detailed in Section IV-B.5. Its

corresponding CIR tap, ℓ̂s, is obtained as detailed above.

Neglecting the BP index, the expression of the ℓ̂s-th CIR tap,

corresponding to the static path, is

hc[k, ℓ̂s] = h̃ns
(kT ) = Ans

ej2Ãfo(kT )kT , (15)

where ns is the index of the static path in 1, . . . , Nr. Note

that since the path is static, even if it is a result of the

superposition of multiple unresolvable reflections, these cannot

be distinguished in the Doppler domain since their Doppler

shift is equal to zero. As a result, Eq. (15) shows that the ℓ̂s-th
tap contains a single complex exponential component, whose

phase only contains the CFO, without additional Doppler

frequencies. Therefore, the offset can be removed from any

other CIR tap corresponding to a target, with indices ℓ̂, b̂,
by computing

h′
b̂
[k, ℓ̂] =

hc
b̂
[k, ℓ̂]

ej∠hc[k,ℓ̂s]
=

Nnt
∑

¿=1

A
nt,¿,b̂

ej2ÃfD,nt,νkT , (16)

where "hc[k, ℓ̂s] = arctan
(

hc
Q[k, ℓ̂s]/h

c
I [k, ℓ̂s]

)

represents

the phase of the reference path, letters I and Q denote the

in-phase and quadrature components of hc[k, ℓ̂s], and nt is

the index of the resolvable path corresponding to the target.

The µD spectrum of h′
b̂
[k, ℓ̂] contains the time-varying

contribution of the different reflections superimposing in CIR

tap ℓ̂, as specified by Eq. (9). To compute it, we take the

squared magnitude of the STFT of the cleaned CIR h′,
obtaining S

b̂
[w, q, ℓ̂] = |STFT{h′

b̂
[k, ℓ̂]}|2, where w and

q are the discrete frequency and STFT time-frame indices,

respectively. Finally, for a tracked target, the µD spectrum is

obtained by combining Q CIR taps preceding and following

ℓ̂, as µD[w, q] =
∑ℓ̂+Q

ℓ=ℓ̂−Q
S

b̂
[w, q, ℓ]. This accounts for the

extension of the target, which may exceed the system’s ranging

resolution.

We stress that, through Eq. (16), JUMP effectively removes

the CFO without affecting fD,nt,¿(kT ) (the Doppler term).

Conversely, standard CFO removal methods used in commu-

nication systems compensate for the cumulative phase error

caused by the CFO. This is done by following, e.g., the tech-

nique in [37]. Considering a single packet, we drop index k
and denote by fo the CFO, and by fD the Doppler shift from a

reflector. This causes a phase error of ϕo = 2Ã(fo + fD)m∆Ä ,

which increases linearly with time across subsequent samples

in the packet preamble (here indexed by m). Then, the phase of

the autocorrelation of the received signal at lag M amounts

to Mϕo, where M is the length of the pilot sequence used
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Fig. 4. Schematic representation of the bistatic geometry with a moving RX.

in the preamble (e.g., a Golay sequence in IEEE 802.11ay).

This means that the cumulative phase error can be estimated

by computing the phase of such autocorrelation, and dividing

it by M . However, the estimated ϕo contains fD, and it is

therefore useless from a JCS perspective. For JCS, we instead

aim at removing fo, while retaining fD.

D. Impact of RX Mobility

One of the key assumptions we made so far is that TX and

RX are static, as only in this case static reference paths can

be identified and used to remove the CFO. In this section,

we discuss the impact of movements of the RX on JUMP.

We show that if: (i) the RX is capable of estimating the AoA

of the received multipath components, and (ii) an onboard

sensor (e.g., an accelerometer on a mobile device) is available

that can estimate the RX velocity, then the effect of RX motion

can be compensated for. A full analysis of TX and RX motion

is however beyond the scope of this paper, and constitutes a

primary future research direction.

Consider the scenario in Fig. 4, where the RX device is

moving with velocity vrx and angles: ¸, with respect to the

extension of the segment connecting TX and RX, and À, with

respect to the extension of the segment connecting the sensing

target and the RX. We assume the RX and the target velocities

to be constant within a short processing time interval.

