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Abstract

Iterative slice-matching procedures are efficient schemes for transferring a source
measure to a target measure, especially in high dimensions. These schemes have
been successfully used in applications such as color transfer and shape retrieval, and
are guaranteed to converge under regularity assumptions. In this paper, we explore
approximation properties related to a single step of such iterative schemes by exam-
ining an associated slice-matching operator, depending on a source measure, a target
measure, and slicing directions. In particular, we demonstrate an invariance property
with respect to the source measure, an equivariance property with respect to the target
measure, and Lipschitz continuity concerning the slicing directions. We furthermore
establish error bounds corresponding to approximating the target measure by one step
of the slice-matching scheme and characterize situations in which the slice-matching
operator recovers the optimal transport map between two measures. We also investi-
gate connections to affine registration problems with respect to (sliced) Wasserstein
distances. These connections can be also be viewed as extensions to the invariance
and equivariance properties of the slice-matching operator and illustrate the extent to
which slice-matching schemes incorporate affine effects.
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1 Introduction

Optimal transport and Wasserstein distances play a crucial role in machine learning
and related applications [1-4]. For example, these methods have gained prominence
in generative modeling [5], aiming to find transport maps or their approximations [6,
7] that align posterior and prior distributions. A basic problem can be described as
follows: Given a random variable X ~ o where o is a prior probability distribution
and a target probability distribution u of interest, find a transformation 7 such that
T(X) ~ u.

Transforming one probability distribution into another is a fundamental problem
that also has implications for flow matching [8], probability flows [9, 10], particle
evolutions [11], and the general learning of underlying distributions in complex data
sets [1, 12].

While Wasserstein distances have proven successful in modeling probability distri-
butions [1, 7], their computational expense, especially in high-dimensional scenarios,
necessitates more efficient approaches. The computation can be intensive for large-
scale problems; specifically, the cost of calculation via linear programs comes with
a complexity of O(m>log(m)), while the Sinkhorn version [13] provides a faster
approximation at O (m? log(m)), where m is the number of particles used to approxi-
mate a measure. Sliced-Wasserstein-based generative models [14, 15] provide scalable
alternatives. Our study focuses on one such model, namely, slice-matching schemes
[16, 17]. These schemes utilize projections onto lines (slices) as well as the computa-
tional benefit of one-dimensional optimal transport to offer effective approximations
of target distributions. Furthermore, they are closely aligned with the broader context
of normalizing flows [12, 18] and variational inference [7]. Beyond their computa-
tional advantages, these schemes also demonstrate promising convergence results, as
shown in [16, 19, 20].

While convergence analysis of iterative slice-matching schemes is the primary focus
of [20], the present manuscript aims at establishing a comprehensive understanding of
one step of such schemes, focusing on recovery and stability properties. We explore
structural relationships between measures and address two closely related questions:
(A) when can closed-form formulations serve as robust alternatives to optimal trans-
port maps? (B) how effectively do slice-matching approximations represent the target
measure? Additionally, our study examines the ability to handle transformations like
shifts and scalings in the initial step, demonstrated through the analysis of some basic
registration problems. Registration problems are not the main focus of this paper; we
rather use them to understand affine effects of slice-matching maps. Nonetheless, we
would like to point out that optimal transport is a useful tool for registration problems,
see for example [21-23].

1.1 Slice-matching maps

In this paper, we are interested in maps defined by a slicing and matching procedure
[16], which is closely related to the sliced Wasserstein distance. These are maps of the
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form

n
b;
Toup(x) =) T (x-6)6, xeR"

i=1

involving a source measure o, a target measure i and an orthogonal matrix P =
[01, ..., 6,). Here 6% denotes the 1-dimensional measure obtained by projecting o

b . . . .
onto the line 6, and T:gl_ is the optimal transport map between the 1-dimensional

measures 0% and p%. Note that the 1-dimensional optimal transport map can be
computed explicitly, see Sect. 2 for more details.
This maps allows to define the iterative slice-matching procedure [16, 20]

Ok+1 = (Tcrk,;L;Pk)ﬁO'b k>0, (1)

which have been successfully used in applications such as color transfer [16], texture
mixing [24] and shape retrieval [25]. Convergence results of (1) in special cases have
been obtained in [16, 19]. More general almost sure (a.s.) convergence of oy — u for
a stochastic variant of (1) have been established in [20].

The procedure (1) also defines an iteration on the level of maps through Ty, .. p,, kK >
0 (though the mentioned convergence results only hold for measures). Note that bounds
which are valid for maps directly carry over to the associated pushforward measures
through the well-known stability result [26, Eq. (2.1)]

W2(Fyo, Gpo) < |F = Gllo- @

In this paper, we are interested in the approximation power of one step of (1),
both for measures and maps. This means that we study (A) the relation between
01 = (Ty,u; p)ro and the target u and (B) the relation between T, . p and T, with
n = Tﬁo .

1.2 Main contributions

The contributions of this paper are twofold and summarized in Theorem 1 and 2. To
formulate our contributions, we use the notation S = {x +> ax + b :a > 0,b € R"}
for the set of shifts and scaling, and G(P) = {x — Z?:l filx -6))6; : fi 1 R —
R increasing} with P € O(n) for the set of P-compatible maps [27]. Note that
S C &(P) forany P.

Theorem 1 [Recovery and approximation: informal implications of Corollary 6,
Proposition 10, and Proposition 11] Consider two measures o, v with @ = Tzo.
Then we get

1. If||IT — S|| < ¢eforsome S € S, then one step of the scheme (1) reconstructs T up
to an error of order €, i.e. |T — Ty 4. p|l < 2¢ for any P € O(n). In particular, if
T eS, thenT, ,.p =T forany P € O(n).

) Birkhauser
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2. IfT € G(P) forsome orthogonal matrix P, then one step of the scheme (1) using Q
reconstructs T up to an error of order || P— Q|| f, i.e. | T —T5 4. 0ll < C|P—QllF.
In particular, if Q = P, then T .0 = T.

Through the stability bound of (2), all results of Theorem 1 also hold for the
reconstruction of the target measure p through o7.

Our results shows that basic transformations relating o to p can be recovered
easily, not needing any optimization scheme. This relates to recent efforts in trying to
approximate the optimal transport map (or fully replace it) by simpler maps such as
the Knothe-Rosenblatt construction [6].

To formulate our second contribution, we define the slice-matching operator U,
which assigns the first step of (1) to a given source o, target 1, and slicing directions
P e O(n):

u : (07 //La P) = (TO',M;P)ﬁO—'

Theorem 2 [Encoding of special affine effects: informal implications of Proposition 5,
Proposition 13, Proposition 12, Corollary 15] Consider a source measure o and
a target measure . One step of the slice-matching procedure (1) encodes basic
transformations in the following sense:

1. U is invariant to G(P)-actions on the source measure o:
U(Tyo, u, P) =U(o, u, P), T € &(P).
2. U is equivariant to G (P)-actions on the target measure L.
U(o, Tz, P) = TyU(o, u, P), T € 6(P).

