
Decepticon: Attacking Secrets of Transformers

Mujahid Al Rafi1 Yuan Feng1 Fan Yao2 Meng Tang1 Hyeran Jeon1

1University of California, Merced
2University of Central Florida

Abstract
With the growing burden of training deep learning

models with huge datasets, transfer learning has been widely
adopted (e.g., Transformers like BERT, GPT). Transfer learning
significantly reduces the time and effort of model training.
However, the security impact of using shared pre-trained
models has not been evaluated. In this paper, we provide
in-depth characterizations of the fine-tuning process and
reveal the security vulnerabilities of transfer-learned models.
Then, we show a novel two-level model extraction attack; 1)
identifying the pre-trained model of a victim transfer-learned
model through model fingerprint collected from off-the-shelf
GPUs and 2) extracting the entire weights of the victim black-
box model based on the hints in the pre-trained model. The
extracted model shows almost alike prediction accuracy with
over 94% matching prediction outputs with the victim model.
The two-level model extraction enables large model weight
extraction that is considered as challenging if not impossible
through significantly reduced extraction effort.

1. Introduction
Machine learning (ML) models are widely used for

almost all computing solutions, including smart homes,
autopilot programs of self-driving vehicles, and so on. In
many applications that handle critical data for the users’
safety or privacy, any perturbed predictions lead to tragic
consequences. Such an ML prediction perturbation is one
of the major targets of cyber attacks, which is enabled
by stealing important parameters of the target ML model.
Recently, a few studies demonstrated that it is feasible to
steal ML model topology and hyperparameters through
various side channels (e.g., performance counters, cache
access timing, etc.) [23, 37, 51]. Most existing attacks
targeted convolutional neural network (CNN) models. While
the model topology and hyperparameters provide important
hints about the victim model, the weight values shift the
security surface to another level by enabling more advanced
model extractions, including constructing local (clone)
models with extremely high fidelity (i.e., compromising
model privacy) and empowering adversarial inputs attacks
(i.e., tampering model integrity).

Stealing model weights is extremely challenging for
two main reasons. First, modern ML workloads are very
different from traditional security-sensitive applications
(e.g., crypto programs) in that there is no explicit secret

. This work was supported by NSF CCF-2114514 and NSF SaTC-2019536.

dependent control/data flows, making it almost impractical
to accurately reveal model weights using a conventional
side channel (e.g., via caches). Second, even if stealing
can be done in real system, state-of-the-art ML models
are very large with tremendous amount of weights. Any
such attack will require model stealing at an extremely
large scale. Such challenge is further exacerbated in today’s
gigantic transformer models that come with billions/trillions
of weights (e.g., BERT [21], GPT [19, 38], Llama 2 [44]). As
a result, pure side channel-based model stealing in such use
cases is unlikely to be practical. For instance, very recent
work in [40] repurposed row-hammer as a side channel to
exfiltrate bit-level information for model weights. However,
to reveal part of the weight, thousands of rounds of row-
hammer are needed. Such a method may not scale to today’s
large-scale models. Then, can we conclude that large-scale
(billion- to trillion-parameter) models are secure enough?

In this paper, we present the first investigation of model
extraction attacks on large-scale models. We first show
an in-depth characterizations of large models (240 models
downloaded from popular model zoos [3, 9, 12, 13, 15]) and
propose a novel two-level model extraction attack, namely
Decepticon. Unlike existing approaches that run rigorous
memory probings directly on every single bit of individual
weights, we show that an indirect (two-level) approach
makes large-scale model extraction practical. The two-level
approach especially leverages the unique characteristics of
transfer learning that most large models use.

Transfer learning enables large-scale model development
with significantly reduced training time. With transfer
learning, individual developers and research teams can
develop their own models by fine-tuning a pre-trained
model with task-specific datasets. The pre-trained models
are either publicly shared through popular model zoos [3,
9, 10] or privately shared within individual companies or
institutions. In any scale, pre-trained models are purposely
shared by multi to many ML developers. For example, some
BERT-base and GPT-2 pre-trained models on Huggingface
model repositories have been downloaded more than 10
million and 20 million times, respectively [4, 7]. Security
and privacy-sensitive domains such as medical and defense
applications also share their pre-trained models with limited
accesses [2, 36, 41, 49]. We focus on this unique training
process of large-scale models.

What if an adversary grabs an access to a pre-
trained model? Can he/she derive the secrets of
a black-box fine-tuned model with the pre-trained
model? According to our experiments, pre-trained models

128

2023 IEEE International Symposium on Workload Characterization (IISWC)

2835-2238/23/$31.00 ©2023 IEEE
DOI 10.1109/IISWC59245.2023.00028

victim
model

PTM‐2

PTM-2

PTM-1

PTM-N
PTM-Kpredict

pre‐trained
model name

pre‐trained model pool

? Almost
white‐box
attacks

Kernel exe.
Time monitoring

image
converter

time‐series
kernel execution

time data

pre‐trained
model extractor

(CNN model)

victim model
query output
(optional)

input‐dependent
model variant

detector
(optional)

(French/Russian/
cased/uncased..)

Decepticon

(1024x1024)

pre‐trained
model name

Figure 1: Decepticon Architecture

provide ample secrets of the fine-tuned model including
very similar weight values. But, can we locate the pre-
trained model? Our exhaustive investigation shows that
individual ML models have unique execution fingerprints.
Unlike existing studies assumed [23], the fingerprints
are substantially different across models even when the
models use the same architecture, dataset, and task. More
importantly, the fingerprint is inherited from a pre-trained
model to its fine-tuned models. Thus, the fingerprint can
be leveraged to identify the pre-trained model.

With these observations, Decepticon first identifies the
pre-trained model with the fingerprint of the blackbox
model’s execution on off-the-shelf GPUs. Then, it extracts
the entire model-worth weights based on the pre-trained
model’s weight values. Decepticon uses two design methods
to increase the attack success rate with minimal extraction
effort; 1) selective weight extraction that exploits the diverse
impact of individual weights and layers towards the final
prediction output and 2) model fingerprint classification
with CNN that is inherently noise tolerant. The clone model
that is created by the extracted model secrets is used for an
adversarial attack to perturb the victim model’s prediction.
We also show that Decepticon is applicable for any ML
models that use transfer learning by using a CNN model
example (Section 7.7). Figure 1 shows the end-to-end attack
scenario of Decepticon.

Our contributions are like below:

1) To our best knowledge, this is the first study that
demonstrates model extraction attack (including en-
tire weight extraction) for large-scale models (e.g.,
Transformers). The proposed attack is applicable
for any ML models that use transfer learning.

2) We provide in-depth characterization of transfer-
learned models.

3) We apply a noise-tolerant image classification
algorithm for model architecture extraction and
introduce a selective weight extraction.

4) We demonstrate the impact of weight extraction
through a clone model construction and an adver-
sarial attack evaluation.

. . .

X1 Xn. . .

Z1 Zn. . .
Add & Normalize

Z1 Zn. . .
Feed Forward Feed Forward

Add & Normalize

Encoder 0

Attention

Feed
Forward NN

Encoder 1

Encoder 23

Pooler

Classifier

Embedding
. . .

