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Abstract—Transactional-based distributed storage applications
such as key-value stores and databases are widely used in the
cloud. Recently, the hardware on which these applications run
has been rapidly improving, with faster networks and powerful
network interface cards (NICs). A result of these hardware
advances is that the inefficiencies of distributed software have
become increasingly obvious.

To address this problem, we analyze the sources of software
overhead in these distributed transactional applications and pro-
pose new hardware structures to eliminate them. The proposed
hardware includes Bloom filters for a variety of tasks and
SmartNICs for efficient remote communication. We then develop
HADES, a new distributed transactional protocol that leverages
this hardware to support low-overhead distributed transactions.
We also propose a hybrid hardware-software implementation
of HADES. Our evaluation shows that HADES increases the
throughput of distributed transactional workloads by 2.7× on
average over a state-of-the-art distributed transactional system.

I. INTRODUCTION

Distributed storage systems such as key-value stores and
databases are particularly important to the cloud infrastructure
[11], [14], [18], [45], [51], [67]. These applications ensure
that distributed data is safely stored and accessible to users on
demand. Many of these storage systems use the transactional
model, whereby queries are written as transactions that either
complete or fail without leaving any side effect. Using trans-
actions in storage systems is very popular [1], [2], [21], [22],
[35], as it results in simpler application design.

Recently, the cloud hardware infrastructure has been rapidly
improving. Networking hardware has become steadily faster.
Both commercial [28], [48] and custom-designed network
solutions have substantially reduced the round-trip latency of
node-to-node communication—to under one microsecond in a
data center [76]. Moreover, network interface cards (NICs) are
including progressively more advanced hardware support [24],
[42], [46], [47], [49]. Such support can enable the develop-
ment of efficient RDMA operations, reducing communication
overheads and off-loading work from the processor.

A result of these hardware changes is that the existing
inefficiencies of distributed software protocols are becoming
increasingly obvious. Applications wait for short times that
cannot be effectively hidden using current hardware and
software latency-hiding techniques (i.e., the well-documented
killer microsecond [6], [13]). More importantly for our analy-
sis, protocols have hefty housekeeping software overheads on
the critical path that limit their performance.

Consider distributed transactional storage systems that are
based on Microsoft’s FaRM protocol [12], [21], [22], [71].
They have major software overheads resulting from managing
and checking the read and write sets of transactions—i.e.,
the records that a transaction accesses plus their metadata,
including versions, values, and source nodes. Other overheads
result from the fact that reads and writes are supported at
record granularity—forcing whole-record transfers when only
some fields are needed. Additional software overheads result
from many operations to lock and unlock records, poll for lock
and unlock completion, and re-read records before committing
to check for transaction conflicts. In our analysis, we find that
such overheads are responsible for 60-70% of the execution
time of various workloads in an optimized implementation of
FaRM.

Given the key importance of these workloads for a thriv-
ing cloud, and that these trends are only likely to accel-
erate, in this paper, we introduce new hardware structures
to eliminate high-overhead software operations in distributed
transactional systems. We start by analyzing the sources of
software overhead. Based on the analysis, we propose novel
hardware that includes Bloom filters for a variety of tasks
and smart network interface card (SmartNIC) support for
efficient remote communication. We then develop HADES, a
new optimistic concurrency control (OCC)-based distributed
transactional protocol that leverages this hardware to provide
high-performance distributed transactions. HADES is easy to
use in different transactional systems, as it is agnostic to the
data layout and does not require any extension to the data
records. Finally, we also propose a cheaper, hybrid hardware-
software implementation of HADES called HADES-H.

Using a simulation-based evaluation, we show that, com-
pared to an optimized implementation of FaRM, HADES
and HADES-H increase the average throughput of a set of
distributed transactional workloads by 2.7× and 2.3×, respec-
tively. Further, HADES shows scalability with 200 cores.

Overall, this paper’s contributions are:
• Identifying and analyzing the main sources of software
overhead in a state-of-the-art distributed transactional system.
• New hardware structures to eliminate these overheads and
allow for large distributed transactions.
• Two new distributed transactional protocols, HADES and
HADES-H, that use this hardware to provide fast distributed
transactions.
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• A performance evaluation of HADES and HADES-H with
up to 200 cores.

II. BACKGROUND

Distributed transactional systems are a key component of
the infrastructure in modern data centers [18], [22], [33],
[40], [60], [72], [74]. They enable multiple clients to concur-
rently access shared data structures across distributed servers.
To attain high concurrency and performance for distributed
transactions, state-of-the-art systems usually leverage RDMA
primitives to enable fast remote data accesses [12], [21],
[22], [71]. To ensure that concurrent transactions execute in
a proper way, these systems use a distributed transactional
protocol [27], [29]. They augment the data records with extra
fields that the software uses to manage the structures. A
typical example is shown in Figure 1. In this case, a record is
augmented with fields that include the record version, a lock,
the incarnation to detect whether the record has been freed,
and a per-cache-line version VCi to support OCC and conflict
detection between concurrent transactions that operate on the
same record.

Version Lock Incarnation VC1 | cacheline VCN | cacheline…

Fig. 1: Augmented record to support transactions in a typical
distributed transactional system.

Typically, a transactional protocol has three main phases:
Execution, Validation, and Commit. Figure 2 shows a phase-
by-phase example of an optimized software protocol. Here, a
coordinator node executes a transaction with a mix of accesses
to the memory of the local and remote nodes. Records A and
C are read, while B and D are written.
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Fig. 2: Typical protocol for distributed transactions.

Execution Phase. Accesses to local records are performed
locally, while accesses to remote ones are executed by sending
RDMA operations to the nodes that have the records. All reads
are recorded in the transaction’s Read Set with the version of
the records. Transactional systems usually operate at record-
level granularity. As a result, before a read can be recorded
in the Read Set, the atomicity of the read must be validated.
This involves checking that all the cache lines of the record
have the same version and, therefore, no write is interfering.

For the writes, even though a write only modifies part of
a record, the system needs to first read the whole record
before the write, and then apply the update. Both local and
remote writes are buffered in the Write Set until the transaction
commits. The transaction’s Write Set includes the version,
address, and data of all the written records.
Validation Phase. The coordinator needs to confirm that
the transaction does not conflict with any other transaction
executing on the local or remote nodes. For this reason,
it first locks the local and remote parts of its Write Set.
This can be done using the Compare-and-Swap (CAS) and
RDMA CAS, respectively. Once locking succeeds, it can be
determined whether the transaction can be serialized. Then,
the coordinator fetches the data versions of all the records
read, re-reads their current version numbers, and compares
them to the versions that were read during Execution. The
goal is to identify conflicts. If the versions have not changed,
the transaction proceeds to Commit. Otherwise, the transaction
is aborted and re-executed.
Commit Phase. The data versions of all the written records
are updated, and the writes are performed for both local and
remote records. After that, the local and remote parts of the
Write Set are unlocked to allow future accesses.

III. EXISTING SOFTWARE OVERHEADS

We implemented an optimized version of distributed trans-
actions based on the Microsoft FaRM protocol [21], [22].
We included optimizations as described in similar papers,
including: (1) batching of messages [12], [71], [72] (i.e.,
sending lock/unlock operations to remote nodes in a batch
during validation), (2) sending writes and unlock messages
without serialization to avoid stalls [71], (3) not stalling while
waiting for unlock operations [12], [71], [72], and (4) avoiding
locking the read set during validation [12]. We designed the
records of the key-value store as shown in Figure 1. We
instrumented the code to capture the software overheads.

