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Abstract
Iterative slice-matching procedures are efficient schemes for transferring a source
measure to a target measure, especially in high dimensions. These schemes have
been successfully used in applications such as color transfer and shape retrieval, and
are guaranteed to converge under regularity assumptions. In this paper, we explore
approximation properties related to a single step of such iterative schemes by exam-
ining an associated slice-matching operator, depending on a source measure, a target
measure, and slicing directions. In particular, we demonstrate an invariance property
with respect to the source measure, an equivariance property with respect to the target
measure, and Lipschitz continuity concerning the slicing directions. We furthermore
establish error bounds corresponding to approximating the target measure by one step
of the slice-matching scheme and characterize situations in which the slice-matching
operator recovers the optimal transport map between two measures. We also investi-
gate connections to affine registration problems with respect to (sliced) Wasserstein
distances. These connections can be also be viewed as extensions to the invariance
and equivariance properties of the slice-matching operator and illustrate the extent to
which slice-matching schemes incorporate affine effects.
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1 Introduction

Optimal transport and Wasserstein distances play a crucial role in machine learning
and related applications [1–4]. For example, these methods have gained prominence
in generative modeling [5], aiming to find transport maps or their approximations [6,
7] that align posterior and prior distributions. A basic problem can be described as
follows: Given a random variable X ∼ σ where σ is a prior probability distribution
and a target probability distribution μ of interest, find a transformation T such that
T (X) ∼ μ.

Transforming one probability distribution into another is a fundamental problem
that also has implications for flow matching [8], probability flows [9, 10], particle
evolutions [11], and the general learning of underlying distributions in complex data
sets [1, 12].

WhileWasserstein distances have proven successful in modeling probability distri-
butions [1, 7], their computational expense, especially in high-dimensional scenarios,
necessitates more efficient approaches. The computation can be intensive for large-
scale problems; specifically, the cost of calculation via linear programs comes with
a complexity of O(m3 log(m)), while the Sinkhorn version [13] provides a faster
approximation at O(m2 log(m)), where m is the number of particles used to approxi-
mate ameasure. Sliced-Wasserstein-based generativemodels [14, 15] provide scalable
alternatives. Our study focuses on one such model, namely, slice-matching schemes
[16, 17]. These schemes utilize projections onto lines (slices) as well as the computa-
tional benefit of one-dimensional optimal transport to offer effective approximations
of target distributions. Furthermore, they are closely aligned with the broader context
of normalizing flows [12, 18] and variational inference [7]. Beyond their computa-
tional advantages, these schemes also demonstrate promising convergence results, as
shown in [16, 19, 20].

While convergence analysis of iterative slice-matching schemes is the primary focus
of [20], the present manuscript aims at establishing a comprehensive understanding of
one step of such schemes, focusing on recovery and stability properties. We explore
structural relationships between measures and address two closely related questions:
(A) when can closed-form formulations serve as robust alternatives to optimal trans-
port maps? (B) how effectively do slice-matching approximations represent the target
measure? Additionally, our study examines the ability to handle transformations like
shifts and scalings in the initial step, demonstrated through the analysis of some basic
registration problems. Registration problems are not the main focus of this paper; we
rather use them to understand affine effects of slice-matching maps. Nonetheless, we
would like to point out that optimal transport is a useful tool for registration problems,
see for example [21–23].

1.1 Slice-matchingmaps

In this paper, we are interested in maps defined by a slicing and matching procedure
[16], which is closely related to the slicedWasserstein distance. These are maps of the



Approximation properties of slice-matching... Page 3 of 32 15

form

Tσ,μ;P (x) =
n∑

i=1

Tμθi

σθi
(x · θi ) θi , x ∈ R

n

involving a source measure σ , a target measure μ and an orthogonal matrix P =
[θ1, . . . , θn]. Here σθi denotes the 1-dimensional measure obtained by projecting σ

onto the line θ , and Tμθi

σθi
is the optimal transport map between the 1-dimensional

measures σθi and μθi . Note that the 1-dimensional optimal transport map can be
computed explicitly, see Sect. 2 for more details.

This maps allows to define the iterative slice-matching procedure [16, 20]

σk+1 = (Tσk ,μ;Pk )�σk, k ≥ 0, (1)

which have been successfully used in applications such as color transfer [16], texture
mixing [24] and shape retrieval [25]. Convergence results of (1) in special cases have
been obtained in [16, 19]. More general almost sure (a.s.) convergence of σk → μ for
a stochastic variant of (1) have been established in [20].

Theprocedure (1) also defines an iterationon the level ofmaps throughTσk ,μ;Pk , k ≥
0 (though thementioned convergence results only hold formeasures).Note that bounds
which are valid for maps directly carry over to the associated pushforward measures
through the well-known stability result [26, Eq. (2.1)]

W2(F�σ,G�σ ) ≤ ‖F − G‖σ . (2)

In this paper, we are interested in the approximation power of one step of (1),
both for measures and maps. This means that we study (A) the relation between
σ1 = (Tσ,μ;P )�σ and the target μ and (B) the relation between Tσ,μ;P and T , with
μ = T�σ .

1.2 Main contributions

The contributions of this paper are twofold and summarized in Theorem 1 and 2. To
formulate our contributions, we use the notation S = {x �→ ax + b : a > 0, b ∈ R

n}
for the set of shifts and scaling, and S(P) = {x �→ ∑n

i=1 fi (x · θi )θi : fi : R →
R increasing} with P ∈ O(n) for the set of P-compatible maps [27]. Note that
S ⊂ S(P) for any P .

Theorem 1 [Recovery and approximation: informal implications of Corollary 6,
Proposition 10, and Proposition 11] Consider two measures σ,μ with μ = T�σ .
Then we get

1. If ‖T − S‖ ≤ ε for some S ∈ S, then one step of the scheme (1) reconstructs T up
to an error of order ε, i.e. ‖T − Tσ,μ;P‖ ≤ 2ε for any P ∈ O(n). In particular, if
T ∈ S, then Tσ,μ;P = T for any P ∈ O(n).
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2. If T ∈ S(P) for some orthogonalmatrix P, then one step of the scheme (1) using Q
reconstructs T up to an error of order ‖P−Q‖F , i.e. ‖T−Tσ,μ;Q‖ ≤ C‖P−Q‖F .
In particular, if Q = P, then Tσ,μ;Q = T .

Through the stability bound of (2), all results of Theorem 1 also hold for the
reconstruction of the target measure μ through σ1.

Our results shows that basic transformations relating σ to μ can be recovered
easily, not needing any optimization scheme. This relates to recent efforts in trying to
approximate the optimal transport map (or fully replace it) by simpler maps such as
the Knothe-Rosenblatt construction [6].

To formulate our second contribution, we define the slice-matching operator U ,
which assigns the first step of (1) to a given source σ , target μ, and slicing directions
P ∈ O(n):

U : (σ, μ, P) �→ (Tσ,μ;P )�σ.

Theorem 2 [Encoding of special affine effects: informal implications of Proposition 5,
Proposition 13, Proposition 12, Corollary 15] Consider a source measure σ and
a target measure μ. One step of the slice-matching procedure (1) encodes basic
transformations in the following sense:

1. U is invariant to S(P)-actions on the source measure σ :

U(T�σ, μ, P) = U(σ, μ, P), T ∈ S(P).

2. U is equivariant to S(P)-actions on the target measure μ:

U(σ, T�μ, P) = T�U(σ, μ, P), T ∈ S(P).

3. U encodes translation effects between σ and μ by matching means:
E(U(σ, μ, P)) = E(μ) for any P ∈ O(n).

4. U encodes translation-and-scaling effects in the following sense: Let S be the best
map in S that aligns σ and μ, and let S∗ be the best map in S that aligns σ and
U(σ, μ, P). Then, by choosing P randomly, in expectation we get

E‖S − S∗‖σ = Cσ

(
W 2

2 (σ, μ) − nSW 2
2 (σ, μ)

)
≥ 0,

where Cσ depends on the mean and second moment of σ , W2 denotes the
Wasserstein distance, and SW2 denotes the sliced Wasserstein distance.

Note that (4) means the following: If (W 2
2 (σ, μ) − nSW 2

2 (σ, μ)) ≤ ε, then one step
of the iterative scheme (1) removes global translation-and-scaling effects between the
source σ and the target μ up to an error of size Cσ ε.
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1.3 Structure of the paper

This paper is organized as follows: Sect. 2 provides essential background information
on optimal transport. Section3 delves into the details of slice-matching maps, its
relations to compatibility, as well as moment-matching properties. In Sect. 4, we
present invariance, equivariance, and Lipschitz properties associated with the slice-
matching operator, which lead to recovery and stability results. In Sect. 5, we further
explore how the slice-matching procedure handles affine effects by studying basic
registration problems. The paper closes with a concluding remark in Sect. 6.