3. U encodes translation effects between o and by matching means:
EU(o, u, P)) = E(n) forany P € O(n).

4. U encodes translation-and-scaling effects in the following sense: Let S be the best
map in S that aligns o and u, and let S* be the best map in S that aligns o and
U(o, i, P). Then, by choosing P randomly, in expectation we get

EIIS = $*lls = Co (Wi (0. ) = nSWi (o, ) = 0,

where C, depends on the mean and second moment of o, Wy denotes the
Wasserstein distance, and SW; denotes the sliced Wasserstein distance.

Note that (4) means the following: If (W22 (o, ) —nS sz(a, W) < g, then one step
of the iterative scheme (1) removes global translation-and-scaling effects between the

source ¢ and the target u up to an error of size C, €.
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1.3 Structure of the paper

This paper is organized as follows: Sect. 2 provides essential background information
on optimal transport. Section3 delves into the details of slice-matching maps, its
relations to compatibility, as well as moment-matching properties. In Sect. 4, we
present invariance, equivariance, and Lipschitz properties associated with the slice-
matching operator, which lead to recovery and stability results. In Sect. 5, we further
explore how the slice-matching procedure handles affine effects by studying basic
registration problems. The paper closes with a concluding remark in Sect. 6.

2 Preliminaries

We use the notation P(R") and P,.(R") for the spaces of probability measures
on R" and absolutely continuous measures with respect to the Lebesgue measure,
respectively. We consider the quadratic Wasserstein space, denoted by W,(R"),
which includes probability measures o with finite second moments, i.e. o satisfying
My(o) = fR” llx|I2do (x) < oo. In addition, let Wa.aeR") = WH(R") N Py (R™).
The mean of a measure o is denoted by E(o) = f xdo (x).

On W, (R"™) we consider the quadratic Wasserstein distance [28]:

1

2
Wao, ) == inf ([R ||x—y||2dn(x,y>) ,

wel(o,u)

where I'(o, u) == {m € PR" xR") : 7(A x R") = 0(A),7(R" x B) =
w(B), A, B C R" measurable} represents the set of couplings between o and u.
When o € W 4.(R") and u € Wh(R"), the optimization problem:

min / IT () - xI1? do (x),
Rn

T:Tio=pn

with 7 a map in L?(R", o), has a unique (up to constants) solution [29], which
we denote by 7). Here f is the pushforward operator. The map T takes the form
T} = V¢ where ¢ is convex [29]. Maps which are the gradients of convex functions
will be referred to as Brenier maps.

If T, exists, the optimal coupling has the form 7 = (id, T4")so0.. In this case, the
Wasserstein-2 distance can then be written as: Wa (o, u) = |74 —id ||5, where || - |l»
is the L%-norm with respect to o

For 1-dimensional measures, the exist explicit formulae for the optimal transport
map and the Wasserstein distance. With 0 € P,.(R) and i € P(R) we get T4 =
F " Iy F,, where F is the cumulative distribution function (CDF) of o, and F w Lig
the pseudo-inverse of the CDF of p. This leads to:

1 1/2
Wz(a,m:(fo |FM‘(x)—FU‘<x)|2dx) : 3)

) Birkhauser
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Throughout this paper, we use the same symbols to denote Wasserstein distance and
optimal transport maps for probability measures on both R” and R, with the context
clarifying the dimension of the measures.

We also use the sliced-Wasserstein distance between 0 € Wh ,.(R") and p €
WhH(R™):

SW3(o, u) = /S W3 u) du @), @)

with 0? = Pegyo, where Py(x) = x - 6 denotes the projection onto the line defined
by 6, and u denotes the uniform measure on §"=1 In (4), W5 denotes the Wasserstein
distance between the 1-dimensional projected measures o', 7.

It is known that SW, < W, while these two distances are equivalent for measures
with compact supports [19].

3 Slice-matching maps, compatibility and moment matching

Slice-matching schemes were first introduced by [16] to iteratively transport an initial
measure to target measure. An almost sure convergence result of such iterative schemes
has been shown in [20]. In this paper, we are interested in approximation properties of
one step of this slice-matching procedure. In what follows, we present the definitions
of the schemes and the associated slice-matching maps. We furthermore show that the
mean and second moments of o and p are matched through one step of such schemes.

3.1 Slice-matching maps and compatibility

Definition 1 (Single-slice and matrix-slice matching, [16, 20]) Consider o €
W2.4c(R™Y), 1 € Wr(R") and a vector 6 € §"=1. The single-slice matching map
from o to u is defined by

Toi6 () = X + (T14 (x-6) —x - 0)6 5)

0
where T;‘@ is the optimal transport map between the 1-dimensional measures o’

and ;f obtained through projection by . If an orthonormal basis of R” is used, the
matrix-slice matching map from o to w is defined by

0
Th (x-6) —x - )
62
TV (x-62) —x -6, SN
o =) Th (x-006  (6)

i=1

Top.p(x)=x+P

b '
T(,en (x-6p) —x -0y,
where P = [0y, - - - , 6,] is an orthogonal matrix.

W Birkhauser
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Remark 1 The motivation for the name slice-matching map is the following: If v =
(Ts,1: )40, then Vi = ,uef for 1 <i < n,i.e.allslices are matched. Similar properties
hold for 7, ,,.9. Moreover, the following relation between n-dimensional Wasserstein
distance and one-dimensional Wasserstein distance of the corresponding slices holds:

n
W3 (0, (Toyp)s0) = Y Wi (o™, u), @)
i=1

see [20, Lemma 3.9]. An analogous result for empirical measures can be found in [19,
Proposition 5.2.7].

Remark 2 The matrix-slice matching maps (as well as the single-slice and generaliza-
tions to 1 < j < n slices, see [20]) can be used to approximate a target measure j by
iteratively pushing a source measure oy:

ok+1 = ((I = yi) id +yk Toy p: P20k, k20, ®)

where yy is a sequence of step-sizes and Py are matrices in O (n). When y; satisfies
classical stochastic gradient descent assumptions [30] and Py are chosen i.i.d. form
the Haar measure on O (n) (and some technical details are satisfied), then o, — u© in
both W, and SW> a.s. [20].

The paper [16] considers the above iterative scheme with y, = 1, whose conver-
gence is however not covered by results of [20]. [16] shows convergence for special
measures (the target is Gaussian) and in the KL-divergence.

In this paper, we study approximation properties of one step of (8) with y, = 1,
i.e. we are interested in the relation between o1 = (T}, .; p)400 and the target 1. An
illustration of such approximations using different orthogonal matrices P is given in
Fig. lv.