The left column of Table I lists the major sources of
software overhead that we have seen in our optimized software
implementation (called SW-Impl). The first source is managing
the read and write sets of transactions. The Read Set of a
transaction is the set of records that the transaction reads plus
their metadata. The Write Set is the set of records that the
transaction writes, the values written, and the metadata. In
SW-Impl, writing a record involves two reads and two writes:
a read of the record and metadata (from either a remote or a
local node), then a write to the write set, and then, at commit,
a read from the write set and a write to the final location.

SW-Impl also adds other software overheads in every write
and read. Specifically, before performing a record write, the
software needs to update the record’s version. Further, on a
record read, the software needs to check that all its cache
lines have the same version. This is a check for atomicity, to
ensure that there is no transaction writing to the record while
the record is being read. This means that one cannot do zero-
copy reads: one reads into a temporary location, checks the
versions, and then copies the record to the destination location.
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TABLE I: Reducing the overhead of distributed transactional systems.

Overhead in Current Systems (SW-Impl) Proposed Hardware to Minimize Overhead
Manage the Read and Write sets of a transaction. Bloom filters (BFs) next to the directory/LLC (for local accesses)

and in remote NICs (for remote accesses), similar to HTM [10], [59], [75]
Before performing a write, update the version of the record. No record versions.
On a record read, check for read atomicity. Unable to do zero-copy reads. Use the BFs to partially lock the directory while reading multiple lines.
Operation at record granularity, which causes: (i) On a read/write, bring the Operation at cache line granularity.
whole record, and (ii) Potential increase in number of transaction conflicts.
Perform many RDMA and local operations beyond reads and writes. They Eliminate some RDMA and local operations. Support some new RDMA
include: (i) lock/unlock, (ii) poll for lock/unlock completion, and (iii) re-read messages, including Intend-to-commit, Ack, and Validation. Off-load
record versions at validation time, to check for conflicts. RDMA operations from the core to the NIC. Use the BFs to partially

lock the directory while a transaction is committing.

Other overheads of SW-Impl stem from the fact that reads
and writes are performed at record granularity. On an access,
the whole record is read rather than a few fields. Moreover,
transactions conflict even when they access different fields of
the same record.

SW-Impl performs many RDMA and local operations be-
yond the basic reads and writes. They include operations to
lock and unlock, poll for lock and unlock completion, and
re-read records in the Validation phase before committing, to
check for conflicts (Section II). These operations add overhead.

To quantify these overheads, we execute three workloads
using the Yahoo! Cloud Serving Benchmark (YCSB) [15].
The first one performs only writes (100%WR), the second
one performs the same number of reads as writes (50%WR-
50%RD), and the third one performs only reads (100%RD).
Based on previous work [17], [19], [23], we create transactions
using five requests at a time from a client. The workloads run
on a 4-node cluster, where each node has 48 Xeon E5-2687W
cores, and the nodes are connected with Mellanox ConnectX-4
NICs that perform RDMA over InfiniBand.

Figure 3 shows the execution time of the workloads, with
the contribution of different components. The overheads in
Table I, from top to bottom, are labeled as Manage RD/WR
Sets, Update Version, Read Atomicity, RD before WR, and
Conflict Detection. The rest of the time is labeled Other Time.
In the figure, all execution times are normalized to 100%WR.
From the data, we see that these software overheads are very
significant. Their combined contribution is 59%, 65%, and
71% of the total execution time for the 100%WR, 50%WR-
50%RD, and 100%RD workloads, respectively.
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Fig. 3: Execution time with the SW-Impl protocol, with the
contribution of the main software overheads.

In 100%WR, the highest overheads are reading records be-

fore writing them (due to operating at record granularity) and
maintaining the Write Set. In 100%RD, the main overheads
are: (i) re-reading the version of all records in the Read Set
during validation to check for conflicts (Conflict Detection),
(ii) ensuring the atomicity of read operations on a record
read, and (iii) maintaining the Read Set. Finally, for 50%WR-
50%RD, the dominant overheads are a combination of the
main overheads of the other two bars.

IV. HADES DESIGN

To improve distributed transactional systems, in this sec-
tion, we introduce new hardware to eliminate some of the
high-overhead software operations described above. Then, we
develop HADES, a new distributed transactional protocol that
leverages this hardware to provide fast distributed transactions.

A. Hardware to Minimize Software Overheads

The right column of Table I lists our proposed hardware
designs to minimize the software overheads. First, to manage
the Read and Write sets of transactions, HADES uses read
and write hardware Bloom Filters (BF), similar to their use in
Hardware Transactional Memory (HTM) [10], [59], [75]. A
transaction owns a pair (Rd,Wr) of local BFs in the local node
and a pair of remote BFs in each of the remote nodes from
where the transaction accesses data. The pair of local BFs are
next to the local directory/LLC. Transparently to the software,
they record the addresses of the accesses to the local node’s
memory. A pair of remote BFs exist in the NIC of a remote
node, and record accesses by the transaction to that remote
node’s memory. The BFs help transaction conflict detection.

HADES eliminates the software overhead of updating the
versions of records because there are no versions. Instead,
HADES uses hardware to detect conflicts. Further, it also elim-
inates the software overhead of checking for read atomicity.
The reason is that HADES introduces a hardware mechanism
where a transaction can use its BF to partially lock the direc-
tory, preventing other transactions from concurrently writing
the same lines that the transaction is reading.

HADES eliminates the overheads stemming from perform-
ing reads and writes at record granularity because its hardware
nature enables it to operate at cache line granularity.

To further reduce overhead, HADES eliminates some of the
RDMA and local operations performed by the conventional
system. Further, HADES supports some efficient new RDMA
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operations, including Intend-to-commit, Ack, and Validation,
which trigger actions at the receiving NIC. In addition, several
of these operations are off-loaded from the core and executed
in the NIC. Finally, HADES leverages the partial directory-
locking hardware mechanism mentioned above while commit-
ting a transaction, preventing other transactions from issuing
conflicting accesses.

B. Chosen Distributed Transactional System

To showcase the impact of HADES, we use a cluster of
N nodes, each with C cache-coherent cores. Each database
record has its home in one of the nodes. Hence, when a core
accesses a record for the first time in the transaction, it issues
a local or a remote access depending on where the record’s
home is. During the transaction, the record is reused locally.
When the transaction commits, all the remote records that it
has updated are written to their home nodes.

Remote data are accessed via RDMA requests that take as
argument the range of contiguous addresses accessed. We use
one-sided RDMA since it reduces core costs and latency [61].
Local data are accessed with loads and stores. The same is the
case for accesses to local copies of remote data.

Both remote and local accesses from a transaction i can
conflict with accesses from another transaction j running on
the same node (i.e., a local transaction) or on another node
(i.e., a remote transaction). We call a conflict between two
local accesses an L–L conflict, a conflict between a local and
a remote access an L–R conflict, and a conflict between two
remote accesses an R–R conflict.

Figure 4a shows a local (L) and a remote (R) access.
Figure 4b shows an L–R conflict and an L–L conflict. An
R–R conflict occurs in a node that is accessed remotely by
two transactions.

Memory Memory

(a)

Node Node

RL

Memory Memory

(b)

Node Node

RLL LEager Lazy

Core Core CoreCore CoreCore

Fig. 4: Example of transaction conflicts.

We design the HADES transactional protocol as follows.
Conflicts that involve at least one R access are detected lazily
when the first of the two conflicting transactions commits;
the transaction that commits first does squash the other one.
On the other hand, conflicts where both of the accesses are
L are detected eagerly as soon as the second access occurs;
the transaction that issues the second access squashes itself.
When we describe the protocol, it will be apparent that these
decisions are natural given the hardware envisioned.

C. Overview of the HADES Hardware

The top left part of Figure 5 shows a node with multiple
cores. The five circles numbered 1 to 4b denote where the
HADES hardware extensions are. Then, the rest of Figure 5
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Fig. 5: Node with the HADES hardware modules shaded.

expands each of the five modules, shading the actual HADES
hardware. In the figure, TX means transaction.