2 Preliminaries

We use the notation P(Rn) and Pac(R
n) for the spaces of probability measures

on R
n and absolutely continuous measures with respect to the Lebesgue measure,

respectively. We consider the quadratic Wasserstein space, denoted by W2(R
n),

which includes probability measures σ with finite second moments, i.e. σ satisfying
M2(σ ) = ∫

Rn ‖x‖2dσ(x) < ∞. In addition, let W2,ac(R
n) = W2(R

n) ∩ Pac(R
n).

The mean of a measure σ is denoted by E(σ ) = ∫
xdσ(x).

On W2(R
n) we consider the quadratic Wasserstein distance [28]:

W2(σ, μ) := inf
π∈�(σ,μ)

(∫

R2n
‖x − y‖2dπ(x, y)

) 1
2

,

where �(σ,μ) := {π ∈ P(Rn × R
n) : π(A × R

n) = σ(A), π(Rn × B) =
μ(B), A, B ⊆ R

n measurable} represents the set of couplings between σ and μ.
When σ ∈ W2,ac(R

n) and μ ∈ W2(R
n), the optimization problem:

min
T :T�σ=μ

∫

Rn
‖T (x) − x‖2 dσ(x),

with T a map in L2(Rn, σ ), has a unique (up to constants) solution [29], which
we denote by Tμ

σ . Here � is the pushforward operator. The map Tμ
σ takes the form

Tμ
σ = ∇ϕ where ϕ is convex [29]. Maps which are the gradients of convex functions

will be referred to as Brenier maps.
If Tμ

σ exists, the optimal coupling has the form π = (id, Tμ
σ )�σ . In this case, the

Wasserstein-2 distance can then be written as: W2(σ, μ) = ‖Tμ
σ − id ‖σ , where ‖ · ‖σ

is the L2-norm with respect to σ .
For 1-dimensional measures, the exist explicit formulae for the optimal transport

map and the Wasserstein distance. With σ ∈ Pac(R) and μ ∈ P(R) we get Tμ
σ =

F−1
μ ◦ Fσ , where Fσ is the cumulative distribution function (CDF) of σ , and F−1

μ is
the pseudo-inverse of the CDF of μ. This leads to:

W2(σ, μ) =
(∫ 1

0
|F−1

μ (x) − F−1
σ (x)|2 dx

)1/2

. (3)
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Throughout this paper, we use the same symbols to denoteWasserstein distance and
optimal transport maps for probability measures on both R

n and R, with the context
clarifying the dimension of the measures.

We also use the sliced-Wasserstein distance between σ ∈ W2,ac(R
n) and μ ∈

W2(R
n):

SW 2
2 (σ, μ) =

∫

Sn−1
W 2

2 (σ θ , μθ ) du(θ), (4)

with σθ = Pθ �σ , where Pθ (x) = x · θ denotes the projection onto the line defined
by θ , and u denotes the uniform measure on Sn−1. In (4), W2 denotes the Wasserstein
distance between the 1-dimensional projected measures σθ , μθ .

It is known that SW2 ≤ W2 while these two distances are equivalent for measures
with compact supports [19].

3 Slice-matchingmaps, compatibility andmomentmatching

Slice-matching schemes were first introduced by [16] to iteratively transport an initial
measure to targetmeasure.An almost sure convergence result of such iterative schemes
has been shown in [20]. In this paper, we are interested in approximation properties of
one step of this slice-matching procedure. In what follows, we present the definitions
of the schemes and the associated slice-matching maps. We furthermore show that the
mean and second moments of σ and μ are matched through one step of such schemes.

3.1 Slice-matchingmaps and compatibility

Definition 1 (Single-slice and matrix-slice matching, [16, 20]) Consider σ ∈
W2,ac(R

n), μ ∈ W2(R
n) and a vector θ ∈ Sn−1. The single-slice matching map

from σ to μ is defined by

Tσ,μ;θ (x) = x + (Tμθ

σθ (x · θ) − x · θ) θ (5)

where Tμθ

σθ is the optimal transport map between the 1-dimensional measures σθ

and μθ obtained through projection by θ . If an orthonormal basis of Rn is used, the
matrix-slice matching map from σ to μ is defined by

Tσ,μ;P (x) = x + P

⎡

⎢⎢⎢⎢⎢⎣

Tμθ1

σθ1
(x · θ1) − x · θ1

Tμθ2

σθ2
(x · θ2) − x · θ2

...

Tμθn

σθn (x · θn) − x · θn,

⎤

⎥⎥⎥⎥⎥⎦
=

n∑

i=1

Tμθi

σθi
(x · θi ) θi (6)

where P = [θ1, · · · , θn] is an orthogonal matrix.
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Remark 1 The motivation for the name slice-matching map is the following: If ν =
(Tσ,μ;P )�σ , then νθi = μθi for 1 ≤ i ≤ n, i.e. all slices arematched. Similar properties
hold for Tσ,μ;θ . Moreover, the following relation between n-dimensional Wasserstein
distance and one-dimensional Wasserstein distance of the corresponding slices holds:

W 2
2 (σ, (Tσ,μ;P )�σ ) =

n∑

i=1

W 2
2 (σ θi , μθi ), (7)

see [20, Lemma 3.9]. An analogous result for empirical measures can be found in [19,
Proposition 5.2.7].

Remark 2 The matrix-slice matching maps (as well as the single-slice and generaliza-
tions to 1 ≤ j ≤ n slices, see [20]) can be used to approximate a target measure μ by
iteratively pushing a source measure σ0:

σk+1 = ((1 − γk) id+γk Tσk ,μ;Pk )�σk, k ≥ 0, (8)

where γk is a sequence of step-sizes and Pk are matrices in O(n). When γk satisfies
classical stochastic gradient descent assumptions [30] and Pk are chosen i.i.d. form
the Haar measure on O(n) (and some technical details are satisfied), then σk → μ in
both W2 and SW2 a.s. [20].

The paper [16] considers the above iterative scheme with γk = 1, whose conver-
gence is however not covered by results of [20]. [16] shows convergence for special
measures (the target is Gaussian) and in the KL-divergence.

In this paper, we study approximation properties of one step of (8) with γk = 1,
i.e. we are interested in the relation between σ1 = (Tσ0,μ;P )�σ0 and the target μ. An
illustration of such approximations using different orthogonal matrices P is given in
Fig. 1v.

It follows easily that both Tσ,μ;θ and Tσ,μ;P are Brenier maps, though they are not
necessarily optimal transport maps between σ and μ. The maps Tσ,μ;θ and Tσ,μ;P are
furthermore a special type of P-compatible maps [27, 31], which are defined by

S(P) =
{
x �→

n∑

i=1

fi (x · θi )θi : fi : R → R is increasing
}
, (9)

for any fixed P = [θ1, . . . , θn] ∈ O(n). An analog to (7) holds for P-compatible
maps

W 2
2 (σ, T�σ ) =

n∑

i=1

W 2
2 (σ θi , (T�σ )θi ), T ∈ S(P).
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Fig. 1 Effects of matrix-slice matching. Left panel: Illustration of invariance to translation and scaling of
the initial measures. Right panel: Illustration of slice-matching using different orthogonal matrices

Moreover, the slice-matching map can be viewed as the minimizer inS(P) associated
with the following minimization problem

Tσ,μ;P = argmin
T∈S(P)

n∑

i=1

W 2
2 ((T�σ )θi , μθi ).

∈ argmin
T is Brenier

n∑

i=1

W 2
2 ((T�σ )θi , μθi ), (10)

where (10) follows from the fact that for T ∈ S(P), and therefore

n∑

i=1

W 2
2 ((T�σ )θi , μθi ) = ‖T − Tσ,μ;P‖2σ , which is minimal iff T = Tσ,μ;P .

The details of this statement are presented in Corollary 8.
P-compatible maps have been used in tangent space embeddings, which allow for

linear separability of two classes of measures, see [27, 31–33]. These maps satisfy

Pθi ◦ T = fi ◦ Pθi , i = 1, . . . , n, (11)

where T (x) = ∑n
i=1 fi (x · θi )θi ∈ S(P) and P = [θ1, . . . , θn].

