
MINOS: Distributed Consistency and Persistency
Protocol Implementation & Offloading to SmartNICs

Antonis Psistakis, Fabien Chaix�, and Josep Torrellas

University of Illinois Urbana-Champaign, USA �FORTH, Greece

{psistaki, torrella}@illinois.edu, chaix@ics.forth.gr

Abstract—To enable high-performance, programmable, and
resilient distributed systems, Distributed Data Persistency (DDP)
models provide specific data consistency and persistency guar-
antees. Since these models target leaderless systems (i.e., systems
where any node can initiate requests), they deliver high perfor-
mance and are scalable. However, they are also more complex.

In this paper, we develop detailed distributed algorithms for
DDP models. They support Linearizable consistency with five
different types of persistency. We call these algorithms MINOS-
Baseline (MINOS-B) and evaluate them on a 5-node distributed
machine. Additionally, to improve performance, we also redesign
the algorithms to offload them to a new SmartNIC architecture.
The resulting system is called MINOS-Offload (MINOS-O). The
MINOS-O SmartNIC introduces optimizations such as selec-
tive data coherence in hardware between host and SmartNIC,
message batching, and message broadcasting. Our evaluation
shows that offloading is very beneficial. It substantially reduces
request latency and increases request throughput for various
workloads and number of nodes. For example, compared to
MINOS-B, MINOS-O reduces the average end-to-end latency of
two microservice functions by 35%.

I. INTRODUCTION

A key component of modern cloud infrastructure is dis-

tributed storage systems, including key value stores, file sys-

tems, and databases [6], [11], [14]. To satisfy user needs,

these systems must provide high performance, availability, and

resilience to failures [2], [15], [16], [45]. To achieve these

goals, they replicate data across multiple nodes. Such data

replicas improve performance and allow the system to continue

operation even if some of the machines become unavailable.

However, supporting replicas requires the system to ensure

their consistency when updates occur. For this purpose, dif-

ferent distributed data consistency models exist that describe

when updates need to become visible to the replica nodes.

Still, consistency models by themselves do not guarantee the

resilience of the system, as they are not concerned with system

recovery on a fault. To support recovery, data need to be

persisted to non-volatile media. Memory persistency models

describe when updates need to be persisted [30], [46].

Over the years, several distributed consistency models have

been proposed, including Sequential [4], Linearizable [4], [13],

[22], [27], [59], Eventual [60], Causal [5], [37], [38], and

Transactional [15], [16], [62]. These models differ in the

guarantees of replica consistency that they provide to the

user, and offer different trade-offs between performance and

programmer intuition. Similarly, several persistency models

have been proposed, including Synchronous [30], Strict [46],

Read-Enforced [19], Eventual [30], and Scope [30], [34].

Persistency models differ in the data persistency guarantees

that they provide to the user, and offer different trade-offs

between performance and durability. Finally, Distributed Data

Persistency (DDP) models [30] combine consistency and per-

sistency models, by introducing a unified framework for data

consistency and persistency.

The operation of different DDP models was described by

Kokolis at al. [30] at a relatively high level. An important

contribution of the DDP models is that they target Leaderless
distributed systems [27]. These are systems where any node
in the system can initiate read or write requests. Compared

to leader-based systems, where all write requests need to be

initiated by one leader node, leaderless systems deliver higher

performance and are scalable. However, they are conceptually

more involved. The DDP models have not been fleshed out in

detailed algorithms.

In distributed computing systems, network interface cards

(NICs) are responsible for the communication between servers

and the network [7], [10], [28], [47], [49]. Traditionally, they

are implemented as a PCIe card, and come with limited

processing capabilities. However, recently, a new class of NICs

with substantial processing and storage capabilities called

SmartNICs have become available. SmartNICs have been used

to offload operations such as packet processing, encryption,

and compression from the CPU [35], [41], [48]. They could

potentially offload DDP model protocols.

To improve the performance, availability, and durability of

distributed systems, this paper develops detailed distributed

algorithms for DDP models and, additionally, offloads their

operation from the CPUs to SmartNICs. Specifically, we take

the DDP models outlined in Kokolis et al. [30] and develop

detailed leaderless algorithms. We focus on Linearizable con-

sistency with Synchronous, Strict, Read-Enforced, Eventual, or

Scope persistency. We call these algorithms MINOS-Baseline
(MINOS-B) and evaluate them on a 5-node distributed ma-

chine.

Then, we redesign the algorithms to offload them to a

new SmartNIC architecture that we introduce. The SmartNIC

architecture introduces several optimizations, including selec-

tive data coherence in hardware between host and SmartNIC,

message batching, and message broadcasting. The resulting

DDP algorithms and SmartNIC architecture are called MINOS-
Offload (MINOS-O).

An evaluation of MINOS-O using simulations shows that

937

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

2378-203X/24/$31.00 ©2024 IEEE
DOI 10.1109/HPCA57654.2024.00076

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Hi

gh
-P

er
fo

rm
an

ce
 C

om
pu

te
r A

rc
hi

te
ct

ur
e

(H
PC

A)
 |

 9
79

-8
-3

50
3-

93
13

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
HP

CA
57

65
4.

20
24

.0
00

76

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

offloading is very beneficial. It substantially reduces request

latency and increases request throughput for various workloads

and number of nodes. For example, compared to MINOS-

B, MINOS-O reduces the average end-to-end latency of two

microservice functions by 35%. We also evaluate the impact

of individual optimizations.
The contributions of this paper are:

• The leaderless MINOS-B algorithms of several DDP models

and their evaluation.
• The MINOS-O NIC-offloaded algorithms and SmartNIC.
• A comparative evaluation of the MINOS-B and MINOS-O

algorithms.

II. BACKGROUND

A. Consistency and Persistency Models
Distributed storage systems keep copies of a record (i.e.,

replicas) in multiple nodes. How these replicas are kept

consistent is given by the consistency model. Specifically, on

a write, strict or strong consistency models update the replicas

eagerly, while relaxed or weak models update them lazily—

potentially allowing reads to get stale values. Moreover, how

updates to these different replicas in volatile memory are

made persistent to durable storage is given by the persistency
model. Specifically, when a replica is updated, strict or strong

persistency models persist it eagerly, while relaxed or weak

models persist it lazily—risking that a machine failure wipes

out the updated value.
A Distributed Data Persistency (DDP) model [30] combines

a specific consistency model and a specific persistency model.

It is defined by the supported Visibility and Durability points

of updates. The Visibility point of an update is the time when

the update becomes available for consumption, and is given by

the consistency model; the Durability point is the time when

the update is made durable and, hence, cannot be wiped out

by a failure, and is given by the persistency model. One can

have a DDP model that combines strong consistency and weak

persistency, or any combination of them.
Kokolis at al. [30] describe various DDP models at a

relatively high level, expressing the operations and messages

that are needed, but not the detailed algorithms that need to be

running on a real machine to support them. The DDP protocols

assume an environment where: (i) for simplicity, a record is

replicated in all the nodes rather than in a subset of them;

and (ii) importantly, read and write requests can be initiated

from any node rather than from a single, leader node. The

latter assumption makes the protocols Leaderless, which are

more general, deliver higher performance, and are scalable—

although they are more involved.
In this paper, we focus on DDP models that combine one

important consistency model (Linearizable [13], [22], [27],

[59]) with one of five persistency models (Synchronous [30],

Strict [46], Read-Enforced [19], Eventual [30], and Scope [30],

[34]). Space constraints prevent analyzing more models.

Messages in DDP Models. Following the Hermes proto-

col [27], the node that initiates the request is called Coordina-
tor, while all the others are called Followers. Consider a write

request to a record. The Coordinator issues an invalidation

(INV) message to all the Followers. The message carries

the new data but it initially invalidates the previous version

of the record in all the Followers. The Followers respond

with an acknowledgment (ACK) message to the Coordinator,

confirming that the update is performed in terms of consis-

tency, or persistency, or both. The Coordinator then sends the

validation (VAL) message to all the Followers to mark the

completion of the transaction. Depending on the consistency

and persistency model used, separate ACK or VAL messages

may be generated for consistency (ACK C, VAL C) and for

persistency (ACK P, VAL P), respectively.

Brief Model Definitions. We briefly describe the models

considered. More detailed descriptions can be found else-

where [13], [19], [22], [27], [30], [34], [46], [59].

Linearizable Consistency (Lin) enforces a total ordering of

writes to volatile state across all nodes and, additionally, re-

quires that all reads and writes be ordered by their timestamps.

It is implemented by returning to the client a write response

only when all volatile replicas have been updated.

Synchronous Persistency (Synch) mandates that, in a node,

a write be persisted when the local volatile replica is updated.

When we combine <Lin, Synch>, the response of a write is

returned to the client as soon as all the replicas have been

updated and persisted. Implementation-wise, this is when all

the ACKs are received by the Coordinator.

Read-Enforced Persistency (REnf) mandates that, on a write,

all the updated replicas be persisted by the time any of them

is read. When we combine <Lin, REnf>, the response of

a write is returned to the client as soon as all the replicas

have been updated (i.e., the Coordinator has received all

ACK Cs). Once all replicas have been updated and persisted

(i.e., the Coordinator has received all ACK Cs and ACK Ps),

the Coordinator informs all Followers (i.e., it sends VALs). On

reception of the VAL, a Follower enables reads to the record.

Eventual Persistency (Event) mandates that the updated

replicas be eventually persisted at some point in the future.

No read or write is stalled waiting for that time. When we

combine <Lin, Event>, the response of a write is returned to

the client as soon as all the replicas have been updated.

Scope Persistency (Scope) uses the notion of scopes. A

scope is a set of read and write operations. The messages in

this model are marked with an additional sc, which denotes the

scope they belong to—e.g., [INV]sc. At the end of a scope, a

client issues the [PERSIST]sc command. The model mandates

that, when the response of a [PERSIST]sc is returned to the

client, all the updates in the scope have been persisted. When

we combine <Lin, Scope>, the response to a write within the

scope returns to the client when the write has updated all the

replicas. However, the response to the [PERSIST]sc is returned

when all the writes in the scope have updated their replicas

and persisted them (i.e., the Coordinator received [ACK P]sc

for the [PERSIST]sc from all the Followers).

Strict Persistency (Strict) This is the strictest model. It

dictates that a write should be persisted in all the replica

938

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

nodes by the time the write response returns to the client—

possibly even before the replicas in the volatile memories

of the replica nodes are updated. In contrast to Synch, it

decouples consistency and persistency using two types of

acknowledgments (ACK C and ACK P). When we combine

<Lin, Strict>, the response of a write is returned to the client

as soon as all the replicas have been updated and persisted.

The combination of <consistency, persistency> places con-

straints on when a local read to a record can access the result

of a prior update (from any node) to the record. Specifically,

because of Lin consistency in all the models discussed in

this paper, it is required that the update be completed across

all nodes consistency-wise. This is known at the Coordinator

upon the reception of all consistency ACKs, and known

at a Follower upon the reception of the consistency VAL.