Figure 2: BERT-large Architecture

2. Background
2.1. Model Extraction Attacks

Model extraction attack is a security concern where
an attacker aims to recover the secrets of ML models and
reconstruct a copy of a victim model. The architecture
and parameters of a victim model are the main targets
of these attacks. The architecture of a model includes the
number, type, and dimension of individual layers of the
target ML model. The parameters include hyper-parameters,
weights, and biases. Model extraction attack is a threat
to the intellectual property of the ML solution providers.
Moreover, the detailed knowledge about the victim model
helps the attacker craft adversarial examples to fool the
victim model or even extract sensitive training data. Several
studies demonstrated various model extraction attacks [23,
33, 37, 40, 42, 45, 51, 52, 54, 56]. These studies leveraged
various leakage vectors through EM side-channels, PCI-e
bus snooping and message trapping, cache timings, and
memory probing.

2.2. Transformer Models
Though any models that use transfer learning can be a

target of Decepticon, we explain our attack scenario mainly
with Transformer models. Transformer models use transfer
learning as the default training method. Transformers have
proven their effectiveness in various domains including
natural language processing and computer vision [46].
Transformers are efficient to be adapted to several diverse
tasks such as question answering, sentiment analysis, etc.

129

(a) Attention Self Key (b) Attention Self Query

Figure 3: Weight Value Gap Distribution

with a task-specific last layer. A Transformer model runs
multiple rounds of attention computations that check
relations across all tokens of the given input in parallel.
Transformer models consist of either encoder or decoder
(or both). Each encoder is comprised of two layers: self-
attention and feed-forward, as illustrated in Fig. 2. In a
self-attention layer, input tokens are multiplied with three
weight matrixes; Key, Query, and Value and generate K, Q,
and V vectors. These vectors for each token are used for
understanding the importance of the token in the input
context. Decoders are similar to encoders, except the masked
self-attention. Popular Transformer models are BERT [21],
RoBERTa [31], ALBERT [28], and GPT-2 [38]. These refer-
ence models use fixed number of encoders/decoders such
as 12 (BERT-base) and 24 (BERT-large).

3. Threat Model
The goal of our threat model is to steal the secrets of a

black-box large model. The secrets are used for creating a
clone model, which can be used for an adversarial attack.
The victim model is assumed to be developed through
transfer learning. The attacker is assumed to have no
information about the victim model, while he/she can 1)
collect architectural hints such as GPU kernel execution
time and memory addresses and 2) query the victim model
and check the prediction outputs. Note that various studies
demonstrated that kernel execution time and memory
addresses can be monitored through EM-side channels and
bus probing on the interconnects between CPU and GPU [20,
23, 37, 51]. We leverage the existing side-channels but
exploit the unique/novel characteristics of transfer-learned
models for a novel model extraction attack. We assume that
the attacker has a pool of candidate pre-trained models.
The models can be either collected from public repositories
or from internal spy routes if the victim model is designed
with private pre-trained models. But, the attacker does not
know which one was used for fine-tuning the victim model.

4. Transformer Model Vulnerabilities
We tested 70 pre-trained and 170 fine-tuned models

downloaded from various model repositories on an NVIDIA
GeForce RTX 3050 (Ampere) GPU with CUDA v11.8. We
used Python v3.8, PyTorch v1.11.0, and TensorFlow v2.8.0
for evaluations. More details can be found from Section 7.

(a) Attention Self Key (b) Attention Self Query

Figure 4: Impact of Weight Value to Amount of Updates

4.1. Pre-trained vs. Fine-tuned Models

Amount of weight updates during fine-tuning: To
understand the relation between a pre-trained model and
its fine-tuned model, we checked the significance of weight
updates. We measured the absolute weight value gap for
each pair of a pre-trained model and a fine-tuned model
that use the same model architecture; weights on the same
location of the two models were compared. Fig. 3 shows
example results where the graphs with (XP-XF) are the
comparisons between a pre-trained model and its fine-tuned
model and those with (XP-YF) are between a pre-trained
model and a fine-tuned model that used different pre-trained
model. Note that there was not a pair of pre-trained and
fine-tuned models designed for the same task.

In all cases, the distribution follows long tail. For (XP-
XF) cases, the majority of weights encounter less than ±0.01
value distance (thus looks like a sharp vertical line in the
graph). Almost 50% weights show less than ±0.002 distance.
Any pair of pre-trained and its downstream models in
our tested models showed similarly small weight gap. The
weight value ranges of the tested models were at least 1.74
up to over 26.3.

On the other hand, (XP-YF) cases show at least 20×
higher gap. While most weights encounter less than ±0.2
distance, the difference stretches up to over ±0.6. Only less
than 3% weights are within ±0.002 distance.

Impact of weight values on updates: To understand
the impact of weight values for the update amount, we
measured the average value gap per pre-trained model
weight value range. Fig. 4 shows example results of the
models of (XP-XF) cases in Fig. 3. X-axis is the pre-trained
weight value and Y-axis is the update amount during fine-
tuning. Most of the layers show U-shape graph, which
means that the weights further from zero encounter over 3×
higher weight changes than those closer to zero. Relating to
the weight value gap result, the outliers such as outermost
10% weights (outside the ±0.25 boundary in Fig. 4) are the
sources of the long tail region in Fig. 3.

Impact of downstream tasks on updates: As a pre-
trained model can be fine-tuned for different tasks, we
also evaluated if we can still observe weight similarities if
different task models share the same pre-trained model. We
downloaded a BERT-base pre-trained model, fine-tuned it
for nine tasks by using Huggingface GLUE benchmark [8],

130

0

0.005

0.01

0.015

0.02

0.025

0.03

Av
er
ag
e

We
ig

ht

Di
ff
er
en

ce

Figure 5: Avg. Weight Differences of 9 BERT-base Models
Trained for Different Tasks

Encoder-22 WV QA Output W

3 6 9 12 15 18 21 24 27 30

Epoch

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

3 6 9 12 15 18 21 24 27 30

0.008

0.006

0.004

0.002

0.000A
v
g
.

W
e
i
g
h
t

D
i
f
f
e
r
e
n
c
e

Epoch

Figure 6: Avg. Weight Updates during Fine-tuning

and compared the weight values among the nine models.
As shown in Fig. 5, all layers except for the task-dependent
last layer show almost zero distances (< 0.002 on average).
This shows that the main updates are made in the last layer
during the fine-tuning and the remaining layers might be
very similar across fine-tuned models.

Impact of learning rates and epochs in fine-tuning:
Fine-tuning typically uses small learning rates (and weight
decay) and a limited number of epochs (up to three epochs
typically), which may lead to little change in weight values
during fine-tuning. To understand the impact of the short
epochs, we tested the weight changes along longer fine-
tuning epochs. Fig. 6 shows the average weight value
changes of a layer (encoder 22) and the task-specific last
layer of a BERT-large pre-trained model during 30 epochs
of fine-tuning. Until epoch 9, the average weight value
gap between epochs increases up to 0.0015 and then drops
linearly to below 0.0002 at epoch 30. In the meantime, the
output layer’s weight value gap saturates exponentially as
plotted in the second graph, which means that the fine-
tuning converges well. This result shows that the weight
gap may be increased with longer epochs but it is not
significant (quickly saturated).