Next, we show that the property (11) also characterizes the set of P-compatible
maps given in (9).
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Proposition 3 Let T ∈ S(P) with T (x) = ∑n
i=1 fi (x · θi )θi , where [θ1, . . . , θn] =

P ∈ O(n) and fi , i = 1, . . . , n are increasing functions. Then T = Tμ
σ for some

measures σ ∈ W2,ac(R
n) and μ ∈ Pac(R

n), if and only if

Pθi ◦ Tμ
σ = fi ◦ Pθi , i = 1, . . . , n. (12)

Furthermore, in this case, fi = Tμθi

σθi
and T is a matrix-slice matching map.

Proof For the equivalence, note that relation (12) is equivalent to

T (x) =
n∑

i=1

fi (x · θi ) θi =
n∑

i=1

(θi · Tμ
σ (x)) θi = Tμ

σ (x),

since the columns of P are orthonormal.
For the other statement note that (11) implies that

μθi = (Pθi ◦ T
)
�
σ = (

fi ◦ Pθi

)
�
σ

= ( fi )�σ
θi .

Since fi are increasing we obtain fi = Tμθi

σθi
. ��

Remark 3 Note that the proof of Proposition 3 relies on the columns of P forming
an orthonormal basis of Rn . Therefore, this equivalence is not true for single-slice

matchingmaps.We only have the implication Tσ,μ;θ = Tμ
σ �⇒ Pθ ◦Tμ

σ = Tμθ

σθ ◦Pθ .

3.2 Momentmatching

We show that slice-matching maps push the source measure to a measure that has the
same mean and second moments as the target measure.

Proposition 4 Let σ ∈ W2,ac(R
n) and μ ∈ W2(R

n). Then for any P ∈ O(n), the
following holds:

E((Tσ,μ;P )�σ ) = E(μ) (13)

M2((Tσ,μ;P )�σ ) = M2(μ) (14)

Proof A direct computation shows that
∫
Tσ,μ;P (x)dσ(x) = ∫

ydμ(y) and∫ ‖Tσ,μ;P (x)‖2dσ(x) = ∫ ‖y‖2dμ(y), see Lemma 22 for more details. ��
The equal mean property (13) gives a first hint towards the shift-eliminating phe-

nomenon of the slice-matching procedure. In particular, it can be verified that if Tμ
σ is a

shift, then (Tσ,μ;P )�σ = μ. Amore comprehensive perspective of the shift-eliminating
effect will be presented in (16) and (23).
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4 Invariance, equivariance, and Lipschitz properties

Weconsider the followingoperator inducedby the slice-matchingmapsofDefinition1:

Definition 2 (Slice-matching operator) We define the following operator based on the
slice-matching approximation, concerning a source measure, a target measure, and
slicing directions given by an orthogonal matrix:

U : W2,ac(R
n) × W2(R

n) × O(n) → W2(R
n)

(σ, μ, P) �→ (Tσ,μ;P )�σ.

Note that (Tσ,μ;P )�σ has finite second moment when μ ∈ W2(R
n) by (14), which

implies that U maps into W2(R
n). If absolute continuity of (Tσ,μ;P )�σ is desired,

one can further assume that both σ,μ are absolutely continuous, in which case U :
W2,ac(R

n) × W2,ac(R
n) × O(n) → W2,ac(R

n), see Lemma 29.
We first illustrate the invariance and equivariance properties of the slice-matching

operator in terms of basic transformations, i.e., shifts and scalings, which can be
viewed as special cases of compatible transformations, as shown in Sect. 4.2. We
also show how such properties are related to the recovery of optimal transport maps
using matrix-slice matching. Moreover, as a complementary remark to the unifying
convergence framework [20] of the single-slice and matrix-slicing matching schemes,
we illustrate their differences via different recovery properties. A Lipschitz property
in terms of the third component is shown in Sect. 4.3.

4.1 Invariance and equivariance with respect to shifts and scalings

We show that the slice-matching operator is invariant to actions induced by push-
forward operations of shifts and scalings on any initial measure σ ∈ W2,ac(R

n) and
is equivariant to actions of these maps on any target measure μ ∈ W2(R

n), regardless
of the orthogonal matrix P . More specifically,

Proposition 5 Let σ ∈ W2,ac(R
n) and μ ∈ W2(R

n). Then for any P ∈ O(n) and
S(x) = ax + b where a > 0, b ∈ R

n, we get

U(S�σ, μ, P) = U(σ, μ, P), (15)

U(σ, S�μ, P) = S�U(σ, μ, P). (16)

Proof Since S ∈ ⋂
P∈O(n)

S(P), the conclusion follows from the corresponding

invariance and equivariance properties in terms the group S(P) of compatible
transformations, see Proposition 7. ��

An illustration of the invariance property the U with respect to translation-and-
scaling transformations of the source measure is presented in Fig. 1a. Approximations
with different choices of orthogonal matrices is illustrated in Fig. 1b.

Note that isotropic scalings and translations S(x) = ax +b with a > 0 and b ∈ R
n

are special types of compatible maps. They satisfy S ∈ S(P) for all P ∈ O(n). An
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Fig. 2 Recovery of basic transformation (shift and scaling) using matrix-slice matching. The initial σ0 (left)
and target image μ (right) are related T�μ = σ0 where T (x) = 1.6(x + [−35, 20]t ), where each image
is of size 84 × 84. Here σ1 = (Tσ0,μ;P )�σ0 (middle) is the image obtained via slice-matching transport
between σ0 and μ for an arbitrary orthogonal matrix P . Note σ1 ≈ μ up to numerical errors, as implied by
Corollary 6

immediate corollary of the above proof is that, given two measures that are related by
shifts and scalings, the target is recovered exactly by push the initial measure with the
slice matching map Tσ,μ;P for any P .

Corollary 6 (Recovery of basic transformations with one step of slice matching map)
Given σ ∈ W2,ac(R

n), μ ∈ W2(R
n) with Tμ

σ (x) = ax + b for some a > 0, b ∈ R
n.

Then we have Tσ,μ;P = Tμ
σ and U(σ, μ, P) = μ for any P ∈ O(n).

Proof Let S = Tμ
σ in (15). Then S�σ = μ and U(S�σ, μ, P) = (Tμ,μ;P )�μ =

(id)�μ = μ. Hence by (15), U(σ, μ, P) = μ. The fact that Tσ,μ;P = Tμ
σ follows from

the fact that they are both Brenier maps pushing σ to μ. ��
An illustration of Corollary 6 is presented in Fig. 2, the target image μ is matched

(up to numerical errors) by its slice-matching approximation (Tσ,μ;P )�σ for any P , if
Tμ

σ is a translation-scaling function.
In addition, we can show that a differentiable map T connecting σ and μ can only

be recovered with one step of the slice-matching scheme with any choice of P if and
only if T is an isotropic scaling with translation:

Remark 4 Under the assumptions in Corollary 6, and if we further assume that Tμ
σ is

differentiable, we obtain the following: T = Tσ,μ;P for any choice of P ∈ O(n) if
and only if T (x) = ax + b for some a > 0 and b ∈ R

n . One direction follows from
Corollary 6. See Proposition 16 for details of the other direction.

The above recovery result holds for the matrix-slice scheme, but in general does
not hold for single-slice schemes:

Example 4.1 Let μ = T b
� σ with T b(x) = x + b, b �= 0 ∈ R

n . Unlike the matrix-slice
matching, the target measure μ cannot always be recovered via (Tσ,μ;θ )�σ by the
observing that Tσ,μ;θ (x) = x +θ(θ ·b), for θ ∈ Sn−1. To recoverμ exactly, θ = 1

‖b‖b
is the only choice. Therefore, in general, we will not recover μ after one step.

Discussion A possible remedy is through an iterative scheme by repeating the above
slice-matching procedure with different θ as introduced in Remark 2. In [20] we
show that the iterative scheme σk+1 = ((1 − γk) id+γkTσk ,μ;θk )�σk with step size γk
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satisfying
∑

γk = ∞ and
∑

γ 2
k < ∞ converges a.s. (θk

i.i.d∼ u, u uniform measure on
Sn−1).

However, for the particular example of a shift, a.s. convergence can also be achieved
for γk = 1. In Proposition 28 we give an elementary proof that σk+1 = (Tσk ,μ;θk )�σk
converges to μ = T b

� σ a.s. with respect to the W2-distance.

4.2 Invariance and equivariance with compatible maps

In this subsection, we discuss the invariance and equivariance properties of the slice-
matching operatorU as defined inDefinition 2 concerning compatible transformations,
defined in (9).