Further, because of the persistency model, there are additional

requirements for two of the models. Specifically, for <Lin,

Synch> and <Lin, REnf>, it is also required that the update

be completed across all nodes persistency-wise. In <Lin,

Synch>, this is known at the Coordinator upon the reception

of all ACKs, and known at a Follower upon the reception

of the single VAL; this requirement matches the consistency

one. In <Lin, REnf>, this is known at the Coordinator upon

the reception of all ACK Cs and all ACK Ps, and known

at a Follower upon the reception of the single VAL; this

requirement adds to the consistency one.

B. SmartNICs

SmartNICs are NICs with programmable logic that of-

floads some of the processing tasks from the CPU. They

have recently been introduced to improve performance. They

usually contain low-end energy-efficient computing units with

caches and an on-board DRAM. Typically, SmartNICs handle

network-related tasks or completely offload network process-

ing workloads [47], [56]. They can also offload complex tasks

such as replication and persistency [35].

III. MINOS-BASELINE ALGORITHMS

In this section, we introduce detailed algorithms for the effi-

cient implementation of the DDP model protocols outlined by

Kokolis at al. [30]. We call these algorithms MINOS-Baseline
(MINOS-B). As already mentioned, we focus on models that

combine Lin consistency with one of five persistency models.

Next, we first introduce some definitions and then describe the

protocol algorithms for writes and for reads.

A. Definitions

Our algorithms use Locks and Logical Timestamps. In

this section, we define them and describe their use. In our

description, we refer to two types of writes. A write transaction

(i.e., operation) initiated by a client is called a “client-write”.

During the transaction, there are substeps that involve updating

the local memory subsystem of a node (e.g., the last-level

cache (LLC)); we call such writes “local-writes”.

Locks. Our algorithms use two types of locks for the two

types of writes: read locks (RDLock Owner or RDLock for

short) for client-writes and write locks (WRLock) for local-

writes.

Figure 1(a) shows the metadata associated with a data

record. RDLock Owner tells whether the read lock for the

record is taken and, if so, who the read lock owner is; WRLock

tells whether the write lock for the record is taken. The other

three fields relate to the timestamps.

�������	
����
���
�

���������
�����	
��

������� ��	
���

��
��������	 ���������� ������	��������
��� ��������������

Fig. 1 – Record metadata and timestamp format.

The locks of a record are used as follows. In a given node,

if one or more threads are attempting to perform a client-write

(initiated locally or remotely) on a given record concurrently,

one of them holds RDLock Owner for the record. A taken

RDLock Owner prevents concurrent read transactions from

accessing the record.

Assume that there is a single thread that is performing a

client-write on the record. Such thread holds RDLock Owner.

During a client-write transaction, there is point when the

thread, say T1, updates the local record (i.e., it performs a

local-write). During this time, T1 must grab and hold the

WRLock to ensure that no other client-write transaction to

the same record tries to write concurrently. Once T1 finishes

the update of the local record, it releases the WRLock and

continues with the client-write operation. Once T1 completes

the client-write operation, if it still holds RDLock Owner, it

releases it.

It is possible that a second thread, say T2, wants to perform

a concurrent client-write on the same record while T1 is

executing its client-write. If T2 has a higher timestamp (i.e.,

comes later in time), our algorithm allows T2 to “snatch”

RDLock Owner from T1, by updating RDLock Owner. T1
continues execution and can even attempt and grab the WR-

Lock. However, as we will see later, T1 will not be able

to update the local record to a stale value. The benefit of

snatching RDLock Owner is that it will ensure that T2’s

completion will not be delayed by T1’s completion. T2 is the

only thread that can release RDLock Owner. When it does,

the record can be read by other threads.

Logical Timestamps. In our design, each data record in the

volatile local memory of a node keeps three logical times-

tamps [31]: volatileTS, glb volatileTS, and glb durableTS

(Figure 1(a)). volatileTS describes the record’s version in the

local volatile memory; glb volatileTS describes the record’s

global version in the machine-wide volatile memory as deter-

mined by the consistency model; and glb durableTS describes

the global version in the machine-wide non-volatile memory as

determined by the persistency model. As shown in Figure 1(b),

939

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

each timestamp is a tuple with a node identifier (node id) and

a version number.

When a node initiates a client-write, it generates a new

timestamp for the write. The timestamp’s node id is set to

the Coordinator node ID, while the version is set by reading

the volatileTS version of the record in the Coordinator node

and adding one (without updating volatileTS). The resulting

timestamp is included in a field called TSWR in all the mes-

sages sent for this client-write. Moreover, TSWR is eventually

applied to the timestamp metadata of the record in all the

nodes (including the Coordinator). Specifically, in any node,

as soon as the volatile record is updated, the volatileTS is

set to TSWR. Similarly, once the volatile record is updated

across all replicas, the glb volatileTS is set to TSWR, and

when the durable record is updated across all replicas, the

glb durableTS is set to TSWR. Note that TSWR is unique for

a write transaction.

Writes to the same record are ordered from older to newer

based on their timestamp. Given two writes, the newer one is

the one that has the higher version field or, if the versions are

the same, the one with the higher node id.

In our implementation, RDLock Owner has the same for-

mat as a timestamp. Hence, it is a tuple of <node id,

version>. When RDLock Owner is acquired, it is atomically

set to the client-write’s TSWR. When RDLock Owner is

released, it is atomically set to <-1, -1>.

Outdated Writes. It is possible that, when a Coordinator

or a Follower node is about to process a write transaction

WR1 with timestamp τ1, the volatileTS timestamp of the local

record already has a newer timestamp τ2, where τ2 > τ1. In

this case, we would like to cut WR1 short: return to the client

right away and not inform other nodes (if the local node is the

Coordinator) or return an ACK to the Coordinator right away

(if the local node is a Follower). In either case, we want to

skip updating the record’s volatile and non-volatile data.

Before we can do this, however, we need to ensure that the

new transaction WR2 that renders WR1 obsolete has reached

a correct state. There are both consistency and persistency

concerns. Consider consistency first, recalling that we are only

concerned with Lin consistency. Before cutting WR1 short, we

need to make sure that WR2 has updated the volatile record

in all the nodes and, therefore, no read will see the value

before WR2. To ensure this, the Coordinator node for WR2
must have received consistency ACKs from all the nodes in the

system, and the Follower nodes for WR2 must have received a

consistency VAL. Note that WR2 has already updated the local

volatile record (as reflected by the volatileTS). Consequently,

if the local node is the Coordinator for WR2, before cutting

WR1 short, the thread processing WR1 must spin until all

the WR2 consistency ACKs are received from all the nodes.

Similarly, if the local node is a Follower for WR2, before

cutting WR1 short, the thread processing WR1 must spin until

the WR2 consistency VAL has been received. In other words,

in both cases, the thread must spin until glb volatileTS in the

local record is updated. We define a primitive to perform this

operation called ConsistencySpin.

A similar analysis is performed for persistency issues, and

we define a primitive called PersistencySpin. For brevity, we

do not discuss the details.

We also define the primitive Obsolete, which compares the

timestamp of a client-write to the volatileTS timestamp of the

local record. If the client-write has an older timestamp, the

primitive returns true; otherwise, it returns false.

B. Protocol Algorithm for Writes

The write algorithm is similar in different persistency

models. Consequently, we describe the algorithm for <Lin,

Synch> in detail and then the differences for the rest of

the persistency models. Figure 2 shows the algorithmic steps

(Coordinator on the left side and Follower on the right side)

as well as the messages exchanged in the protocol for <Lin,

Synch>. We use a helper function called “handleObsolete”

(Lines 1-3, 23-25) to run the ConsistencySpin and the Persisten-

cySpin. We start by describing the Coordinator steps, and then

the Follower steps.

Coordinator. When the Coordinator receives a write request

WR1 for key (i.e., record) k (Line 4), a timestamp TSWR is

generated as explained before. The algorithm first checks if

WR1 is Obsolete (Line 5). If the check returns true, it means that

there is another outstanding write WR2 to the same record that

is more recent. Hence, WR1 should be skipped and execution

should return to the client. Before doing so, however, the

algorithm calls handleObsolete (Line 6), which performs the

ConsistencySpin (Line 2) and PersistencySpin (Line 3) operations.

If WR1 is not obsolete, it proceeds to perform a “Snatch

RDLock” operation on key k (Line 8), which consists of the

following: (i) if RDLock is free, WR1 grabs the lock; (ii)

if RDLock is taken by an older write, WR1 snatches the

RDLock from it; and (iii) if RDLock is taken by a younger

thread, WR1 simply continues without grabbing the RDLock.

This third case is fine because, in the presence of a younger

write, we will see that WR1 cannot create an inconsistent state.

What is important is that the RDLock be held by the youngest

concurrent WR transaction to the record at a time, and that

the owner of the RDLock is the one that later releases it.

With such arrangement, read transactions to the record are

prevented from proceeding concurrently with LLC updates,

and LLC updates always produce a consistent state. Note that

if WR1 successfully grabs the RDLock, a younger client-write

WR2 may later snatch the RDLock from WR1; as we will see,

correctness is guaranteed in all cases.

At this point, WR1 spins until it is able to grab the WRLock

of key k (Line 9). Obtaining WRLock is essential because

WR1 is about to perform a local-write to the record. Before

performing the local-write, WR1 performs a final timestamp

check (Line 10) to see if, since Line 5, WR1 has become obsolete.

If WR1 remains the latest write, the algorithm sends the

INV messages (Line 11) to all Followers and updates the local,

volatile state of the record in the LLC (Line 12). When the

local volatile state is updated, the local volatileTS (not shown)

940

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

������������ ���

	
�	�
!�!��"�

��������	��

���������������	
����
��
	����!#��"��������

��� ���

�$% 	

���
&

��
&

���

	 �$�

�$% 	

���
&

����
&

���

���

���

���

�
��
&

��
&

�
��
&
����
&

��� ���

���

���
&

��
&

���
&
����
&

���

���

���

���

���

�
��
&

��
&

�
��
&

����
&

�����
�

�	$�%� � �����

�
����
&�&�

�'%��(�$���������

	�����#����)�	*
���

��	�

�
������&�&�

������!�!	�"���	������!

� �	�������

� �'�� 	�����

�

�
�

�

��

��

��

��

��

��

���

�	�

���

���

���

��

��

�

�
�"������#��
��
��������������	
��

���
����
��	��������	�
�	�����������	��

���#��
��
���
����
��	��������	����������	��
���
��

�� ���!#��"�
������

���

�

�+%

�
�

��$�%� �����'%���

����%� �����'%���

�

�,��"�#����� ����!#��"�
����

�

��

��!���

������	���
&�&��

�����
���������� ����

���

���

���

���

�
���������� ���

�����!#��"�
������

�� ���#����)��*
���

�!��

� ��	���
&�&�

�+%

���"������#��
��

���#��
��

�� ����!#��"�
������

� � � ������!