Module 2 is a Writing-Transaction ID tag (WrTX ID)
added to each directory/LLC entry. It records the ID of the
in-progress transaction that wrote to that line. Module 1 is
Recorded RD and Recorded WR bits added to the lines of the
private caches that act as filters to avoid accessing WrTX ID
at every access.

Module 3 is the Local Read Bloom Filters and the Local
Write Bloom Filters of all the local transactions. They encode
the local addresses read and written, respectively, by the local
transactions. Executing transactions dynamically pick their
BFs from a set of BFs. Although Figure 5 shows a monolithic
LLC, the LLC and the BFs are sliced.

Module 4a is the Remote Read Bloom Filters and the
Remote Write Bloom Filters of all the in-progress remote
transactions that have accessed data homed in this node. They
encode the local addresses read and written, respectively, by
the remote transactions.

Module 4b records, for each local transaction: (1) upper
structure: the addresses of the remote locations that it wrote,
tagged by the remote node ID—together with a pointer (Data
Location in the figure) to a local buffer that contains the
values written; and (2) lower structure: a list of the IDs of
the remote nodes that home the data read or written by the
local transaction. All this information is used when a local
transaction commits.

Each entry in modules 3 , 4a , and 4b is tagged with the
ID of the owner transaction (TX ID).

D. Data Buffering and Conflict Detection

Consider a HADES transaction running on Core i of Node
x. Data is local if its home is x and remote otherwise. The local
data written by the transaction is buffered in the local cache
hierarchy (including the shared LLC) and cannot be evicted to
memory. The record of local lines read is encoded in a Local
read Bloom filter (BF). The record of local lines written is
encoded in a Local write BF and in Writing-Transaction ID
(WrTX ID) tags in the directory/LLC.

The remote data written by the transaction is buffered in the
local NIC. The record of remote lines read and remote lines
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written by the transaction that are homed in a remote Node
y is encoded in a Remote read BF and a Remote write BF,
respectively, at the NIC of Node y. These BFs detect conflicts.

We now consider how conflicts between transactions are
detected. Recall that L–L conflicts are detected eagerly. On
a local read by transaction i, the address is checked against
the WrTX ID tag in the directory/LLC. On a local write by
transaction i, the address is checked against the WrTX ID tag
in the directory/LLC and against the Local read BFs of all the
other local transactions.

Recall that L–R and R–R conflicts are detected lazily when
the first transaction of the pair commits. Assume, without loss
of generality, that transaction i running on Node x commits
first. At the local node, the local addresses written by i are
checked against the NIC-resident Remote read and Remote
write BFs of all the remote transactions that accessed data
homed in x. In addition, at any remote Node y that homes
remote data written by i, the following is done. The addresses
of the remote data written by i are checked: (i) against the
Remote read and Remote write BFs of all the other remote
transactions in y to detect R–R conflicts, and (ii) against the
Local read and Local write BFs of all the local transactions
in y to detect L–R conflicts at y.

V. HADES TRANSACTIONAL PROTOCOL

We propose two versions of HADES: a hardware-only one
and a hybrid one. The latter replaces the local component
of the hardware-only protocol with software, to simplify the
hardware design. Next, we describe both versions.

A. Hardware-only HADES Protocol

In this discussion, we label transactions (sometimes referred
to as Cores) as {i, j, ...} and nodes as {x, y, ...}. Table II
details the protocol followed by Transaction i running on Core
i of Node x. We now describe each operation in turn.
Remote Read/Write. Assume that i accesses a remote
datum homed in y. In this case, Core i sends an RDMA
request to Node y. If this is a read, the addresses of the
set of cache lines requested are encoded in the Remote read
BF (RemoteReadBF) of i in the NIC of y (Module 4a of
Figure 5). Then, the lines are fetched to Node x. If this was a
write, a similar process is followed, except that we only need
to care about the cache lines that are partially written. Such
lines can be found at the beginning and end of the range of
addresses written. The addresses of such lines are encoded in
the RemoteWriteBF of i in the NIC of Node y (Module 4a )
and the lines are fetched to Node x. The other lines are not
fetched to Node x because they will be overwritten, and do
not need to be inserted in the BF as we will see. From now on,
Node x buffers i’s updates to all the addresses of the datum.
Local Read/Write. Assume that i accesses a datum homed
in Node x. The hardware accesses the WrTX ID tag in the
directory (Module 2 of Figure 5) to check if another local
transaction has written the line. If so, i is squashed. Note
that the filter bits in the private caches (Module 1 ) are first
checked and, if the Recorded WR bit is set, there is no need to

TABLE II: Operation of a Transaction i running on a Node x.
References in circles correspond to the modules in Figure 5.

Remote Read/Write by i
* Send request to Node y
* If Read

- Add addresses of lines read to RemoteReadBFi in NIC of
Node y 4a

- Fetch the lines to local node
* If Write

- Add the addresses of partially written lines to RemoteWriteBFi

in NIC of Node y 4a
- Fetch the partially written lines to local node
- From now on: buffer the updates to all the datum’s lines

(not just to the partially written lines) in Node x
Local Read/Write by i
* Use WrTX ID tag in the local directory 2 to check if another

local transaction wrote the line. If so, squash yourself
* If Write

- Additionally check the other LocalReadBFj,k,.. 3 to see if
another local transaction read the line. If so, squash yourself

* If Read
- Add address read to LocalReadBFi 3

* If Write
- Add address written to LocalWriteBFi 3
- Update the WrTX ID tag in the local directory 2

Transaction Commit by i. At Local Node x
* i partially locks the local directory or gets squashed
* Detect any conflict on local data between i and a remote trans.

- Find the lines with i’s tags in the local directory 2 and probe
for membership in all RemoteReadBFj,k,.. and
RemoteWriteBFj,k,.. in x’s NIC 4a

- Send squashes to any conflicting remote transactions
* Request the commit of i in remote nodes

- Send Intend-to-commit RDMA message to all remote nodes
involved in the transaction, passing the address ranges written

- Receive Acks from all the remote nodes involved in the trans.
- After this, i cannot be squashed anymore

* Clear i’s local speculative state
- Find the lines with i’s tags in the local dir. 2 & clear their tag

* Send Validation plus updates to all the remote nodes involved
in the transaction to clear i’s remote state and push the updates

* Unlock local dir. & clear LocalReadBFi and LocalWriteBFi 3
Transaction Commit by i. At Remote Node y
* NIC receives i’s Intend-to-commit RDMA message with the

addresses written
* Partially lock y’s directory for i or squash i
* Detect any conflict on y’s local data between i and any

transaction local or remote to y
- Take each address written by i homed in y, and check for

membership in:
= All other RemoteReadBFj,k,.. and RemoteWriteBFj,k,..

in y’s NIC 4a and
= All LocalReadBFl,m,.. and LocalWriteBFl,m,.. in y 3

- Squash all transactions conflicting with i
* Send Ack to i in x
* Receive Validation plus updates from i
* Push the updates to y’s local memory or LLC
* Unlock y’s directory for i and clear RemoteReadBFi and

RemoteWriteBFi 4a

access the directory because it is guaranteed that the WrTX ID
tag in the directory is set to i. For simplicity we do not describe
Module 1 , but note that, on context switch, the Module 1
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bits are cleared.
On a write, we additionally check the LocalReadBFj,k,.. of

all the other local transactions (Module 3 ) to see if another
local transaction read the line. If so, i is squashed.

If i survives, the hardware performs: on a read, the line
address is encoded in LocalReadBFi (Module 3 ); on a write,
the line address is encoded in LocalWriteBFi (Module 3 )
and the WrTX ID tag in the directory is set (Module 2 ).