Proposition 7 Let σ ∈ W2,ac(R
n) and μ ∈ W2(R

n). For any T ∈ S(P), where
P ∈ O(n), we have

U(T�σ, μ, P) = U(σ, μ, P), (17)

U(σ, T�μ, P) = T�U(σ, μ, P). (18)

Proof Let T (x) = P f (Pt x), where f (x) = ( f1(x1), · · · , fn(xn))with each fi being
increasing and P = [θ1, · · · , θn]. Let σT = T�σ . By (11), we get σ

θi
T = fi �σ

θi . It

follows from the fact that fi is increasing that Tμθi

σθi
= Tμθi

σ
θi
T

◦ fi . Denote g(x) =
[(Tμθ1

σ
θ1
T

◦ f1)(x1), · · · , (Tμθn

σ
θn
T

◦ fn)(xn)]t and gT (x) = [Tμθ1

σ
θ1
T

(x1), · · · , Tμθn

σ
θn
T

(xn)]t .
Then

(Tσ,μ;P )�σ = (Pg ◦ Pt )�σ = (PgT ◦ f ◦ Pt )�σ

= (pgT ◦ Pt ◦ P ◦ f ◦ Pt )�σ = (TσT ,μ;P ◦ T )�σ

= (TσT ,μ;P )�σT .

This proves (17). For (18), denote μT = T�μ. With similar reasoning as before and

with the observations that T
μ

θi
T

σθi
= fi ◦ Tμθi

σθi
, we get

Tσ,μT ;P = P f ◦ Pt ◦ Tσ,μ;P = T ◦ Tσ,μ;P .

��
As a direct conclusion, define S(P)�η := {T�η : T ∈ S(P)}, then

U(S(P)�σ, μ, P) = {U(σ, μ, P)} is a singleton set, as illustrated in Fig. 1a, and
U(σ,S(P)�μ, P) = S(P)�U(σ, μ, P).

Corollary 8 Let σ,μ ∈ W2,ac(R
n). Then

n∑

i=1

W 2
2 ((T�σ )θi , μθi ) = ‖T − Tσ,μ;P‖2σ ,
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where T ∈ S(P) and P ∈ O(n).

Proof Rewriting (7), we have

n∑

i=1

W 2
2 (σ θi , μθi ) = W 2

2 (σ,U(σ, μ, P)).

Hence

n∑

i=1

W 2
2 ((T�σ )θi , μθi ) = W 2

2 (T�σ,U(T�σ, μ, P)) = W 2
2 (T�σ,U(σ, μ, P))

= W 2
2 (T�σ, (Tσ,μ;P )�σ ) = ‖T − Tσ,μ;P‖2σ ,

where the second step uses the invariance property (17) and the last steps makes uses
of the isometry property with respect to P-compatible maps T and Tσ,μ;P , see [27]. ��

4.3 Recovery and stability properties of matrix-slicingmatching

When two measures are related by a P-compatible map, the optimal map between
them can be recovered exactly by the (P)-matrix-slice matching procedure. This is in
contrast to shifts and scalings, where an arbitrary orthogonal matrix can be used for
recovery. The following corollary to Proposition 7 summarized this result.

Corollary 9 (Recovery of P-compatible transformations with one step of P-slice-
matching)Given σ ∈ W2,ac(R

n), μ ∈ W2(R
n)with Tμ

σ ∈ S(P) for some P ∈ O(n).
Then we have U(σ, μ, P) = μ and Tσ,μ;P = Tμ

σ .

Proof With Proposition 7, the above result follows from similar arguments as in
Corollary 6. ��
To recover a compatible map T with one step of the iteration, Corollary 6 implies that
we need to know the orthogonal matrix P . The following Lipschitz continuity of the
slice-matching operator U with respect to P establishes a stability result on the choice
of P:

Proposition 10 Let σ ∈ W2,ac(R
n) and μ ∈ W2(R

n). Assume that there exists L > 0

such that Tμθ

σθ is L-Lipschitz on R for all θ ∈ Sn−1. Then

W2(U(σ, μ, P),U(σ, μ, Q)) = ‖Tσ,μ;P − Tσ,μ;Q‖σ

≤ (3L + 1)C‖P − Q‖F , (19)

where C = max{M2(σ ), M2(μ)} and ‖ · ‖F denotes the Frobenius norm.

Proof See A.2. ��
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Remark 5 Inequality (19) can be viewed a stability result for one step of the iterative
schemes described in Remark 2. If Tμ

σ ∈ S(P) for some P ∈ O(n), then the push-
forward measure of σ using a slice-matching map associated with Q ∈ O(n) is within
(3L + 1)C‖P − Q‖F in Wasserstein distance to the target μ. Picking a Q close to
P is good enough to obtain an approximation of μ by σ1 := (Tσ,μ;Q)�σ . Note that if
Q = P , then σ1 = μ, which also follows from Corollary 9.

The stability result in Proposition 10 shows how well the target μ can be approx-
imated by the slice-matching approximation (Tσ,μ;P )�σ when σ and μ are related
by some compatible map Tσ,μ;Q . Additionally, we will now show that if σ and μ

are related by a map which is an ε-perturbation of shifts and scalings, then μ can be
approximated by its slice-matching approximation with at most 2ε error (Remark 6).
This can also be viewed as an extension to the recovery result in Corollary 6.

Proposition 11 Let σ ∈ W2,ac(R
n) and μ ∈ W2(R

n). Then for any P ∈ O(n),

W2((Tσ,μ;P )�σ, μ) ≤ 2 inf
S∈S

W2(S�σ, μ),

where S := {S(x) = ax + b | a > 0, b ∈ R
n}.

Proof Since W2(S�σ, μ) = ‖S − Tμ
σ ‖σ , it suffices to show that for any S ∈ S,

W2((Tσ,μ;P )�σ, μ) ≤ 2‖S − Tμ
σ ‖σ .

By the Lipschitz property (see e.g., [26, Eq. (2.1)]) associated with W2 and triangle
inequality, we have

W2((Tσ,μ;P )�σ, μ) ≤ ‖Tσ,μ;P − Tμ
σ ‖σ

≤ ‖Tσ,μ;P − S‖σ + ‖S − Tμ
σ ‖σ . (20)

Next we bound the first term. Since S ∈ S(P) for any P ∈ O(n), it follows from
Corollary 8 that

‖S − Tσ,μ;P‖2σ =
n∑

i=1

W 2
2 ((S�σ )θi , μθi ) ≤ W 2

2 (S�σ, μ) = ‖S − Tμ
σ ‖2σ

where the bound follows from Lemma 24 and the last equality follows from isometry
properties with respect to transformations in S [33]. The desired inequality hence
follows from (20). ��
Remark 6 Assume thatμ = ( f ◦S)�σ , where f : Rn → R

n satisfies ‖ f −id ‖S�σ ≤ ε

for some ε > 0 and S(x) = ax + b, a > 0, b ∈ R
n . Then

W2((Tσ,μ;P )�σ, μ) ≤ 2ε.
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Remark 7 Using essentially the same arguments as in the proof of Proposition 11, one
can show that for any T : Rn → R

n such that μ = T�σ ,

‖T − Tσ,μ;P‖σ ≤ 2 inf
S∈S

‖T − S‖σ .

Note T is not necessarily the optimal transport map between σ and μ.

5 Affine effects and registration problems

We study two basic image and point-cloud registration problems to understand the
effects of the slice-matching maps (6). Image registration [34] involves matching
images with variations caused by differences in acquisition, object growth or other
changes. It plays a fundamental role in image processing, particularly in medical
image applications [35]. Modeling image data and shape with probability measures
has paved the way for robust and scalable algorithms by leveraging the theory optimal
transport, such as diffeomorphic registration methods [21, 22], including point cloud
registration [23].

We have shown that slice-matching maps can be used to register translation-and-
scaling deformations exactly, see Corollary 6 and Fig. 2. We also showed that if the
two measures are related by perturbations of translations and scalings, the registration
error is bounded by the the size of this perturbation, see Proposition 11. To gain a
better understanding of how the slice-matching procedure incorporates affine effects,
particularly when the initial and target measures significantly differ–meaning they are
not merely small perturbations of translations and scalings– we compare the registra-
tionmaps aimed at the targetμwith those directed at its slice-matching approximation
U(σ, μ, P), see Fig. 3. Specifically, we demonstrate that registration maps involving
only translations are identical (Proposition 12), and those involving translations and
isotropic scalings are comparable (Proposition 13).