� 	'�
 ��""��

���,"#�"�#������$�*!%!"�"#���!

���#�&��

�

#�
���������$��������	
��

����	

��	�����������	
�� 	

��

��

��

���

�
�

���

�	�

���

���

���

	
�

�

�

	��

	��

���

���

��

��	����&�&�

��!���
������	����&�&�

���������������� ���

��$�%� ���� '%���

����%� ���� '%���
�,� "!#��"#�$���%!#��"�
��
��

	�

��

���

	��

���#"������	�
���� �		�

Fig. 2 – Detailed algorithm for the <Lin, Synch> model, with the Coordinator on the left side and the Follower on

the right side. The steps in the algorithm that may change for different persistency models are highlighted.

��������	��

�����������������

 ������	
��

�
��������	

������	
�	

� ������	
��

� ����������-�����	�������.��

������	
�	

����������.������

���������� !���!�

����������""��	
�	��
� #��#��������	

���
������
���

���
������������������

���
������
���

����������������

 �����������!�"���$

�

�

���������

������

�

���������

�����������!�"���$

� ���!������-���
�������#�.��

������������$��%�

����&'��(�!�

����&���������	
�
��
���
���
��������	
����
��������	

�

���
�/����
 !�
!���"

��#���	�
��������	�
���

��������	
�������
��
�#��

������
���
�����$

�
#��
�

��	� ��
$

%&'''(
)�'��
$��%�

 �
� �

	 ���	���
��-
��#���	
���
*�.
�

���
�/����
 !�
!���"

��������	
���
��������	

�������
��
�����
���
�����$

����
��������	

��	��/�
����������	
+,��

�������
��
�	�
�
��
���
����	

����
��������	

���	���
��������	

%'&(
)�'��
����

����
�����

����
���

����
�����

����
�����

���������	.�
��%(

����
�����

�

�

%&(
)�'��
�&���

�
��
���
���
�������
� ��

�#��
����	
����
������

� �
#��
�

��	� ��
$

�������
��
#��
��
 �	*"��!���

%'''(
)�'��
����

�������
��
#��
��
 �	*"��!���
�
��
���
���
�������

��	��/�
���
������

���!��
��
������

�����
� ��������	��
�����
�

��������	��
�����
� ��������	��
�����
�

��
��#���	
����	�

� ���	���
��-
�����
���
*�.
�

� �
�

Fig. 3 – Differences of Strict, REnf, Event, and Scope persistency over Synch persistency (Figure 2). If a letter is not

present, it means that the step does not change from Figure 2.

is also updated. After these steps, the WRLock is released

(Line 13). Instead, if WR1 has been made obsolete by another

client-write, WR1 first releases the WRLock (Line 15) and then

calls handleObsolete (Line 16). Releasing WRLock as soon as

possible improves performance, as a concurrent write can grab

it while WR1 performs additional operations. Holding the

941

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

WRLock is not needed when handleObsolete() is invoked.
If INVs were sent (Line 17), the update is persisted to non-

volatile memory (NVM) (Line 18). Moreover, the thread spins

until all ACKs are received (Line 19). Note that, while the

volatile state is always updated in increasing order of write

TSWR, the NVM can be updated by writes out of order. This

is acceptable because we use a log structure for the persists.
When all ACKs are received, we know that the consistency

and persistency requirements are satisfied across all nodes,

hence the glb volatileTS and glb durableTS are also updated.

Therefore, if WR1 remains the RDLock Owner (which means

that there is no other more recent write to the same record in

the node), the read lock can be released (Lines 20-21). Finally,

if INVs were sent earlier (in Line 11), VALs are now sent to

all Followers (Line 22), which mark the completion of the write

transaction. After this step, execution returns to the client.

Follower. When a Follower receives the INV for a write

request WR1 to key k and timestamp TSWR (Line 26), the

algorithm performs the following steps. First, it checks if WR1

is obsolete (Line 27). If so, it calls handleObsolete (Line 28 and

Lines 23-25), and then responds to the Coordinator with an ACK

(Line 29) as if the write was done. This completes the transaction

for an obsolete WR1 (Line 30). A VAL will be received later on

but will be discarded.
If WR1 was not obsolete, the algorithm executes similar

steps as in the Coordinator (Lines 31-38), namely, WR1: (i)

performs a “Snatch RDLock” operation on key k, (ii) grabs the

WRLock, (iii) checks again if WR1 is obsolete and it either

updates the local state in the LLC (and the volatileTS) and

releases the WRLock, or releases the WRLock and invokes

handleObsolete. Then, if the LLC was updated (Line 34), WR1

persists the update to NVM (Line 39). Next, WR1 responds to

the Coordinator with an ACK, signifying that the write is

performed consistency- and persistency-wise (Line 40).
Read transactions in the Follower node cannot yet see

WR1’s update. Only after the Follower receives the VAL

message from the Coordinator (Line 41) can the owner of the

RDLock release it (Lines 42-43). Upon the release of the RDLock,

any read transaction can read the key. Furthermore, at this

point, the glb volatileTS and glb durableTS are also updated

to reflect that the write is performed in all the replica nodes

consistency- and persistency-wise.

C. Algorithm for Writes for Other Persistency Models
In Figure 2, we highlight with a shade and a letter some

steps of the <Lin, Synch> algorithm. These are the steps that

may change as we keep Lin consistency but move to other

persistency models. All other steps remain unchanged. As

explained in §II, some models have different INV, ACK, and

VAL messages for consistency and persistency enforcement.
Figure 3 shows the changes to the algorithm for the combi-

nations of Lin consistency and other persistency models. The

text next to a letter in Figure 3 replaces the text next to the

same letter in Figure 2.
For <Lin, Strict> Coordinator (Figure 3(i)), instead of

using ACKs and VALs, the Coordinator spins for ACK Cs in

Step e and then, in Step f, sends VAL Cs, spins for ACK Ps,

and sends VAL Ps. Similarly, at the Follower side (Fig-

ure 3(ii)), instead of ACKs, the Follower sends ACK Cs and

ACK Ps. First, if the received client-write is obsolete (Line 27),

the algorithm performs ConsistencySpin(), sends ACK C, and

then performs the PersistencySpin() and sends ACK P (Line 29).

If the client-write is not obsolete, after the LLC is updated,

ACK C is sent, and after the update is persisted to NVM,

ACK P is sent. Later, after VAL C is received, the RDLock
is released. Finally, after VAL P is received in Step m, the

write operation completes.

For the rest of the models, persisting the update to NVM

is performed outside of the critical path. Consequently, Step d
in the Coordinator (Line 18) is changed to persist NVM in the

background, but line Line 39 in the Follower needs no change

because the operation is not in the critical path: ACK C has

already been sent.

In <Lin, REnf> (Figure 3(iii)), Step e of the Coordinator in-

volves waiting for all ACK Cs and then returning to the client.

In the meantime, ACK Ps will arrive. When all ACK Ps are

received, the RDLock is released and the VALs are sent. At

the Follower side (Figure 3(iv)), the only difference compared

to Strict is that, since there is only one type of VAL, there is

no change for Step l and there is no Step m.

In the rest of the models, the algorithm does not need to

perform PersistencySpin() in Step a or Step h. This is because,

in these weak models, accesses do not need to stall for the

persist of prior writes that are still outstanding. However,

ConsistencySpin() remains because of the Linearizable con-

sistency.

In <Lin, Event> (Figure 3(v)), Step e of the Coordinator

involves waiting for all ACK Cs. After that, the RDLock

is released and then, in Step f, VAL Cs are sent before

returning to the client. In this model, persistency will happen

eventually and, therefore, there is no message exchange to

track persistency. At the Follower side (Figure 3(vi)), in

all cases, the Follower sends ACK Cs. Later, it receives a

VAL C. No persistency-related messages are exchanged.

In <Lin, Scope>, the protocol steps are similar to <Lin,

Event>, although the message names are different. In addition,

there is the new [PERSIST]sc transaction, shown in boxes

without letters in Figures 3(vii) and (viii). The [PERSIST]sc

transaction for scope sc consists of the following messages.

The Coordinator sends the [PERSIST]sc to its Followers,

spins until it receives all the [ACK P]sc, and finally sends

the [VAL P]sc to its Followers, marking the end of the

[PERSIST]sc transaction. A Follower, when it receives the

[PERSIST]sc, it completes persisting all the WR operations

inside scope sc and the [PERSIST]sc request itself, and

then responds with an [ACK P]sc to the Coordinator. Later,

it receives [VAL P]sc, which terminates the [PERSIST]sc

transaction.

D. Protocol Algorithm for Reads

Like write operations, read operations can be initiated from

any node. Since, in our environment, all records are replicated

942

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

in all nodes, all read operations are satisfied locally. A read

operation to a record is only stalled when the record’s RDLock

is taken by a write. Once the RDLock is free, the read

operation can proceed. The handling of read operations is the

same across all models.

E. Failure Detection and Recovery

While the DDP designs [30] do not discuss failure detection

or recovery, MINOS-B has protocol extensions for failure

detection and recovery that are similar for all the models

considered. We assume that nodes can fail due to a crash or

network disconnection and that, eventually, such nodes are re-

inserted back into the cluster.

Failure detection is attained with timeout mechanisms [27],

[45] that identify the non-responding node(s) (F) and alert all

the other nodes. Later, when F is re-inserted back into the

cluster, we need to bring F’s logs up-to-date. This is done by

having a designated node send to F a message with the log of

all the updates that have been committed since the time when

F stopped responding. F then applies the updates to its local

persistent and volatile state. More details of the recovery are

left for future work.

IV. MINOS-BASELINE PERFORMANCE

To understand the bottlenecks in the MINOS-B algorithms,

we implement and run them on a cluster and measure their

performance. We run them on a 5-node cluster where each

node has a Xeon E5-2450 processor running at 2.1 GHz, and

keep 5 cores busy per node. We use the eRPC [25] library for

communication. More details are discussed in §VII.

We measure the average latency of a write transaction

(Figure 2). This is because, in our environment, write oper-

ations are much costlier than reads. We divide the latency

into communication and computation times. Communication

is the time taken by all the messages between hosts in a write

transaction. For a given message, communication time starts

after the sender host has deposited the message in its host

send queue in memory, and finishes when the message has

been deposited in the host receive queue in the memory of

the receiver node. The communication time then includes the

transfer of the message from the host send queue through the

PCIe bus to the sender NIC, the NIC actions to send the

message, the transfer of the message through the network,

and the equivalent operations at the receiving NIC. The rest

of the transaction is computation time, and can include LLC

and NVM accesses.

Roughly speaking, the communication time in a write

transaction is seen in Figure 2 as the time from when the

first INV is sent (Line 11) until when the last ACK is received

(Line 19), subtracting the average time it takes for a Follower

to handle an INV message (Lines 26-40). For other models, the

communication time may be accounted for slightly differently.

