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FROM SUM OF TWO SQUARES

TO ARITHMETIC SIEGEL–WEIL FORMULAS

CHAO LI

In loving memory of my mother, Xiaoping Mao (1965–2022)

Abstract. The main goal of this expository article is to survey recent progress

on the arithmetic Siegel–Weil formula and its applications. We begin with the

classical sum of two squares problem and put it in the context of the Siegel–

Weil formula. We then motivate the geometric and arithmetic Siegel–Weil

formula using the classical example of the product of modular curves. After

explaining the recent result on the arithmetic Siegel–Weil formula for Shimura

varieties of arbitrary dimension, we discuss some aspects of the proof and its

application to the arithmetic inner product formula and the Beilinson–Bloch

conjecture. Rather than being intended as a complete survey of this vast field,

this article focuses more on examples and background to provide easier access

to several recent works by the author with W. Zhang and Y. Liu.
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1. Sum of two squares

1.1. Which prime p can be written as the sum of two squares? For the
first few primes we easily find that

5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 42, 29 = 22 + 52

are the sums of two squares, while other primes like 3, 7, 11, 19, 23 are not. The
answer seems to depend on the residue class of p modulo 4.
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Theorem 1.1.1. A prime p �= 2 is the sum of two squares if and only if p ≡
1 (mod 4).

Theorem 1.1.1 is usually attributed to Fermat and appeared in his letter to
Mersenne dated Dec 25, 1640 (hence the name Fermat’s Christmas Theorem), al-
though the statement can already be found in the work of Girard in 1625. The “only
if” direction is obvious, but the “if” direction is far from trivial. Fermat claimed
that he had an irrefutable proof, but nobody was able to find the complete proof
among his work—apparently margins were often too narrow for Fermat. The only
clue (in his letters to Pascal and to Digby) is that he used a “descent argument”: if
such a prime p is not of the required form, then one can construct another smaller
prime and so on, until a contradiction occurs when one encounters 5, the smallest
such prime. More than 100 years later, Euler (1755) gave the first rigorous proof of
Theorem 1.1.1 based on infinite descent. For a detailed history of Theorem 1.1.1,
see Dickson [Dic66, Ch. VI, pp. 227–231].

1.2. Which positive integer n can be be written as the sum of two squares?

If n = x2+y2 (x, y ∈ Z) and p | n, then either p | gcd(x, y) or (x/y)2 ≡ −1 (mod p),
and hence either n/p2 is also the sum of two squares or p �≡ 3 (mod 4) (by the qua-
dratic reciprocity). It follows that each p | n with p ≡ 3 (mod 4) must appear to
an even power. On the other hand, the familiar Diophantus identity

(
a2 + b2

) (
c2 + d2

)
= (ac− bd)

2
+ (ad+ bc)

2

shows that a product of integers of the form x2 + y2 is also of the same form.
Combining with Theorem 1.1.1 we obtain:

Corollary 1.2.1. A positive integer n is of the form n = x2 + y2 if and only if

each prime factor p ≡ 3 (mod 4) of n appears to an even power.

1.3. In how many different ways can one represent n as the sum of two

squares?

Definition 1.3.1. To answer this question, we naturally define the representation

number

r(n) := #{(x, y) ∈ Z2 : n = x2 + y2}.
In particular, n is of the form x2 + y2 if and only if r(n) > 0.

Example 1.3.2.

4 = 02 + (±2)2 = (±2)2 + 02, r(4) = 4,

5 = (±1)2 + (±2)2 = (±2)2 + (±1)2, r(5) = 8,

25 = 02 + (±5)2 = (±3)2 + (±4)2 = (±4)2 + (±3)2, r(25) = 12.

In his book Fundamenta nova theoriae functionum ellipticarum (1829), Jacobi
proved the following general formula for the representation numbers.

Theorem 1.3.3 (Jacobi).

r(n) = 4

»
¼½

∑

d|n
d≡1 mod 4

1−
∑

d|n
d≡3 mod 4

1

¿
ÀÁ .
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As a byproduct, Jacobi’s formula shows that

p ≡ 1 (mod 4) ⇒ r(p) = 4(2− 0) = 8 > 0,

p ≡ 3 (mod 4) ⇒ r(p) = 4(1− 1) = 0,

which gives an immediate (and different) proof of Theorem 1.1.1!

1.4. Jacobi’s proof. Jacobi’s proof of Theorem 1.3.3 involves Jacobi’s theta series,

θ :=
∑

n∈Z

qn
2

= 1 + 2q + 2q4 + 2q9 + · · · .