Transaction Commit. To commit i, HADES requires several
steps in x and some steps in each of the remote nodes {y, z...}
from where i accessed remote data.

a) Actions in Node x. There are six steps in Node x (Table II):
Step 1. To ensure that commits have a total order, the commit
of i starts with i partially locking the local directory. This
mechanism will be explained in Section V-B and consists
of using the LocalReadBFi and LocalWriteBFi (Module 3 )
to temporarily and selectively block accesses to the lines
in the directory whose addresses are encoded in these BFs.
This operation prevents other transactions from performing
conflicting accesses while i commits. If i fails to lock the di-
rectory because another transaction is already locking common
lines, i gets squashed. After partially locking the directory, i
is guaranteed not to get squashed due to any type of local
conflict.
Step 2. HADES detects any conflict on local data between
i and a remote transaction. For this, the hardware takes
each of the directory lines whose WrTX ID tag (Module
2 ) matches i, and checks them for membership in all the

RemoteReadBFj,k,.. and RemoteWriteBFj,k,.. in the NIC of
Node x (Module 4a ). If a match is detected, a squash is
sent to the conflicting remote transaction. Section V-C shows
the hardware structures proposed to easily obtain the directory
lines whose tag matches a certain WrTX ID, and the structures
proposed to check for BF membership.
Step 3. HADES requests the commit of i in remote nodes. For
this, the local NIC sends an Intend-to-commit RDMA message
to all remote nodes {y, z...} involved in the transaction,
passing the range of addresses homed in the corresponding
node that were written by i. On reception of the message, such
nodes will inititate the commit of i by performing the actions
that will be described below. If the operations are successful,
the nodes will return an Ack to i. When x’s NIC has received
all Acks, i cannot be squashed anymore.

Before i receives all the Acks, however, i can still receive
squash messages, which will result in the squash of i and the
notification of it to all the nodes involved in the transaction.
We explain this case later.
Step 4. Since i is now free of squashes, it clears i’s local
speculative state. Specifically, HADES finds all the lines with
i’s WrTX ID tags in the local directory (Module 2 ) and
clears their tag.
Step 5. The NIC in x sends a Validation RDMA message to
all the remote nodes involved in the transaction, asking them
to clear i’s remote state. The message includes i’s updates to
the data homed in the corresponding remote node, if any. The

receiving nodes clear RemoteReadBFi and RemoteWriteBFi

in their NIC (Module 4a ) and push the updates to their local
memory or LLC.
Step 6. As the Validation messages are sent, i unlocks the
local directory (Section V-B) and clears LocalReadBFi and
LocalWriteBFi (Module 3 ). All of i’s state has disappeared.
b) Actions in Nodes {y, z...}. Recall that remote nodes {y,
z...} receive the Intend-to-commit message from i, with the
addresses of data homed in those nodes that i wrote, if any.
Each of the nodes, say y, performs five steps (Table II):
Step 1. To ensure correctness, the hardware attempts to
partially lock y’s directory for i. The operation involves using
RemoteReadBFi and RemoteWriteBFi (Module 4a ) to tem-
porarily and selectively block access to lines in y’s directory
that are encoded in these Bloom filters. If the hardware fails to
lock the directory, a squash is sent to i. After partially locking
the directory, i is guaranteed not to get squashed due to any
type of conflict in Node y.
Step 2. HADES detects any conflict on y’s local data between
i and any transaction local or remote to y. For this, the
hardware takes each address written by i that is homed in y and
checks for membership in: (i) all other RemoteReadBFj,k,..

and RemoteWriteBFj,k,.. in y’s NIC (Module 4a ) and (ii)
all LocalReadBFl,m,.. and LocalWriteBFl,m,.. in y (Module
3 ). If a match is detected, a squash is sent to the transaction

conflicting with i.
Step 3. y’s NIC sends an Ack to i in x and waits for Validation.
Step 4. On reception of the Validation plus the local updates
from i, HADES pushes the updates to y’s memory or LLC.
Step 5. y unlocks its directory for i and clears
RemoteReadBFi and RemoteWriteBFi (Module 4a ).

Figure 6 is the HADES protocol using the Figure 2 layout.
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Fig. 6: HADES protocol for distributed transactions.

Transaction Squash. The previous discussion showed that i
is squashed while trying to commit if it cannot lock the direc-
tories. It may also be squashed when a conflict with another
transaction is detected—either while i is not committing or
while i is committing but before it receives all Acks.
i can conflict with another local or a remote transaction on

local or remote data. A conflict with another local transaction
j on local data is detected eagerly when i attempts to write
to a line that has been read or written by j, or i attempts to
read a line that has been written by j. A conflict with a local
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transaction j on remote data or with a remote transaction k
on local or remote data is detected when the first transaction
of the two commits. Finally, i is also squashed when a line
written by i is evicted from the LLC.

HADES supports context switches in a transaction without
squashing it: on a context switch, the Recorded RD and
Recorded WR bits in the private caches (Module 1 in Fig-
ure 5) are cleared, but the WrTX ID tags in the LLC (Module
2 in Figure 5) remain. A read or write to a private cache line

with a cleared Recorded RD or Recorded WR bit, respectively,
is a cache miss. After the access, the corresponding bit is set.
Fault-Tolerance and Durability. Since this topic requires
extensive discussion that is beyond what we can cover, we
only outline our approach. HADES can attain fault-tolerance
by replicating variables in one or multiple nodes [34]. This
requires extending the protocol so that a write operation now
creates messages that update the replicas in other nodes [38].
The update of these replicas needs to be completed by the
time the transaction commits. Also, to ensure durability, these
updated replicas need to be persisted to SSDs, HDDs, or NVM
by the time the transaction commits.

The process to update or persist one or more of these
replicas can fail—e.g., a message can get lost or a memory
module may fail. These events are detected and handled
correctly by leveraging HADES’ two-phase commits (like
FaRM). Specifically, the node with the committing transaction
first sends the Intend-to-commit to all the nodes with replicas.
Each of these nodes updates the replica and persists it in a
temporary durable storage before responding with an Ack.
When the initiator receives all the Acks, it knows that the
transaction has succeeded and sends a Validation to all replica
nodes (so they can move their replica from the temporary
durable storage to a permanent one). If, instead, at least one
of the replicas does not return an Ack, the initiator sends an
abort message to all replica nodes and the transaction fails.

B. Hardware Primitive to Support Atomicity

For correct operation, while transaction i is committing, no
other transaction should perform accesses to addresses that
conflict with i’s accesses. To ensure this capability, HADES in-
troduces a hardware primitive that allows i to partially lock the
directory, conservatively preventing other transactions from
performing conflicting accesses. As a transaction i proceeds
to commit, it first invokes such primitive.

The idea is to copy the Read and Write BFs of i to a Locking
Buffer next to the directory (Figure 7). Then, every write
that accesses the directory/LLC is checked for membership
in the Read and Write BFs, while every read is checked for
membership in the Write BF. If any of these checks is positive,
the access is denied and needs to retry. Otherwise, the access
proceeds as usual. Note that these checks are performed in
parallel with the directory/LLC tag check.

In the HADES protocol, when transaction i tries to com-
mit, it first locks its local directory with LocalReadBFi and
LocalWriteBFi, and then the directory in each relevant remote
Node y with RemoteReadBFi and RemoteWriteBFi. Note that

WrTX_ID Dir/LLC Tags LLC Data Array

i

WR 
BFs

RD 
BFs

Address

Bloom 
filter check

LLC Access

Hit in LLC? Present in BF?