It follows easily that both 7, ,,.¢ and T ,. p are Brenier maps, though they are not
necessarily optimal transport maps between o and . The maps 75 ;. and 75, .. p are
furthermore a special type of P-compatible maps [27, 31], which are defined by

n
&(P) = {x — Z fitx-60)6; : fi :R— Ris increasing}, &)
i=1
for any fixed P = [0y, ...,6,] € O(n). An analog to (7) holds for P-compatible
maps
n
W3 (0. o) = > Wi, (o)), T e &(P).
i=1

) Birkhauser
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(Tn_p:l)x ):0
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Fig. 1 Effects of matrix-slice matching. Left panel: Illustration of invariance to translation and scaling of
the initial measures. Right panel: Illustration of slice-matching using different orthogonal matrices

Moreover, the slice-matching map can be viewed as the minimizer in & (P) associated
with the following minimization problem

n
Ty pip = argmin Yy~ W3 ((Tyo)™, u%).
Te&(P) i,

n

€ argmin Z W3 (Teo)%, puf), (10)

T is Brenier i—1
where (10) follows from the fact that for T € G(P), and therefore
n
S W (T:0)%, 4% = IT = Ty spll%. which is minimal iff T = T,.,; p.
i=1
The details of this statement are presented in Corollary 8.

P-compatible maps have been used in tangent space embeddings, which allow for
linear separability of two classes of measures, see [27, 31-33]. These maps satisfy

'Pgl.OT:fl'O’PQi, i:l,...,l’l, (ll)
where T(x) = Y7, fi(x - 6))6; € S(P)and P = [0, ..., 6,].

Next, we show that the property (11) also characterizes the set of P-compatible
maps given in (9).

W Birkhauser
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Proposition3 Let T € G(P) with T (x) = Z?:l fi(x - 6;)0;, where 01, ...,0,] =
P e Om)and f;,i = 1,...,n are increasing functions. Then T = TL for some
measures & € Wh q4c(R") and . € Py (R"), if and only if

Py oTl=fioPy, i=1..n. (12)

bi
Furthermore, in this case, f;i = T:gl_ and T is a matrix-slice matching map.
Proof For the equivalence, note that relation (12) is equivalent to
n n
T()=) filx-0)6 =Y (6 - T}(x) 6 = T}(x),
i=1 i=l1

since the columns of P are orthonormal.
For the other statement note that (11) implies that

wl = (Po; o T)jja = (fi c>7391’):10
= (fi)go¥.

6:
. . . . LYl
Since f; are increasing we obtain f; = T; 6 - O

Remark 3 Note that the proof of Proposition 3 relies on the columns of P forming
an orthonormal basis of R”. Therefore, this equivalence is not true for single-slice

0
matching maps. We only have the implication T, .0 = Ty' = PyoTs = T;f, oPy.

3.2 Moment matching

We show that slice-matching maps push the source measure to a measure that has the
same mean and second moments as the target measure.

Proposition4 Let 0 € W 4c(R") and p € Wh(R"). Then for any P € O(n), the
following holds:

E((To p;p)e0) = E(1) (13)

Mo (T, p)go) = Ma(p) (14)

Proof A direct computation shows that [T, ,.p(x)do(x) = [ydu(y) and
N o p () 2do (x) = [ y1|*d1a(y), see Lemma 22 for more details. ]

The equal mean property (13) gives a first hint towards the shift-eliminating phe-
nomenon of the slice-matching procedure. In particular, it can be verified that if )" is a
shift, then (75, ,, p)s0 = u. A more comprehensive perspective of the shift-eliminating
effect will be presented in (16) and (23).

) Birkhauser
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4 Invariance, equivariance, and Lipschitz properties

We consider the following operator induced by the slice-matching maps of Definition 1:

Definition 2 (Slice-matching operator) We define the following operator based on the
slice-matching approximation, concerning a source measure, a target measure, and
slicing directions given by an orthogonal matrix:

U: Warac®R") x Wh(R?) x O(n) > Wh(R")
(Ua ,LL, P) = (TU,H;P)]IIU‘

Note that (7}, . p)4o has finite second moment when . € W, (R") by (14), which
implies that ¢/ maps into W, (R"). If absolute continuity of (7, ,.p)ro is desired,
one can further assume that both o, ;& are absolutely continuous, in which case U/ :
Wa.ac(R") X Wa 4(R") x O(n) = W 4.(R"), see Lemma 29.

We first illustrate the invariance and equivariance properties of the slice-matching
operator in terms of basic transformations, i.e., shifts and scalings, which can be
viewed as special cases of compatible transformations, as shown in Sect. 4.2. We
also show how such properties are related to the recovery of optimal transport maps
using matrix-slice matching. Moreover, as a complementary remark to the unifying
convergence framework [20] of the single-slice and matrix-slicing matching schemes,
we illustrate their differences via different recovery properties. A Lipschitz property
in terms of the third component is shown in Sect. 4.3.

4.1 Invariance and equivariance with respect to shifts and scalings

We show that the slice-matching operator is invariant to actions induced by push-
forward operations of shifts and scalings on any initial measure 0 € W» 4.(R") and
is equivariant to actions of these maps on any target measure ;1 € W, (R"), regardless
of the orthogonal matrix P. More specifically,

Proposition5 Let 0 € Wy 4.(R") and n € Wo(R"). Then for any P € O(n) and
S(x) = ax + b wherea > 0,b € R", we get

U(Szo, u, P) =U(o, u, P), (15)

U(o, Sy, P) = SgU(o, u, P). (16)

Proof Since S € [\ &(P), the conclusion follows from the corresponding
PeO(n)

invariance and equivariance properties in terms the group G(P) of compatible

transformations, see Proposition 7. O

An illustration of the invariance property the ¢/ with respect to translation-and-
scaling transformations of the source measure is presented in Fig. la. Approximations
with different choices of orthogonal matrices is illustrated in Fig. 1b.

Note that isotropic scalings and translations S(x) = ax +b witha > Oand b € R”
are special types of compatible maps. They satisfy S € G(P) for all P € O(n). An

W Birkhauser
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g0

7 7

Fig.2 Recovery of basic transformation (shift and scaling) using matrix-slice matching. The initial o (left)
and target image pu (right) are related Tyu = o where T (x) = 1.6(x + [-35, 20]"), where each image
is of size 84 x 84. Here 01 = (T, 41; p)go0 (middle) is the image obtained via slice-matching transport
between o and p for an arbitrary orthogonal matrix P. Note o1 &~ u up to numerical errors, as implied by
Corollary 6

immediate corollary of the above proof is that, given two measures that are related by
shifts and scalings, the target is recovered exactly by push the initial measure with the
slice matching map Ty, p for any P.

Corollary 6 (Recovery of basic transformations with one step of slice matching map)
Given o € Wa 4c(R"), u € Whr(R") with Ty (x) = ax + b for some a > 0, b € R".
Then we have Ty ;. p = T} andU(o, u, P) = u for any P € O(n).

Proof Let S = T4 in (15). Then Syo = p and U(Sso, p, P) = (T :p)eit =
(id);0 = . Hence by (15),U(o, i, P) = 1. The fact that T, ;.. p = To" follows from
the fact that they are both Brenier maps pushing o to u. O

An illustration of Corollary 6 is presented in Fig. 2, the target image p is matched
(up to numerical errors) by its slice-matching approximation (75, . p)zo for any P, if
T} is a translation-scaling function.