The theoretical reason of using small learning rates and
epochs in fine-tuning is to prevent catastrophic forgetting
[26, 35], which is a known phenomenon for neural networks
that forget what it has previously learned given a new
task or new data distribution. Catastrophic forgetting is
one of the risks in the context of foundation models [18],
particularly when the models are adapted to a new task
with small data (e.g., few-shot learning). Therefore, the
weight value similarity is not sourced from premature fine-
tuning but is an unavoidable side-effect of transfer learning.

Contribution of layers towards model prediction:
Inspired by the small weight value change during fine-

TABLE 1: Downstream Task Accuracy with Frozen Layers
Number of Frozen Layers Accuracy (%)

0 80.1325
1 80.2271
2 79.1485
3 76.5279
4 71.9111
5 68.543
6 64.579

1.0

0.8

0.6

0.4

0.8

0.2

0.0

1.0
0.8
0.6
0.4
0.2
0.0

7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7

0 4 8
Kernel Timeline (ms)

Du
ra
ti
on
 (
ms
)

NVIDIA PyTorch

12

0 200 400

0 400 800 1200

Meta RoBERTa PyTorchNVIDIA TensorFlow

Huggingface PyTorch

1.0

0.8

0.6

0.4

0.2

0.0

‐1.2

HJ0

Figure 7: Diversity in Time-series Kernel Execution Times

tuning, we examined if pre-trained model’s weights can be
reused without hurting fine-tuning prediction output. For
a BERT-base model [5] fine-tuned for question answering
task, we tested downstream task accuracy by replacing the
first a few layers with the pre-trained model’s weights.
Table 1 shows the results when replacing up to sixth layers.
When freezing the first 2-3 layers, the fine-tuned model
experiences only 1-3% accuracy drop.

Summary: Here are our observations.
Observation 1. Fine-tuned models have meaningfully close
weight values to their baseline pre-trained models, which is
at least 20× closer than with other pre-trained models.
Observation 2. Few outlier weights change by over 3× more
and are the sources of the long tail weight gap distribution.
Observation 3. Fine-tuned models show very similar weights
for all layers except for the last layer if they use the same
pre-trained model even when fine-tuned for different tasks.
Observation 4. The impact of layers towards the downstream
task’s accuracy is different. First a few layers may reuse
pre-trained model’s weights without hurting accuracy.

Decepticon leverages these for extracting secrets of a
blackbox victim model from its pre-trained model.

4.2. Model Execution Fingerprints
To extract the weights of a victim model by leveraging

the weight value similarity, it is required to locate the pre-
trained model from the victim black-box model. To identify
the pre-trained model, there should be distinguishable model
signatures. We tested if models have unique signatures.

Model signature in architecture hints: We compared
kernel execution times of the models having the same

131

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Kernel Timeline (ms)

Du
ra
ti
on
 (
ms
)

0 200 400 0 200 400

NVIDIA PyTorch SST‐2NVIDIA PyTorch SQuAD

HJ0

Figure 8: Consistency in Time-series Kernel Execution Times

Huggingface PyTorch Squad:
Total 687 executions of 11 kernels

splitKreduce_kernel
LayerNormForwardCUDAKernel
RowwiseMomentsCUDAKernel
indexSelectLargeIndex
vectorized_elementwise_kernel
volta_sgemm_128x128_tn
volta_sgemm_128x64_nn
volta_sgemm_32x128_tn
...

Nvidia PyTorch Squad:
Total 987 executions of 11 kernels

splitKreduce_kernel
cuApplyLayerNorm
elementwise_kernel_with_index
gemv2T_kernel_val
softmax_warp_forward
unrolled_elementwise_kernel
volta_fp16_s884gemm_fp16_64x1...
...

Nvidia TensorFlow Squad:
Total 4754 executions of 403 kernels

splitKreduce_kernel
AddV2_GPU_DT_FLOAT_DT_FLOAT_k...
Mul_GPU_DT_FLOAT_DT_FLOAT_ker...
ampere_fp16_s16816gemm_fp16_1...
ampere_sgemm_128x128_nn
...
convert_411
convert_413
fusion
fusion_10

Bert large
Meta_(RoBERTa) PyTorch MNLI:
Total 697 executions of 17 kernels

splitKreduce_kernel
CatArrayBatchedCopy
volta_sgemm_128x32_sliced1x4_tn
DeviceScanKernel
dot_kernel
gemv2T_kernel_val
indexSelectLargeIndex
reduce_1Block_kernel
vectorized_layer_norm_kernel
...

Figure 9: Kernels Executed by BERT-large Models

architecture. Fig. 7 shows the example results of different
versions of BERT-large models measured on the same GPU
with the same inputs. Each dot indicates the execution time
of a kernel and the same-colored dots are the multiple
invocations of the same kernel. Each BERT-large model is
fine-tuned and released by different repository/developer
as stated. Note that RoBERTa uses the same architecture
with BERT. Interestingly, we couldn’t find common patterns
among them. On the other hand, when we tested the models
released by the same repository/developer, the statistics
showed high consistency even when they were fine-tuned
for different tasks, as shown in Fig. 8.

Impact of algorithms and software interfaces: We
observed that such model fingerprint is highly influenced
by the algorithms and software interfaces (e.g., framework),
which lead to different GPU kernel selections. Fig. 9 shows
an example list of kernels executed by BERT-large models
of different sources. Though the same model architecture
is executed, only handful of kernels out of hundreds are
commonly used across the models. We found that the
framework is one of the main contributors that make
the differences. TensorFlow models run up to 8× more
kernel executions and use almost 40× more unique kernels
than PyTorch models. Also, TensorFlow models tend to use
their GPU backends, while PyTorch models use more GPU
library functions. Developer-specific kernel preferences
were also observed. Though different frameworks were used,
NVIDIA models were commonly optimized to leverage their
Tensor Core by running functions using half-precision data

TABLE 2: Impact of Model Fingerprint for CNN Layer
Detection Accuracy

Models Error Rate
(LER)

Kernel Seq.
Length

of Unique
Kernels

DeepSniffer Original Results [23] 0.091 222 16
DeepSniffer Pytorch Model [1] 0.567 256 16
Nvidia PyTorch Model [14] 2.628 1235 38
Google Tensorflow Model [16] 6.274 3399 50
Amazon Mxnet Model [11] 6.768 2652 59

types. On the other hand, Meta models tend to run many
short kernels such as reduction operations and hence the
statistics had crowded kernel executions on the bottom of
the graph as shown in Fig. 7. Similarly, we observed unique
signatures from most of the 70 pre-trained models used in
our evaluation (Section 7). Fine-tuned models showed very
similar signatures with their pre-trained models.