The representation numbers r(n) naturally appear as the nth coefficients of the
square of Jacobi’s theta series

θ2 =

(∑

n∈Z

qn
2

)2

=
∑

n≥0

r(n)qn = 1 + 4q + 4q2 + 4q4 + 8q5 + 4q8 + · · · .

Jacobi used his theory of elliptic functions (including his famous Triple Product

Identity) to derive the formula ([Jac1820, p. 107])

θ2 = 1 + 4

(
q

1− q
− q3

1− q3
+

q5

1− q5
− q7

1− q7
+ · · ·

)
,

which is easily seen to be equivalent to Theorem 1.3.3.

1.5. Another proof using modular forms. An alternative way of evaluating θ2

is to view q = e2πiτ , and θ = θ(τ ) as a holomorphic function on the upper half-plane

H := {τ = x+ iy ∈ C : y = Im(τ ) > 0}.
The function θ(τ ) satisfies two transformation rules (see [Zag08, Proposition 9]):

θ(τ + 1) = θ(τ ), θ

(
− 1

4τ

)
= (−2iτ )1/2θ(τ ).

The first rule is clear by the periodicity of the exponential function. The second
rule can be proved using the Poisson summation formula and also plays a key role
in Riemann’s proof of the functional equation of the Riemann zeta function (see
[DS05, §4.9]). These rules amount to saying that

θ(τ ) ∈ M1/2(Γ1(4))

is a modular form of weight 1/2 and level Γ1(4). Jacobi’s theta series θ(τ ) and
its variants (under the general name of theta series) form one of most important
classes of modular forms.

It follows that

θ2(τ ) ∈ M1(Γ1(4))

is a modular form of weight 1 and level Γ1(4). The space M1(Γ1(4)) is in fact
one dimensional ([Zag08, Proposition 3] or [DS05, Theorem 3.6.1]), so if one can
construct another a modular form of weight 1 and level Γ1(4), then it has to be a
scalar multiple of θ2(τ ). We next construct such a modular form using Eisenstein

series, another of the most important classes of modular forms.
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Definition 1.5.1. Let χ : (Z/4Z)×
∼−→{±1} be the (unique) nontrivial character.

We define an Eisenstein series

(1.5.1.1) GÇ
k (τ ) =

∑

(0,0) �=(c,d)∈Z2,4|c

χ(d)

(cτ + d)k
,

where χ(d) is understood to be 0 when (4, d) �= 1.

When k ≥ 3, the series (1.5.1.1) is absolutely convergent and is nonzero only
when k is odd. When k ≥ 3 is odd, it defines a modular form GÇ

k (τ ) ∈ Mk(Γ1(4))
of weight k, level Γ1(4), and character χ. The constant term of the q-expansion of
GÇ

k (τ ) is nonzero, and we let EÇ
k (τ ) be a scalar multiple of GÇ

k (τ ) so the constant
term is normalized to be 1. This normalized Eisenstein series EÇ

k (τ ) then has the
explicit q-expansion (see [DS05, §4.5])

(1.5.1.2) EÇ
k (τ ) = 1 + cÇk ·

∑

n≥1

»
½∑

d|n
χ(d)dk−1

¿
Á qn,

where cÇk = 2/L(1 − k, χ) is related to a special value of the Dirichlet L-function
L(s, χ).

When k = 1, the series (1.5.1.1) is not absolutely convergent, but one can still
suitably modify it to obtain a modular form

EÇ
1 (τ ) ∈ M1(Γ1(4))

with the same formula (1.5.1.2) for its q-expansion, either using the Weierstrass
σ-function (see [DS05, §4.8]) or using the analytic continuation of

(1.5.1.3) GÇ
1 (τ, s) :=

∑

(0,0) �=(c,d)∈Z2,4|c

χ(d)

(cτ + d)|cτ + d|2s , Re(s) > 1/2

to s = 0 (see [Miy89, §7.2]). In particular, when k = 1, formula (1.5.1.2) simplifies
to

EÇ
1 (τ ) = 1 + cÇ1 ·

∑

n≥1

»
½∑

d|n
χ(d)

¿
Á qn.

As explained, EÇ
1 (τ ) must be a scalar multiple of θ2(τ ). Since both of them have

constant coefficient 1, we indeed have the equality

(1.5.1.4) θ2(τ ) = EÇ
1 (τ ).

Comparing the coefficient before q, we obtain cÇ1 = 4 and hence

r(n) = 4
∑

d|n
χ(d),

which proves Theorem 1.3.3.