Let D(·, ·) be a distance between probability measures, e.g., W2 or SW2. We
study registration problems with the following subsets of affine transformation:
St := {S(x) = x + b | b ∈ R

n} (the set of translations), S := {S(x) = ax + b | a >

0, b ∈ R
n} (the set of compositions of isotropic scalings and translations):

Sσ,η,D
t := argmin

S∈St

D(S�σ, η), (21)

Sσ,η,D := argmin
S∈S

D(S�σ, η), (22)

the existence and uniqueness of which will be addressed later.
We show that the optimal translation registration maps from the initial measure to

the target and to slice-matching approximation of the target are identical.
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Fig. 3 Illustration of registration problems with translation-and-scaling function Sσ,η,D from Proposi-
tion 13, where η = μ or η = U(σ, μ, P). As indicated in (25), Sσ,η,D

�σ and η have the same mean;
however for better visualization, we intentionally kept them separate in this Fig.

Proposition 12 (Registration with translations (21)) Let σ ∈ W2,ac(R
n) and μ ∈

W2(R
n). Then for any P ∈ O(n), the unique minimizer in (21) satisfies

Sσ,μ,W2
t = Sσ,U(σ,μ,P),W2

t . (23)

Proof Theminimization problem (21) is a quadratic problem in the parameter b, which
can be solved by taking partial derivativeswith respect to b, and setting them to 0. From
this, the existence and uniqueness follows immediately. Calculations are summarized
in the proof of Proposition 18 and Corollary 20. In particular, the arguments show that
the optimal parameters bW2 , b̃W2 for Sσ,μ,W2

t and Sσ,U(σ,μ,P),W2
t respectively, satisfy

bW2 = E(μ) − E(σ ), b̃W2 = E(U(σ, μ, P)) − E(σ ).

The conclusion hence follows from the fact that E(U(σ, μ, P)) = E(μ), see (13). ��
Remark 8 By similar calculations, one can also show that

Sσ,μ,SW2
t = Sσ,U(σ,μ,P),SW2

t .

See expressions bSW2 and b̃SW2 in Proposition 18 and Corollary 20.

The above registration result illustrates the idea of how shifts are eliminated by the
slice-matching procedure. When considering registration involving translations and
isotropic scalings measured by the W2 distance, the following comparison holds:
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Proposition 13 (Registration with translation-and-scalings (22)) Let σ ∈ W2,ac(R
n)

and μ ∈ W2(R
n). Assume that (i) The convex potential φ such that �φ = Tμ

σ

given by Brenier’s theorem is differentiable at E(σ ), and (ii) For any λ ∈ (0, 1),
φ((1−λ)y+λE(σ )) < (1−λ)φ(y)+λφ(E(σ )) for all y in some ball B(x, r), where
x lies in the support of σ . Then Sσ,μ,W2 and Sσ,U(σ,μ,P),W2 in (22) are well-defined
and unique, and satisfy the following

W2(S
σ,μ,W2

�σ, Sσ,U(σ,μ,P),W2
�σ ) = ‖Sσ,μ,W2 − Sσ,U(σ,μ,P),W2‖σ

= W 2
2 (σ, μ) − ∑n

i=1 W
2
2 (σ θi , μθi )

2
√
M2(σ ) − ‖E(σ )‖2 , (24)

where P = [θ1, . . . , θn]. In particular,

Sσ,μ,W2 = Sσ,U(σ,μ,P),W2 iff W 2
2 (σ, μ) =

n∑

i=1

W 2
2 (σ θi , μθi ).

Moreover, the registrations eliminate the effects of translation in the following sense

E(Sσ,μ,W2
�σ ) = E(Sσ,U(σ,μ,P),W2

�σ ) = E(μ). (25)

Proof Similar to the proof of Proposition 12, the minimization problems (22) are
quadratic in terms of parameters a and b, where S(x) = ax + b. By taking the partial
derivatives and setting them to zero, checking the Hessian matrix, together with the
assumption of the proposition, we obtain existence and uniqueness of the minimizers.
The equalities then follow from direct computations. See Proof 1 for details. ��
Remark 9 With (7), Proposition 13 implies

Sσ,μ,W2 = Sσ,U(σ,μ,P),W2 iff W 2
2 (σ, μ) = W 2

2 (σ,U(σ, μ, P)).

Corollary 6 andCorollary 9 showspecial caseswheremaps Sσ,μ,W2 and Sσ,U(σ,μ,P),W2

are equal. However, for the case of registration with only shifts, Sσ,μ
t = Sσ,U(σ,μ,P)

t
always holds, see (23).

We further establish a connection between the Wasserstein distance and sliced-
Wasserstein distance by comparing the registrationmaps in (22). This insight holds the
potential to enhance our understanding of the distinction between sliced-Wasserstein
and Wasserstein flows, as demonstrated in a special case by Bonet et al. [15, p.7, Eq.
19].

Corollary 14 Let P be a random variable corresponding to the Haar probability mea-
sure un on the orthogonal group O(n). For fixed σ ∈ W2,ac(R

n) and μ ∈ W2(R
n),

we have

‖Sσ,μ,W2 − ESσ,U(σ,μ,P),W2‖σ = E‖Sσ,μ,W2 − Sσ,U(σ,μ,P),W2‖σ
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= W 2
2 (σ, μ) − nSW 2

2 (σ, μ)

2
√
M2(σ ) − ‖E(σ )‖2 ≥ 0.

Proof By (27), (28), (24) and calculations in Proposition 18, both equations reduce to
the following:

∫

O(n)

n∑

i=1

W 2
2 (σ θi , μθi )dun(P) = nSW 2

2 (σ, μ), (26)

which can be observed by an explicit geometric construction of the Haar measure on
O(n) (see e.g., [36, p.19]). ��

In light of the inherent connection between
∑n

i=1 W
2
2 (σ θi , μθi ) and SW 2

2 (σ, μ)

as shown in (26), and the minimization problem (10) associated with Tσ,μ;P , we
demonstrate a similar connection between the registration maps associated with two
distinct registration problems concerning the W2 and SW2 distances respectively:

Corollary 15 Given the same assumptions as in Proposition 13, we have

‖Sσ,U(σ,μ,P),W2 − Sσ,μ,SW2‖σ = nSW 2
2 (σ, μ) − ∑n

i=1 W
2
2 (σ θ i , μθi )

√
M2(σ ) − ‖E(σ )‖2 .

Moreover, let P be a random variable corresponding to the Haar probability measure
un on the orthogonal group O(n), then

ESσ,U(σ,μ,P),W2 = Sσ,μ,SW2 .

Proof The proof follows directly from Proposition 18 and Corollary 20 and similar
calculations as in (27) and (28). ��

In simpler terms, themap that optimally aligns σ withU(σ, μ,P) considering shifts
and scalings in the W2 distance is, on average, the same map that optimally aligns σ

with μ in the SW2 distance.

Remark 10 Similar to the registration problems (22) and (21), one can study registra-
tion in terms of maps S(P) := {x �→ P�Pt x + b : � is positive and diagonal, b ∈
R
n}. We provide a summary in Proposition 21.

6 Conclusion

Optimal transport-based slice-matching schemes benefit from closed-form formula-
tions, computational efficiency and convergence guarantees. In the present paper, we
are interested in the approximation power of one step of such schemes, both on the
level of measures and maps. This can be considered as a step towards understand-
ing to what extend slice-matching maps can serve as effective alternatives to optimal
transport maps.



Approximation properties of slice-matching... Page 19 of 32 15

We investigate the exact recovery of basic transformations, such as translations and
scalings, as well as the approximate recovery of perturbations of such transformations.
These results are derived by studying invariance properties of an associated slice-
matching operator. In addition, we explore equivariance and Lipschitz properties of
the same operator, to understand how it incorporates actions of basic transformations
on the target measure, as well as perturbations on the slicing directions.

We provide a quantitative perspective on how slice-matching procedures encode
special affine transformations in their approximations through the study of basic reg-
istration problems. These registration problems potentially also offer insights into the
relationship betweenWasserstein and sliced-Wasserstein flows, which is an interesting
problem for future research.

Appendix A Proofs for Sect. 4

A.1 Key facts for proof of Remark 4

Proposition 16 Let D(Rn) be the set of differentiable vector fields from R
n to Rn.

( ⋂

P∈O(n)

S(P)
)

∩ D(Rn) = {x �→ ax + b : a > 0 and b ∈ R
n}.