As a result of the RX motion, the phase of CIR along the

propagation path caused by the target (sensing path) is given

by ϕt(kT ) = 2Ã
[

fD,nt,¿ + f rx
D,t + fo(kT )

]

kT , where f rx
D,t =

vrx

¼
cos À is the Doppler shift caused by the movement of the

RX on the sensing path, indexed by nt. The phase of the

CIR along the direct TX-RX path is ϕs(kT ) = 2Ã[f rx
D,s +

fo(kT )]kT , where f rx
D,s = vrx

¼
cos ¸ is the Doppler frequency

caused by the RX along the TX-RX path. The expressions of

ϕt(kT ) and ϕs(kT ) highlight that the Doppler shift caused

by the RX movement is different along the TX-RX path and

the target-RX path, due to the different angles ¸ and À. This

prevents aggregating the RX movement Doppler to the CFO

and removing it by using the phase of the static path. Indeed,

if one uses Eq. (16) directly, the resulting phase of the sensing

path, ϕ′t, contains a residual frequency offset that depends on

vrx, ¸, and À, i.e.,

ϕ′t(kT ) = 2Ã
[

fD,nt,¿ +
vrx
¼

(cos À − cos ¸)
]

kT. (17)

Note that from the geometry in Fig. 4, by calling the AoA of

the sensing path ·, we have À = · + ¸. It follows that if the RX

can estimate the AoA, ·̂, and its own movement speed vector

(e.g., from an onboard accelerometer), v̂rx, ˆ̧, the additional

offset in Eq. (17) can be compensated for by multiplying the

CIR by a complex exponential with phase −2Ã v̂rx

¼
[cos(·̂+ˆ̧)−

cos ˆ̧]kT . An accurate estimate of vrx, ·, and ¸ allows JUMP

to recover the correct Doppler frequency of the target. Errors

on the estimation of vrx, ·, and ¸ can lead to a residual phase

error, which is amplified by the presence of the wavelength ¼
in the denominator of Eq. (17). At mmWave frequencies, due

to the short wavelength, JUMP’s robustness to RX movements

heavily depends on the quality of the external velocity estimate

from the RX accelerometer.

V. ANALYSIS AND NUMERICAL SIMULATION

In this section, we analyze the TO and CFO compensation

capabilities of JUMP by providing insights on the residual

timing and phase errors, as well as numerical simulations to

validate our claims. We take IEEE 802.11ay as a reference,

as it is also used in our testbed implementation. In this context,

channel estimation fields appended to the packets are called

beam-training (TRN) fields [38]. A TRN field includes 6
TRN units, each made of complementary Golay sequences of

L = 128 samples modulated with Binary Phase-Shift Keying

(BPSK), which can be transmitted using different antenna BPs.

In the simulations, we set B = 1.76 GHz (as in a standard

IEEE 802.11ay channel), hence ∆Ä = 0.57 ns and ∆d =
17 cm. The inter-packet transmission time is T = 0.27 ms.

We generate 104 CIR realizations with a random number of

scatterers between 2 and 10. Each scatterer is located at a

random distance from the TX, chosen uniformly at random

in [1.5, 10] m. The CIR taps’ amplitudes are computed using

the bistatic radar equation [34], with a random RCS for

the scatterers in the interval [−20, 10] dBsm (dB per square

meter). The transmitted signal is a single IEEE 802.11ay TRN

field, for a total length of 768 symbols. To evaluate JUMP’s

performance in intermittent LOS/NLOS conditions, in some of

the simulations we modulate the CIR amplitude for the LOS

path with an exponential profile which decreases to zero. This

simulates the blockage due to scatterers passing between the

TX and the RX.

The TO and the phase shift due to CFO are obtained as

uniform random variables in the intervals [0, 20∆Ä ] s and

[0, 2Ã], respectively.

A. TO Compensation Error Analysis

We consider errors in the estimation of the relative TO from

Eq. (10). This is a conservative approach, in that we do not

account for the subsequent robustness improvement brought

by the majority voting scheme in Eq. (11). For simplicity,

we neglect the time index k, following our assumption that

the channel profile can be considered static in the short time

between two subsequent packets.