Existing model extraction attacks do not work due
to fingerprint: We also observed the model fingerprints
from non-Transformer models but existing model extraction
attack studies ignored the impact. When we fed a state-of-
the-art CNN extraction framework [23] with statistics of
CNN models that were developed by different sources, the
layer prediction accuracy dropped significantly, as shown
in Table 2. LER means how many layer sequences are
incorrectly predicted per layer [23]. Thus, the prediction
results with LER over 1 are not countable. We instead
leverage the fingerprint for locating pre-trained model.

Model signature in query outputs: Though most
of the models are recognizable with the unique model
fingerprints, we found that there are cases that can’t be
distinguished through architectural hints. For example, in
large language models (e.g., Transformers), 1) models that
are trained with different languages (CamemBERT [34] and
RuBERT [55] are French and Russian versions of BERT),
2) models that are trained with different training datasets
(RoBERTa is trained with more datasets than BERT), and 3)
models that are trained differently (e.g., cased vs. uncased)
may not be distinguished if they are released by the same
source and use the same architecture. For these cases, we
found that query outputs can be used as a secondary finger-
print. For example, the dataset differences in RoBERTa and
BERT can be checked with their vocabulary file (vocab.txt or
vocab.json). When BERT was tested with queries including
{debugging, capitalize, cloves, indignation, hijab,
selfies, misogynist, acupuncture}, the predictions
were incorrect while RoBERTa performed well.

Summary: Here are our observations.
Observation 1. Models have unique execution fingerprint even
when using the same model architecture. The fingerprint is
inherited from a pre-trained model to its fine-tuned models.
Observation 2. Query outputs can be used as a secondary
model fingerprint if architecture hint is not distinguishable.

Decepticon leverages these for finding the pre-trained
model of the victim model.

5. Decepticon Design
We propose Decepticon, a new model extraction attack

that exploits weight similarity and model fingerprints.

132

5.1. Decepticon Architecture
Fig. 1 shows the architecture of Decepticon. Decepticon

uses one architectural hint (time-series kernel execution
time) and model query outputs as leakage vectors. The pre-
trained model extractor receives the inputs in 2-dimensional
image formats and finds the most matching pre-trained
model out of the candidate models with an image recog-
nition algorithm. For some models that show very similar
model fingerprint, query outputs are used to improve the
prediction accuracy in the input-dependent model variant
detector. The output of Decepticon is the pre-trained model
name. Once the pre-trained model is revealed, the attacker
can try a variety of gray (or almost white) box attacks such
as weight extraction and adversarial attacks.

5.2. Architectural Hints
Out of various side-channels (Section 2), we observed

that time-series GPU kernel execution time reflect model
fingerprints well. A model runs hundreds to thousands of
kernels. Thus, individual kernel execution time does not
reflect the model identity. Instead, we use a time-series
kernel execution time, which shows the invocation timing
and duration of all kernels during the model inference time.
Thus, the attacker collects (Tinvocation, Ttermination) of all
kernels, where T is timestamp.

5.3. Query Outputs
As noted in Section 4.2, if there are multiple models

having similar architecture hints, the attacker uses a spe-
cial set of query inputs as the secondary fingerprint. By
targeting large language models (e.g., BERT-uncased/cased,
CamemBERT, RuBERT, RoBERTa, etc.), the set is compiled
with several queries in different languages, special vocabu-
laries that each candidate is uniquely trained with (by using
the vocabulary file released with the pre-trained model or
through exhaustive testing), and special words that have
different meanings in upper/lower characters (e.g., Apple
as a company name vs. apple as a fruit name). As attacker
knows the differences of candidate pre-trained models,
he/she can compile a query list with such knowledge. Note
that the attacker is only aware of the pre-trained models in
his/her model pool, not the downstream training datasets
or architecture of the victim fine-tuned model.

5.4. Pre-trained Model Extractor
5.4.1. Model Fingerprint Recognition. The shapes of
the model fingerprint are different for different types
of ML models (e.g., CNN and Transformers use totally
different architecture). Pre-trained model extractor uses a
proper pattern recognition algorithm for the target model
architecture. We describe Transformer model extraction.

Transformer models run identically-shaped encoders or
decoders repeatedly (Section 2). Thus, architecture hints
also show repetitive patterns. Therefore, a group of repeated
measurements can be considered as one layer. However, the
detection of the repeating groups is challenging because
the number of layers, the volume of per-layer computations,

24x executions(layers)
 BERT Large

12x executions(layers)
 BERT Base

(a) BERT-large (b) BERT-base

Figure 10: Layer Boundary Identification

and the intra-layer structure are pretty diverse in different
Transformer models. Thus, the pre-trained model extractor
for Transformer is designed to recognize diverse patterns
of repetition from time-series kernel execution data. Fig. 10
shows example time-series kernel execution graphs where
the group of kernels in the box is repeatedly executed.
Though the shape and size of the group in the two models
are very different, it is clearly seen that the repeating count
matches the number of layers of each model (BERT-base has
12 group executions and BERT-large has 24). We observed
similar patterns from most of the tested Transformers, while
the shape of each group is pretty diverse due to model
signatures.

Along with the number of layers, the size of layers is
also an important parameter that determines different Trans-
former architectures. For example, DeBERTa-xsmall [22]
uses 12 layers with 384 hidden states. GPT-2 [38] also uses
12 decoders but includes 768 hidden states. Due to the
different number of hidden states, the layer size of the two
models is notably different. The model extractor recognizes
the layer size through the peak execution time in each
kernel group. In Fig. 10, BERT-base’s peak kernel execution
time is around 0.6ms while BERT-large’s is around 0.8ms
because BERT-base uses 768 hidden states while BERT-large
uses 1024 states.

5.4.2. Model Extraction through Image Recognition.
As the shape and count of kernel groups vary from one
model to another, it is undesirable to manually detect
the model fingerprint. Therefore, the pre-trained model
extractor internally runs an automated detection method.

To automate the attack process, there are two challenges:
the automation needs to 1) detect kernel groups having
different size and shape and 2) process 2-dimensional
information of time-series kernel execution data ((Tinvocation,
Ttermination) as noted in Section 5.2). We found that this
problem can be reduced to a pattern recognition problem for
2-dimensional inputs, which is similar to image recognition.
The repetitive kernel groups are the target patterns to
detect and the time-series kernel execution graph can be
considered as an input image. We chose to use a CNN
model that can detect patterns from images efficiently.

Architecture Hint Data Conversion: To apply CNN
on the kernel execution time data, we convert the data to
2-dimensional images. We first plot the time-series kernel
execution graphs with the same x- and y-scales (square
shape) and convert them into images. Then, all other

133

PTM‐2 PTM‐NPTM‐1

. . .

image label
(pre‐trained
model name)

fine‐tuned model
execution time
graph images

train

pre‐trained
model extractor

(CNN model)

Figure 11: CNN Model Training

information (x- and y-axis, numbers, and texts) except for
the execution patterns are removed. The images are then
converted to gray-scale to remove any color bias. Finally,
the images are re-shaped to 1024x1024 equal-sized images
to be fed to the same CNN model. The example images
are shown in Fig. 11. We collected 1787 images from 70
pre-trained and 170 fine-tuned models (Section 7). 80% of
them were used for training and 20% for testing. As the
goal of the detection is to recognize the pre-trained model,
we labeled each graph image with each model’s pre-trained
model name. For example, a MobileBERT fine-tuned model’s
image was labeled as google_mobilebert-uncased.