Hit in LLC && not present 
in BFs. Access LLC

Miss in LLC && not present in 
BFs. Send to main memory

Present in a 
BF. Retry

j

ji

Locking 
Buffers

Fig. 7: Partially locking the directory by transactions i and j
using their Bloom filters (BFs).

blocking access to the directory/LLC is enough. There is no
need to block access to the private cache hierarchies because
every first write and first read of a transaction to a line needs
to propagate to the directory/LLC to check and (for writes)
set the WrTX ID tag. The purpose of the Recorded RD and
WR bits in Module 1 of Figure 5 is to filter the subsequent
accesses.

At a given node, multiple transactions can commit at a time
if they do not have conflicts. To support this case, as shown in
Figure 7, our hardware has multiple Locking Buffers to store
the BFs of multiple committing transactions. To see how it
works, consider when transaction i wants to commit in Node
x and finds that j is already partially locking the directory.
i’s first step is to generate the list of cache line addresses it

wrote. Generating such list is easy. If x is a remote node for i,
then the list is available in the just-received Intend-to-commit
message. If x is the local node for i, the list is obtained from
the directory/LLC’s WrTX ID tags with the hardware that will
be described in Section V-C.

Once the list of write addresses is available, the addresses
are checked for membership in the Read and Write BFs of
j. If there is a match, the two transactions conflict and i is
squashed—they cannot both commit concurrently. Otherwise,
i’s BFs are loaded into the second buffer of Figure 7, ef-
fectively adding a second partial lock to the directory. The
BFs loaded are RemoteReadBFi and RemoteWriteBFi, or
LocalReadBFi and LocalWriteBFi, depending on the case. At
the end of commit, the unlock operation clears the Locking
Buffer in the local node and in any relevant remote nodes.

This primitive is also used by HADES to avoid checking
for read atomicity when a transaction performs a read that
covers multiple cache lines (Row 3 of Table I). In this case, the
hardware hashes the addresses of the multiple lines into one of
the read BFs of the Locking Buffers. Any concurrent write that
tries to access one of these lines stalls in the directory/LLC
while the reads are in progress.

The accesses to the Locking Buffers do not impact the
critical-path of LLC accesses. The LLC and each individual
Locking Buffer are accessed in parallel—there is no serializa-
tion of Locking Buffer access. Accessing the LLC involves
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accessing the large tag array, performing tag comparison,
going through the multiplexer, and detecting the hit. In parallel,
we hash the address and access a BF.

C. Other Hardware Primitives

HADES uses two more hardware primitives that operate on
BFs: one detects membership of an address in a BF; the other
quickly finds the lines in the directory/LLC that have been
written by a given transaction ID. Detecting membership of
an address in a BF is a well-known operation that involves
hashing the address and then checking if the resulting set bits
are in the BF [8].

Identifying the set of lines in the LLC that have been written
by a given transaction is needed in three operations. The first
one is a transaction squash: all the LLC lines tagged with
the transaction’s WrTX ID are identified and invalidated. The
second operation occurs at the end of a transaction commit:
all the LLC lines tagged with the transaction’s WrTX ID have
their WrTX ID cleared because they become non-speculative.

The third operation occurs when a local transaction i
commits, and needs to check for conflicts against remote
transactions {j, k, ...} on local data. Transactions {j, k, ...}
have their RemoteReadBFj,k,.. and RemoteWriteBFj,k,.. in the
NIC of the local node (Module 4a ). To check for conflicts, one
needs to first collect the set of local cache line addresses tagged
with i’s WrTX ID. Then, these addresses are checked for
membership in RemoteReadBFj,k,.. and RemoteWriteBFj,k,...

Note that the opposite case, where a committing remote
transaction j needs to check for conflicts against a local
transaction i on local data is easier: we already have a list
of local line addresses written by j: they are included in the
Intend-to-commit message received from the node on which j
runs (Table II).

To collect the set of lines written in the LLC by a trans-
action, we organize the write BF in the following way. We
logically divide it into two sections: WrBF1 and WrBF2.
WrBF1 is filled by hashing addresses using a conventional
hash function (e.g., CRC [52], [68]); WrBF2 is filled by taking
the LLC index bits of addresses and applying modulo WrBF2
size. As a result, each bit of WrBF2 corresponds to a few sets
in the LLC (e.g., 4 or 8) and, if the bit is set, it tells that
WrBF2 has an address that maps to such sets. An example is
shown in Figure 8. In the figure, the WrBF2 has 4 bits, and
the LLC has 8 sets. Hence, if bit 2 of WrBF2 is set, it means
that WrBF2 has at least a line that maps to sets 2 or 6.

With this BF design, address insertion in the BF and
membership detection work as usual. However, this design
allows fast, parallel detection of the LLC lines tagged with
a given WrTX ID. As shown in Figure 8, each set bit in
WrBF2 enables a group of LLC sets. The enabled sets compare
an input thread ID (TID) with all the WrTX ID tags of
all their ways. (The figure uses TID rather than WrTX ID).
Once the matches are found in parallel, retrieving the address
tags does not consume excessive time, since the number of
matches is typically modest—around 5 for our workloads.
These addresses are the ones written by the TID transaction.
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Fig. 8: New write BF design to quickly identify the lines in
the LLC written by a given transaction. The figure uses TID
next to the tag rather than WrTX ID for simplicity.

D. HADES-H: A Hybrid Protocol

To help integrate HADES more easily into current hardware,
we also propose a simplified design called HADES-Hybrid
(HADES-H). It minimizes the hardware changes to the pro-
cessor and uses software for some of the protocol operations.

The idea is to support the local operations in software,
like in SW-Impl (Section III), and the remote operations in
hardware, like in HADES. To support remote operations,
the NIC has the same hardware as in HADES. Since the
local operations are in software, the processor does not have
local Bloom filters or special tags in caches or directories.
Of the hardware structures in Figure 5, HADES-H only has
Modules 4a and 4b ; the rest of the modules are eliminated.
However, for efficiency, HADES-H retains the hardware prim-
itive that partially locks the directory/LLC (Section V-B). With
this design, nearly all the changes are concentrated in the NIC.

During transaction execution, remote reads and writes are
tracked in the NIC hardware at cache line granularity like
in HADES. However, local reads and writes are tracked and
recorded in software at record granularity in Read and Write
sets like in SW-Impl (Section III). For this reason, data records
are augmented as in Figure 1. Moreover, conflicts on local
data are not detected eagerly by comparing directory tags.
Instead, they are detected in software as in SW-Impl, during the
validation phase before the commit: the software re-reads from
local memory all the local records that exist in the transaction’s
Read and Write sets and checks that the versions have not
changed due to an intervening write. Note that the Write set
is also checked because local operations are executed at record
granularity. We call this process the Local Validation.

At commit time, the operations of Table II are followed
with some modifications. When a local transaction i attempts
to commit, the software passes the addresses of all the local
records read or written by i to the local NIC. The NIC
uses them to build the equivalent of a LocalReadBFi and
LocalWriteBFi for i. Then, these BFs are placed in one of the
Locking Buffers of the node to partially lock the directory.
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If locking is unsuccessful, i is squashed. Otherwise, the com-
mit proceeds as in HADES: the NIC checks LocalWriteBFi

against the NIC’s BFs to identify L–R conflicts, and then
initiates the remote commit process in all other nodes involved
in the transaction.

The remote commit process in a remote Node y starts like
in HADES. However, after the hardware succeeds in partially
locking y’s directory for i, and has checked for conflicts
between i and other remote transactions in y, it cannot check
for conflicts between i and local transactions in y. The reason
is that local transactions do not have BFs. Hence, y will
return an Ack to i without checking for conflicts with local
transactions. When Core i receives all the Acks, it invokes
software to perform the Local Validation of transaction i. If
the local validation fails, i is squashed; otherwise, i merges
its local updates to local memory or LLC, and terminates the
commit transaction as in HADES.