The accuracy of the relative TO estimate in Eq. (10) depends

on (i) the relative location of the CIR peaks, and (ii) their

sharpness. Indeed, cross terms due to the multiplication of

CIR peaks caused by different propagation paths may result in

strong, secondary cross-correlation peaks that cause ambiguity

in the TO estimation. Moreover, despite the perfect autocorre-

lation properties of Golay sequences, in practice the CIR peaks
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Fig. 5. Ambiguity function of the CIR amplitude profiles obtained from real
data for LOS and intermittent LOS/NLOS (a zoom around ±5 ns is shown
on the right). Different curves represent different channel realizations, for a
total of 1000.

are not exact Kronecker delta functions, but have a non-zero

width. This is caused by multiple factors, among which are the

imperfect symbol synchronization (that causes a small error in

the sampling point at the RX) and the fact that extended targets

cause multiple reflections that overlap in the same or adjacent

delay bins. However, because the CIR profiles depend on the

underlying physical environment, which can be very different

depending on the scenario, TO errors are difficult to model

analytically without making restrictive assumptions.

For this reason, we take an alternative approach using

the concept of Ambiguity Function (AF) in radar signal

processing [34]. The AF is defined as the cross-correlation

of a waveform with its delayed and frequency shifted versions

and it measures the sharpness of the main correlation peak

and the secondary peaks level. In our setting, we compute

the AF of the CIR amplitude profiles used in Eq. (10),

hence Doppler shift has no impact and the AF reduces to

the autocorrelation of each CIR amplitude profile. The ideal

AF in this situation is a Kronecker delta centered in zero.

We obtain the AF of the CIR profiles in simulation and

using real measurements from our testbed implementation and

setup described in Section VI and Section VII. The resulting

normalized AF for 1000 CIR profiles is shown in Fig. 5 for

LOS and intermittent LOS/NLOS scenarios. In both real and

simulated CIRs, the LOS AF exhibits a sharp peak at 0 ns,

which is well contained within the delay resolution of the

system, shown by the black dashed lines. In LOS/NLOS, the

AF shows a higher noise floor, which is due to the lower

amplitude of the NLOS peaks. Nevertheless, the main peak

is still clear and sharp around 0 ns, showing the robustness

of our approach. Note that the difference between simulated

and real measurements is due to the much higher channel

variability that can be obtained in simulation. The simulated

AF is a more general assessment of JUMP’s robustness for

diverse channel realizations. Fig. 6a and Fig. 6b show the

TO estimation Root Mean Squared Error (RMSE) varying the

SNR and the system bandwidth, respectively. JUMP achieves

an RMSE lower than the delay resolution ∆Ä (black dashed

line) for an SNR of −5 dB in LOS and 0 dB in LOS/NLOS.

This is sufficient to correctly estimate the integer part of

the TO. Note that this is exactly the purpose of JUMP’s TO

compensation method: we are not interested in estimating the

TO itself, but only in computing the correct integer shift to be

applied to consecutive CIR profiles to obtain consistent range

measurements. At higher SNR values, the error converges to

the standard deviation of the fractional part of the true TO

used in the simulations (black dotted line). This is expected

since the fractional part of the TO is neglected in Eq. (10).

Fig. 6b shows the TO compensation RMSE varying the

TX bandwidth, B, for an SNR of 5 dB. In LOS, the gain

from using a larger B scales similarly to the delay resolution.

Conversely, in LOS/NLOS conditions JUMP cannot make

full use of larger bands due to the worse actual SNR, and

thus the error does not improve with the delay resolution

beyond 2 GHz.

B. CFO Removal Error Analysis

JUMP removes the CFO using the phase of the static

reference path. Such phase is affected by noise on the RX

signal, which causes a residual phase error on the sensing path.

We use expression "hc[k, ℓ̂s] = arctan
(

hc
Q[k, ℓ̂s]/h

c
I [k, ℓ̂s]

)

introduced in Section IV-C to compute the residual phase

error variance, Ã2
∠hc . The variance of hc

I [k, ℓ̂s] and hc
Q[k, ℓ̂s]

is Ã2
w/(2G), and Ã2

∠hc can be obtained by propagating the

error induced by noise through the expression of "hc[k, ℓ̂s],
as shown, e.g., in [45]. For low Ã2

w/(2G), this gives

Ã2
∠hc =

Ã2
w

2G|hc[k, ℓ̂s]|2
=

1

2GΓ

|h̃1(kT )|2

|hc[k, ℓ̂s]|2
, (18)

where we recall that h̃1(kT ) is the gain of the LOS path.