Proof For the proof, we need to show that a differentiable vector field S ∈⋂
P∈O(n) S(P) is an isotropic scaling with translation. Choose P ∈ O(n) and write

S(x) = ∑n
i=1 f Pi (x · θi )θi with P = [θ1, . . . , θn]. Note that using the standard basis,

we can also write S(x) = ∑n
i=1 gi (xi )ei . Computing the Jacobian of S with respect

to the two basis representations, we obtain

⎡

⎢⎣
g′
1(x1)

. . .

g′
n(xn)

⎤

⎥⎦ = P

⎡

⎢⎢⎢⎢⎣

f P1
′
(x · θ1)

f P2
′
(x · θ2)

. . .

f Pn
′
(x · θn)

⎤

⎥⎥⎥⎥⎦
Pt .

Hence the two diagonal matrices above have the same diagonal entries, allowing
for a possible reordering of the entries. Without loss of generality, we assume that

g′
i (xi ) = f Pi

′
(x · θi ), i = 1, ..., n by possibly performing a column permutation of P

and renaming f Pi ’s. Choosing an orthogonal matrix P such that one of its column θi
with all entries being non-zero, one can immediately derive that the diagonal entries
g′
i (xi )’s are the same for any fixed x . In summary,

g′
1(x1) = · · · = g′

n(xn) = f P1
′
(x · θ1) = · · · = f Pn

′
(x · θn) = ax ,
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where ax is a constant depending on x = [x1, · · · , xn]t ∈ R
n . Since the diagonal

element g′
i (xi ) only depends on xi , it follows that ax is a constant independent of x .

Hence S(x) = ax + b for some a > 0, b ∈ R
n . ��

Remark 11 In general, if T ∈ ⋂
P∈O(n) S(P) is differentiable on an open set

� ⊆ R
n , the T |� : � → R

n is an isotropic scaling with translation. In particular,⋂
P∈O(n) S(P) include some piecewise isotropic scalings with translations.

A.2 Proof of Proposition 10

We need the following proposition to derive the proof of Proposition 10:

Proposition 17 Consider two angles θ, ν ∈ Sn−1, and assume that Tμν

σν is L-Lipschitz

for all ν, i.e. there exists L > 0 such that |Tμν

σν (x)− Tμν

σν (y)| ≤ L|x − y| for x, y ∈ R

and ν ∈ Sn−1, then

‖Tμθ

σθ ◦ Pθ − Tμν

σν ◦ Pν‖σ ≤ (2L + 1)C‖θ − ν‖2,

where C is the max over the second moments of σ resp. μ.

Proof

‖Tμθ

σθ ◦ Pθ − Tμν

σν ◦ Pν‖σ ≤ ‖Tμθ

σθ ◦ Pθ − Tμν

σθ ◦ Pθ‖σ + ‖Tμν

σθ ◦ Pθ − Tμν

σν ◦ Pν‖σ = (�).

We bound these separately.

‖Tμθ

σθ ◦ Pθ − Tμν

σθ ◦ Pθ‖σ = ‖Tμθ

σθ − Tμν

σθ ‖σθ = W2
(
μθ ,μν

)

≤ ‖Pθ − Pν‖μ =
(∫

Rn
|Pθ (x) − Pν(x)|2 dμ(x)

)1/2

=
(∫

Rn
|(θ − ν) · x |2 dμ(x)

)1/2

≤ ‖θ − ν‖2
(∫

Rn
‖x‖2 dμ(x)

)1/2

≤ C‖θ − ν‖2,

with C max of the second moments, which is bounded by assumption. Now for the
second part, note that on R we have Tμν

σθ = Tμν

σν ◦ T σν

σ θ

‖Tμν

σθ ◦ Pθ − Tμν

σν ◦ Pν‖σ

=
(∫

Rn
|Tμν

σν (T σν

σ θ (Pθ (x))) − Tμν

σν (Pν(x))|2 dσ(x)

)1/2

= (�)
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Since Tμν

σν is L-Lipschitz, we get

(�) ≤ L

(∫

Rn
|T σν

σ θ (Pθ (x)) − Pν(x)|2 dσ(x)

)1/2

= L‖T σν

σ θ ◦ Pθ − Pν‖σ

≤ L
(
‖T σν

σ θ ◦ Pθ − Pθ‖σ + ‖Pθ − Pν‖σ

)

≤ L
(
‖T σν

σ θ − id ‖σθ + C‖θ − ν‖2
)

= L
(
W2(σ

θ , σ ν) + C‖θ − ν‖2
)

≤ L (‖Pθ − Pν‖σ + C‖θ − ν‖2)
≤ 2LC‖θ − ν‖2

This implies

(�) ≤ (2L + 1)C‖θ − ν‖2.

��

Proof of Proposition 10 Based on (9), we let Tσ,μ;P = PD ◦ Pt where D(x) =
[Tμθ1

σθ1
(x1), T

μθ2

σθ2
(x2), · · · , Tμθn

σθn (xn)]t for x ∈ R
n and P = [θ1, . . . , θn]. Similarly,

we let and Tσ,μ;Q = QD̃ ◦ Qt , with Q = [ν1, . . . , νn]. We continue with deriving the
bound:

‖Tσ,μ;P − Tσ,μ;Q‖σ = ‖PDPt − QD̃Qt‖σ

≤ ‖PDPt − P D̃Qt‖σ + ‖P D̃Qt − QD̃Qt‖σ

= (1) + (2).

We bound the two terms seperately. For (1), using Proposition 17, we get

‖PDPt − P D̃Qt‖2σ =
∫

Rn
‖D(Pt x) − D̃(Qt x)‖22 dσ(x)

=
n∑

i=1

∫

Rn
|Tμθi

σθi
((Pt x)i ) − Tμνi

σνi ((Qt x)i )|2 dσ(x)

=
n∑

i=1

‖Tμθi

σθi
◦ Pθi − Tμνi

σνi ◦ Pνi ‖2σ

≤ ((2L + 1)C)2
n∑

i=1

‖θi − νi‖22

= ((2L + 1)C)2‖P − Q‖2F .
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For (2) we get

‖P D̃Qt − QD̃Qt‖2σ =
∫

Rn
‖(P − Q)D̃(Qt x)‖22 dσ(x)

≤ ‖P − Q‖22
∫

Rn
‖D̃(Qt x)‖22 dσ(x)

≤ ‖P − Q‖22 L2
∫

Rn
‖Qt x‖22 dσ(x) ≤ ‖P − Q‖22 L2C2

≤ ‖P − Q‖2F L2C2

Combining (1) and (2) gives the final bound. ��

Appendix B Proofs for Sect. 5

Proof of Proposition 13 Let Sσ,μ,W2(x) = aW2x + bW2 and Sσ,U(σ,μ,P),W2(x) =
ãW2x + b̃W2 be the critical functions for the associated minimization problem (22).
By Proposition 18 and Corollary 20, we have

ãW2 − aW2 = W 2
2 (σ, μ) − ∑n

i=1 W
2
2 (σ θi , μθi )

2(M2(σ ) − ‖E(σ )‖2) , (27)

b̃W2 − bW2 = −(̃aW2 − aW2)E(σ ), (28)

and the norm bound ‖Sσ,μ,W2 − Sσ,U(σ,μ,P),W2‖σ in (24) can be obtained via direct
computation and the fact that the RHS is non-negative, see Lemma 24. It is left to
show that these critical functions are indeed the minimizers by verifying

1. ãW2 ≥ aW2 > 0, see Lemmas 24, 26, and 27.
2. The Hessian associated H(a, b) with both the minimization problems are positive

definite by a direct calculation and Lemma 26, where

H(a, b) = 2

[
M2(σ ) (E(σ ))t

E(σ ) In−1

]
.

Here In−1 denotes the identity matrix of size (n − 1) × (n − 1).

The equality concerning the means follows from Corollary 19. ��
Proposition 18 Let Sσ,η,W2 and Sσ,η,SW2 correspond to the critical points of the mini-
mization problems in (22) and (30), respectively. Then the corresponding parameters
satisfy

aW2 =
1
2 (M2(η) + M2(σ ) − W 2

2 (σ, η)) − E(σ ) · E(η)

M2(σ ) − ‖E(σ )‖2 ,

bW2 = E(η) − aW2E(σ ),
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aSW2 =
1
2 (M2(η) + M2(σ ) − nSW 2

2 (σ, η)) − E(σ ) · E(η)

M2(σ ) − ‖E(σ )‖2 ,

bSW2 = E(η) − aSW2E(σ ),

where Sσ,η,W2(x) = aW2x + bW2 and Sσ,η,SW2(x) = aSW2x + bSW2 .