Remark 1.5.2. As a byproduct of the proof, we also obtain L(0, χ) = 1
2 from

cÇ1 = 4. Via the functional equation of L(s, χ), this is equivalent to the famous
Leibniz formula for π (1676):

L(1, χ) = 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
.
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To summarize, Jacobi’s Theorem 1.3.3 can be proved using the identity of two
modular forms (1.5.1.4), namely using a relation of the form

theta series ←→ Eisenstein series.

Notice that the Fourier coefficients of theta series encode representation numbers
of quadratic forms, while the Fourier coefficients of Eisenstein series are generalized
divisor sums which are more explicit.

2. Siegel–Weil formula

2.1. Siegel’s formula. Siegel [Sie35] generalizes formula (1.5.1.4) from the binary
quadratic form x2 + y2 to more general quadratic forms in an arbitrary number
of variables. Let Λ be a positive definite quadratic lattice over Z of rank m with
quadratic form Q : Λ → Z. Denote by ( , ) the associated symmetric bilinear form,
defined by

(x, y) := Q(x+ y)−Q(x)−Q(y)

(so Q(x) = 1
2 (x, x)). Denote by Symn(Z) the set of symmetric matrices whose

diagonal entries are in Z and whose off-diagonal entries are in 1
2Z. Denote by

Symn(Z)≥0 ⊆ Symn(Z) the subset of positive semidefinite matrices.

Definition 2.1.1. For T ∈ Symn(Z)≥0, define the (generalized) representation

number

rΛ(T ) := #{(x1, . . . , xn) ∈ Λn :
1

2
((xi, xj))1≤i,j≤n = T}.

Define Siegel’s theta series

(2.1.1.1) θΛ(τ ) :=
∑

T∈Symn(Z)≥0

rΛ(T )q
T , qT := e2πi trTτ ,

and a holomorphic function on Siegel’s half-space

Hn := {τ = x+ iy : x ∈ Symn(R), y ∈ Symn(R)>0}.
Using the Poisson summation formula, Siegel proved that θΛ(τ ) is a Siegel modular
form on Hn of weight m/2.

Example 2.1.2. Notice that when n = 1, Siegel’s half-space Hn recovers the usual
upper half-plane H, and Siegel’s theta series θΛ(τ ) recovers Jacobi’s theta series

θΛ(τ ) :=
∑

n≥0

rΛ(n)q
n, rΛ(n) := {x ∈ Λ : Q(x) = n}.

In general, the theta series θΛ for a lattice Λ may fail to be an Eisenstein series
on the nose, but Siegel’s formula shows that the weighted average of theta series
within its genus class is always a Siegel Eisenstein series on Hn:

weighted average of theta series ←→ Siegel Eisenstein series.

More precisely, recall that two quadratic lattices Λ,Λ′ are in the same genus, if
they are isomorphic over R and over Zp for all primes p. Denote by Gen(Λ) the
set of isomorphism classes of quadratic lattices in the same genus of Λ. Denote by
Aut(Λ) the automorphism group of Λ as a quadratic lattice.
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Theorem 2.1.3 (Siegel). The following identity holds:

(2.1.3.1)

∑
Λ′∈Gen(Λ)

1
#Aut(Λ′) · θΛ′(τ )

∑
Λ′∈Gen(Λ)

1
#Aut(Λ′)

= EΛ(τ ).

Here EΛ(τ ) is a certain normalized Siegel Eisenstein series on Hn of weight m/2.

Example 2.1.4. Consider the case m = 2, n = 1 and Λ = Z2 equipped with the
quadratic form Q = x2 + y2. Then

θΛ(τ ) = θ2(τ ), EΛ(τ ) = EÇ
1 (τ ).

In this case Gen(Λ) is a singleton and Siegel’s formula recovers (1.5.1.4).

Example 2.1.5 (cf. [Ser73, V.2.3]). Siegel’s formula is extremely useful in study-
ing the arithmetic of quadratic forms. For example, one can deduce his famous
mass formula (also known as the Smith–Minkowski–Siegel mass formula), which
computes the mass of Gen(Λ), defined to be weighted size

∑

Λ′∈Gen(Λ)

1

#Aut(Λ′)

as an Euler product of local factors indexed by primes p.
For example, consider the simplest case when Λ is

• unimodular, i.e., det( 12 ((xi, xj)
n
i,j=1) ∈ {±1} for a Z-basis {x1, . . . , xn} of

Λ, and
• even, i.e., 2 divides Q(x) for all x ∈ Λ.