Eq. (18) shows the dependency of the residual phase error

on the power of the CIR tap corresponding to the reference

path used for the CFO removal. This is validated by the

simulation result in Fig. 6c. We show the residual CFO for

different values of the SNR on the received signal, in both

LOS and intermittent LOS/NLOS conditions. We also plot

the theoretical error standard deviation from Eq. (18) in the

LOS case for G = L (rescaled by 2ÃT ) with a black dashed

line, which matches well with the simulation result for higher

values of the SNR. The best performance is obtained using the

LOS path as the reference since it is typically much stronger

than any first order reflection. Nevertheless, JUMP shows

excellent CFO estimation even in intermittent LOS/NLOS,

where a static first order reflection is used as described in

Section IV-B.5. Finally, in Fig. 6d we report the residual CFO

distributions obtained fixing the SNR to 5 dB and changing

the TX bandwidth B between 350 MHz and 3.52 GHz. The

results demonstrate that the resulting error is independent of

the bandwidth, as expressed by Eq. (18). This makes our CFO

removal approach also applicable to communication systems

with lower bandwidth (e.g., 4G-LTE and 5G-NR), provided

that a reference path can be identified.
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Fig. 6. Simulation results for TO estimation RMSE (a-b) and CFO compensation error distribution (c-d), varying the SNR and the TX signal bandwidth.
We report the results for LOS and intermittent LOS/NLOS conditions.

C. Impact on Communication: Overhead

To perform sensing, JUMP requires obtaining: (i) CIR

estimates covering the full angular space in order to detect

and track the targets, and (ii) CIR estimates obtained with

TX BPs pointing towards the targets of interest, with suf-

ficient granularity to achieve a sufficient maximum Doppler

frequency fmax
D = 1/(2T ). Condition (i) is easily satisfied

by beam training operations that are commonly performed

in mmWave systems to align the TX and RX beams for

communication. As an example, in IEEE 802.11ay a full

beam sweep is done periodically (e.g., every 100 ms) by

appending TRN units to the packets. Due to typical human

movement speeds being in the order of 1−4 meters per second,

the beam training frequency is sufficient to fulfill JUMP’s

requirements without adding any overhead to the communi-

cation protocol. Condition (ii) instead demands that additional

channel estimation fields are appended to communication

packets during normal traffic. Specifically, JUMP needs one

additional field per target, and one field for the reference static

path, transmitted using a BP that illuminates the corresponding

direction. This adds overhead to the communication protocol,

as shown in Fig. 7. We plot the overhead introduced by

adding 1 to 12 TRN units, which corresponds to sensing up

to 11 targets concurrently, plus the reference path. Different

colors correspond to different Physical layer Service Data

Unit (PSDU) sizes used in the standard [38], while solid and

dashed lines refer to Modulation and Coding Schemes (MCSs)

8 and 12, respectively. The overhead is computed as the ratio

between the length of the added PHY layer symbols in the

TRN units and the total number of symbols in the packet,

considering the payload plus PHY and MAC headers [38].

For PSDU sizes 66 kB to 4194 kB the overhead is less

than 3%, with 11 targets, which is a negligible impact on

communication. Note that in practical scenarios, given the

limited TX range at mmWave frequencies, it is unlikely to

sense such a high number of targets concurrently. For PSDU

4 kB, the overhead can reach 10-30%. However, note that

this PSDU size should be avoided anyways in IEEE 802.11ay

deployments, as due to the high rates available in mmWave

communication it yields a very low MAC layer efficiency.

Specifically, with a PSDU of 4 kB, the MAC efficiency is

74% solely because of the MAC and PHY layers overheads.

Finally, we underline that in this paper we do not consider

the irregularity of the inter-packet times in communication

systems. We address this in a separate work, [6], proposing a

Fig. 7. Overhead introduced by JUMP on the IEEE 802.11ay PHY layer
packet, as a function of the number of added TRN units, for different PSDU
sizes. Solid lines correspond to MCS 8, while dashed lines represent MCS 12.

Fig. 8. Testbed components.

method to reconstruct µD signatures from the irregular CIR

estimates obtained from communication packets.

VI. IMPLEMENTATION

JUMP’s prototype is based on the 60 GHz SC

IEEE 802.11ay standard [38], maintaining its packet structure.