In addition, we can show that a differentiable map 7' connecting ¢ and p can only
be recovered with one step of the slice-matching scheme with any choice of P if and
only if T is an isotropic scaling with translation:

Remark 4 Under the assumptions in Corollary 6, and if we further assume that T" is
differentiable, we obtain the following: T = T . p for any choice of P € O(n) if
and only if T'(x) = ax + b for some a > 0 and b € R". One direction follows from
Corollary 6. See Proposition 16 for details of the other direction.

The above recovery result holds for the matrix-slice scheme, but in general does
not hold for single-slice schemes:

Example 4.1 Let p = Ttbo with T?(x) = x + b, b # 0 € R”. Unlike the matrix-slice
matching, the target measure p cannot always be recovered via (75, ,.0)z0 by the
observing that T;; .. (x) = x +60(6 -b), for 6 € $"=1 To recover u exactly, 0 = mb

is the only choice. Therefore, in general, we will not recover u after one step.

Discussion A possible remedy is through an iterative scheme by repeating the above
slice-matching procedure with different 6 as introduced in Remark 2. In [20] we
show that the iterative scheme oy 11 = ((1 — yx) id +y4 T, u;0, )50k With step size yy

) Birkhauser
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o iid .
satisfying >y = coand ) sz < 0o converges a.s. (O "% u, u uniform measure on
Sn— 1 ).

However, for the particular example of a shift, a.s. convergence can also be achieved
for yx = 1. In Proposition 28 we give an elementary proof that oy 11 = (T, 4.6, )£ 0k
converges to . = Tﬁb o a.s. with respect to the W»-distance.

4.2 Invariance and equivariance with compatible maps

In this subsection, we discuss the invariance and equivariance properties of the slice-
matching operator I/ as defined in Definition 2 concerning compatible transformations,
defined in (9).

Proposition7 Let 0 € W 4(R") and u € Wh(R"). For any T € G(P), where
P € O(n), we have

U(Tyo, 1, P) =U(o, u, P), (17)

U(o, Ty, P) = TU(o, u, P). (13)

Proof Let T (x) = Pf(P'x), where f(x) = (fi1(x1),---, fu(x,)) witheach f; being

increasing and P = [0y, --- , 6,]. Let o7 = Tyo. By (11), we get 0’7% = ﬁuael’. It

follows from the fact that f; is increasing that T;‘:f = T’fji o fi. Denote g(x) =
1 O.Tl

MOI M@n ; Mel /49" t
(T, o fO&D, -+, (T, o fa)(xx)]" and gr(x) = [T7y (x1),---, T4 (xn)]".
Then " o ”

en

(Toui:p)s0 = (Pg o P');0 = (Pgr o f o P)zo
= (pgTOPtOPOfOPt)ﬁO’ = (TUTaM§POT)tG
= (TGT,/L;P)jUT'
This proves (17). For (18), denote 7 = T;p. With similar reasoning as before and

i 6;
with the observations that T:J = fio T;ﬁ,f , we get
Typpp=PfoP oT, .p=ToT,,.p.

O

As a direct conclusion, define &(P)yn = ({Iyn : T € &(P)}, then
US(P)go, n, P) = {U(o, u, P)} is a singleton set, as illustrated in Fig. 1a, and
U(o, &B(P)gi, P) = &(P)lU(o, u, P).

Corollary 8 Let o, i € Wh 4 (R"). Then
n
D Wi (o) uy =T = Topicp 3.
i=1

W Birkhauser
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where T € G(P) and P € O (n).

Proof Rewriting (7), we have

D Wi u") = Wi U, . P)).

i=1

Hence

n
> Wi ((Tyo), u) = W3 (Tyo, U(Tyo, ., P)) = W3 (Tz0, U(o. ., P))
i=1

= W3 (Teo, Ty 1i:p)30) = T — Ty pep |12,

where the second step uses the invariance property (17) and the last steps makes uses
of the isometry property with respect to P-compatible maps 7" and 75 ;,; p, see [27]. O

4.3 Recovery and stability properties of matrix-slicing matching

When two measures are related by a P-compatible map, the optimal map between
them can be recovered exactly by the (P)-matrix-slice matching procedure. This is in
contrast to shifts and scalings, where an arbitrary orthogonal matrix can be used for
recovery. The following corollary to Proposition 7 summarized this result.

Corollary 9 (Recovery of P-compatible transformations with one step of P-slice-
matching) Given o € W 4(R"), 1 € Wo(R") with T € &(P) for some P € O(n).
Then we have U (o, i, P) = pand Ty 1. p = Y.

Proof With Proposition 7, the above result follows from similar arguments as in
Corollary 6. O

To recover a compatible map 7 with one step of the iteration, Corollary 6 implies that
we need to know the orthogonal matrix P. The following Lipschitz continuity of the
slice-matching operator I{ with respect to P establishes a stability result on the choice
of P:

Proposition 10 Leto € W 4(R") and p € W (R™). Assume that there exists L > 0
6
such that T(iﬁ, is L-Lipschitz on R for all € S"~'. Then

WZ(Z/{(Q u, P)v Z/{(U, u, Q)) = ”TG,[L;P - TO’,,LL;Q”U
=@L+DCIP - QllF, (19)

where C = max{M;(c), My()} and || - || r denotes the Frobenius norm.

Proof See A.2. O
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Remark 5 Inequality (19) can be viewed a stability result for one step of the iterative
schemes described in Remark 2. If 7 € &(P) for some P € O(n), then the push-
forward measure of o using a slice-matching map associated with Q € O(n) is within
(BL + 1)C||P — Q]| in Wasserstein distance to the target n. Picking a Q close to
P is good enough to obtain an approximation of u by o1 := (75, .. 9)zo . Note that if
Q = P, then o1 = u, which also follows from Corollary 9.

The stability result in Proposition 10 shows how well the target u can be approx-
imated by the slice-matching approximation (75, ,; p)xc when o and p are related
by some compatible map 7, ,.o. Additionally, we will now show that if o and u
are related by a map which is an e-perturbation of shifts and scalings, then © can be
approximated by its slice-matching approximation with at most 2¢ error (Remark 6).
This can also be viewed as an extension to the recovery result in Corollary 6.

Proposition 11 Let 0 € W 4 (R") and © € Wh(R"). Then for any P € O(n),
Wo (T, p;P)s0, 1) < 2522 Wa(Ss0, 1),

where S :={S(x) =ax+b|a>0,beR"}.

Proof Since W>(Syo, ) = ||S — T} |, it suffices to show that for any S € S,
Wa(To P10, 1) < 2|18 = T |lo-

By the Lipschitz property (see e.g., [26, Eq. (2.1)]) associated with W, and triangle
inequality, we have

WZ((TU,M;P)ﬁO'» n) < ”T(T,/L;P - T#”U
< W Top;p — Sl + IS = TH s (20)

Next we bound the first term. Since S € &(P) for any P € O(n), it follows from
Corollary 8 that

n
1S = Topplls = D W3 (Sz0)%, u) < W3(Sz0, 1) = 1IS — T2
i=1

where the bound follows from Lemma 24 and the last equality follows from isometry
properties with respect to transformations in S [33]. The desired inequality hence
follows from (20). O

Remark 6 Assume that u = (foS)zo, where f : R" — R" satisfies || f —id ||s,c < €
for some ¢ > 0 and S(x) =ax + b,a > 0,b € R". Then

W2((TJ,M;P)IJU» n) < 2e.
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Remark 7 Using essentially the same arguments as in the proof of Proposition 11, one
can show that for any 7 : R” — R” such that u = T;o,

T —Tsplle <2inf ||T —S|..
[ o,u:Pllo Inf, [ lo
Note T is not necessarily the optimal transport map between o and .