Figure 4 shows the average latency of a write transaction

broken down into communication and computation times for

the different <consistency, persistency> models. We see that

the models with the more conservative persistency enforce-

ment have higher write latencies. This is mostly because of

their higher computation times—which are greatly affected by

the overhead of persisting a record in the critical path of a write

operation in the conservative persistency models. In addition,

as multiple writes are sometimes trying to access the same

record concurrently, locks add overhead.

Fig. 4 – Average latency of a write transaction for

different <consistency, persistency> models.

The communication time varies less across models. How-

ever, it is the highest contributor to the write latency, contribut-

ing 51–73% to each model’s total write time. A major reason

why communication time is so high is that the multiple INV

messages in a transaction are sent one at a time. Indeed, they

are taken one at a time from the send queue, transferred along

the slow PCIe bus, and then sent out to the network. The same

happens for the VAL messages. Current NICs lack the support

to process batched messages or to use (true) broadcasting [51]

of messages in the network. As we scale the protocols to many

nodes, this bottleneck is likely to get worse.

V. MINOS-OFFLOAD DESIGN

To reduce the latency of write transactions in MINOS-B, we

propose to offload supporting the consistency and persistency

model protocols from the host CPU to a SmartNIC. Based on

the characterization of the latency of write transactions from

Section IV, we propose modified algorithms to enforce consis-

tency and persistency models and a SmartNIC architecture to

support them. We call the algorithms and the SmartNIC archi-

tecture MINOS-Offload (MINOS-O). MINOS-O substantially

reduces both the communication and the computation time of

write transactions. In this section, we outline the SmartNIC

architecture, present mechanisms to minimize communication

and computation time, and describe the overall MINOS-O

algorithms to support <consistency, persistency> models. The

same SmartNIC design supports all the models discussed in

this paper.

A. MINOS-O SmartNIC Architecture

The MINOS-O SmartNIC architecture is broadly based on

the Mellanox Bluefield Data Processing Unit (DPU) [40]. Fig-

ure 5(a) shows the top level diagram. Like other SmartNICs,

MINOS-O includes multiple cores, three levels of caches, a

DRAM module, and interfaces to the network and the host.

943

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

The new components that MINOS-O adds are: (i) the host

interface is augmented with a module that provides some

selective cache coherence between the L3 cache of MINOS-O

and the L3 cache of the host; (ii) the network interface includes

a module that supports message broadcast; (iii) the NIC has an

NVM module that includes a durable FIFO queue (dFIFO) for

the persistency protocol; and (iv) the DRAM module includes

a volatile FIFO queue (vFIFO) for the consistency models.

��������	
����

�����������������

����

���� ����

����

���� ����

����

���� ����

����

���� ����

���
����

����
����� ��
����

!	�	

�"��

����������������#��$

���%���

&���

��	�

&���

!���

�

'�

�

'

��
�
����

%�(
%�)
���������	
��

�
����
����������
�����

��������������������

�����(������!�����
��!)��

*����� &����+�������
��!)��

Fig. 5 – MINOS-O SmartNIC architecture.

B. Mechanisms to Improve Performance

We modify the distributed consistency and persistency al-

gorithms of §III to leverage the SmartNIC architecture. In this

section, we describe the new mechanisms proposed to improve

performance.

1. Offloading Operations to the SmartNIC. We offload the

execution of most of the Coordinator and Follower write algo-

rithms of Figure 2 from the host to the SmartNIC (SNIC). Fig-

ure 6 shows the high-level operation. The algorithm changes

little from that in Figure 2. On the Coordinator side, the

host starts the write transaction (Lines 1-8 in Figure 2). After

snatching the RDLock, it sends the multiple INVs to the

SmartNIC. The SmartNIC takes over starting at Line 9 and

executes the rest of the algorithm. Every time an ACK is

received, it is passed to the host. Once the SmartNIC has

received all of the ACKs, it proceeds to release the RDLock

and send the VALs.

In the Follower, all the operations (Lines 23-44) are performed

in the SmartNIC. The host is not invoked. Note that a

SmartNIC can reject a request from its local host or from

the network if it runs out of resources.

With this support, MINOS-O reduces the data and control

transfers between SmartNIC and host in the Follower and,

to a lesser extent, in the Coordinator. The result is that both

the communication and the computation overheads of write

transactions in Figure 4 decrease.

2. Coherence between Host and SmartNIC. When we

offload some operations of the algorithm to the SmartNIC, we

need to ensure that data which can be accessed concurrently

��������	��
�����
�
��������

���

���

�	
���

���

��

�	
���

��
���

���� ����
�����

�	
���

���
���

���

���

������

����� ��

�	
���

��
���

���

Fig. 6 – Offloading operations to the SmartNIC.

by host and SmartNIC is kept coherent. MINOS-O enables

fast sharing of some data structures by keeping them coherent

between host and SmartNIC in hardware.

There are only four types of data structures that need to be

kept coherent. They are four of the metadata fields of data

records shown in Figure 1(a): RDLock Owner, volatileTS,

glb volatileTS, and glb durableTS. The WRLock is not in-

cluded because, as we will see, MINOS-O does not use it.

Recall that RDLock Owner (also called RDLock for short)

for a record in a node is set when there is at least one ongoing

write transaction to the record locally. As shown in Figure 6,

there are four places in a write transaction where either the

host or the SmartNIC can update RDLock. In addition, when

a host receives a read transaction, it needs to check RDLock.

MINOS-O enables fast access by providing coherence in

hardware.

The volatileTS, glb volatileTS, and glb durableTS times-

tamps of a record are set in the Coordinator and Follower

algorithms when the record in local volatile storage is updated,

when the consistency of the record is enforced across all repli-

cas, and when the persistency of the record is enforced across

all replicas, respectively (§III-B). In MINOS-O, the code that

updates these timestamps is executed by the SmartNIC.

These timestamps are read when the algorithm checks for

the obsoleteness of a write (i.e., Obsolete(TSWR)) and when

performing the consistency and persistency spinning (i.e.,

handleObsolete()) (§III-B). In MINOS-O, the code that reads

these timestamps is executed by the host and by the SmartNIC.

To provide hardware coherence for these four data struc-

tures, MINOS-O places them in a special range of addresses

mapped to a small on-chip memory in both host and Smart-

NIC. A dedicated bus supports MSI snoopy coherence between

these two memories. This hardware is logically placed in the

Selective Coherence Module of Figure 5(a).

3. Message Batching and Broadcasting. A source of

overhead in distributed protocols that replicate data in multiple

nodes is that, on a write operation, messages have to be sent

to update all the replicas. MINOS-O minimizes this overhead

by supporting two mechanisms that have been proposed in

944

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

other contexts. The first one focuses on minimizing the many

messages that the Coordinator’s host and SmartNIC exchange

through the slow PCIe bus. Indeed, as shown in Figure 6,

the host sends as many INV messages as Followers, and

the SNIC responds with as many ACKs as Followers. To

reduce this overhead, MINOS-O performs batching [24], [47],

[52], whereby the host sends a single INV message with

information about which nodes should receive it, and the

SmartNIC responds with a single ACK message when it has

received all the ACKs. Later, the SmartNIC sends the VALs

without host involvement.

The second mechanism addresses the SmartNIC overhead

of preparing and sending the same INV and VAL messages

to multiple Followers. Rather that considering these messages

as completely different messages, MINOS-O provides special

hardware and an RDMA verb [51] that broadcasts a message.

Specifically, the SmartNIC deposits an INV or VAL message

into the Send Buffer only once, and fills a Destination Map

register. Then, an FSM broadcasts the message to all the

destinations. This hardware is logically placed in the Message

Broadcast Module of Figure 5(a). In contrast, the baseline

approach requires depositing the same message on the Send

Buffer multiple times.

4. Eliminating Write Locks. In the Coordinator and Follower

algorithms of Figure 2, a thread must grab the WRLock for

a record before it can update the local version of the record

in local volatile memory. Grabbing the WRLock is needed

for two reasons. First, it prevents record corruption when

more than one thread are trying to update the same record

concurrently. Second, locking is also needed to safely identify

an obsolete write to the local volatile memory (thanks to the

Obsolete(TSWR) check), and avoid it.

Note that the update to the local non-volatile log is outside

the WRLock critical section. The reason is that updates are

deposited into the log in an atomic fashion. It is possible that

entries are inserted into the log in an out-of-order manner,

therefore creating obsolete entries. However, correctness is

maintained because, before the log entries are applied to the

non-volatile database, they are checked for obsoleteness.

Spinning on, grabbing, and releasing the WRLock adds

overhead. To eliminate this overhead, MINOS-O adds special

hardware that serializes the updates to the same record in the

local volatile memory and skips obsolete updates to the local

volatile memory. This hardware is the vFIFO queue. There

is also the dFIFO queue that persists the updates locally in

the SmartNIC, avoiding the need to push them to the host in

the critical path. Both vFIFO and dFIFO queues are shown in

Figure 5(b).

When a thread executing the Coordinator algorithm wants to

write to a record, rather that grabbing the WRLock, it directly

checks whether the write is obsolete. If it is not, the SmartNIC

sends the INVs and writes to the vFIFO queue atomically and

to the dFIFO queue atomically. When the hardware dequeues

an entry from the vFIFO queue in the background, it checks

for obsoleteness before updating the LLC. If the entry is not

obsolete, a DMA operation pushes the update to the host’s

LLC. Dequeueing can be done in parallel for updates to

different records. When the hardware dequeues an entry from

the dFIFO, it pushes it to the host NVM log. A thread cannot

proceed to unlocking the RDLock until (1) the update has

drained from the vFIFO to the LLC, and (2) all the ACKs

have been received. There is no need to wait for the update to

drain from the dFIFO because the update is already durable.

When a thread executing the Follower algorithm in the

SmartNIC wants to write to a record, the process is similar.

First, it checks whether the update is obsolete. If it is not, it

writes to the vFIFO queue atomically and to the dFIFO queue

atomically. Finally, it sends the ACK. When the hardware

dequeues the entry from the vFIFO queue, it checks for

obsoleteness before updating the LLC; when the hardware

dequeues an entry from the dFIFO, it pushes it to the host

NVM log. After the update has drained from the vFIFO

and the VAL has been received, the thread can proceed to

unlocking the RDLock.

C. Overall MINOS-O Algorithms

When all the mechanisms are applied together, we obtain

the MINOS-O algorithm. Figure 7(a) shows the message

exchanges of the MINOS-O algorithm for a write and a read

using the <Lin, Synch> model. As shown in the figure, for a

client-write, the Coordinator host grabs the RDLock and sends

a batched INV message to its SNIC. The SNIC broadcasts

the INV message to all the Followers. Afterwards, the SNIC

enqueues the update in vFIFO and dFIFO. Later, when all

the corresponding ACKs are received, the Coordinator’s SNIC

sends a batched ACK to the host, which marks the end of

the client-write operation. After the corresponding data entry

is drained from vFIFO, the SNIC releases the RDlock and

broadcasts the VALs to all the Followers.