The rank m of any unimodular even lattice Λ is necessarily a multiple of 8. Siegel’s
mass formula computes the mass of Gen(Λ) explicitly as

∑

Λ′∈Gen(Λ)

1

#Aut(Λ′)
=

2ζ(2)ζ(4) · · · ζ(m− 2)ζ(m/2)

vol(S0) vol(S1) · · · vol(Sm−1)
=

Bm/2

m

∏

1≤j<m/2

B2j

4j
,

where ζ(s) is the Riemann zeta function, vol(Sk−1) = 2πk/2

Γ(k/2) is the volume of the

unit (k − 1)-sphere, and Bk is the kth Bernoulli number.

Example 2.1.6 (cf. [Ser73, VII.6.6]). Let Λ be the root lattice of type E8, defined
by

Λ := {x = (x1, . . . , x8) ∈ Z8 ∪ (Z+ 1/2)8 :

8∑

i=1

xi ≡ 0 (mod 2)}, Q =

8∑

i=1

x2
i .

Then Λ is unimodular and even. Siegel’s mass formula computes that
∑

Λ′∈Gen(Λ)

1

#Aut(Λ′)
=

B4

8

B2

4

B4

8

B6

12
=

−1/30

8

1/6

4

−1/30

8

1/42

12
=

1

696729600
.

The fact that #Aut(Λ) = 696729600 (which is also the order of the Weyl group of
type E8) then implies that Λ is the unique unimodular and even lattice of rank 8.

In this case EΛ(τ ) is related to the classical Eisenstein series E4(τ ) ∈ M4(SL2(Z))
of weight 4 and level 1 by

EΛ(τ ) = E4(2τ )

= 1 + 240
∑

n≥1

»
½∑

d|n
d3

¿
Á q2n = 1 + 240q2 + 2160q4 + 6720q6 + · · · .
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Figure 1. A two-dimensional projection of the convex hull of the
E8 root system. The black dots are the 240 roots. The plane the
roots are projected into is one of the four planes in R8 stabilized
by a Coxeter element w of the Weyl group. The Coxeter element w
acts on this plane via rotation through an angle of 2π

h , where h = 30
is the Coxeter number. It acts on the 240 roots regularly and
divides them into eight orbits of size 30 around circles of different
radii. Colors of 6720 edge lines are varied based on their projected
lengths to in order increase contrast.1

Here, the factor 240 agrees with the constant ck = 2/ζ(1− k) for the weight k = 4.
Siegel’s formula then implies that

rΛ(2n) := #

{
x = (xi) ∈ Λ :

8∑

i=1

x2
i = 2n

}
= 240

∑

d|n
d3.

In particular, we recover that there are rΛ(2) = 240 roots in the E8 root system
(see Figure 1).

2.2. Siegel–Weil formula. In a series of works ([Sie36,Sie37,Sie51,Sie52]), Siegel
further generalized his formula from definite to indefinite quadratic forms and from
the base field Q to totally real fields. In the indefinite case the formula is more dif-
ficult to state, as the theta series θΛ(τ ) is divergent, and it is necessary to introduce
extra weight functions in the definition to ensure convergence. The situation was
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greatly clarified by Weil [Wei65] using powerful tools from representation theory,
especially due to his use of the Weil representation.

Let V be a quadratic space over Q of dimension m with bilinear form ( , ).
For simplicity we assume that m is even (so the weight m/2 of the relevant Siegel
modular forms is integral; see Remark 2.2.12). Consider the reductive dual pair
(G,H) = (Sp(2n),O(V )), where Sp(2n) is the symplectic group of the standard
2n-dimensional symplectic space over Q and O(V ) is the orthogonal group of V .
Let P = MN ⊆ G = Sp(2n) be the standard Siegel parabolic subgroup, so that
under the standard basis we have

M(Q) =

{
m(a) =

(
a 0
0 ta−1

)
: a ∈ GLn(Q)

}
,

N(Q) =

{
n(b) =

(
1n b
0 1n

)
: b ∈ Symn(Q)

}
.

Definition 2.2.1. Let A be the ring of adèles of Q. We fix the standard additive
character Ë : A → C× whose archimedean component is given by Ë∞ : A∞ = R →
C×, x �→ e2πix. The (Schrödinger model of the) Weil representation Ì = ÌV,È is
the representation of G(A)×H(A) on the space of Schwartz functions S (V (A)n)
such that for any ϕ ∈ S (V (A)n) and x ∈ V (A)n,

Ì(m(a))ϕ(x) = χV (det a)| det a|m/2ϕ(x · a), m(a) ∈ M(A),

Ì(n(b))ϕ(x) = Ë(
1

2
tr b(x,x))ϕ(x), n(b) ∈ N(A),

Ì(w)ϕ(x) = ϕ̂(x), w =
(

0 1n
−1n 0

)
,

Ì(h)ϕ(x) = ϕ(h−1 · x), h ∈ H(A).