5 Affine effects and registration problems

We study two basic image and point-cloud registration problems to understand the
effects of the slice-matching maps (6). Image registration [34] involves matching
images with variations caused by differences in acquisition, object growth or other
changes. It plays a fundamental role in image processing, particularly in medical
image applications [35]. Modeling image data and shape with probability measures
has paved the way for robust and scalable algorithms by leveraging the theory optimal
transport, such as diffeomorphic registration methods [21, 22], including point cloud
registration [23].

We have shown that slice-matching maps can be used to register translation-and-
scaling deformations exactly, see Corollary 6 and Fig.2. We also showed that if the
two measures are related by perturbations of translations and scalings, the registration
error is bounded by the the size of this perturbation, see Proposition 11. To gain a
better understanding of how the slice-matching procedure incorporates affine effects,
particularly when the initial and target measures significantly differ—meaning they are
not merely small perturbations of translations and scalings— we compare the registra-
tion maps aimed at the target u with those directed at its slice-matching approximation
U(o, 1, P), see Fig.3. Specifically, we demonstrate that registration maps involving
only translations are identical (Proposition 12), and those involving translations and
isotropic scalings are comparable (Proposition 13).

Let D(-,-) be a distance between probability measures, e.g., Wo or SW;. We
study registration problems with the following subsets of affine transformation:
S, = {S(x) = x + b | b € R"} (the set of translations), S := {S(x) =ax + b | a >
0, b € R"} (the set of compositions of isotropic scalings and translations):

Sf’"’D = argmin D(S;o, n), @D
SES{

§omD . argmin D(S3o, 1), (22)
SeS

the existence and uniqueness of which will be addressed later.
We show that the optimal translation registration maps from the initial measure to
the target and to slice-matching approximation of the target are identical.
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I

U(o, i, P)
Fig. 3 Illustration of registration problems with translation-and-scaling function 51D from Proposi-

tion 13, where n = pworn = U(o, i, P). As indicated in (25), S"’"*Dﬁa and n have the same mean;
however for better visualization, we intentionally kept them separate in this Fig.

Proposition 12 (Registration with translations (21)) Let ¢ € W 4(R") and 1 €
Wh(R™). Then for any P € O (n), the unique minimizer in (21) satisfies

S;Tsl‘nw2 — S;T,U(U,M,P),Wz' (23)

Proof The minimization problem (21) is a quadratic problem in the parameter b, which
can be solved by taking partial derivatives with respect to b, and setting them to 0. From
this, the existence and uniqueness follows immediately. Calculations are summarized

in the proof of Proposition 18 and Corollary 20. In particular, the arguments show that

i, W, U(o, 1, P),W.
% Zande (o,u, P),W>

the optimal parameters b"?2, b"2 for S; respectively, satisfy

b"* = E(u) — E(0), b" = EWU(o. . P)) — E(0).
The conclusion hence follows from the fact that E({ (o, u, P)) = E(u), see (13). O

Remark 8 By similar calculations, one can also show that

L SW, U(o, 1, P),SW.
S;’M 2=Sta (o,u, P) 2

See expressions b5W2 and b2 in Proposition 18 and Corollary 20.
The above registration result illustrates the idea of how shifts are eliminated by the

slice-matching procedure. When considering registration involving translations and
isotropic scalings measured by the W, distance, the following comparison holds:
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Proposition 13 (Registration with translation-and-scalings (22)) Let o € W 4.(R")
and ;€ Wh(R™). Assume that (i) The convex potential ¢ such that V¢ = TL
given by Brenier’s theorem is differentiable at E(o), and (ii) For any A € (0, 1),
d((1=A)y+AE(0)) < (1-2)d(y)+Ap(E(0))forall y in some ball B(x, r), where
x lies in the support of o. Then S7*W2 and STU@1-P). W2 in (22) are well-defined
and unique, and satisfy the following

WQ(SO’M’quO', SG’M(G’M’P)‘WZﬁO‘) — ”S(T»M,Wz _ SG,U(G,/A,P),Wzna

_ Wio, ) = Yo Wie, i)

24
2/ My (o) — | E(0)]|? @9

where P = [0y, ..., 0,]. In particular,
n
son e = goUEPL Wi Wi o, p) =Y Wi, u).
i=1

Moreover, the registrations eliminate the effects of translation in the following sense
E(So* W2 0) = E(STUORPIW2 6y — E(u). (25)

Proof Similar to the proof of Proposition 12, the minimization problems (22) are
quadratic in terms of parameters a and b, where S(x) = ax + b. By taking the partial
derivatives and setting them to zero, checking the Hessian matrix, together with the
assumption of the proposition, we obtain existence and uniqueness of the minimizers.
The equalities then follow from direct computations. See Proof 1 for details. O

Remark 9 With (7), Proposition 13 implies
§onWa = goltlonP)-Wa it Wi(o, 1) = Wi (o, Ulo, p, P)).

Corollary 6 and Corollary 9 show special cases where maps %/ W2 and §7U(@.1t. ). W2
are equal. However, for the case of registration with only shifts, S™* = §7(©@ %)

always holds, see (23).

We further establish a connection between the Wasserstein distance and sliced-
Wasserstein distance by comparing the registration maps in (22). This insight holds the
potential to enhance our understanding of the distinction between sliced-Wasserstein
and Wasserstein flows, as demonstrated in a special case by Bonet et al. [15, p.7, Eq.
19].

Corollary 14 Let P be a random variable corresponding to the Haar probability mea-
sure u, on the orthogonal group O (n). For fixed o € W 4.(R") and u € WL (R"),
we have

”SG,M,WZ _ ESo’,u(O’,ﬂ,,P),WQHO — EHS{T,}.L,WQ _ SU,U(U,M,P),WZHO_
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_ Wiow) —nSWio, v _
2/ My (o) — | E(0)]|?

Proof By (27), (28), (24) and calculations in Proposition 18, both equations reduce to
the following:

n
/ > Wi (e%, u)du,(P) = nSW3 (o, ), (26)
O =

which can be observed by an explicit geometric construction of the Haar measure on
O (n) (see e.g., [36, p.19]). m]

In light of the inherent connection between Z?:l sz (%, ;L‘gi) and S W22 (o, 1)
as shown in (26), and the minimization problem (10) associated with T, ,.p, we
demonstrate a similar connection between the registration maps associated with two
distinct registration problems concerning the W, and S W, distances respectively:

Corollary 15 Given the same assumptions as in Proposition 13, we have

2 20,60 6
|SoU@mPI W2 _ gon Wy nSW3 (o, ) = 35/ Wi(o”, )
VM (o) — [E(0)]?