CNN Model Training: The CNN model receives
a kernel execution time image of a fine-tuned model
and predicts the pre-trained model name. We explored
various CNN architectures and finalized the CNN model
with seven hidden layers: two convolution and pooling
layers interleaving each other and followed by three fully
connected layers - conv (in: 3, out: 6, kernel: 5×5), pool
(kernel: 8×8, stride: 8), conv (in: 6, out: 16, kernel: 5×5),
pool (kernel: 8×8, stride: 8), fc (in: 3600, out: 120), fc (in:
120, out: 84), fc (in: 84). We used PyTorch for training with
learning rate and epochs as 0.001 and 10 respectively. The
ground truth of each prediction is the pre-trained model
name of the input image. If multiple pre-trained models
are high-ranked in the CNN classification, we locate one
through the query outputs (Section 5.3).

5.4.3. Handling Corner Cases. There are some models
that have indistinguishable layer boundaries, mainly due
to some optimizations (e.g., NVIDIA TensorFlow in Fig. 7
shows irregular execution pattern due to such optimizations
(e.g., XLA [17])). Fig. 12 shows three example execution
patterns of BERT-large models that a simple layer boundary
detection can’t be used. For these cases, layers can be
detected in the regions excluding the gray-colored regions
(marked as XLA region and output layer). XLA optimization
runs compiler optimization operations in the middle of
the inference and the executions for encoders are at the
beginning and the end of the inference. In both encoder
regions, we can find 24 repetitive kernel group executions.
For these models, we do pre-processing to find the encoder
regions and feed the CNN model with the image of the
encoder regions.

6. Gray/White-box Attacks with Decepticon
Decepticon enables various gray-box attacks. We explore

two attack scenarios 1) stealing intellectual property by

NVIDIA TensorFlow w/ XLA NVIDIA TensorFlow w/o XLA Huggingface TensorFlow

XLA region Output
layer

24 kernel group executions

Figure 12: Irregular Execution Patterns

creating a clone of the victim model and 2) perturbing
victim model’s prediction through adversarial attack.

6.1. Stealing Proprietary Fine-tuned Model

Once the pre-trained model is recovered, we can use the
weights of the pre-trained model for extracting the victim
model weights. The weights of the pre-trained model and
the fine-tuned model are very similar but not identical.
According to our experiments (Fig. 17), the pre-trained
model itself cannot be used for downstream tasks, unless the
attacker has the fine-tuning datasets. In our threat model,
we do not assume to have fine-tuning datasets because fine-
tuning is normally done with multiple in-house training
datasets. Thus, the attacker needs to further reduce the
weight value gap to clone the victim model.

We leverage an existing side-channel (row-hammer-
based bit value checking [40]) to recover the actual weight
value (weight address is collected (Section 3)). Unlike the
existing study that had to check every weight value bits [40],
we use the recovered pre-trained model as a baseline and
check only the essential bits that are likely to be updated
during fine-tuning. We design a selective weight extraction
that systemically finds these essential bits to check.

6.1.1. Selective Weight Extraction. Selective weight
extraction significantly reduces the scope of bit checking to
those that cover the weight value gap between a pre-trained
model and its fine-tuned model. We describe the process
with float32 data while the algorithm can be applied to
any data type. From our experiments, sign and exponent
fields rarely change; an average of 99% weights keep their
sign when fine-tuned. Only the fraction fields are updated
mostly where only a handful of bits are corresponding to
the small value gap (e.g., 0.002-0.01 in our earlier examples).
Fig. 13 shows an example when weights use IEEE 754
format. Suppose that a weight in a pre-trained model is
0.018 and is fine-tuned to 0.01908. The fine-tuned weight
value is black-box. Thus, the attacker should estimate the
value, 0.01908, from the pre-trained model’s weight value,
0.018. As illustrated, the sign, exponent, and first a few bits
of the fraction field are identical. Only the two bits in blue
color are responsible for the value gap, thus need checking.
The remaining 18 bits in the fraction field do not need to
be checked because those make very subtle differences (less
than 0.001). From our experiments, the model prediction
accuracy is almost the same (F1 score is dropped by less
than 0.01) when discarding all weight values below 0.001.

134

0.01908  0 01111001 00111000100110110101001
0.018  0 01111001 00100110111010010111100

Identical
Region to adjust
: < 0.002 range

Ignorable region
: Insignificant for accuracy

Fine tuning

Figure 13: Selective Weight Extraction

The selective extraction identifies the bits of individual
weights that do not need to be checked based on the pre-
trained model weight values through two steps; 1) excluding
the weights less than 0.001 and 2) for the remaining weights,
excluding all the bits except for a small number of bits
that correspond to the weight value gap. In the second
step, the bit locations to check may vary depending on
the exponent field value. For example, in Fig. 13, the blue
bits are checked because they are corresponding to 0.00097
(=2–10) and 0.00048 (=2–11) respectively (together cover the
estimated weight value gap (e.g., 0.002)) as the first bit value
of fraction field is 2–7 (=2121–127–1) according to IEEE 754.
As weights are updated differently (U-shape distribution in
Section 4.1), we check the essential bits for the estimated
weight value gap based on the pre-trained weight value. We
found that checking up to two bits per weight is sufficient
for most cases. Algorithm 1 summarizes the process.

Leveraging the lower impact of first a few layers towards
the downstream task accuracy (See Table 1), we begin
the extraction from later layers and gradually recover
earlier layers while checking the prediction accuracy of the
clone model. The extraction stops when the clone model’s
accuracy becomes similar to the victim model.

For the task-dependent last layer, the pre-trained model
does not have the baseline weight values because the layer
is newly added while fine-tuning. Thus, we use row-hammer
for all bit values. As the last layer has much fewer weights

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 1 2 4 8 16 32

Ac
cu
ra
cy

Kernels Having Noise

Framework
Architecture
Pre‐trained Model

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 5 10 15 25 30 45

Ac
cu
ra
cy

Noise Range (us)

Framework
Architecture
Pre‐trained Model

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

0 1 2 4 8 16 32

Ac
cu
ra
cy

Kernels Having Noise

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

0 5 10 15 25 30 45

Ac
cu
ra
cy

Noise Range (us)

Figure 14: Extraction Accuracy: (left) impact of kernel count
having noise (right) impact of noise lengths

than the other layers, our selective extraction still reduces
significant bit checking efforts. For all Transformer model
sizes (from tiny to large), the last layer only contributes
from 0.0005% to 0.009% of the total weight count (Section 7).

6.2. Adversarial Attack
The cloned model enables various white-box attacks,

such as an adversarial attack. The adversarial attack finds
adversarial inputs that perturb the prediction accuracy
of the victim model. Suppose a victim model M has an
output Y for a given input X (i.e., Y = M(X)). The attacker
wants to find α that makes Z = M(X+α) where Y ̸= Z. To
demonstrate an adversarial attack, we generated adversarial
inputs by using our clone model, tested the victim model
with the adversarial inputs, and checked how many of
the adversarial inputs led to incorrect predictions. We
compared the effectiveness of our clone model with eight
other substitute models. The substitute models (M’) were
fine-tuned from randomly selected pre-trained models with
the victim model’s (M) prediction records (i.e., Y = M’(X)
where Y = M(X)).