CIR estimation is performed by using trailing TRN fields.

1) Testbed Design: Our implementation is a customization

of MIMORPH [46], an open-source project for mmWave

experimentation inclusing a Xilinx Radio Frequency System

on a Chip (RFSoC) board and Sivers’ mmWave front-end [47].

Fig. 8 shows the main components of our testbed. The

MIMORPH Field Programmable Gate Array (FPGA) logic

was modified to allow its operation as a TX, RX, or both

functionalities simultaneously. In this way, we can emu-

late a monostatic JCS system, which we use as a baseline

for comparison. The Analog-to-Digital Converters (ADCs)

and Digital-to-Analog Converters (DACs) on the board are

configured to operate at 3.52 GHz sampling frequency,
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fulfilling the requirements of mmWave Wi-Fi standards (IEEE

802.11ad/ay), with 1.76 GHz of RF bandwidth.

The TX implements a loopback memory that feeds the

DACs with the I/Q symbols to be transmitted, which are

loaded from an external processor. To enable AoD estimation

(Section IV-B.2), we implement a real-time antenna reconfig-

uration mechanism that allows to sweep through different BPs

in the TRN fields of a single packet, as in [46].

At the RX, after downconversion and sampling, packet

detection is performed by searching for peaks in the autocor-

relation of the received signal [40], [48]. In communication

between asynchronous devices, in addition to TO and CFO,

the non-ideal sampling point at the RX causes a symbol

timing offset. This introduces Inter-Symbol Interference (ISI).

Although this is generally neglected in the JCS literature [5],

[11], in our experiments we found that it affects µD quality.

To avoid this, we implement a symbol synchronization block

including a configurable fractional delay filter, based on a

Farrow structure [49], followed by a fast Golay correlator [48].

After proper sampling point selection and subsequent down-

sampling, the I/Q symbols are fed to the onboard RAM.

2) Different Testbed Configurations: Our implementation

includes a TX, two JUMP receivers, RX1-2, and two receivers,

RX3-4, which we use to assess and compare JUMP’s per-

formance against monostatic and phase-locked configurations.

JUMP’s RXs are completely independent of the TX, as they do

not share any clock source or oscillators. The monostatic RX,

denoted by RX3, is located in the same location as the TX,

as shown in Fig. 8. For the monostatic case, the RFSoC board

concurrently operates as TX and RX (i.e., as a full-duplex

system). To remove the CFO, the local oscillator is fed from

the TX antenna to the RX3 antenna (Fig. 8). The direct LOS

from TX to RX3 provides a reliable reference to align the CIR

estimates, removing the TO. With RX4, a phase-locked version

of the bistatic JCS system was implemented. This is similar

to the monostatic RX3, but in this case, RX4 is co-located

with JUMP’s receiver, RX1. Similarly to the monostatic case,

we phase-locked the mmWave front-ends by sharing the TX

local oscillator signal through a cable, thus eliminating the

CFO. RX4 is used as a reference to assess the quality of the

JUMP reconstructed µD spectrum.

3) System Parameters: We use the same values of B and

T used in the simulation in Section V. For µD extraction,

we apply STFT with a Hanning window of size W = 256.

This yields a maximum resolvable Doppler frequency of

fmax
D = 1/(2T ) = 1851.85 Hz and a resolution of ∆fD =

1/(WT ) = 14.47 Hz. The velocity corresponding to such

bistatic Doppler frequency depends on µ and ´ as per Eq. (9).

For the AoD measurements, we set ϑ to 0.7 multiplied by the

maximum correlation value in Eq. (13). This allows capturing

the AoD of different reflections in the same CIR tap while

rejecting peaks due to sidelobes of the BPs. K = 100 frames

are used for the selection of the static reference path, with a

variance threshold Ã2
thr = 0.005 m2 (see Section IV-B.5). For

the µD spectrum, we use Q = 2, considering channel taps in

a (bistatic) range of ±Q∆d = ±34 cm from the target, which

we empirically found to be suitable for human sensing, given

typical human body sizes.

Fig. 9. Schematic representation of the two environments.