Moreover, let P be a random variable corresponding to the Haar probability measure
u, on the orthogonal group O (n), then

EsoU@.wP)Wa _ go,u.SWa

Proof The proof follows directly from Proposition 18 and Corollary 20 and similar
calculations as in (27) and (28). ]

In simpler terms, the map that optimally aligns o with{ (o, i, P) considering shifts
and scalings in the W, distance is, on average, the same map that optimally aligns o
with p in the SW, distance.

Remark 10 Similar to the registration problems (22) and (21), one can study registra-
tion in terms of maps S(P) := {x = PAP'x + b : A is positive and diagonal, b €
R"}. We provide a summary in Proposition 21.

6 Conclusion

Optimal transport-based slice-matching schemes benefit from closed-form formula-
tions, computational efficiency and convergence guarantees. In the present paper, we
are interested in the approximation power of one step of such schemes, both on the
level of measures and maps. This can be considered as a step towards understand-
ing to what extend slice-matching maps can serve as effective alternatives to optimal
transport maps.
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We investigate the exact recovery of basic transformations, such as translations and
scalings, as well as the approximate recovery of perturbations of such transformations.
These results are derived by studying invariance properties of an associated slice-
matching operator. In addition, we explore equivariance and Lipschitz properties of
the same operator, to understand how it incorporates actions of basic transformations
on the target measure, as well as perturbations on the slicing directions.

We provide a quantitative perspective on how slice-matching procedures encode
special affine transformations in their approximations through the study of basic reg-
istration problems. These registration problems potentially also offer insights into the
relationship between Wasserstein and sliced-Wasserstein flows, which is an interesting
problem for future research.

Appendix A Proofs for Sect. 4
A.1 Key facts for proof of Remark 4

Proposition 16 Let D(R") be the set of differentiable vector fields from R" to R".

m G(P)) NDR"Y ={x+>ax+b:a>0andb € R"}.
PeO(n)

Proof For the proof, we need to show that a differentiable vector field S €
Np com) G(P) is an isotropic scaling with translation. Choose P € O (n) and write
Sx) = Z?:l fiP (x - 6;)0; with P = [0y, ..., 6,]. Note that using the standard basis,
we can also write S(x) = Z:’: 1 8&i(xi)e;. Computing the Jacobian of § with respect
to the two basis representations, we obtain

, £ -0
gl(xl) P’
—p fz (x - 02)

g;;(xn) ) ,
FE G- 6)

Hence the two diagonal matrices above have the same diagonal entries, allowing
for a possible reordering of the entries. Without loss of generality, we assume that
glf (x;j) = fiP (x -6;),i =1, ..., n by possibly performing a column permutation of P
and renaming fiP ’s. Choosing an orthogonal matrix P such that one of its column 6;
with all entries being non-zero, one can immediately derive that the diagonal entries
g; (x;)’s are the same for any fixed x. In summary,

gion=-=g ) =f'c-)=-=fx-6,) =a,,
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where a, is a constant depending on x = [x,---,x,]" € R". Since the diagonal
element g/ (x;) only depends on x;, it follows that a, is a constant independent of x.
Hence S(x) = ax + b forsome a > 0,b € R". O

Remark 11 In general, if T € [ peom) S(P) is differentiable on an open set
Q C R the T|g : 2 — R" is an isotropic scaling with translation. In particular,
M peo) ©(P) include some piecewise isotropic scalings with translations.

A.2 Proof of Proposition 10
We need the following proposition to derive the proof of Proposition 10:

Proposition 17 Consider two angles 6, v € S"~', and assume that Tﬁu is L-Lipschitz
forallv, i.e. there exists L > 0 such that |va‘ (x)— T(fvv M| <Llx—yl|forx,y eR
andv € S" ! then

6 v
ITE, 0Py — Ty o Pulle < QL+ 1)C|16 — vll2,

where C is the max over the second moments of o resp. [L.

Proof
6 v 6 v v v
1T o Po — Ty o Pulle < IITy 0oPo — Tl oPollo + 1Ty 0o Po — Ty o Pulle = ().
We bound these separately.
(4 v 6 v
I3 I T Iz _ 0 v
||Tae oPy — Tgo oPylle = ||T09 - Tge oo = W2 (M s M )

1/2
=P —Pull. = (/Rn |Po(x) — Pu(x)lzdﬂ(x)>

1/2
= (/ 16 — v) -XI2dM(X))
R}’l
1/2
<16 -l (/R ||x||2du<x>)

= Cll# = vl2,

with C max of the second moments, which is bounded by assumption. Now for the
v v
second part, note that on R we have T: =Th o T(f(,U

v v
ITE, 0Py — Ty o Pylls

v v v 1/2
= (/R TS (T% (Po(x))) — T (Pv(x))|2d0(x)) = (%)

W Birkhauser



Approximation properties of slice-matching... Page210f32 15

Since T v Cis L- Lipschitz, we get

1/2
(x) =L |T:9 (Py(x)) — Pv(x)lzdﬁ(x)) =L|ITJ, oPo —Pyllo

L(|T9 0Py = Polls +11Ps = Pullo )
(1770 = id llyo + €10 = v112)

<L

=L (W20, 6")+Cll6 —v]2)
L(|[Po —Pullo +CllO = vii2)
2LC|0 = vii2

=
=

This implies
(©) = 2L+ DCJO —v]2.

ProofofProposition 10 Based on (9), we let T, ,.p = PD o P' where D(x) =
[T (xl) T (xz), - 09,, (x,,)]’ forx € R" and P = [0y, ..., 0,]. Similarly,

we let and TU,M,Q = QD o Qf, with Q = [vy, ..., v,]. We continue with deriving the
bound:

1Ty :p — Top:0lle = IPDP' — QDQ'l,
<|I[PDP' — PDQ'|s + |PDQ' — QD Q'|l,
=)+ (2).

We bound the two terms seperately. For (1), using Proposition 17, we get
|PDP' — PDQ'l; =/ ID(P'x) — D(Q"x)|13 do (x)
RH
" 0; v;
=> /R |5, (P'x)i) — T2 ((Q'x)i) [ do (x)
i=1
n 9: Vs
=Y T 0Py —TL 0Pyl

<@L+ DO 16 —vill3

i=1

= (2L + 1O P - Q3.
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For (2) we get

IPDQ' — 0DQ'|% = /ﬂ; (P — Q)D(Q'x)|3 do (x)
<P =01} [ 1@ 1B dow
<||P— QII%LZ/R 10" x3do(x) < |P — QI3 L>C?
<P - Q|3 L>C?