7. Evaluation
7.1. Methodology

We examined 70 pre-trained models and 170 fine-tuned
models downloaded from various model repositories [5, 6,
8–10, 12, 13, 15]. The models use diverse Transformer archi-
tectures and sizes such as tiny, mini, distill, medium, base,
large, xlarge, and xxlarge of BERT, GPT-2, RoBERTa, Mobile-
BERT [43], CamemBERT [34], ALBERT [28], DeBERTa [22],
XLNet [53], BART [29], T5 [39], and SpanBERT [24]. We
selected these models based on their download counts (at
least 100K downloads per month). The models are trained
for various tasks but there is no single pair of pre-trained
and fine-tuned models that are trained for the same task. A
ResNet-18 model was also downloaded from PyTorch vision
repository [15] and fine-tuned to examine the generalization
of our approach to non-Transformer models. We tested these
models on an NVIDIA GeForce RTX 3050 (Ampere) GPU
with CUDA v11.8.

7.2. Model Extraction Accuracy
We tested the model extraction accuracy with 350 data

(of 1787 total training data). We evaluated the prediction
accuracy by adding two types of noise to the kernel execu-
tion time measurements: 1) varying the scope of kernels
impacted by noise and 2) varying significance of noise for
individual kernel. Based on the typical kernel duration,

135

9937 (94%)

633

Matches
Mismatches

0
20
40
60
80
100

Accuracy
(%)

F1 Score

Victim Model
Extracted Clone Model

Figure 15: (left) Prediction Accuracy of Victim BERT model
and Extracted model, (right) Fraction of Matched Predictions

70

80

90

100

Weights Bits

Re
du

ce
d

Ch
ec
ki
ng
(%
)

Small Value Exclusion
Bit Extraction Pruning

0
0.002
0.004
0.006
0.008
0.01

Po
rt
io
n
of
 L
as
t

La
ye
r
(%
)

Figure 16: (left) Reduced Weight Value Checking w/o Errors,
(right) Fraction of Last Layer in Total Model Weight Count

we set the noise in the first test as 20µs. We randomly
selected 1 to 64 kernels from each input image and adjusted
their execution times to original execution time ± 20µs.
For the second test, we selected 16 kernels from each
validation image and changed their execution times to
original execution time ± Kµs, where K is varied from 5
to 45µs. Then, the adjusted time-series kernel execution
images were fed to the CNN model for prediction. Fig. 14
shows the averaged accuracy results. The accuracy is 90.78%
without noise and dropped slowly for both types of noises
thanks to inherently error-tolerant CNN [30].

7.3. Cloned Model Accuracy
We tested the cloning accuracy by comparing the

inference outputs of the victim model and the cloned model.
Fig. 15 shows the results on a BERT-large victim model and
the extracted clone model on 10570 SQuAD inputs. The
accuracy and F1 score of the clone model had only 0.2%
difference from the victim model. 94% of the cloned model’s
predictions matched with victim model.

7.4. Weight Extraction Efficiency
To understand the efficiency of selective weight extrac-

tion, we examined the weight values of a randomly selected
fine-tuned model and its pre-trained model and counted
the total number of bits that needed to be checked. If the
actual weight value gap was larger than expected amount or
the sign bit was changed, we considered that the selective
weight extraction led to incorrect extraction. Fig. 16 shows
the breakdown of the reduced weight checking. The Weights
bar shows the total number of weights correctly pruned.
The Bits bar shows the total number of bits correctly
excluded from checking. 90% weights and 85% bits of
weights were correctly excluded from checking. The last
layer hammering did not incur much overhead because the
last layer contributes only up to 0.009% of the entire model
weight count even in the smallest Transformer model, as
plotted in Fig. 16.

0
10
20
30
40
50
60
70
80
90
100

5 10 15 20 30 40 100Fi
ne

‐t
un

ed
 M
od

el

Ac
cu

ra
cy

 (
%)

Training Dataset Amount (%)

Figure 17: Cloning Accuracy with Fine-tuning Data

0 10 20 30 40 50 60 70 80 90 100

Extracted Clone Model
Nvidia BERT Large
Nvidia BERT Base

Huggingface BERT Large
Huggingface BERT Base
Huggingface BERT Tiny
Huggingface BERT Mini
Huggingface BERT Small
Huggingface BERT Medium

Attack Success Rate(%)

Compared
substitute
models

Figure 18: Effectiveness on Adversarial Attack

7.5. Weight Extraction Necessity
To check if weight extraction is necessary, we also

measured cloning accuracy by assuming that an attacker
has access to limited amount of fine-tuning dataset. Fig. 17
shows the results of fine-tuning a pre-trained BERT-base
with different amounts of downstream data. The attacker
needs at least 40% fine-tuning data to copy the model with
less than 5% accuracy drop, which is unrealistic.

7.6. Adversarial Attack Effectiveness
To compare the effectiveness of adversarial attack,

we developed eight other substitute models besides our
extracted clone model. The eight models were developed by
downloading random pre-trained models and fine-tuning
them with the victim model’s prediction records that were
collected from 18K inferences. Fig. 18 shows the success rate
of the nine models when 10K sample inputs were tested to
locate adversarial inputs. The adversarial inputs identified
by our clone model showed a superior attack success rate
(90.62%) than the other models (up to 38% accuracy).

7.7. Attack Generalization
To check if weight value similarity is a universal symp-

tom of transfer learning, we measured weight similarity
of a CNN model, ResNet-18, between a fine-tuned model
and its pre-trained model as plotted in Fig. 19. We fine-
tuned a pre-trained model with Hymenoptera dataset. For a
comparison, we trained another ResNet-18 model with the
same dataset from scratch (without using transfer learning)
and compared the weight values with the fine-tuned model.
The darker blue bars are the weight difference between the
fine-tuned model and its pre-trained model. The lighter bars
are the difference from the model trained from scratch. The
fine-tuned model had almost zero weight difference from
its pre-trained model in almost all layers, while it showed
at least 20× higher difference from the other model, even
when they were trained with the same dataset, which is
consistent with our observations from Transformer models.