VII. EXPERIMENTAL RESULTS

JUMP was tested on the tasks of people tracking and µD

extraction, in two different indoor environments to verify the

system effectiveness under different conditions. The test areas

are research laboratories, denoted by Env1, of dimensions

5 × 8 m, and Env2, of dimensions 6 × 7 m. Fig. 9 shows

them, along with the position of the TX and RX nodes. The

placement of the RXs with respect to the TX, in terms of rela-

tive distance and orientation, is shown in Fig. 9 for Env1 and

Env2. We use Env1 for baseline evaluations, using a single

JUMP receiver, denoted by RX. In Env2 instead, we perform

comparisons with the monostatic and phase-locked systems,

using RX1 and RX3-4, and we evaluate the performance of

a multistatic JUMP deployment using RX1-2 concurrently.

To reconstruct the ground truth movement trajectory of the

subjects, we mark the floor at specific locations in the two

environments and instruct them to move across the markers.

To perform measurements under NLOS conditions, we use

rectangular panels of absorbing material interposed between

the TX and RX to block the LOS signal. This is used to

simulate common occlusions of the LOS that can happen in

dynamic environments, caused, e.g., by other subjects moving

around. We collect over 60 CIR sequences in Env1 and Env2,

each with duration of about 12 seconds (40k packets).

A. Bistatic Tracking Accuracy

To evaluate JUMP’s tracking accuracy, we compute the

RMSE of the estimated movement trajectory of the subjects

with respect to the ground truth. Fig. 10 shows the tracks

outputted by the EKF in a LOS setting in Env1 for three

different movement trajectories of a single person. Along with

the tracks, we plot the ground truth with a solid black line and

the measurement vectors, z, with gray dots. Moreover, we also

represent the body width of the subject during the movement

with a black solid rectangle. The body width is non-negligible

due to the high delay resolution of our system. Although it is

not possible to know the exact reflection point of the signal

on the subject’s body, we expect the collected measurements

to be biased towards the body side that is facing the TX/RX

pair. This is clearly visible in Fig. 10. To account for the bias

introduced by the body width, in the following analysis we

compute the tracking error with respect to the trajectory of the
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Fig. 10. Example estimated trajectories.

Fig. 11. Boxplots of the normalized tracking RMSE.

body side facing the TX/RX, as this is more representative of

the true tracking accuracy of the system. The body size was

measured for each subject involved in the experiments.

1) LOS Tracking: As a baseline result, we compute the

average RMSE for different measurement sequences obtained

in Env1, obtaining a median RMSE of 8.5 cm, as shown in the

first boxplot of Fig. 11a. This result provides a first assessment

of the capability of our system to compensate for the TO due

to clock asynchrony between TX and the RX. In Fig. 11b,

we show the RMSE obtained when tracking a subject sitting

down and standing up at three different locations: 3.7, 2.8,

and 2 m in front of the TX. We observe that, on the one hand,

distant targets cause reflections with high dtxdrx product,

which are harder to detect and track due to low SNR. On the

other hand, targets too close to the LOS link have the bistatic

angle ´ close to Ã, yielding a lower-ranging resolution. For

these reasons, the median tracking errors in the first and third

cases are higher than in the second one.

2) Impact of NLOS: In the second boxplot in Fig. 11a

we show the RMSE distribution obtained in intermittent

LOS/NLOS conditions. In collecting these CIR measurements,

we block the LOS link using the absorbing panel intermit-

tently for time intervals of approximately 1 − 2 s. This test

is very challenging in terms of TO compensation, as the

received packet can be detected from one of the reflections on

surrounding objects, thus presenting a possibly large relative

shift between subsequent packets. Still, our approach can

successfully remove the TO, obtaining a median RMSE of

10.9 cm, with the third quartile of the error distribution being

less than 20 cm.

3) Comparison With a Monostatic System: In Fig. 12 we

compare our system with a monostatic sensing configuration

(see Fig. 12b). This evaluation provides a comparison with

existing approaches in the literature that adopt full-duplex

monostatic sensing systems, e.g., [8] and [12]. In addition,

Fig. 12. Monostatic vs. bistatic tracking RMSE comparison.

Fig. 13. Multitarget tracking in Env1.