Figure 7(a) also shows that, in a Follower, when the SNIC

receives an INV, a thread grabs the RDLock, enqueues the

update in vFIFO and dFIFO, and returns an ACK. Later, when

the Follower receives a VAL and the corresponding data entry

is drained from vFIFO, the Follower releases the RDLock. In

both Coordinator and Follower, a client-read can only proceed

when the RDLock is free.

Figure 8 shows the detailed MINOS-O algorithm for the

Coordinator and Follower for <Lin, Synch>. The algorithm

is organized as Figure 2 with the four MINOS-O optimizations

applied.

D. Supporting Other Persistency Models

Figures 7(b)–(e) show the algorithms for the other per-

sistency models. They are similar to <Lin, Synch> except

for the following differences. First, ACKs and VALs can be

for consistency (ACK C, VAL C) or persistency (ACK P,

VAL P). Second, different models have slightly different logic,

as discussed in Section III-C and shown in Figure 3. For ex-

ample, different algorithms use different conditions to release

the RDLock in the Coordinator and in the Follower, and to

return to the client.

945

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

����	�
������
�

��������	��
�����
�
��������

����

��%

���

�����&

���&

��	
��

�
���

���

�����&

�����&

������

����

���� ����
��%��

�����&

���&

��������

	
�
���
��

	
�

���

��������

���

������

��%��

���
��

���

�����&�

�����&

�������

�	��

����	�
�������

�����&

���&

�������

��	��

��������

����

	
�

�����

���

�������

����

�����

���� ����
��%��

�����&�

���&

��������

	
�

���
��

	
�

�����

��������

�����

������

��%��

�����&

�����&

�����

���
��

���

�������

��	��

�������

��	��

��������	��
�����
�

�����&

�����&

�������

��	��

����	�
������
��

�����&

���&

�������

��	��

�����&

�����&

��������

����

	
�

�����

�����
�������

����

�����

�����

���� ����
��%��
�����&

���&

��������

	
�
���
��

	
�

�����

��������

�����

������

��%��

���
��

�����

�����&

�����&

�����

���
��

�����

�������

��	��

��������	��
�����
�

�������

��	��

�������

��	��

� ��	�
�����!�

�����&�

���&

�����&

�����&

��������

����

�	
��
�

�������
�

�������
�

�������

����

�����	���
�

������
�

%�����'��

�����

'��
%
���

�������
�

�������
�

�����
�

���
��

�������
�

���
��

�������
�

���� ������%��

�����&

���&

��������

�	
��
�

���
��

�	
��
�

�������
�
��������

�������
�
������

��%��

�����	���
�
�����	���
� ���
��

�����	���
�

�������
�
��������

�������
�

������

�����	���
�

�������

��	��

�����&�

�����&

��������	��

�������

��	��

�������

��	��
�������

��	��

��������	�
����

�����&

�����&

���� ����
��%��

�����&

���&

��������

	��
������

	��

�����

��������

�����

������

��%��

������

�����

�������

��	��

�����
���������	��

�������

��	��

�����&�

���&

�����&

�����&

��������

����

	��

�����

�����

�������

����

�������

��	��
�������

��	��

Fig. 7 – Timeline of the MINOS-O algorithms for consistency and persistency models using SmartNICs (SNICs).

Note that, in some cases, we have separated the enqueuing

to the vFIFO from the enqueuing to the dFIFO. We do this

when only the enqueuing to the vFIFO is in the critical

path and, therefore, waiting for the slower enqueuing to the

dFIFO in the critical path in unnecessary. For the [PERSIST]sc

command of the <Lin, Scope> model, we do not include

the bookkeeping operations in the volatile and non-volatile

memory in order to simplify the picture.

VI. PROTOCOL VERIFICATION

To verify the correctness of the MINOS-B and MINOS-O

protocols, we use the TLA+ formal specification and verifica-

tion language, and model-check the protocols in TLC [32]. Our

TLA+ work draws upon the Hermes [27] TLA+ design. With

TLA+, we specify all the states and possible actions from all

the states, and then check that certain correctness conditions

hold. We model-check all <consistency, persistency> models

analyzed.

Table I shows the correctness conditions checked for all the

<consistency, persistency> models analyzed. We first check

two concurrency conditions: no deadlock and no livelock.

Next, for data consistency correctness, we check three invari-

ants related to the values of the volatileTS and glb volatileTS

metadata of records. Next, for data persistency correctness,

we check two invariants involving the value of glb durableTS.

Finally, we perform a set of type checks that ensure: a) only

legal messages are sent, b) record metadata and locks take

only legal values, and c) bookkeeping data in write operations

take only legal values.

VII. METHODOLOGY

We evaluate MINOS-B using a distributed machine. Since

the proposed MINOS-O hardware does not exist, we evalu-

ate MINOS-O and also MINOS-B (for comparison) using a

simulated distributed machine.

Distributed Machine. We implement MINOS-B in a 5-

node cluster provided by CloudLab [17] with the parameters

shown in Table II. Since we do not have access to a modern

persistent memory device, we use information from prior

works [30], [58], [61] and assume 1295ns to persist 1KB

of data. One way to exchange messages between nodes is

to use one-sided Remote Direct Memory Access (RDMA),

which is the state-of-the-art paradigm for server-to-server com-

munications in datacenters [1], [20], [57], [65]. However, in

946

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

�������	
����
��
���

����������
����
0���������
1��
��������
�
�������

��������
�
�������

�������������������������� �2!�!��

�� �"#���$�0�
�����%%�&
�

� �����"'��������

�(�����������	
��)*+

�"'��������

�
���
)#�

� �
�������	
����
��������*�

,3��

�����	��"#������

�� �������
�
�������

� � ��
���)*+

,�-.
.
����2!�!�������!�!�

�
���)*+

���	������
����
0�
)#������
1��

���	������
����
0���
������
1��

�����	��"#������
�����������
�
����

����	�
��		����
�������	����������
��	�

�� ����������������

�����������������3��

����������1� ����

!���������1� ����
�"������������������������

����������������

������

��������������������

������

�����������������������

����������1� ����

!���������1� ����
�"������������������������

 �

���

���

���

�	�

���

���

���

	��

	
�

� �

�#�

�
�

#�

��

��

��

���	�������������������$%
�����������$%

��&"�"�����2'�'�������'�'�

���	����������)!(
�������)!(�����������2��

����������������)!(����)���

���*�������������������������+�2'�'�

������,"-��./�0����.��%%�&���

	�

��

��

��

#�

 �

���

�	�

���

�#�

� �

��

��

�

�
�

��

�

��

���

���

���

���

��

	

������
�

��

�

	�

	��

Fig. 8 – MINOS-O algorithm for <Lin, Synch>.

1. Concurrency Checks
Absence of deadlocks and livelocks.
2. Consistency Checks
a) When a record is read-unlocked in all nodes, the volatileTS and
glb volatileTS of the record are the same across all nodes.
b) When all ACKs for consistency have been received for a write to
a record, the volatileTS of the record is the same across all nodes.
c) When not all ACKs for consistency have been received for a write to
a record, the glb volatileTS of the record is the same across all nodes.
3. Persistency Checks
a) When a record is read-unlocked in all nodes, the glb durableTS
of the record is the same across all nodes.
b) When not all ACKs for persistency have been received for a write to
a record, the glb durableTS of the record is the same across all nodes.
4. Type Checks
a) Each message ∈ {INV, ACK, ACK C, ACK P, VAL, VAL C,
VAL P, [INV]sc, [ACK C]sc, [ACK P]sc, [VAL C]sc, [VAL P]sc,
[PERSIST]sc}
b) Record metadata:
i) For volatileTS, glb volatileTS, and glb durableTS:
version ∈ {0...(MAX VERS-1)}, node id ∈ {0...(MAX NODES-1)}
ii) For RDLock Owner:
version ∈ {-1...(MAX VERS-1)}, node id ∈ {-1...(MAX NODES-1)}
iii) WRLock ∈ {0, 1}
c) Bookkeeping: ∀ node id,
{RcvedACK SenderID[node id], RcvedACK C SenderID[node id],
and RcvedACK P SenderID[node id]} ∈ {0...(MAX NODES-1)
\ node id}

TABLE I – Conditions checked using TLA+ for all

the <consistency, persistency> models analyzed.

our protocol, a message received by a node performs multiple

operations before triggering a response to the requester node.

Using RDMA would require multiple messages to perform

these multiple operations, resulting in performance overhead.

Hence, we instead use eRPC [25], [26] for communication,

which provides performance similar to RDMA.

This distributed machine was used in the experiments of

Section IV and to calibrate the parameters of the simulated

Number of nodes 5
CPU per node Xeon E5-2450 (5 cores, 2.1 GHz)
Main memory per node 16GB of DRAM (DDR3-1600)
NIC per node Mellanox MX354A FDR CX3
Emulated NVM per node 1295 ns to persist 1KB of data

TABLE II – Distributed machine running MINOS-B.

distributed machine.

Simulated Distributed Machine. The simulator we use is

SimGrid [8], [9], which is an accurate and scalable simulator

for distributed systems. We model a distributed architecture

similar to the CloudLab one with 2, 4, 5 (default), 6, 8, 10,

or 16 nodes. The various access latencies of the memory

hierarchy of the host are set based on measurements of the

CloudLab system. The various overheads and latencies in the

SmartNIC are set based on measurements of the BlueField-

2 HDR100 100Gb/s SmartNIC [44] of the Thor cluster at

the HPC-AI Advisory Council Cluster Center [21]. Other pa-

rameters of the SmartNIC and of the communication between

SmartNIC and host or between SmartNICs are obtained from

the literature [35], [39], [43] or from measurements on the

CloudLab system.

Some parameters used in the simulator are shown in Ta-

ble III. The synchronization latency is the average latency

to perform a compare-and-swap. The table also shows the

latencies to send an INV and an ACK message. Further, it

shows the time between consecutive messages when sending

the same INV to a set of Followers without broadcasting.

Number of Nodes 2, 4, 5 (default), 6, 8, 10, or 16
Node Host SmartNIC
Number of Cores 5 8
Core frequency 2.1 GHz 2 GHz
Synchronization latency 42 ns 105 ns
Communication Link Latency BW
PCIe between Host and SmartNIC 500 ns [35] 6.25 GB/s [43]
Network link between SmartNICs 150 ns 7 GB/s [39]
MINOS-O Parameters
vFIFO & dFIFO latency (wr 1KB) 465 ns and 1295 ns
vFIFO & dFIFO size 5 and 5 entries
Send one INV and send one ACK 200 ns and 100 ns
Time between consecutive msgs 100 ns (with no broadcast support)

TABLE III – Parameters of the simulated system.