136

0
0.02
0.04
0.06
0.08
0.1
0.12

cv
1‐
1

cv
1‐
2

cv
2‐
1

cv
2‐
2

cv
1‐
1

cv
1‐
2

do
wn

cv
2‐
1

cv
2‐
2

cv
1‐
1

cv
1‐
2

do
wn

cv
2‐
1

cv
2‐
2

cv
1‐
1

cv
1‐
2

do
wn

cv
2‐
1

cv
2‐
2

cv1 layer1 layer2 layer3 layer4 fc

Av
g.
 W
ei
gh
t

Di
ff
er
en
ce

Actual Pre‐trained Model
Different Pre‐trained Model

Figure 19: Weight Similarity in a CNN Model (ResNet-18)

Layer Layer
(b) Confidence Corr. with
Different Pre-trained Model

1.00
0.75
0.50
0.25
0.00

‐1.00
‐0.75
‐0.50
‐0.25

Layer

He
ad

Layer
(a) Confidence Corr. with
Baseline Pre-trained Model

Figure 20: Confidence Correlation used for Head Pruning

8. Discussions
Supporting Quantization and Pruning: We explained

the weight extraction with float32 data. However, models
can be quantized during/after fine-tuning. Our selective
weight extraction is applicable for other data types. For
example, compared to float32, float16 uses shorter (5-bit)
exponent and (10-bit) fraction fields, while bfloat16 uses the
same-length (8-bit) exponent with a shorter (7-bit) fraction
field. If bfloat16 is used in the example of Fig. 13, the same
bits (the blue bits) can be checked as bfloat16 uses the same
length exponent with float32. Likewise, our selective weight
extraction is applicable with slight bit adjustment.

Models can be optimized during fine-tuning. Head
pruning is a popular optimization that removes insignificant
heads from computation [47, 48]. To find the insignificant
heads, Confidence is calculated by averaging the maximum
attention weights. By exploiting the weight similarity,
the attacker can calculate similar confidence values with
the pre-trained model and locate the pruned heads. We
evaluated the confidence value similarity between a pre-
trained model and its two fine-tuned models that are trained
for different tasks as shown in Fig. 20(a). Each cell is a
Pearson correlation coefficient between the confidence of
the heads on the same location in a pre-trained model and
a fine-tuned model. Darker blue cells mean high correlation.
In both fine-tuned models, confidence of all heads are
highly correlated. When we compared the fine-tuned models
with a different pre-trained model, the correlation dropped
significantly as plotted in Fig. 20(b). The number of pruned
heads also can be detected from kernel execution time.
Fig. 21 shows time-series kernel execution time images
where different numbers of heads are pruned (y-axis is
kernel duration). Groups of short kernels (near the bottom)
executed faster as more heads were pruned. By combining
these two observations, the attacker can figure out exactly
which heads are pruned. We also found that each head is
placed in a specific location in the weight matrixes (i.e., the
weights of head 0 come first and are followed by weights of

0 Head Pruned 2 Heads Pruned 4 Heads Pruned 6 Heads Pruned

Execution time drops
in shorter kernels

Figure 21: Impact of Head Pruning on Execution Time

head 1, and so on). By removing the pruned heads’ weights
from the weight file, the attacker can match the dimension
of the weight matrix of the pruned fine-tuned and unpruned
pre-trained model.

Counter Measures: As we may not be able to perfectly
prevent pre-trained model leakage due to its sharing nature,
we can consider removing the fingerprint from model execu-
tions by randomizing the selections of GPU kernels/libraries
and usages of various optimizations. Though there is only
a handful of GPU deep learning libraries (e.g., cuDNN,
cuBLAS), an algorithm can be executed with various combi-
nations of library functions. If the combination selection is
randomly determined at run time, it would be challenging
to extract computation patterns.

9. Related Work
Several studies showed ML model extraction attacks.

[23, 37] proposed a framework to extract a black-box
CNN model architecture by using performance counter and
bus/memory probing on GPUs. [56] proposed a technique
to clone CNN model weights by monitoring unencrypted
PCI-e bus traffic. [51] extended the cache-timing attack for
model extraction on CNNs. [40] leveraged row-hammer
attack [25] to recover weight values of victim models that
use int8 weights. All these studies targeted small CNN
models, while we propose a new model extraction
attack for billion-parameter models. Decepticon is
the first approach using two-level attack model.

Some studies [27, 32, 50] demonstrated security con-
cerns in Transformer models by cloning a BERT model
with prediction records. These studies did not extract
model architecture and Decepticon showed a superior
cloning accuracy than these approaches as can be
seen in the adversarial attack result (Fig. 18).

10. Conclusion
This paper raises a new security concern for transfer-

learned models. We show that model fingerprints can be
leveraged to locate the pre-trained model. The identified pre-
trained model becomes a good source of revealing weight
values in the entire model level, which enables various
gray/white-box attacks. This is the first study that extracts
entire weights of large-scale models (e.g., Transformer) that
use billions/trillions of weights.

Acknowledgments
We thank Murali Annavaram for his valuable feedback,

and Xavier Ybarra and Aishwaria Rangasamy for their help
in data collection.

137

References
[1] “DeepSniffer ResNet Models,” https://github.com/xinghu7788/

DeepSniffer/.
[2] Finding Startups with BERT. [Online]. Available: https://medium.

com/axel-springer-tech/finding-startups-with-bert-4ae29f686a9e
[3] Google BERT TensorFlow. https://github.com/google-research/bert.
[4] Hugging Face BERT-base Pre-trained Model. https://huggingface.co/

bert-base-uncased.
[5] Hugging Face BERT PyTorch. https://huggingface.co/docs/

transformers/v4.17.0/en/model_doc/bert.
[6] Hugging Face BERT TensorFlow. https://huggingface.

co/docs/transformers/model_doc/bert#transformers.
TFBertForQuestionAnswering.

[7] Hugging Face Distilled GPT-2 Pre-trained Model. https://huggingface.
co/distilgpt2.

[8] Hugging Face General Language Understanding Evaluation (GLUE)
Benchmark. https://github.com/huggingface/transformers/tree/main/
examples/pytorch/text-classification#glue-tasks.

[9] Hugging Face Models. https://huggingface.co/models.
[10] Meta RoBERTa PyTorch. https://github.com/pytorch/fairseq/tree/

main/examples/roberta.
[11] MXNet ResNet Models. https://github.com/apache/incubator-mxnet/

blob/master/python/mxnet/gluon/model_zoo/vision/resnet.py.
[12] NVIDIA BERT PyTorch. https://github.com/NVIDIA/

DeepLearningExamples/tree/master/PyTorch/LanguageModeling/
BERT.

[13] NVIDIA BERT TensorFlow. https://github.com/
NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/
LanguageModeling/BERT.

[14] NVIDIA ResNet v1.5 for PyTorch. https://catalog.ngc.nvidia.com/orgs/
nvidia/resources/resnet_50_v1_5_for_pytorch.

[15] Pytorch Hub: Repository of Pre-trained models. https://pytorch.org/
docs/stable/hub.html.

[16] “TensorFlow ResNet Models,” https://tfhub.dev/google/imagenet/
resnet_v2_50/classification/5.

[17] XLA: Optimizing Compiler for Machine Learning. https://www.
tensorflow.org/xla.