Fig. 14. µD extracted in a multitarget scenario.

it allows evaluating the impact of the resolution as a function

of the bistatic angle (see Section III-B). For this, we concur-

rently collect CIR sequences using RX3 and RX1, having the

subject walk along different linear trajectories. Fig. 12a shows

the empirical RMSE Cumulative Distribution Function (CDF)

obtained with the monostatic and bistatic systems. Although

less accurate, our system performs similarly to the monostatic

configuration. This is because bistatic systems produce better

sensing SNR in the region around RX1, which instead is a low

SNR region for RX3. When multiple trajectories and locations

are considered, our results show that this compensates for the

degradation in the bistatic range resolution.

4) Multitarget Scenario: Finally, we evaluate the tracking

accuracy when multiple subjects concurrently move in the

environment. Fig. 13 shows two example results obtained with

two subjects when one is walking and the other is sitting

down/standing up repeatedly (left), and when both are walking

on different trajectories (right). The system can accurately
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Fig. 15. µD signatures for three different activities obtained with a phase-locked system and with JUMP.

Fig. 16. µD reconstruction with intermittent LOS/NLOS. NLOS regions are enclosed in white dashed rectangles.

track multiple targets obtaining the RMSE distributions shown

in the last two boxplots of Fig. 11a. We report the results

for both the LOS and the intermittent LOS-NLOS cases.

The median RMSE slightly degrades compared to the single

subject case (14 cm), due to the more frequent outliers caused

by the more challenging multi-target tracking task.

B. Micro-Doppler Quality

Next, we evaluate the quality of the µD signatures obtained

with our CFO removal technique in Env2. The µDs shown

here and in the rest of this section are obtained as logµD[w, q],
and normalized frame-wise in the interval [0, 1]. Darker colors

correspond to lower energy levels, while lighter ones represent

high energy. We show an example result in Fig. 14, with

two subjects, one sitting down and standing up (Track 1) and

one walking (Track 2). Notice that the µD signatures after

the removal of the CFO contain a strong center frequency

due to the torso’s movement and sidebands due to the limbs.

To provide a ground-truth reference for the µD spectrograms,

we co-locate JUMP’s receiver RX1 and the phase-locked RX4

at coordinates (1.8, 3.3) m.

1) Comparison With a Phase-Locked System: In Fig. 15,

the µD of our system is compared with the phase-locked

system for three different activities: (a) walking, (b) sit-

ting/standing, and (c) hand gestures. These tests are performed

in a LOS setting. The cleaned µD reflects the phase-locked one

very accurately, even for fine-grained Doppler shifts involved

in hand gestures. To quantitatively evaluate the difference

between the phase-locked spectra and JUMP’s ones, we com-

pute the frame-wise, masked RMSE of the spectrograms, after

temporally aligning them. A direct computation of the RMSE

would not give a clear indication of the quality of the µD, as it

would equally weigh differences in the background noise floor

and the body µD contribution. For this reason, we apply a 2D

Gaussian filter, with parameter Ã = 2, to the phase-locked µD

Fig. 17. (Left) Normalized RMSE distributions on the µD spectrograms,
using the phase-locked ones as reference, in: LOS, NLOS with a strong
reflector (metal locker) placed 4.8 m from the TX, and in NLOS with no
strong reflectors. (Right) Example masked locked µD obtained from Fig. 15c.

to filter out background noise, as shown in Fig. 17 (right).

Then we restrict the RMSE computation to the spectrogram

elements in which the filtered spectrogram lies over a threshold

of 0.45. The RMSE distribution over all the collected frames

is reported in Fig. 17 (LOS). For completeness, we also report

the standard RMSE, calculated over the entire spectrogram.

2) Impact of NLOS: In NLOS situations, our algorithm

removes the CFO using the strongest static multipath reflec-

tion as a reference. Depending on the corresponding signal’s

strength and reflector’s location, the resulting µD spectrum can

be of higher or lower quality. In Fig. 16, we show two µD

spectrogram examples obtained in Env2 using the same setup

described above. We intermittently block this evaluation’s LOS

link using the absorbing panel. The NLOS regions in the µD

are highlighted using white dashed rectangles. In Fig. 16b,

we used the standard Env2 setup, without reflectors close

to the testbed devices, while in Fig. 16c, we placed a metal

locker at 4.8 m in front of the TX. In the first case, the µD

reconstruction is particularly challenging, as the algorithm’s

reference multipath reflections are weak due to the large

distance of the reflectors. Despite this, our method successfully
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Fig. 18. Independent multistatic tracking and µD extraction using multiple RXs.

recovers the µD in 3 out of 4 LOS occlusion events, while the

spectrum appears corrupted during the first one. We verified,

as exemplified in Fig. 16c, that when the metal locker is

present on the scene, the µD corruption no longer occurs,

as the algorithm can always find a reliable and strong reflection

for removing the CFO. Quantitative results for this scenario are

reported in Fig. 17, without (w/o) and with (w) the reflector.