In addition to running the MINOS-O algorithms on the

simulated distributed architecture, we also run the MINOS-B

algorithms on a simulated model of the CloudLab distributed

machine. With our parameters, MINOS-B performs similarly

in both the real and the simulated machine.

Workloads Used. To support our proposed metadata format

(Figure 1), we implement our own key-value store, named

MINOS-KV. Requests are generated using a C++ version of

Yahoo! Cloud Serving Benchmark (YCSB) [12], [50]. The

back-end in-memory application used is a Hashtable [11].

We use various workloads with different write and read

ratios. The database of each node has 100,000 records. The

default workload uses a zipfian distribution for keys, has 50%

write and 50% read operations, and issues 100,000 requests

per node. We use a record size of 1KB, which is the default

947

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

in YCSB. In some experiments, we use the DeathStar [18]

benchmark suite for microservices.

All nodes contain replicas of all records. Therefore, all write

operations initiated in a node need to be propagated to all other

nodes. Read operations are always local.

VIII. EVALUATION

In this section, we compare MINOS-B and MINOS-O under

a variety of conditions, evaluate the impact of the MINOS-O

optimizations, and perform a sensitivity analysis of some

parameters.

A. Comparing MINOS-B and MINOS-O

Figure 9 compares the latency and throughput of client

writes (a) and client reads (b) under various conditions in

MINOS-B and MINOS-O. In each chart, the latency is repre-

sented with bars and is measured in the left Y-axis, while the

throughput is represented with triangles and is measured in

the right Y-axis. The bars/triangles are organized in groups

corresponding to the different <consistency, persistency>
models. For each model, the different bars/triangles correspond

to workloads with 20%, 50%, 80%, and 100% of writes or

reads. In each figure, the bars and triangles are normalized to

MINOS-B with <Lin, Synch> and 50% writes or reads.

(a)

(b)

Fig. 9 – Normalized latency (bars and left Y-axis)

and throughput (triangles and right Y-axis) of writes

(a) and reads (b) for MINOS-B and MINOS-O for

different workloads.

Consider the write transactions first (Figure 9(a)). For

all the workloads and <consistency, persistency> models,

MINOS-O typically reduces the average write latency by 2-3x

over MINOS-B, and increases the average write throughput

by 2-3x over MINOS-B. These are major improvements.

Also, MINOS-O is much less sensitive to the persistency

model than MINOS-B. In addition, as the fraction of writes

increases, MINOS-O’s throughput increases, but its latency

barely changes. In contrast, MINOS-B’s throughput typically

improves little with higher fraction of writes. Overall, MINOS-

O is a high performance scheme, robust to changes in consis-

tency and load.

Consider now read transactions (Figure 9(b)). The trends are

similar. MINOS-O often reduces the average latency by 2x or

more over MINOS-B, and increases the average throughput

by 2x or more over MINOS-B. For both schemes, as the

fraction of reads increases, the read latency decreases and the

throughput increases. This is due to the high cost of writes.

On average across models and workloads, MINOS-O’s write

and read latency are 2.1x and 2.2x lower than MINOS-

B’s, respectively; MINOS-O’s throughput is 2.3x higher than

MINOS-B’s for both writes and reads.

B. Comparison for Different Node Counts

Figure 10 compares the latency and throughput of client

writes (a) and client reads (b) in MINOS-B and MINOS-O

for different node counts (2, 4, 6, 8, and 10). The figure is

organized as Figure 9. In each figure, the bars and triangles are

normalized to MINOS-B with <Lin, Synch> and two nodes.

(a)

(b)

Fig. 10 – Normalized latency (bars and left Y-axis)

and throughput (triangles and right Y-axis) of writes

(a) and reads (b) for MINOS-B and MINOS-O for

different node counts.

948

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

We again see the effectiveness of MINOS-O. As the number

of nodes increases, MINOS-O rapidly increases the through-

put, while keeping latency increases modest (for writes) or

non-existing (for reads). The write latency increases are due

to higher contention. In contrast, as the number of nodes

increases, MINOS-B increases the latency quickly and is

typically unable to improve the throughput.

On average across models and node counts, MINOS-O’s

write and read latency are 2.3x and 3.1x lower than MINOS-

B’s; MINOS-O’s throughput is 2.4x higher than MINOS-B’s

for both writes and reads.

C. Comparison for Real Applications

We compare the end-to-end latency of running Death-

Star [18] functions on MINOS-B and MINOS-O. We evaluate

the Login function of the UserService microservice in the

Social Network and Media Microservices applications. In each

SET and GET operation, we invoke our client-write and

client-read algorithm, respectively. We assume a node-to-node

round-trip latency of 500μs, which has been measured in

datacenters [3]. We model a cluster with 16 nodes.

Figure 11 shows the end-to-end latencies for MINOS-

B and MINOS-O. The bars are grouped by <consistency,

persistency> model. For each model, there are bars for the

two functions and for MINOS-B and MINOS-O. The bars are

normalized to <Lin, Synch> MINOS-B and Social. From the

figure, we see that MINOS-O reduces the end-to-end latency

across the board. On average, it reduces the end-to-end latency

by 35%.

Fig. 11 – End-to-end latency of real applications.

D. Evaluating the MINOS-O Optimizations

To evaluate the impact of the MINOS-O optimizations

of §V-B, we group them into three groups: (i) offloading

operations to the SmartNIC plus supporting coherence be-

tween host and SmartNIC, and eliminating write locks; (ii)

message batching; and (iii) message broadcasting. The first

group, called Combined, combines three optimizations because

applying them separately is sub-optimal. Also note that batch-

ing can only be beneficial if Combined is applied first.

Figure 12 compares the average write latency of a workload

that issues only client write operations for different archi-

tectures: MINOS-B, MINOS-B plus broadcast, MINOS-B

plus batching, MINOS-B plus Combined (represented as

Offl+Coh+WRLock), MINOS-B plus Combined and broad-

cast, MINOS-B plus Combined and batching, and MINOS-O.

The bars are normalized to MINOS-B and the evaluated model

is <Lin, Synch>.

Fig. 12 – Impact of the MINOS-O optimizations.

We see that augmenting MINOS-B with broadcast or batch-

ing has no noticeable effect. However, augmenting MINOS-B

with the Combined optimization is very effective: the write

latency goes down by 43.3%. The reasons are the high effi-

ciency of operation execution in the SmartNIC and the reduced

number of host-SNIC communications. Taking this design and

adding broadcast barely affects the write latency, as the system

is already quite efficient. On the other hand, taking MINOS-B

with the Combined optimization and adding batching slows the

execution. The reason is that, as a batched message arrives at

the SmartNIC, the latter has to unpack it, which adds overhead.

However, if we add all the optimizations (creating MINOS-O),

batching is beneficial because, with broadcast, the message

does not need to be unpacked. Overall, MINOS-O reduces the

average write latency by 50.7% over MINOS-B.

E. Sensitivity Analysis

In this section, we perform a sensitivity analysis of different

MINOS-O parameters. We use a workload with 50% writes

and 50% reads running with <Lin, Synch>, and measure the

average write latency. Figure 13 shows the normalized write

latency of MINOS-O as we vary the FIFO size. The figure

shows bars for 1, 2, 3, 4, 5, and 100 entries in each of vFIFO

and dFIFO. The bars are normalized to the MINOS-O write

latency with an unlimited number of FIFO entries. We see

that, with 3-5 entries, one attains the same average latency as

with an unlimited number of them.

Figure 14 compares the average execution time of a write

in MINOS-O and MINOS-B. Specifically, it shows the write

transaction speedup of MINOS-O over MINOS-B under dif-

ferent values of persist latency, key distribution, and database

size. In the first set of bars, we vary the time it takes to persist

a 1KB record from 100ns to 100μs. These values are selected

to represent current and future durable mediums. For example,

today, persisting a 64B cache line to NVM takes about 100

ns [58], and persisting a block to SSD takes about 100 μs [63].

949

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 13 – Sensitivity to FIFO size.

We can see that MINOS-O speeds-up write transactions in all

cases. The speedups increase with the persist latency and are,

on average, 2.2x.

Fig. 14 – Sensitivity to other parameters.

In the second set of bars, we vary the key distribution

between zipfian (default) and uniform. In general, with zipfian,

we would expect more conflicts on the same keys, therefore

reducing performance. As already mentioned, however, our

algorithms can support concurrent and conflicting writes in

both MINOS-B and MINOS-O. As a result, the figure shows

that MINOS-O delivers a speedup of 2x over MINOS-B in

both distributions.

Finally, in the third set of bars, we vary the database size

from 10 records to 100K records. In general, the smaller the

database size is, the more the conflicts that are expected. Since

both algorithms handle conflicting writes well, the changes

as we increase the database size are minimal. On average,

MINOS-O delivers a speedup of 2x over MINOS-B.

IX. RELATED WORK

Consistency and persistency models. There are several key

works in this area. Pelley et al. [46] introduce memory

persistency models. Ganesan et al. [19] introduce the Read-

Enforced persistency model. For consistency models, Her-

mes [27] proposes a leaderless design for Linearizable con-

sistency. DDP [30], which is closest to our work, introduces

a set of combinations of consistency and persistency models

and their high-level operation.

NICs in datacenters. NICs can improve performance in

datacenters. Caulfield et al. [10] use NICs to enable direct

communication between pools of FPGAs. FLOEM [47] intro-

duces a framework to program NIC-accelerated applications.

Some works extend RDMA capabilities: Reda et al. [49]

support self-modifying RDMA chains, PRISM [7] introduces

new primitives, and Hyperloop [28] supports distributed trans-

actions. RAMBDA [64] offloads CPU tasks into a cache-

coherent accelerator that can directly interact with RDMA

NICs.

Programmable NICs and switches. They are used in datacen-

ters [41], [56]. The NetCache [23] and IncBricks [36] switches

cache data in the network, and PMNet [53] also persists

data in the network (whether it is a programmable switch

or a NIC). Several works optimize/extend existing RDMA

primitives using SmartNICs [3], [33], [51], or offload storage

operations [42]. In SmartNICs, LineFS [29] supports dis-

tributed file systems with support to persist at the client’s side,

TURBO [54] load-balances light-tailed RPCs, and Xenic [52]

accelerates distributed transactions by maintaining locks and

hot data at the NIC. iPipe [35] provides a new programming

model to offload distributed applications onto SmartNICs,

and SKV [55] offloads key-value stores to SmartNICs while

persisting at the host. MINOS is different from prior works

in that it targets offloading both consistency and persistency

protocols to the SmartNIC, and uses rigorous definitions of

consistency and persistency models.

X. CONCLUSION

To enable high-performance, programmable, and durable

distributed systems, this paper has developed detailed dis-

tributed algorithms for DDP models. The algorithms support

Linearizable consistency with five different types of persis-

tency. We call them MINOS-B. Then, to improve performance,

we redesigned the algorithms to offload them to a new Smart-

NIC architecture. The architecture introduces optimizations

such as selective data coherence in hardware between host and

SmartNIC, message batching, and message broadcasting. The

resulting algorithms and architecture are called MINOS-O.