When local transactions in nodes such as y attempt to
commit, they will perform their Local Validation. If they had
a conflict with transaction i, they will discover it at that time
and will squash themselves.

Overall, HADES-H eliminates most of the processor hard-
ware at the cost of adding software overhead.

VI. ADDITIONAL CONSIDERATIONS

Protocol Deadlock and Livelock Issues. The HADES proto-
col does not deadlock or livelock. On data conflicts, transac-
tions are squashed and restarted. When two local transactions
conflict on local data, the second conflicting access eagerly
triggers a squash of the transaction that issued it. When at
least one of the conflicting accesses is remote, the conflict
is resolved lazily at commit time. The first transaction to
commit detects the conflict and squashes the other. When two
transactions conflict in multiple nodes on remote data, it is
possible that both transactions get squashed. Also, recall that
a transaction also gets squashed when it attempts to partially
lock a directory and fails because there is already a partial
lock that conflicts with it.

A transaction may be repeatedly squashed. To avoid live-
lock, HADES uses the same strategy as FaRM. Specifically,
when a transaction is squashed more than a certain number of
times, it stops using an OCC protocol. Instead, it first locks
all data that it will need (i.e., it gets all permissions) and then
executes the transactional code.
Filter Bits in the Private Caches. Recall that the private
caches (L1 and L2) have filter bits (Module 1 in Figure 5)
to avoid the extra traffic to the LLC on read or write requests
to addresses that were previously read or written by the
transaction. On a context switch, these bits are cleared, to
guarantee that accesses to these cache lines by the incoming
thread will first go to the LLC for conflict detection. This will
correctly identify conflicts between transactions executing on
the same core. If the core supports SMT, then the filter bits
are augmented with a TX ID so that accesses from different
transactions can be disambiguated.

Supporting Context Switches. We envision that, on a context
switch, the running transaction is not typically squashed. The
filter bits in the private caches are cleared, but the WrTX ID
tags in the LLC and the BFs of the outgoing thread are kept in
place, without saving them. The OS gives the incoming thread
the BFs that it was using when it was preempted during a
transaction. When threads start a transaction, they get a new
pair of BFs. If a core runs out of BFs, no new transaction can
start until another transaction completes or gets squashed.
Hardware Modifications and Scalability. Transactional-
based key-value stores and databases are key workloads. To
obtain performance beyond FaRM-like software protocols,
hardware changes such as those of HADES and HADES-H
are needed. As shown in Figure 5, HADES requires hardware
changes in the processor (Modules 1 , 2 , and 3 ) and in
the NIC (Modules 4a and 4b ). HADES-H eliminates all the
processor hardware except the mechanism to partially lock the
directory. However, it has software overheads.

HADES relies heavily on BFs, which are area- and energy-
efficient structures to quickly check for membership. They
are ideal for conflict detection in transactions. The BFs and
the cache tags are automatically set in hardware when the
processor issues reads/writes inside a transaction.

To compute the hardware needed by HADES, assume N
nodes, C cores per node, m multiplexed transactions per
core, and an average number of remote nodes accessed per
transaction equal to D. Then, each node needs m×C pairs of
BFs (read and write), each LLC line needs log2(m× C) bits
for WrTX ID, and each NIC needs m×C ×D pairs of BFs
in Module 4a plus m× C entries in the structures in 4b .

Based on the parameters of Section VII, a pair of core BFs
take 0.7KB, a pair of NIC BFs in Module 4a take 0.25KB,
and the entries for a single TX ID in Module 4b take less
than 100B. One cluster evaluated in Section VIII has N=5,
C=5, and m=2. In this case, the storage needed per node is:
7.0KB for 10 pairs of core BFs, 4 bits in the LLC tags, and
11.0KB in the NIC (for 40 pairs of BFs and 10 TX IDs in
Module 4b ).

The HADES hardware is scalable. A larger system can be
the one considered in a FaRM paper [61], where N=90, C=16,
and m=2. In this case, if we assume that D = 5, the storage
needed per node is: 22.4KB for 32 pairs of core BFs, 5 bits in
the LLC tags, and 43.1KB in the NIC (for 160 pairs of BFs
and 32 TX IDs in Module 4b ). Note that an NVIDIA NIC
currently has up to 4MB of memory and can incorporate even
more [55].

If the transaction concurrency exhausts the local BFs, we
can gracefully degrade to HADES-H during intervals, since
HADES-H needs no local BFs.

VII. EVALUATION METHODOLOGY

Modeled Architecture. We model a default cluster architec-
ture of N=5 nodes, C=5 cores per node, and m=2 multiplexed
transactions per core. Later, in a section on scalability, we
model larger machines of up to 200 cores. Each node has
64 GBs of memory and a NIC that supports RDMA. The
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architecture parameters are shown in Table III. Each core is
out-of-order, has private L1 and L2 caches, and has a shared
LLC. In the table, Find LLC Tags refers to finding all the
lines in the LLC that are tagged with a given WrTX ID
(Section V-C). The area and power of the structures are
computed with CACTI 7.0 [5] at 22nm.

TABLE III: Architectural parameters used for evaluation.

Cluster Architecture Parameters
Nodes (N) & Default: N=5 nodes, C=5 cores per node, and
cores/node (C) m=2 multiplexed transactions per core.

For scalability analysis, we try: N=10 and C=5;
N=5 and C=10; N=8 and C=25.

Core out of order, 6 issue, 2GHz
Ld-St queue; ROB 92 entries; 192 entries
L1 cache 64KB, 8-way, 2 cycles round trip latency (RT)
L2 cache 512KB, 8-way, 12 cycles RT
LLC cache 4MB/core, 16-way, 40 cycles RT
Core Bloom filters Read: 1024 bits; Write: 512 bits with CRC hashing

plus 4096 bits with cache indexing hashing.
Each pair of Rd+Wr BF: 0.7KB of storage.
Rd BF: 12.8/12.7pJ per rd/wr; 1.7mW leakage.
Wr BF: 12.8/13.1pJ per rd/wr; 1.9mW leakage.

Find LLC Tags 80 - 120 cycles typical
CRC hash function 2-cycle latency; Area: 1.9 ∗ 10−3mm2;

Dyn. energy: 0.98pJ ; Leak. power: 0.1mW
Network Parameters

Network latency 2µs RT NIC-to-NIC RDMA latency
Network Bandwidth 200Gb/s
NIC Bloom filters Read: 1024 bits; Write: 1024 bits.

Each pair of Rd+Wr BF: 0.25KB of storage.
BF: 12.8/12.7pJ per rd/wr; 1.7mW leakage.

Other NIC hardware Structures per TX ID: 90B of storage
Per-Node Main-Memory Parameters

DRAM 64GB, 4 Channels, 8 Banks, 100ns read/write RT
Freq; Bus width 1GHz DDR; 64 bits per channel

We use RDMA for low-latency data transfers between
nodes without involving the remote processor, and augment
it with the operations required by HADES. These operations
include support for: (1) remote read and write operations that
need to update the NIC hardware structures, (2) Intend-to-
commit, Ack, and Validation messages of our protocol, and
(3) squashing transactions on a conflict. We model a high-end
NIC with a bandwidth of 200Gb/s [46], and up to 400 Queue
Pairs [69] for scheduling messages. The round-trip latency of
a message between two NICs is 2µs [3], [33], [46], [58]. We
model the latency of adding elements to the BFs, checking for
conflicts, and using BFs to partially lock the directory.
Modeling Approach. We use the SST simulator [56], Pin
[44], and the DRAMSim2 memory simulator [57]. With Pin,
we collect instruction traces for a given number of cores pro-
cessing read and write client requests. Traces have no timing
information. Then, we take these traces and feed them to the
same number of cores of our distributed architecture. Timing
is dynamically determined by the simulator. The simulator
models all the protocol messages required for the execution,
validation, and commit phases of transactions. In the case of
transaction conflicts, when a transaction is squashed, we restart
the transaction from its first instruction and follow the same
instruction path. Records are statically distributed across all
the nodes in a uniform manner.