Proof Given σ ∈ W2,ac(R
n) and η ∈ W2(R

n), let M2(σ ) = ∫ ‖x‖2dσ(x) (similarly
define M2(η)), E(σ ) = ∫

xdσ(x) (similarly define E(η)). For S(x) = ax + b, by the
changes of variables formula and the fact that T η

σ = T η
S�σ

◦ S, we have

W 2
2 (S�σ, η) = ‖T η

σ − (ax + b)‖2σ = M2(η) + a2M2(σ ) + 2ab · E(σ )

− 2a
∫

T η
σ (x) · xdσ(x) − E(σ ) · E(η) + ‖b‖2 − 2E(η) · b.

Taking the partial derivatives gives

∂

∂a
= 2aM2(σ ) + 2b · E(σ ) − 2

∫
T η

σ (x) · xdσ(x),

∂

∂b
= 2b + 2aE(σ ) − 2E(η).

Setting the above equations to zero and with the observation that
∫
T η

σ (x) · xdσ(x) =
1
2 (M2(η) + M2(σ ) − W 2

2 (σ, η)), we get the the desired formulas for aW2 and bW2 .
Similarly,

SW 2
2 (S�σ, η) =

∫

Sn−1
W 2

2 ((S�σ )θ , ηθ )du(θ)

=
∫

Sn−1

∫

R

|T ηθ

σ θ (t) − (at + b · θ)|2dtdu(θ)

= 1

n

(
M2(η) + a2M2(σ ) + 2ab · E(σ )

− 2na
∫

Sn−1

∫

R

tT ηθ

σ θ (t)dσ θ (t)du(θ) − E(σ ) · E(η) + ‖b‖2 − 2E(η) · b
)
.

Taking the partial derivatives gives

∂

∂a
= 1

n

(
2aM2(σ ) + 2b · E(σ ) − 2n

∫

Sn−1

∫

R

tT ηθ

σ θ (t)dtdu(θ)
)
,

∂

∂b
= 1

n

(
2b + 2aE(σ ) − 2E(η)

)
.

Setting the above equations to zero and with the observation that∫
Sn−1

∫
R
tT ηθ

σ θ (t)dσθ (t)du(θ) = 1
2n (M2(σ ) + M2(η) − nSW 2

2 (σ, η)), we get the

desired formulas for aSW2 and bSW2 .We provide computational details in Appendix C.
��



15 Page 24 of 32 S. Li, C. Moosmüller

Corollary 19 Given the same assumptions as in Proposition 18, for D = W2 or SW2

E(Sσ,η,D
�σ ) = E(η). (29)

Proof Upon direct calculation, we have E(Sσ,η,D
�σ = aDE(σ ) + bD , where aD, bD

are as in Proposition 18. The conclusion can be derived from the expressions for bW2

and bSW2 . ��
Corollary 20 Let η = U(σ, μ, P) in Proposition 18. Then the parameters correspond-
ing to Sσ,U(σ,μ,P),W2 and Sσ,U(σ,μ,P),SW2 satisfy

ãW2 =
1
2 (M2(μ) + M2(σ ) − ∑n

i=1 W
2
2 (σ θi , μθi )) − E(σ ) · E(μ)

M2(σ ) − ‖E(σ )‖2 ,

b̃W2 = E(μ) − ãW2E(σ ),

ãSW2 =
1
2 (M2(μ) + M2(σ ) − nSW 2

2 (σ,U(σ, μ, P))) − E(σ ) · E(μ)

M2(σ ) − ‖E(σ )‖2 ,

b̃SW2 = E(μ) − aSW2E(σ ),

where Sσ,U(σ,μ,P),W2(x) = ãW2x + b̃W2 and Sσ,U(σ,μ,P),SW2(x) = ãSW2x + b̃SW2 .

Proof The above formulas follows directly from Proposition 18, the fact that
U(σ, μ, P) and μ have the same mean (see (13)), and the formula (7) for
W 2

2 (σ,U(σ, μ, P)). ��
Proposition 21 Let

S(P) := {x �→ P�Pt x + b : � is positive and diagonal, b ∈ R
n}.

Consider the minimization problem

Sσ,η
P := argmin

SP∈S(P)

‖SP − T η
σ ‖σ . (30)

Let Sσ,μ
P and Sσ,U(σ,μ;P)

P be the minimizers of (30) with η = μ and η = U(σ, μ, P),
respectively. We denote the diagonal entries of the corresponding � by ai and ãi ,
respectively. Similar notation holds for bi and b̃i . Then

ãi − ai =
∫ |θi · (Tμ

σ (x) − x)|2dσ(x) − W 2
2 (σ θi , μθi )

2(Mσθi
2 − (Eθi )2)

≥ 0,

b̃i − bi = −
n∑

i=1

θi E
σθi

(̃ai − ai ).

Proof The proof uses similar arguments in Proposition 18 and Corollary 20 except the
partial derivatives are with respect to ai and ãi instead of a and ã. Note that following
these arguments, we use the equations presented in Lemma 23. ��
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Appendix C Other technical details

Lemma 22 Let σ ∈ W2,ac(R
n) and η,μ ∈ W2(R

n). Then we get

E((Tσ,μ;P )�σ ) =
∫

Tσ,μ;P (x)dσ(x) =
∫

ydμ(y) = E(μ),

∫
T η

σ (x) · xdσ(x) = 1

2
(M2(η) + M2(σ ) − W 2

2 (σ, η))

M2((Tσ,μ;P )�σ ) =
∫

‖Tσ,μ;P (x)‖2dσ(x) = M2(μ)

Proof By the change of variables formula, we have

∫
Tσ,μ;P (x)dσ(x) =

n∑

i=1

θi

∫
Tμθi

σθi
(x · θi )dσ(x) =

n∑

i=1

θi

∫
Tμθi

σθi
(t)dσθi (t)

=
n∑

i=1

θi

∫
zdμθi (z) =

n∑

i=1

θi

∫
y · θi dμ(y)

=
∫

ydμ(y),

∫
T η

σ (x) · xdσ(x) = 1

2

( ∫
‖T η

σ (x)‖2dσ(x)

+
∫

‖x‖2dσ(x) −
∫

‖T η
σ (x) − x‖2dσ(x)

)

= 1

2
(M2(η) + M2(σ ) − W 2

2 (σ, η)),

∫
‖Tσ,μ;P (x)‖2dσ(x) =

∫ n∑

i=1

|Tμθi

σθi
(x · θ)|2dσ(x) =

n∑

i=1

∫
|Tμθi

σθi
(t)|2dσθi (t)

=
n∑

i=1

∫
|w|2dμθi (w) =

n∑

i=1

∫
|y · θi |2dμ(y)

=
∫

‖y‖2dμ(y) = M2(μ),

where the last stepsmake use of the fact that P = [θ1, · · · , θn] is an orthogonal matrix.
��

Lemma 23 Let σ ∈ W2,ac(R
n), η ∈ W2(R

n), and b ∈ R
n. Then

∫

Sn−1

∫

R

tT ηθ

σ θ (t)dσθ (t)du(θ) = M2(σ ) + M2(η) − nSW 2
2 (σ, η)

2n
(31)
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∫

Sn−1

∫

R

t2dσθ (t)du(θ) = M2(σ )

n
(32)

∫

Sn−1

∫

R

|T ηθ

σ θ (t)|2dσθ (t)du(θ) = M2(η)

n
(33)

∫

Sn−1

∫

R

(b · θ)tdσθ (t)du(θ) = E(σ ) · b
n

(34)
∫

Sn−1

∫

R

(b · θ)T ηθ

σ θ (t)tdσθ (t)du(θ) = E(η) · b
n

(35)

Proof We note that (32) and (33) are analogous by the change of variables formula,
so are (34) and (35). We will first show (32).

∫

Sn−1

∫

R

t2dσθ (t)du(θ) =
∫

Sn−1

∫

Rn
|x · θ |2dσ(x)du(θ)

Fubini=
∫

Rn

∫

Sn−1
|x · θ |2du(θ)dσ(x)

=
∫

Rn

‖x‖2
2

dσ(x)

= M2(σ )

n
.

For (34), we have

∫

Sn−1

∫

R

(b · θ)tdσθ (t)du(θ)

=
∫

Sn−1
b · θ

∫

Rn
x · θdσ(x)du(θ)

=
∫

Sn−1
(b · θ)(E(σ ) · θ)du(θ)

=
∫

Sn−1

1

2

(
|b · θ)|2 + |E(σ ) · θ |2 − |(b − E(σ )) · θ |2

)
du(θ)

= 1

2n

(
‖b‖2 + ‖E(σ )‖2 − ‖b − E(σ )‖2

)

= E(σ ) · b
n

.