Our evaluation of MINOS-O showed that offloading substan-

tially reduces request latency and increases request throughput

for various workloads and number of nodes. For example,

compared to MINOS-B, MINOS-O reduced the average end-

to-end latency of two microservice functions by 35%.

ACKNOWLEDGMENTS

This work was supported in part by NSF under grants CNS

19-56007 and CCF 21-07470, and by ACE, one of the seven

centers in JUMP 2.0, a Semiconductor Research Corporation

(SRC) program sponsored by DARPA. The authors would like

to thank Burak Ocalan for his feedback.

REFERENCES

[1] Y. Ajima, T. Kawashima, T. Okamoto, N. Shida, K. Hirai, T. Shimizu,
S. Hiramoto, Y. Ikeda, T. Yoshikawa, K. Uchida, and T. Inoue, “The
Tofu Interconnect D.” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), 2018, pp. 646–654.

[2] R. Alagappan, A. Ganesan, E. Lee, A. Albarghouthi, V. Chidambaram,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Protocol-Aware
Recovery for Consensus-Based Storage.” in 2019 USENIX Annual
Technical Conference, USENIX ATC 2019, Renton, WA, USA, July
10-12, 2019, D. Malkhi and D. Tsafrir, Eds. USENIX Association,
2019. [Online]. Available: https://www.usenix.org/conference/atc19/
presentation/alagappan

950

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

[3] E. Amaro, Z. Luo, A. Ousterhout, A. Krishnamurthy, A. Panda,
S. Ratnasamy, and S. Shenker, “Remote Memory Calls.” in HotNets
’20: The 19th ACM Workshop on Hot Topics in Networks, Virtual
Event, USA, November 4-6, 2020, B. Y. Zhao, H. Zheng, H. V.
Madhyastha, and V. N. Padmanabhan, Eds. ACM, 2020, pp. 38–44.
[Online]. Available: https://doi.org/10.1145/3422604.3425923

[4] H. Attiya and J. L. Welch, “Sequential Consistency versus
Linearizability.” ACM Trans. Comput. Syst., vol. 12, no. 2, pp. 91–122,
1994. [Online]. Available: https://doi.org/10.1145/176575.176576

[5] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Bolt-on causal
consistency.” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013, K. A. Ross, D. Srivastava, and
D. Papadias, Eds. ACM, 2013, pp. 761–772. [Online]. Available:
https://doi.org/10.1145/2463676.2465279

[6] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. C. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “TAO: Facebook’s
Distributed Data Store for the Social Graph.” in 2013 USENIX Annual
Technical Conference, San Jose, CA, USA, June 26-28, 2013, A. Birrell
and E. G. Sirer, Eds. USENIX Association, 2013, pp. 49–60.
[Online]. Available: https://www.usenix.org/conference/atc13/technical-
sessions/presentation/bronson

[7] M. Burke, S. Dharanipragada, S. Joyner, A. Szekeres, J. Nelson,
I. Zhang, and D. R. K. Ports, “PRISM: Rethinking the RDMA
Interface for Distributed Systems.” in SOSP ’21: ACM SIGOPS
28th Symposium on Operating Systems Principles, Virtual Event
/ Koblenz, Germany, October 26-29, 2021, R. van Renesse and
N. Zeldovich, Eds. ACM, 2021, pp. 228–242. [Online]. Available:
https://doi.org/10.1145/3477132.3483587

[8] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“SimGrid on GitHub.” https://github.com/simgrid/simgrid, 2014.

[9] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, Scalable, and Accurate Simulation of Distributed
Applications and Platforms.” J. Parallel Distributed Comput.,
vol. 74, no. 10, pp. 2899–2917, 2014. [Online]. Available:
https://doi.org/10.1016/j.jpdc.2014.06.008

[10] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A Cloud-Scale Acceleration Architecture.” in
49th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2016, Taipei, Taiwan, October 15-19, 2016. IEEE Computer
Society, 2016, pp. 7:1–7:13. [Online]. Available: https://doi.org/10.
1109/MICRO.2016.7783710

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A Distributed Storage System for Structured Data.” ACM Trans.
Comput. Syst., vol. 26, no. 2, pp. 4:1–4:26, 2008. [Online]. Available:
https://doi.org/10.1145/1365815.1365816

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB.” in Proceedings
of the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
143–154. [Online]. Available: https://doi.org/10.1145/1807128.1807152

[13] S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in a
Partitioned Network: A Survey.” ACM Comput. Surv., vol. 17, no. 3, p.
341–370, sep 1985. [Online]. Available: https://doi.org/10.1145/5505.
5508

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-Value Store.” in Proceedings of the
21st ACM Symposium on Operating Systems Principles 2007, SOSP
2007, Stevenson, Washington, USA, October 14-17, 2007, T. C.
Bressoud and M. F. Kaashoek, Eds. ACM, 2007, pp. 205–220.
[Online]. Available: https://doi.org/10.1145/1294261.1294281

[15] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
Remote Memory.” in Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2014, Seattle,
WA, USA, April 2-4, 2014, R. Mahajan and I. Stoica, Eds. USENIX
Association, 2014, pp. 401–414. [Online]. Available: https://www.
usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87

[16] A. Dragojevic, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro, “No Compromises: Distributed

Transactions with Consistency, Availability, and Performance.” in
Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP 2015, Monterey, CA, USA, October 4-7, 2015, E. L. Miller
and S. Hand, Eds. ACM, 2015, pp. 54–70. [Online]. Available:
https://doi.org/10.1145/2815400.2815425

[17] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The Design and Operation of CloudLab.” in Proceedings of
the USENIX Annual Technical Conference (ATC), jul 2019, pp. 1–14.
[Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19

[18] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems.” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019,
Providence, RI, USA, April 13-17, 2019, I. Bahar, M. Herlihy,
E. Witchel, and A. R. Lebeck, Eds. ACM, 2019, pp. 3–18. [Online].
Available: https://doi.org/10.1145/3297858.3304013

[19] A. Ganesan, R. Alagappan, A. Arpaci-Dusseau, and R. Arpaci-Dusseau,
“Strong and Efficient Consistency with Consistency-Aware Durability.”
in 18th USENIX Conference on File and Storage Technologies
(FAST 20). Santa Clara, CA: USENIX Association, Feb. 2020,
pp. 323–337. [Online]. Available: https://www.usenix.org/conference/
fast20/presentation/ganesan

[20] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and
M. Lipshteyn, “RDMA over Commodity Ethernet at Scale.” in
Proceedings of the ACM SIGCOMM 2016 Conference, Florianopolis,
Brazil, August 22-26, 2016, M. P. Barcellos, J. Crowcroft, A. Vahdat,
and S. Katti, Eds. ACM, 2016, pp. 202–215. [Online]. Available:
https://doi.org/10.1145/2934872.2934908

[21] HPC-AI Advisory Council Cluster Center, “HPC-AI Advisory Council
Cluster Center.” [Online]. Available: https://www.hpcadvisorycouncil.
com/

[22] J. Izraelevitz, H. Mendes, and M. L. Scott, “Linearizability of
Persistent Memory Objects Under a Full-System-Crash Failure Model.”
in 30th International Symposium on Distributed Computing, DISC
2016, Paris, France, September 27-29, 2016. Proceedings, ser.
Lecture Notes in Computer Science, C. Gavoille and D. Ilcinkas,
Eds., vol. 9888. Springer, 2016, pp. 313–327. [Online]. Available:
https://doi.org/10.1007/978-3-662-53426-7 23

[23] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “NetCache: Balancing Key-Value Stores with Fast In-Network
Caching.” in Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017. ACM, 2017, pp.
121–136. [Online]. Available: https://doi.org/10.1145/3132747.3132764

[24] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design Guidelines for
High Performance RDMA Systems.” in 2016 USENIX Annual Technical
Conference, USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016,
A. Gulati and H. Weatherspoon, Eds. USENIX Association, 2016, pp.
437–450. [Online]. Available: https://www.usenix.org/conference/atc16/
technical-sessions/presentation/kalia

[25] A. Kalia, M. Kaminsky, and D. G. Andersen, “Datacenter RPCs
can be General and Fast.” in 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2019, Boston,
MA, February 26-28, 2019, J. R. Lorch and M. Yu, Eds.
USENIX Association, 2019, pp. 1–16. [Online]. Available: https:
//www.usenix.org/conference/nsdi19/presentation/kalia

[26] A. Kalia, M. Kaminsky, and D. G. Andersen, “eRPC on GitHub.” https:
//github.com/erpc-io/eRPC, 2019.

[27] A. Katsarakis, V. Gavrielatos, M. R. S. Katebzadeh, A. Joshi,
A. Dragojevic, B. Grot, and V. Nagarajan, “Hermes: A Fast, Fault-
Tolerant and Linearizable Replication Protocol.” in ASPLOS ’20:
Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, March 16-20, 2020, J. R. Larus,
L. Ceze, and K. Strauss, Eds. ACM, 2020, pp. 201–217. [Online].
Available: https://doi.org/10.1145/3373376.3378496

[28] D. Kim, A. S. Memaripour, A. Badam, Y. Zhu, H. H. Liu,
J. Padhye, S. Raindel, S. Swanson, V. Sekar, and S. Seshan,
“Hyperloop: Group-Based NIC-Offloading to Accelerate Replicated
Transactions in Multi-Tenant Storage Systems.” in Proceedings of

951

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

the 2018 Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM 2018, Budapest, Hungary, August 20-25,
2018, S. Gorinsky and J. Tapolcai, Eds. ACM, 2018, pp. 297–312.
[Online]. Available: https://doi.org/10.1145/3230543.3230572

[29] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostic, Y. Kwon,
S. Peter, and E. Witchel, “LineFS: Efficient SmartNIC Offload of a
Distributed File System with Pipeline Parallelism.” in SOSP ’21: ACM
SIGOPS 28th Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021, R. van Renesse and
N. Zeldovich, Eds. ACM, 2021, pp. 756–771. [Online]. Available:
https://doi.org/10.1145/3477132.3483565

[30] A. Kokolis, A. Psistakis, B. Reidys, J. Huang, and J. Torrellas,
“Distributed Data Persistency.” in MICRO ’21: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, Virtual Event, Greece,
October 18-22, 2021. ACM, 2021, pp. 71–85. [Online]. Available:
https://doi.org/10.1145/3466752.3480060

[31] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System.” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978. [Online].
Available: https://doi.org/10.1145/359545.359563

[32] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[33] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen,
and L. Zhang, “KV-Direct: High-Performance In-Memory Key-
Value Store with Programmable NIC.” in Proceedings of the
26th Symposium on Operating Systems Principles, Shanghai, China,
October 28-31, 2017. ACM, 2017, pp. 137–152. [Online]. Available:
https://doi.org/10.1145/3132747.3132756