In the worst case of NLOS without reflectors, JUMP obtains

a normalized RMSE of 0.07.

C. Multistatic Scenario

The proposed method easily scales to multiple RXs, allow-

ing thorough and robust sensing of the environment. In Fig. 18,

we show two measurement sequences obtained by concur-

rently operating RX1 and RX2 in Env2, with a subject

walking (a-b) and performing hand gestures (c-d). In the first

case, the subject starts moving close to the TX-RX2 LOS, thus

yielding a noisy µD. However, the spectrum obtained from

RX1 does not show noisy regions thanks to the better position

of RX1 to capture the movement. In addition, the shape of

the µD is slightly different due to the different viewpoints for

RX1-2. This effect is captured even more clearly in Fig. 18b,

where the subject is waving his arms in front of RX1 and RX2,

with the torso oriented midway between TX and RX2. In this

position, the full movement of the arms is not clearly visible

to RX1, as it is blocked by the subject’s back. This results

in very different µD patterns that provide richer information

about the movement.

VIII. DISCUSSION AND FUTURE WORK

1) Multistatic Data Fusion: The results provided in

Section VII-C pave the way for multistatic data fusion across

multiple receivers. As shown in Fig. 18, each JUMP receiver

returns an independent view of the physical environment to be

monitored. Leveraging multiple receivers would then provide

a means to improve tracking accuracy, e.g., by combining their

estimated tracks to solve possible occlusion events. Moreover,

multiple receivers usually have different observation angles for

the same targets. The fusion of µD spectrum features coming

from such diverse viewpoints allows for enhanced diversity

and, overall, for an improved understanding of the underlying

movement, especially for extended targets with many moving

parts. Target identification or motion recognition algorithms

can exploit such enhanced feature representations to boost

their performance.

2) NLOS Operation: Our target tracking accuracy results

in the presence of NLOS events show that, for indoor human

sensing, our assumption that most background reflections

remain constant in between subsequent tracking frames holds.

Moreover, when blocked, the LOS path gradually disappears

across subsequent CIR estimations, yielding correct and clear

correlation peaks. In general, however, the tradeoff between

inter-packet time and the level of dynamicity in the envi-

ronment plays a key role. As shown in [12], a minimum

packet rate has to be ensured to accurately capture the Doppler

spectrum of the physical targets, to avoid aliasing and low res-

olution. In the case of very challenging dynamic environments,

with few static reflections, the JUMP correlation approach

could be replaced by optimization-based association mecha-

nisms between multipath reflections appearing in different CIR

estimates. This aspect, and the possible improvements that it

may bring, are left to future investigations.

3) Mobility: The analysis in Section IV-D shows that

JUMP’s CFO removal step can be extended to also compensate

for RX movement. However, this requires estimating the

RX velocity vector using external sensors (e.g., an onboard

accelerometer). The resulting compensation is highly sensitive

to errors in such estimation, which may degrade performance

in practical settings. Therefore, we identify mobility as a key

challenge for future JCS research that needs further attention.

Interesting solutions may involve enhancing the accelerometer

estimate using information from the wireless channel.

IX. CONCLUDING REMARK

The problem of integrating sensing functionalities in bistatic

asynchronous communication systems is addressed in this

paper. For that, we designed and prototyped JUMP, a JCS

scheme that overcomes timing and frequency offsets due

to clock asynchrony following two main pathways. First,

it leverages the correlation in the channel propagation paths

across different packets, second, it identifies a static refer-

ence path whose phase is used to remove the frequency

offset from the reflections on sensing targets. An extensive

CIR measurement campaign has been carried out targeting

indoor human movement sensing, using a 60 GHz IEEE

802.11ay-based implementation of the system. Results show

that JUMP is competitive with synchronous full-duplex and

phase-locked solutions. It achieves a median worst-case mul-

titarget tracking error of 14 cm and a human µD spectrum

normalized reconstruction error of 0.07 in intermittent NLOS

conditions.
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