Combining (1) and (2) gives the final bound. O

Appendix B Proofs for Sect. 5

Proof of Proposition 13 Let S7#W2(x) = a"2x + b"2 and SOUCWP).W2(y) =
a"2x 4+ b™2 be the critical functions for the associated minimization problem (22).
By Proposition 18 and Corollary 20, we have

aWz _ aW2 — W22(U, M) - Z:l:l W%(Ugi, I,Lgi)
2(Ma(0) — [E@)IP)
gW2 —p"2 = —(waz _ aWZ)E(U), 28)

, 27)

and the norm bound || §7#W2 — §o-U(@.1.P). W2 | in (24) can be obtained via direct
computation and the fact that the RHS is non-negative, see Lemma 24. It is left to
show that these critical functions are indeed the minimizers by verifying

1. a2 > a"2 > 0, see Lemmas 24, 26, and 27.
2. The Hessian associated H (a, b) with both the minimization problems are positive
definite by a direct calculation and Lemma 26, where

Hab) -2 [Mz(a) (E(a))f} .

E(0) I

Here I,,_1 denotes the identity matrix of size (n — 1) x (n — 1).

The equality concerning the means follows from Corollary 19. O

Proposition 18 Ler S%-W2 and §%1-5W2 correspond to the critical points of the mini-

mization problems in (22) and (30), respectively. Then the corresponding parameters
satisfy

o _ 2(Ma() + Ma(o) — Wioum) — E(o) - En)
B Ma(0) — [|E(0)]?
b" = E() —a"E(0),

9
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swy _ 3(M2()) + Ma(@) = nSW3(o, m) — E(0) - E()
Ma(o) — [|E(0)]1? '
b’ = E(p) — a®M E(0),

where S”"W2(x) = aW2x + W2 and ST SV2 (x) = aSW2x 4 BSW2,

Proof Given o € W 4.(R") and n € Wh(R"), let Ma (o) = f Ixl?do (x) (similarly
define M>(n)), E(c) = f xdo (x) (similarly define E(7)). For S(x) = ax + b, by the
changes of variables formula and the fact that ) = TS'; - © S, we have

W3 (S0, 1) = | T — (ax + b)||2 = Ma(n) + a*Ma (o) + 2ab - E(o)

—2a / T (x) - xdo(x) — E(o) - E(n) + Ib]I> —2E(®) - b.
Taking the partial derivatives gives
0
3 =2aMy(c)+2b- E(oc) — 2/ T (x) - xdo (x),
a

3
o = 2b+2aE(0) = 2E().

Setting the above equations to zero and with the observation that f T) (x) - xdo (x) =
1(Ma(n) + Ma(o) — W2(0, 1)), we get the the desired formulas for "2 and b"2.
Similarly,
SW3 (30, 1) = fs | WE((810)", n")du®)
= f / 7" (1) — (at + b - 0)2dtdu(®)
n—1 JR
1
=~ (Ma) + a*Mo(@) +2ab - E(0)

- 21111/ / tT;’Q’ (1)do® (1)du©) — E(o) - E(n) + |b||> — 2E(n) - b).
sn—=1 JR

Taking the partial derivatives gives

9 _ l(zaMz(o)Jrzb-E(a)—zn/ /rT’f(t)dtdu(é)),
aa n n—1 R o
i—1(2b+2 E(o) — 2E( ))

b n anie )

Setting the above equations to zero and with the observation that
0

St [t Ty (Ddo® (Hdu®) = 3:(Ma(o) + Ma(n) — nSW3 (0. n)), we get the

desired formulas for a5%2 and b5W2. We provide computational details in Appendix C.

O
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Corollary 19 Given the same assumptions as in Proposition 18, for D = W, or SW»
E(S7"P.0) = E). 29)

Proof Upon direct calculation, we have E (57?0 = aP E(o) + bP, where a?, bP
are as in Proposition 18. The conclusion can be derived from the expressions for b"2
and b5W2. m|

Corollary 20 Letn = U(o, u, P) in Proposition 18. Then the parameters correspond-
ing to STU@IP). W2 g g §OU©@1LP).SW2 gqtisfy

F(Ma() + Ma(o) — Y1 Wi(a%, u%)) — E(o) - E(u)
My (o) — ||E(0)]|?

" = E(u) —a™ E(0),

L (My() + Ma(0) — nSW3 (o, U(o, 11, P))) — E(0) - E(1)
My (o) — | E(0)]?

"

’

a‘S W

’

bSW2 = E(u) — a*™ E(0),

where STU@P).W2 (yy = GWax 4 pW2 gpg STU©@P).SWa (1) — GSWay 4 BSW2,

Proof The above formulas follows directly from Proposition 18, the fact that
U(o, i, P) and u have the same mean (see (13)), and the formula (7) for
W3 (0, U(o, 1, P)). 0

Proposition 21 Let
S(P):={x+— PAP'x+b:A is positive and diagonal, b € R"}.
Consider the minimization problem

S3" = argmin ||Sp — T/ |, (30)
SpeS(P)

Let S;’M and S;’U(U’M;P) be the minimizers of (30) with n = p and n = U(o, 1, P),
respectively. We denote the diagonal entries of the corresponding A by a; and a;,
respectively. Similar notation holds for b; and b;. Then

~ 10 (T @) — 0P ) — Wie™, u®)
- 2mg" — (E4))

P —a; 0,

n

~ 6~

bi —bi=—Y 6E”" (@ — a).
i=1

Proof The proof uses similar arguments in Proposition 18 and Corollary 20 except the
partial derivatives are with respect to a; and a; instead of a and a. Note that following
these arguments, we use the equations presented in Lemma 23. O
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Appendix C Other technical details

Lemma22 Let o € Ws 4 (R") and n, p € Wh(R"). Then we get
E((Toy:p)50) = f Typ:p (X)do (x) = / ydu(y) = E(u).
/ T)(x) - xdo (x) = %(Mz(n) + My(0) — W3 (0. n))
My (Ty i p)z0) = / 1T p () |2do (x) = Ma (1)

Proof By the change of variables formula, we have
n 0. n 6
/ Ty pu:p(x)do (x) = > 6, / 7Y, (x-6,)do(x) =) _6; / T!, ()do” (1)
i=1 i=1

=>4 / 2du’ (@) =) 6 / v 6idu(y)
i=1 i=1

= /ydu(y),

/T;'(x)  xdo (x) = %(/ 12 () Pdo (x)
+ / lxIPdo (x) — f I7x) = x|%do ()

1
= S (Ma() + Ma(o) = W3 (o, ).

[ 1 eertodoe = [ 30172 - o)Pdoe = Y [ 172 @ikdo o)
i=1 i=l

=Z/|w|2du9f(w) =Z/|y-ei|2du<y)
i=1 i=1
- f Iy IPda(y) = MaGu),

where the last steps make use of the factthat P = [0y, - - - , 8,]is an orthogonal matrix.
O

Lemma23 Leto € Wh 4(R"), n € Wh(R"), and b € R". Then

_ 2
/ / tT": ()do® (1)du(6) = M>(o) + Ma(n) —nSW3 (o, 1) 31)
Sn—] R o 2”
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/ / 2do® (tydug) = 2O (32)
n—1 JR n

[ [z ordo’ o) = 2 (33

sn—1 JR n

/ f(b-e)zda"(t)du(e) _E@)-b (34)
s JR

/ 1/(b-9)T;7;(t)td09(t)du(9) = E("T)'b (35)
n—1 JR

Proof We note that (32) and (33) are analogous by the change of variables formula,
so are (34) and (35). We will first show (32).