Configurations and Applications. We compare three con-
figurations: Baseline (the optimized implementation of the
software-only approach for distributed transactions [12], [21],
[71] that we called SW-Impl in Section III), HADES, and
HADES-H (which uses software for local operations and hard-
ware for remote operations). We use three distributed transac-
tional applications and four key-value stores. The transactional
applications are TPC-C [66], TATP [62], and Smallbank [4],
[63]. TPC-C is an OLTP benchmark that simulates an order-
processing application. We fill the TPC-C warehouses with
10M items. TPC-C is write intensive and has many record
accesses per transaction at a fine granularity. TATP is an OLTP
benchmark that simulates a telecommunication database with
1M subscribers. It has 80% read and 20% write requests, and a
small number of requests per transaction. Smallbank [4], [63]
is a write-intensive OLTP benchmark (46% write requests) that
simulates bank account transactions on 5M accounts.

The key-value stores are HashTable (HT), Map, B-Tree [26]
and B+Tree [7]. We evaluate them with Yahoo! Cloud Serving
Benchmark (YCSB) [15] running write-intensive workload-A
(wA) (50% writes, 50% reads) and read-intensive workload-B
(wB) (5% writes, 95% reads), using a zipfian distribution. We
fill the key-value stores with 4M keys. Like prior work [17],
[19], [23], we select transactions to be 5 client requests.

In our experiments, we warm up the architectural state by
running 1B instructions before simulating 25B instructions.

VIII. EVALUATION

We first assess HADES’ gains in throughput and latency re-
duction, and then characterize the HADES structures, perform
a sensitivity analysis, and consider HADES’ scalability.

A. Improving Transaction Throughput

Figure 9 shows the transaction throughput in committed
transactions per second of our applications with Baseline,
HADES-H, and HADES, normalized to Baseline. We see
that both HADES and HADES-H substantially boost the
throughput over the state-of-the-art software-based Baseline.
On average, HADES-H and HADES attain 2.3× and 2.7×
higher throughput, respectively.

HT-w
A

Map-w
A

BTree-w
A

B+Tree-w
A
HT-w

B

Map-w
B

BTree-w
B

B+Tree-w
B
TATP

TPC-C

Smallb
ank

Geomean
0.0

1.0

2.0

3.0

4.0

5.0

6.0

T
h
ro

u
g
h
p
u
t

9
.4Baseline HADES-H HADES

Fig. 9: Transaction throughput normalized to Baseline.

HADES delivers very high throughput for TPC-C. The
reason is that a typical TPC-C transaction issues many small
requests (about 13.5), while executing relatively few instruc-
tions. As a result, the software overheads of these transactions
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in Baseline are high. In particular, managing the Read and
Write sets, ensuring read atomicity, and reading the whole
record in an access adds significant performance overheads.

For the key-value stores running with YCSB, HADES
achieves higher gains for the write-intensive wA than for
the read-intensive wB. This is because, in Baseline, writes
have the overheads of fetching the record before writing
and of updating the record version. In constrast, read-only
transactions in Baseline do not need to lock any records. Such
transactions validate the read set for conflicts by re-reading
the version during Validation; if no conflict is detected, the
transaction commits. This saves a network round-trip to lock
remote records, and the execution time to lock local records.

We observe the same behavior for the read-intensive TATP
and write-intensive Smallbank workloads.

B. Reducing Transaction Latency

Figure 10 shows the mean latency of the transactions for the
different applications in each of the configurations, normalized
to Baseline. We break down the transaction latency into
the Execution, Validation, and Commit phases. HADES-H
and HADES only have Execution and Validation categories.
Compared to Baseline, HADES-H and HADES reduce the
mean transaction latency by 54% and 60%, respectively.
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Fig. 10: Mean transaction latency normalized to Baseline.

In Baseline, Execution accounts for most of the latency.
HADES mitigates much of the overheads during this phase.
HADES does not manage Read/Write sets, check the atomicity
of read operations, or operate at record granularity. As a result,
HADES avoids many redundant reads and writes in Baseline,
and all the checking and bookkeeping overheads shown in the
first, third, and fourth rows of Table I.

Validation is the second highest contributor to the Baseline
latency. The processor performs conflict detection by re-
reading the record versions. Moreover, the processor serializes
the locking of the written records with the re-reading of the
record versions for reads. In contrast, HADES spends less
time in these operations because the BFs perform fast conflict
detection. In addition, after a node receives the “Intend-to-
commit” message, the node processes both writes and reads
at the same time.

Baseline spends time in Commit to update record versions,
apply the updates, and unlock records. In contrast HADES
spends little time in these operations. Indeed, HADES lacks

record versions. Also, HADES offloads multiple operations
to the NIC and other hardware: (i) sending the updates to
the remote nodes at commit, (ii) making the local updates in
the LLC non-speculative, and (iii) unlocking the directory and
clearing the BFs.

Figure 11 shows the 95th percentile tail latency of the
transactions for the different applications in each of the
configurations, normalized to Baseline. We see that the tail
latency follows the same relative trends as the mean latency.
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Fig. 11: Tail (95th %) latency normalized to Baseline.

C. Characterizing HADES

We characterize two aspects of the HADES hardware. The
first one is how frequently do transactions get squashed due
to evictions of their modified lines from the LLC. Recall that,
because HADES uses Bloom filters, evicting a non-modified
line does not cause a squash. For this experiment, we run
the applications forcing every request in the transactions to
target data in the local node. This setting maximizes the
pressure we put on the LLC. In addition, we modify the
cache replacement policy to avoid evicting from the cache
a line modified by an active transaction if there are lines in
the same set that are not speculatively modified. With this
setup, we find that, on average, only 0.1% of the executed
transactions need to be squashed because of LLC evictions.
The percentage of these squashes is the highest in TPC-
C, where 0.7% of the transactions are squashed. Note that
this is a small percentage, and the impact is negligible when
transactions are also accessing remote nodes. Consequently,
we conclude that squashes due to cache line evictions are
insignificant for our workloads.

The second experiment characterizes false positive conflicts
in HADES’ Bloom filters. We find that, of all the conflict
detection operations in HADES-H and HADES, 0.02% and
0.04% of them, respectively, result in false positive conflicts.
These rates are small in part because individual transactions
read and write from different nodes and, as a result, use multi-
ple Bloom filters—each of which is lightly used. Specifically,
a transaction at most reads 76 cache lines and writes 40 cache
lines in our applications, and these lines are spread across the
nodes of the system.

To further assess the effectiveness of the Bloom filters, we
consider the worst-case scenario where all the requests of a
transaction target a single node. This leads to an average false

11



positive rate of about 2% for a 1-Kbit Bloom filter. We also
perform a sensitivity analysis of the false-positive rate of the
Bloom filters we used for our evaluation as a function of
the number of cache line addresses inserted in the filter. The
results are shown in Table IV.

TABLE IV: Sensitivity of the false positive rate of the filter
(%) to the number of cache lines inserted in the filter.

Bloom Filter Size 10 lines 20 lines 50 lines 100 lines
1Kbit 0.04% 0.138% 0.877% 3.26%
512bit+4Kbit 0.003% 0.022% 0.093% 0.439%

From the data in this section, we conclude that our Bloom
filter designs are an efficient solution for conflict detection.
Their false positive rate is very small.