[34] C. Lin, V. Nagarajan, and R. Gupta, “Fence Scoping.” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2014, New Orleans, LA, USA, November 16-21, 2014,
T. Damkroger and J. J. Dongarra, Eds. IEEE Computer Society, 2014,
pp. 105–116. [Online]. Available: https://doi.org/10.1109/SC.2014.14

[35] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and
K. Gupta, “Offloading Distributed Applications onto SmartNICs using
iPipe.” in Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM 2019, Beijing, China, August 19-23, 2019,
J. Wu and W. Hall, Eds. ACM, 2019, pp. 318–333. [Online].
Available: https://doi.org/10.1145/3341302.3342079

[36] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“IncBricks: Toward In-Network Computation with an In-Network
Cache.” in Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017, Y. Chen,
O. Temam, and J. Carter, Eds. ACM, 2017, pp. 795–809. [Online].
Available: https://doi.org/10.1145/3037697.3037731

[37] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: scalable causal consistency for wide-area storage
with COPS.” in Proceedings of the 23rd ACM Symposium on Operating
Systems Principles 2011, SOSP 2011, Cascais, Portugal, October
23-26, 2011, T. Wobber and P. Druschel, Eds. ACM, 2011, pp.
401–416. [Online]. Available: https://doi.org/10.1145/2043556.2043593

[38] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd,
“I Can’t Believe It’s Not Causal! Scalable Causal Consistency with
No Slowdown Cascades.” in 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2017, Boston, MA, USA,
March 27-29, 2017, A. Akella and J. Howell, Eds. USENIX
Association, 2017, pp. 453–468. [Online]. Available: https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi

[39] Mellanox, “ConnectX®-3 VPI Single and Dual QSFP+ Port Adapter
Card User Manual.” https://network.nvidia.com/pdf/user manuals/
ConnectX-3 VPI Single and Dual QSFP Port Adapter Card User
Manual.pdf, 2013.

[40] Mellanox, “NVIDIA® Mellanox® BlueField® Data Processing
Unit (DPU).” https://network.nvidia.com/files/doc-2020/pb-bluefield-
dpu.pdf, 2020.

[41] Microsoft, “Microsoft Catapult: Transforming Cloud Computing by
Augmenting CPUs with an Interconnected and Configurable Compute
Layer Composed of Programmable Silicon.” https://www.microsoft.com/
en-us/research/project/project-catapult/, 2018.

[42] Y. Mu, K. Yao, Y. Li, Z. Li, T. Sun, L. Lu, J. He, and M. Huang, “SOSP:
A SmartNIC-Based Offloading Framework for Cloud Storage Pooling.”
in 2022 9th International Conference on Wireless Communication and
Sensor Networks (ICWCSN), ser. icWCSN 2022. New York, NY,

USA: Association for Computing Machinery, 2022, p. 25–28. [Online].
Available: https://doi.org/10.1145/3514105.3514110

[43] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-
Buedo, and A. W. Moore, “Understanding PCIe Performance for End
Host Networking.” in Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM
2018, Budapest, Hungary, August 20-25, 2018, S. Gorinsky and
J. Tapolcai, Eds. ACM, 2018, pp. 327–341. [Online]. Available:
https://doi.org/10.1145/3230543.3230560

[44] NVIDIA, “NVIDIA BlueField 2 DPU.” https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-
bluefield-2-dpu.pdf, 2021.

[45] D. Ongaro, S. M. Rumble, R. Stutsman, J. K. Ousterhout, and
M. Rosenblum, “Fast crash recovery in RAMCloud.” in Proceedings
of the 23rd ACM Symposium on Operating Systems Principles 2011,
SOSP 2011, Cascais, Portugal, October 23-26, 2011, T. Wobber
and P. Druschel, Eds. ACM, 2011, pp. 29–41. [Online]. Available:
https://doi.org/10.1145/2043556.2043560

[46] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory Persistency.” in
ACM/IEEE 41st International Symposium on Computer Architecture,
ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014. IEEE
Computer Society, 2014, pp. 265–276. [Online]. Available: https:
//doi.org/10.1109/ISCA.2014.6853222

[47] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and
T. Anderson, “Floem: A Programming System for NIC-Accelerated
Network Applications.” in 13th USENIX Symposium on Operating
Systems, ser. OSDI’18. USA: USENIX Association, 2018, p. 663–679.

[48] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Kim, S. Lanka,
J. R. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,
and D. Burger, “A reconfigurable fabric for accelerating large-scale
datacenter services.” in ACM/IEEE 41st International Symposium on
Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June
14-18, 2014. IEEE Computer Society, 2014, pp. 13–24. [Online].
Available: https://doi.org/10.1109/ISCA.2014.6853195

[49] W. Reda, M. Canini, D. Kostic, and S. Peter, “RDMA is Turing
complete, we just did not know it yet!.” in 19th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2022,
Renton, WA, USA, April 4-6, 2022, A. Phanishayee and V. Sekar,
Eds. USENIX Association, 2022, pp. 71–85. [Online]. Available:
https://www.usenix.org/conference/nsdi22/presentation/reda

[50] J. Ren, “Yahoo! Cloud Serving Benchmark in C++, a C++ version of
YCSB.” https://github.com/basicthinker/YCSB-C, 2014.

[51] A. Ryser, A. Lerner, A. Forencich, and P. Cudré-Mauroux, “D-RDMA:
Bringing Zero-Copy RDMA to Database Systems.” in 12th Conference
on Innovative Data Systems Research, CIDR 2022, Chaminade, CA,
USA, January 9-12, 2022. www.cidrdb.org, 2022. [Online]. Available:
https://www.cidrdb.org/cidr2022/papers/p77-ryser.pdf

[52] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy,
“Xenic: SmartNIC-Accelerated Distributed Transactions.” in SOSP ’21:
ACM SIGOPS 28th Symposium on Operating Systems Principles,
Virtual Event / Koblenz, Germany, October 26-29, 2021, R. van
Renesse and N. Zeldovich, Eds. ACM, 2021, pp. 740–755. [Online].
Available: https://doi.org/10.1145/3477132.3483555

[53] K. Seemakhupt, S. Liu, Y. Senevirathne, M. Shahbaz, and S. M.
Khan, “PMNet: In-Network Data Persistence.” in 48th ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA
2021, Valencia, Spain, June 14-18, 2021. IEEE, 2021, pp. 804–817.
[Online]. Available: https://doi.org/10.1109/ISCA52012.2021.00068

[54] H. Seyedroudbari, S. Vanavasam, and A. Daglis, “TURBO: SmartNIC-
enabled Dynamic Load Balancing of μs-scale RPCs.” in IEEE
International Symposium on High-Performance Computer Architecture,
HPCA 2023, Montreal, QC, Canada, February 25 - March 1,
2023. IEEE, 2023, pp. 1045–1058. [Online]. Available: https:
//doi.org/10.1109/HPCA56546.2023.10071135

[55] S. Sun, R. Zhang, M. Yan, and J. Wu, “SKV: A SmartNIC-Offloaded
Distributed Key-Value Store.” in IEEE International Conference
on Cluster Computing, CLUSTER 2022, Heidelberg, Germany,
September 5-8, 2022. IEEE, 2022, pp. 1–11. [Online]. Available:
https://doi.org/10.1109/CLUSTER51413.2022.00016

[56] M. Tork, L. Maudlej, and M. Silberstein, “Lynx: A SmartNIC-driven
Accelerator-centric Architecture for Network Servers.” in ASPLOS
’20: Architectural Support for Programming Languages and Operating

952

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

Systems, Lausanne, Switzerland, March 16-20, 2020, J. R. Larus,
L. Ceze, and K. Strauss, Eds. ACM, 2020, pp. 117–131. [Online].
Available: https://doi.org/10.1145/3373376.3378528

[57] S. Tsai and Y. Zhang, “LITE Kernel RDMA Support for
Datacenter Applications.” in Proceedings of the 26th Symposium
on Operating Systems Principles, Shanghai, China, October
28-31, 2017. ACM, 2017, pp. 306–324. [Online]. Available:
https://doi.org/10.1145/3132747.3132762

[58] A. van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper, “Building
Blocks for Persistent Memory.” VLDB J., vol. 29, no. 6, pp. 1223–1241,
2020. [Online]. Available: https://doi.org/10.1007/s00778-020-00622-9

[59] P. Viotti and M. Vukolic, “Consistency in Non-Transactional Distributed
Storage Systems.” ACM Comput. Surv., vol. 49, no. 1, pp. 19:1–19:34,
2016. [Online]. Available: https://doi.org/10.1145/2926965

[60] W. Vogels, “Eventually Consistent: Building Reliable Distributed
Systems at a Worldwide Scale Demands Trade-Offs Between
Consistency and Availability.” Queue, vol. 6, no. 6, p. 14–19, oct 2008.
[Online]. Available: https://doi.org/10.1145/1466443.1466448

[61] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao,
“Characterizing and Modeling Non-Volatile Memory Systems.” in 53rd
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2020, Athens, Greece, October 17-21, 2020. IEEE, 2020,
pp. 496–508. [Online]. Available: https://doi.org/10.1109/MICRO50266.
2020.00049

[62] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast In-Memory
Transaction Processing Using RDMA and HTM.” in Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP
2015, Monterey, CA, USA, October 4-7, 2015, E. L. Miller and
S. Hand, Eds. ACM, 2015, pp. 87–104. [Online]. Available:
https://doi.org/10.1145/2815400.2815419

[63] K. Wu, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Towards
an Unwritten Contract of Intel Optane SSD.” in 11th USENIX
Workshop on Hot Topics in Storage and File Systems, HotStorage
2019, Renton, WA, USA, July 8-9, 2019, D. Peek and G. Yadgar, Eds.
USENIX Association, 2019. [Online]. Available: https://www.usenix.
org/conference/hotstorage19/presentation/wu-kan

[64] Y. Yuan, J. Huang, Y. Sun, T. Wang, J. Nelson, D. R. K. Ports,
Y. Wang, R. Wang, C. Tai, and N. S. Kim, “RAMBDA: RDMA-driven
Acceleration Framework for Memory-Intensive μs-scale Datacenter
Applications.” in IEEE International Symposium on High-Performance
Computer Architecture, HPCA 2023, Montreal, QC, Canada, February
25 - March 1, 2023. IEEE, 2023, pp. 499–515. [Online]. Available:
https://doi.org/10.1109/HPCA56546.2023.10071127

[65] R. Zambre, M. Grodowitz, A. Chandramowlishwaran, and P. Shamis,
“Breaking Band: A Breakdown of High-performance Communication.”
CoRR, vol. abs/2002.02563, 2020. [Online]. Available: https://arxiv.org/
abs/2002.02563

953

Authorized licensed use limited to: University of Illinois. Downloaded on October 03,2024 at 22:25:30 UTC from IEEE Xplore. Restrictions apply.