[18] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx,
M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson,
S. Buch, D. Card, R. Castellon, N. S. Chatterji, A. S. Chen, K. A.
Creel, J. Davis, D. Demszky, C. Donahue, M. Doumbouya, E. Durmus,
S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale,
L. E. Gillespie, K. Goel, N. D. Goodman, S. Grossman, N. Guha,
T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu,
J. Huang, T. F. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti,
G. Keeling, F. Khani, O. Khattab, P. W. Koh, M. S. Krass, R. Krishna,
R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee, T. Lee, J. Leskovec,
I. Levent, X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning, S. P. Mirchan-
dani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan, D. Narayanan,
B. Newman, A. Nie, J. C. Niebles, H. Nilforoshan, J. F. Nyarko, G. Ogut,
L. Orr, I. Papadimitriou, J. S. Park, C. Piech, E. Portelance, C. Potts,
A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. H. Roohani, C. Ruiz,
J. Ryan, C. R’e, D. Sadigh, S. Sagawa, K. Santhanam, A. Shih, K. P.
Srinivasan, A. Tamkin, R. Taori, A. W. Thomas, F. Tramèr, R. E.
Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M. Xie, M. Yasunaga, J. You,
M. A. Zaharia, M. Zhang, T. Zhang, X. Zhang, Y. Zhang, L. Zheng,
K. Zhou, and P. Liang, “On the opportunities and risks of foundation
models,” in arXiv:2108.07258, 2021.

[19] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language Models are Few-Shot Learners,” Advances in
Neural Information Processing Systems, vol. 33, pp. 1877–1901, 2020.

[20] R. Callan, A. Zajić, and M. Prvulovic, “A Practical Methodology for
Measuring the Side-Channel Signal Available to the Attacker for
Instruction-Level Events,” in IEEE/ACM International Symposium on
Microarchitecture, 2014.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,”
arXiv:1810.04805, 2018.

[22] P. He, X. Liu, J. Gao, and W. Chen, “DeBERTa: Decoding-enhanced
BERT with Disentangled Attention,” arXiv:2006.03654, 2021.

[23] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding, C. Liu,
T. Sherwood, and Y. Xie, “DeepSniffer: A DNN Model Extraction
Framework Based on Learning Architectural Hints,” in Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020.

[24] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy,
“SpanBERT: Improving Pre-training by Representing and Predicting
Spans,” arXiv:1907.10529, 2020.

[25] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing
Them: An experimental study of DRAM disturbance errors,” ACM
SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 361–372,
2014.

[26] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
Catastrophic Forgetting in Neural Networks,” in Proceedings of the
National Academy of Sciences, 2017.

[27] K. Krishna, G. S. Tomar, A. P. Parikh, N. Papernot, and M. Iyyer,
“Thieves on Sesame Street! Model Extraction of BERT-based APIs,”
in International Conference on Learning Representations, 2020.

[28] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A Lite BERT for Self-supervised Learning of Language Rep-
resentations,” in International Conference on Learning Representations,
2020.

[29] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Generation, Translation,
and Comprehension,” arXiv:1910.13461, 2019.

[30] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding Error Propagation in Deep Learning
Neural Network (DNN) Accelerators and Applications,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2017.

[31] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly Optimized
BERT Pretraining Approach,” arXiv:1907.11692, 2019.

[32] L. Lyu, X. He, F. Wu, and L. Sun, “Killing Two Birds with One
Stone: Stealing Model and Inferring Attribute from BERT-based
APIs,” abs/2105.10909, 2021.

[33] H. T. Maia, C. Xiao, D. Li, E. Grinspun, and C. Zheng, “Can one hear
the shape of a neural network?: Snooping the GPU via Magnetic
Side Channel,” in 31st USENIX Security Symposium, 2022.

[34] L. Martin, B. Muller, P. J. Ortiz Suárez, Y. Dupont, L. Romary, É. de la
Clergerie, D. Seddah, and B. Sagot, “CamemBERT: a tasty French
language model,” in Proceedings of the Association for Computational
Linguistics, 2020.

[35] M. McCloskey and N. J. Cohen, “Catastrophic Interference in Connec-
tionist Networks: The Sequential Learning Problem,” in Psychology
of Learning and Motivation, 1989.

[36] G. Moy, S. Shekh, M. Oxenham, S. E.-S. (Joint, O. A. D. D. Science,
and T. Group), “Recent advances in artificial intelligence and their
impact on defence,” DST-Group-TR-3716, 2020.

[37] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered Insecure: GPU Side Channel Attacks are Practical,” in
ACM Conference on Computer and Communications Security, 2018.

138

[38] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language Models are Unsupervised Multitask Learners,” OpenAI,
vol. 1, no. 8, p. 9, 2019.

[39] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” The Journal of Machine
Learning Research, 2020.

[40] A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “DeepSteal:
Advanced Model Extractions Leveraging Efficient Weight Stealing in
Memories,” IEEE Symposium on Security and Privacy, 2022.

[41] A. T. Ray, B. F. Cole, O. J. P. Fischer, R. T. White, and D. N. Mavris,
“aeroBERT-Classifier: Classification of Aerospace Requirements Using
BERT,” in Aerospace 2023, 10(3), 279, 2023.

[42] N. Roberts, V. U. Prabhu, and M. McAteer, “Model Weight Theft
With Just Noise Inputs: The Curious Case of the Petulant Attacker,”
abs/1912.08987, 2019.

[43] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “MobileBERT:
a compact task-agnostic BERT for resource-limited devices,” in
Proceedings of the Association for Computational Linguistics, 2020.

[44] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu,
B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann,
A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich,
Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog,
Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten,
R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor,
A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan,
M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom, “Llama 2: Open Foundation and Fine-Tuned Chat Models,”
in arXiv:2307.09288, 2023.

[45] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
Machine Learning Models via Prediction APIs,” in USENIX Security
Symposium, 2016.

[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,”
arxiv:1706.03762, 2017.

[47] E. Voita, R. Sennrich, and I. Titov, “Analyzing the Source and Target
Contributions to Predictions in Neural Machine Translation,” in
Annual Meeting of the Association for Computational Linguistics, 2021.

[48] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing
Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting,
the Rest Can Be Pruned,” in Annual Meeting of the Association for
Computational Linguistics, 2019.

[49] T. Wachi, “Business application of bert, a general-purpose natural-
language-processing model,” Feature Articles: ICT Solutions Offered
by NTT Group Companies, 2021.

[50] Q. Xu, X. He, L. Lyu, L. Qu, and G. Haffari, “Beyond Model Extraction:
Imitation Attack for Black-Box NLP APIs,” abs/2108.13873, 2021.

[51] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache Telepathy: Leveraging
Shared Resource Attacks to Learn DNN Architectures,” in USENIX
Security Symposium, 2020.

[52] ——, “Cache Telepathy: Leveraging Shared Resource Attacks to Learn
DNN Architectures,” in USENIX Security Symposium, 2020.

[53] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V.
Le, “XLNet: Generalized Autoregressive Pretraining for Language
Understanding,” arXiv:1906.08237, 2020.

[54] Z. Yue, Z. He, H. Zeng, and J. McAuley, “Black-Box Attacks on
Sequential Recommenders via Data-Free Model Extraction,” in ACM
Conference on Recommender Systems, 2021.

[55] M. A. Yuri Kuratov, “Adaptation of Deep Bidirectional Multilingual
Transformers for Russian Language,” arXiv:1905.07213, 2019.

[56] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes Attack: Steal
DNN Models with Lossless Inference Accuracy,” in USENIX Security
Symposium, 2021.

139