/ /z2d09(t)du(9)=/ / Ix - 012do (x)du(9)
Sn—l R Sn—l Rn
Fubini / / Ix - 02du(@)do (x)
n Snfl

— Wda(x)
rRr 2

_ Ms(o)
=—.

For (34), we have

f /(b«@)tdog(t)du(é?)
Sn—l R

=/ b'G/ x -0do(x)du(d)
Sn—l n

= / (b-0)(E(o)-0)du()
sn—1

1

B [s S(16- 0P +1E@) 61 = (b = E(@)) - 01 )du(®)
1

= 51612 + I1E@)I? = b = E@)I1?)

E() b

n

With (32) and (33), we have (31):
/ / (7" (do® (H)du(6)
s-1JR
=5 [ [ aior-o-1ior)ae maue
2 Sn_] R o o
1
= 5 (40 + b2 = [ Wa@ 1)
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_ Ma(0) + Ma(n) —nSW3 (0, n)

2n
O
Lemma24 Let o € W1 4(R") and p € Wh(R") and P = [01,---,0,] € O(n).
Then
n
W3(o, ) = > W%, u%).
i=1
Proof By [19, Proposition 5.1.3],
W' i’y = [ 105 =0 yPdy )
where y* is the optimal transport plan between o and . Then
n n
> o wieh uf < /Z 16; - (x — Y)IPdy*(x, y)
i=1 i=1
= [y
= W (o, ).
]

Lemma25 Leth : R" — R"” and o (R") = 1. Then

f Ih@)Pdo ()] = | / h(n)do (),

where equality holds if and only if h(x) = v o-a.e. for some v € R”.

Proof Let h(x) = [h1(x), --- , hy(x)]". By Holder’s inequality,

1/2 1/2
f hi (x)|do (x) < ( f |hi<x>|2do<x)) ( / 12da<x>)
1/2
= ( / |h,-<x)|2da<x>) :

Squaring the above inequality and summing over i gives the desired inequality. Observe
that equality holds if and only if 4; (x) = v; for some constant v; € R. O

Lemma26 Let 0 € Wh 4 (R"), and M2 (o), E(0) be defined as in Proposition 18.
Then

My (o) — | E(0)]I* > 0.

) Birkhauser
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Proof Since x is not a constant vector o-a.e. (¢ € Wa 4.(R")), it follows from
Lemma 25 with 2(x) = x that

/ lx|I*do (x) > | / xdo (x)]|%.

O

Lemma27 Let 0 € Wi, (R"), u € Wr(R") and ¢ be a convex function such
that V¢ = TL given by Brenier’s theorem (see e.g., [37, Theorem 1.48]). If ¢ is
differentiable at E (o), where E(o) = fxdo (x), then

fT;‘(x) - xdo (x) — (/xdo(x)) : (f To’f(x)do(x)) > 0. (36)

Proof Let A = {x € R" : ¢ is differentiable at x}. Since ¢ is o -a.e. differentiable, we
have 0 (A) = 1. Then it follows from the convexity of ¢ that

(Vo (x) = V@(E(0))) - (x — E(0)) =0, Vx € A. (37)

Hence
/A (T () = THE@©)) - (x — E@)do(x) > 0,
which is exactly the desired inequality (36) by a direct computation using o (4) = 1:
~ [ 1) xdow - [ 120 E@)do ) + T2 E@) - E@)

= —TM(E(0)) - E(0) — (/xda(x)) : (f Tg(x)da(x)) + TH(E(0)) - E(0)

_ (/xdcr(x)> : (/T;‘(x)da(x)).

]

Remark 12 The same conclusion holds if the assumption were “E (o) lies in the support
of 0" instead of ¢ being differentiable at E (o), which can be proved using the fact
that the support of optimal transport plan is cyclically monotone.

Remark 13 Given the assumptions in:Lemma 27, one can show that the inequality is
strict if in addition, there exists a ball B(x, r), where x lies in the support of o, such
that forany A € (0, 1) and y € B(x,r)

¢((1 =1y +2rE(0)) < (1 =1 (y) + rp(E(0)),
which guarantees that the inequality (37) is strict for y in a set with positive measure.

In particular, if furthermore ¢ in Lemma 27 is strictly convex, the strict inequality
holds.
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Proposition 28 Let o € W 4(R") and pu = Ttba with Tb(x) =x+b,b#0eR".
Consider iteration oxy1 = (T 1.6, 10k, With o9 = o and where 6y is chosen i.i.d.
according to the uniform measure on S"~'. Then

Ok a5 noin Ws.
Proof By a direct computation, Tg“k (x) = x + by, where
bit1 = b — 6 (Ok - bi).
To show oy — p almost surely, it suffices to show that by — 0 almost surely.
By symmetry of $"~!, we assume without of generality that by = [1,0, --- ,0]’.
Note that ||b1]|2 = 1 — |6 - bo|?. Consider the spherical coordinates for "1 with

é1, ..., Pp—2 € [0, 7] and ¢, € [0, 27]:

x1 = cos(p1), x2 = sin(pr)cos(¢pz), x3 = sin(gy) sin(gz) cos(p3)

Xp—1 = sin(gy) - - - sin(@p—2) COs(@p—1), Xp = sin(@1) - - - sin(gp—2) sin(@p—1).

The corresponding Jacobian is sin”_z(gal) sin” 3 (¢2) - - - sin g, 2. A direct computa-
tion gives

foﬂ sin" =2 (¢1) cos?(¢1)d ey
Jo sin" (g de
_Jy sin" (@1)dg
Jo sin" "2 (g1dg
=p<l.

E[l6o - bol*] =

=1

Hence E[||b1]|*1=1—p € (0, 1). By symmetry and induction, one can show that
k
Eflbel*] = (1 — p)f === 0.
Since ||bg+1]l < ||bk|l, by the monotone convergence theorem, we have
Elbx 1] — Elaz,],

where a0 = lim oy and o = ||bg ||, which implies oo = 0 almost surely and hence
by — 0 almost surely. O

Lemma29 Leto, i € Wh oc(R"). Then (T . p)zo € W 4 (R"), for any P € O (n).
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Proof Let P = [0y, - - - , 6,]. A direct computation shows

(T4 (- 6)

iy
VIsup(x) =P (ngz) (x-62)

(T4 (x - 6,)

Following similar arguments as in [38, Proof of Lemma 1, p. 949], it suffices to show
that there exists a set ¥ such that (i) o (R" \ X) = 0 (ii) 7, 4. p|x is injective and

O, ...
VT, . p is positive definite on X. To this end, it suffices to observe that Ta”gi isinjective

Oi . . ) .. . )
and (ng[ ) > 0 outside a set U; thatis % -negligible, i.e., % (U;) = 0. Here we have

9:
used the fact that T:gi’ exists and is unique given that o € P,.(R") (and hence o is

absolutely continuous, see e.g., Box 2.4.1in [37, p. 82]). The fact that M> (T, 4. p)10)
is finite follows from (14) and that M, () < oo. |
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