With (32) and (33), we have (31):

∫

Sn−1

∫

R

tT ηθ

σ θ (t)dσθ (t)du(θ)

= 1

2

∫

Sn−1

∫

R

(
t2 + (T ηθ

σ θ (t))2 − (t − T ηθ

σ θ (t))2
)
dσθ (t)du(θ)

= 1

2n

(
M2(σ ) + M2(η) − n

∫

Sn−1
W 2

2 (σ θ , ηθ )du(θ)
)
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= M2(σ ) + M2(η) − nSW 2
2 (σ, η)

2n
.

��
Lemma 24 Let σ ∈ W2,ac(R

n) and μ ∈ W2(R
n) and P = [θ1, · · · , θn] ∈ O(n).

Then

W 2
2 (σ, μ) ≥

n∑

i=1

W 2
2 (σ θi , μθi ).

Proof By [19, Proposition 5.1.3],

W 2
2 (σ θ , μθ ) ≤

∫
|θ · x − θ · y|2dγ ∗(x, y),

where γ ∗ is the optimal transport plan between σ and μ. Then

n∑

i=1

W 2
2 (σ θi , μθi ) ≤

∫ n∑

i=1

|θi · (x − y)|2dγ ∗(x, y)

=
∫

‖x − y‖2dγ ∗(x, y)

= W 2
2 (σ, μ).

��
Lemma 25 Let h : Rn → R

n and σ(Rn) = 1. Then

∫
‖h(x)‖2dσ(x)‖ ≥ ‖

∫
h(x)dσ(x)‖2,

where equality holds if and only if h(x) = v σ -a.e. for some v ∈ R
n.

Proof Let h(x) = [h1(x), · · · , hn(x)]t . By Hölder’s inequality,
∫

|hi (x)|dσ(x) ≤
(∫

|hi (x)|2dσ(x)

)1/2 (∫
12dσ(x)

)1/2

=
(∫

|hi (x)|2dσ(x)

)1/2

.

Squaring the above inequality and summingover i gives the desired inequality.Observe
that equality holds if and only if hi (x) = vi for some constant vi ∈ R. ��
Lemma 26 Let σ ∈ W2,ac(R

n), and M2(σ ), E(σ ) be defined as in Proposition 18.
Then

M2(σ ) − ‖E(σ )‖2 > 0.
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Proof Since x is not a constant vector σ -a.e. (σ ∈ W2,ac(R
n)), it follows from

Lemma 25 with h(x) = x that

∫
‖x‖2dσ(x) > ‖

∫
xdσ(x)‖2.

��
Lemma 27 Let σ ∈ W2,ac(R

n), μ ∈ W2(R
n) and φ be a convex function such

that �φ = Tμ
σ given by Brenier’s theorem (see e.g., [37, Theorem 1.48]). If φ is

differentiable at E(σ ), where E(σ ) = ∫
xdσ(x), then

∫
Tμ

σ (x) · xdσ(x) −
( ∫

xdσ(x)
)

·
( ∫

Tμ
σ (x)dσ(x)

)
≥ 0. (36)

Proof Let A = {x ∈ R
n : φ is differentiable at x}. Since φ is σ -a.e. differentiable, we

have σ(A) = 1. Then it follows from the convexity of φ that

(�φ(x) − �φ(E(σ ))) · (x − E(σ )) ≥ 0, ∀x ∈ A. (37)

Hence
∫

A
(Tμ

σ (x) − Tμ
σ (E(σ ))) · (x − E(σ ))dσ(x) ≥ 0,

which is exactly the desired inequality (36) by a direct computation using σ(A) = 1:

−
∫

Tμ
σ (E(σ )) · xdσ(x) −

∫
Tμ

σ (x) · E(σ )dσ(x) + Tμ
σ (E(σ )) · E(σ )

= −Tμ
σ (E(σ )) · E(σ ) −

( ∫
xdσ(x)

)
·
( ∫

Tμ
σ (x)dσ(x)

)
+ Tμ

σ (E(σ )) · E(σ )

=
( ∫

xdσ(x)
)

·
( ∫

Tμ
σ (x)dσ(x)

)
.

��
Remark 12 The same conclusion holds if the assumptionwere “E(σ ) lies in the support
of σ " instead of φ being differentiable at E(σ ), which can be proved using the fact
that the support of optimal transport plan is cyclically monotone.

Remark 13 Given the assumptions in:Lemma 27, one can show that the inequality is
strict if in addition, there exists a ball B(x, r), where x lies in the support of σ , such
that for any λ ∈ (0, 1) and y ∈ B(x, r)

φ((1 − λ)y + λE(σ )) < (1 − λ)φ(y) + λφ(E(σ )),

which guarantees that the inequality (37) is strict for y in a set with positive measure.
In particular, if furthermore φ in Lemma 27 is strictly convex, the strict inequality
holds.
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Proposition 28 Let σ ∈ W2,ac(R
n) and μ = T b

� σ with T b(x) = x + b, b �= 0 ∈ R
n.

Consider iteration σk+1 = (Tσk ,μ;θk )�σk , with σ0 = σ and where θk is chosen i.i.d.
according to the uniform measure on Sn−1. Then

σk
a.s.−−→ μ in W2.

Proof By a direct computation, Tμ
σk (x) = x + bk , where

bk+1 = bk − θk(θk · bk).

To show σk → μ almost surely, it suffices to show that bk → 0 almost surely.
By symmetry of Sn−1, we assume without of generality that b0 = [1, 0, · · · , 0]t .
Note that ‖b1‖2 = 1 − |θ0 · b0|2. Consider the spherical coordinates for Sn−1 with
φ1, . . . , φn−2 ∈ [0, π ] and φn−1 ∈ [0, 2π ]:

x1 = cos(ϕ1), x2 = sin(ϕ1) cos(ϕ2), x3 = sin(ϕ1) sin(ϕ2) cos(ϕ3)

· · ·
xn−1 = sin(ϕ1) · · · sin(ϕn−2) cos(ϕn−1), xn = sin(ϕ1) · · · sin(ϕn−2) sin(ϕn−1).

The corresponding Jacobian is sinn−2(ϕ1) sinn−3(ϕ2) · · · sin ϕn−2. A direct computa-
tion gives

E[|θ0 · b0|2] =
∫ π

0 sinn−2(ϕ1) cos2(ϕ1)dϕ1∫ π

0 sinn−2(ϕ1)dϕ1

= 1 −
∫ π

0 sinn(ϕ1)dϕ1∫ π

0 sinn−2(ϕ1)dϕ1

= ρ < 1.

Hence E[‖b1‖2] = 1 − ρ ∈ (0, 1). By symmetry and induction, one can show that

E[‖bk‖2] = (1 − ρ)k
k→∞−−−→ 0.

Since ‖bk+1‖ ≤ ‖bk‖, by the monotone convergence theorem, we have

E[‖bk‖2] −→ E[α2∞],

where α∞ = lim αk and αk = ‖bk‖, which implies α∞ = 0 almost surely and hence
bk → 0 almost surely. ��

Lemma 29 Let σ,μ ∈ W2,ac(R
n). Then (Tσ,μ;P )�σ ∈ W2,ac(R

n), for any P ∈ O(n).
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Proof Let P = [θ1, · · · , θn]. A direct computation shows

�Tσ,μ;P (x) = P

⎡

⎢⎢⎢⎢⎢⎣

(Tμθi

σθ2
)′(x · θ1)

(Tμθi

σθ2
)′(x · θ2)

. . .

(Tμθi

σθn )′(x · θn)

⎤

⎥⎥⎥⎥⎥⎦
Pt .

Following similar arguments as in [38, Proof of Lemma 1, p. 949], it suffices to show
that there exists a set � such that (i) σ(Rn \ �) = 0 (ii) Tσ,μ;P |� is injective and

�Tσ,μ;P is positive definite on�. To this end, it suffices to observe that T μθi

σθi
is injective

and (Tμθi

σθi
)′ > 0 outside a setUi that is σθi -negligible, i.e., σθi (Ui ) = 0. Here we have

used the fact that Tμθi

σθi
exists and is unique given that σ ∈ Pac(R

n) (and hence σθi is
absolutely continuous, see e.g., Box 2.4. in [37, p. 82]). The fact that M2((Tσ,μ;P )�σ )

is finite follows from (14) and that M2(μ) < ∞. ��
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