D. Sensitivity Analysis

We perform two sensitivity analyses. First, we examine the
sensitivity of HADES and HADES-H to different network
latencies. Figure 12a presents the throughput of the different
configurations for different round-trip network latencies (1µs,
2µs, and 3µs). The figure shows the throughput averaged
across all the applications and normalized to Baseline with
a 2µs network. We see that HADES increases its relative
speedup as the network latency decreases. This is because
the software overheads of Baseline become a more serious
bottleneck as the network latency decreases. Our design elim-
inates these software overheads. Hence, faster networks favor
HADES and HADES-H over Baseline even more.
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Fig. 12: Throughput for: (a) different network latencies nor-
malized to the 2µs Baseline and (b) different fraction of local
requests normalized to 20% local Baseline.

Next, we perform a sensitivity analysis on the fraction of
requests in a transaction that target the local node. Figure
12b shows the throughput of the different configurations for
different fractions of local requests (80%, 50%, and 20%).
The throughput is averaged across all the applications and
normalized to Baseline with 20% local requests—which is
close to the configuration we used in all the previous experi-
ments. We see that, as the fraction of local requests increases,
HADES achieves relatively higher speedups. However, the
relative speedups of HADES-H decrease rapidly as we in-
crease the fraction of local requests. This is because HADES-
H uses a software-based approach for local operations, which
introduces sizable software overheads.

Overall, we conclude that HADES is the best solution across
various scenarios, and HADES-H performs relatively better
when remote accesses are frequent.

E. Scalability Analysis

To quantitatively assess HADES’ scalability, we consider
three larger machines (Table III): 10 nodes with 5 cores per
node; 5 nodes with 10 cores per node; and 8 nodes with 25
cores per node. In the last two machines, we run multiple
applications at a time, to model a space-shared environment.

For the machine with N=10 nodes with C=5 cores per
node, Figure 13 shows the throughput for different workloads.
Comparing Figure 13 to Figure 9, we see that HADES’ speed-
ups over Baseline are similar.
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Fig. 13: Throughput normalized to Baseline for N=10, C=5.

In a second experiment, we model N=5 nodes with C=10
cores each. In each node, one workload uses 5 cores and
another the other 5 cores. Figure 14 shows the throughput
for different mixes of two workloads. Comparing Figure 14
to Figure 9, it can be seen that the resulting mix obtains
a throughput that is approximately the average of the two
separate workloads. The workloads have relatively small in-
terference because the LLC is fairly large and even same-
application threads do not share many lines.
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Fig. 14: Throughput of mixes of two workloads normalized to
Baseline for N=5 nodes with C=10 cores each.

Finally, we model a cluster with N=8 nodes of C=25
cores each, for a total of 200 cores. We run experiments
with different mixes of four workloads from the usual set.
Table V shows the mixes used. Figure 15 shows the resulting
throughput for each of the mixes and each of the configurations
normalized to Baseline. While there is variations across the
mixes, we see that HADES delivers the highest throughput.
On average across mixes, HADES and HADES-H deliver
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2.9× and 2.1× higher throughput, respectively, than Baseline.
Overall, we conclude that HADES scales to large machines.

TABLE V: Mixes of workloads used in Figure 15.

mix1 HT-wA, BTree-wA, Map-wA, TATP
mix2 Map-wA, TATP, B+Tree-wB, Map-wB
mix3 B+Tree-wA, Map-wB, Smallbank, BTree-wB
mix4 Smallbank, BTree-wB, TPC-C, TATP
mix5 TPC-C, HT-wB, Smallbank, BTree-wA
mix6 B+Tree-wB, Smallbank, TPC-C, TATP
mix7 TPC-C, TATP, BTree-wB, Map-wA
mix8 BTree-wB, Map-wA, HT-wA, BTree-wA
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Fig. 15: Throughput of mixes of four workloads normalized
to Baseline for N=8 nodes with C=25 cores each.

IX. RELATED WORK

Hardware Transactional Memory (HTM). HADES builds
on and uses ideas from the abundant HTM literature [30], [31].
Specifically, HADES uses Bloom filters for conflict detection,
which have been used in HTM designs (e.g., [10], [59], [75]).
Garzaran et al. [25] provided a taxonomy of the different orga-
nizations of speculative buffers, which has inspired HADES’
buffering of speculative state. HADES buffers the speculative
state in the LLC rather than in the L1; past HTM work has also
stored the speculative state in the LLC (e.g., the work by Joshi
et al. [32]) or even allowed the speculative state to overflow
into main memory (e.g., Kiln [78] or DudeTM [43]). Many of
these works extend the cache tags with additional state, like
HADES—e.g., Kiln [78] extends the tags for the use of NVM.

The main novelty of HADES over past HTM work is that
HADES is the first design for hardware-only transactions in a
distributed system. HADES is also the first to utilize the NIC
for remote conflict detection. Further, HADES allows RDMA
operations within a hardware transaction without aborting,
with the use of Bloom filters in the cores and NIC. Two related
designs are DrTM [72] and DrTM+R [12]. DrTM first locks
all the remote records that a transaction will use and fetches
them locally. Then, it uses HTM locally to execute the trans-
action atomically. Instead, HADES uses OCC to execute the
transaction with remote data and needs no a-priori knowledge
of the records accessed in the transaction. DrTM+R extends
DrTM to use OCC in software. Its mechanism for conflict
detection is like FaRM. In addition, inside the distributed
software transaction, it uses HTM to guarantee the atomicity
of local reads and writes. Instead, HADES executes both local
and remote operations in a hardware transaction.

Software Optimizations for Distributed Transactions. To
optimize the performance of distributed transactions, the sys-
tems community has developed many software-based sys-
tems [18], [21], [22], [33], [73], [74]. An influential design
is FaRM [21] and its extension [22], which utilize RDMA
primitives to accelerate remote data accesses. Later, Opac-
ity [61] advanced the FaRM implementation by enabling strict
serializability for all transactions using global timestamps.
However, all these schemes are software-based and are limited
by the data access protocols provided by the existing network
and memory devices. They can suffer significant overheads.
Distributed Transactional Protocols. Researchers have re-
examined distributed transactional protocols by exploring
advanced features [12], [33], [35], [50], [64], [70], [71],
[77]. DrTM [72] and DrTM+R [12] are discussed above.
DrTM+H [71] uses both one-sided and two-sided RDMA
operations. FaSST [33] replaces one-sided RDMA with fast
RPCs using two-sided unreliable datagrams, based on the
observation that packet drops happen extremely rarely in
modern RDMA networks. PRISM [9] proposes four new
RDMA primitives for distributed systems without modifying
the underlying hardware. Different from these works, HADES
offloads many of the transactional operations to hardware,
minimizing software overhead. HADES also develops three
new RDMA operations for efficient distributed transaction ex-
ecution. Also, unlike these works, HADES focuses on acceler-
ating the protocol of distributed transactions with SmartNICs.

Network Support for Distributed Systems. Some pro-
posed designs exploit the compute capability of network
devices to accelerate conventional host-based distributed sys-
tems and services [20], [54], such as key-value stores [40],
RPC [39], remote storage accesses [36], [41], network func-
tions [53], [65], and distributed file systems [37]. Xenic [60]
takes advantage of the SmartNIC to reduce the data lookup
overhead for distributed software transactions. Finally, al-
though not related to transactions, SABRes [16] proposes
a hardware engine that monitors local coherence traffic to
guarantee that remote read operations are atomic.

X. CONCLUSION

This paper presented HADES, a new distributed transac-
tional protocol that uses new Bloom filter-based hardware and
SmartNIC support to provide fast distributed transactions. We
also proposed a cheaper, hybrid hardware-software implemen-
tation of HADES called HADES-H. Compared to a state-of-
the-art software-only distributed transactional system, HADES
and HADES-H increase the average throughput of distributed
transactional workloads by 2.7× and 2.3×, respectively.
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