(2.2.1.1)

Here

• χV : A×/Q× → C× is the quadratic character that corresponds to the

quadratic extension Q(
√
disc(V ))/Q, and disc(V ) ∈ Q×/(Q×)2 is the dis-

criminant of V defined to be

disc(V ) := (−1)(
m
2 ) det((xi, xj))

m
i,j=1

for any Q-basis {x1, . . . , xm} of V .
• | · | : A× → R>0 is the normalized absolute value,
• (x,y) := ((xi, yj))

n
i,j=1 ∈ Matn(A) for x = (x1, . . . , xn) ∈ V (A)n and

y = (y1, . . . , yn) ∈ V (A)n,
• ϕ̂ is the Fourier transform of ϕ using the self-dual Haar measure on V (A)n

with respect to Ë,

ϕ̂(x) :=

∫

V (A)n
ϕ(y)Ë(tr(x,y))dy.

Remark 2.2.2. There are many nice expository articles on the Weil representa-
tion; see e.g., [Kud96,Pra93,Pra98]. See also a more general formula of the Weil
representation in [Kud96, Proposition 4.3]).

Example 2.2.3. When n = 1 we have G = Sp(2) = SL(2). The standard Siegel
parabolic is the standard Borel subgroup of SL(2) consisting of upper triangle matri-
ces P =

{(
a b
0 a−1

)}
, and M =

{(
a 0
0 a−1

)}
, N = {( 1 b

0 1 )} are the diagonal and upper

1Computer generated picture by Jgmoxness, downloaded from https://commons.wikimedia.

org/wiki/File:E8Petrie.svg
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unipotent matrices, respectively. In this case the first two formulas in (2.2.1.1)
simplify to

(2.2.3.1) Ì
(
a 0
0 a−1

)
ϕ(x) = χV (a)|a|m/2ϕ(xa), Ì ( 1 b

0 1 )ϕ(x) = Ë( 12b(x, x))ϕ(x),

for any a ∈ A×, b ∈ A, ϕ ∈ S (V (A)) and x ∈ V (A).

Our next goal is to use the Weil representation Ì to construct theta series and
Siegel Eisenstein series, starting from any common choice of a Schwartz function
ϕ ∈ S (V (A)n).

Definition 2.2.4. Associated to ϕ ∈ S (V (A)n), define the (two-variable) theta

function

θ(g, h, ϕ) :=
∑

x∈V n

Ì(g)ϕ(h−1x), g ∈ G(A), h ∈ H(A).

Then θ(g, h, ϕ) is invariant under G(Q)×H(Q) (automorphic on both G and H in
a broad sense).

Remark 2.2.5. Using θ(g, h, ϕ) as an integral kernel allows one to lift automorphic
forms on G to automorphic forms onH (and vice versa): for a cuspidal automorphic
representation π of G(A) and φ ∈ π, define the theta lift θϕ(φ) of φ to H(A) by the
Petersson inner product on G(Q)\G(A),

θϕ(φ)(h) := 〈θ(−, h, ϕ), φ〉Pet =
∫

G(Q)\G(A)

θ(g, h, ϕ)φ(g)dg.

Then θϕ(φ) is an automorphic form on H(A). This may be viewed as the starting
point of the modern theory of theta correspondence, which is indispensable in the
study of automorphic forms and the Langlands correspondence. We refer to Gan
[Gan14] for an excellent recent survey on theta correspondence.

Example 2.2.6. Assume that V is positive definite, then the theta integral

(2.2.6.1)

∫

H(Q)\H(A)

θ(g, h, ϕ) dh

(or in other words, the theta lift of the constant function 1 on H(A) to G(A)) is
closely related to Siegel’s theta series. More precisely, for Λ ⊆ V a lattice over Z,
we take the Schwartz function ϕ = (⊗pϕp)⊗ ϕ∞ ∈ S (V (A)n) such that

• ϕp ∈ S (V (Qp)
n) is the characteristic function of (Λ⊗ Zp)

n,

• ϕ∞ ∈ S (V (R)n) is the standard Gaussian function ϕ∞(x) = e−π tr(x,x).

For τ = x + iy ∈ Hn, we consider gτ = n(x)m(a) ∈ G(R), where a ∈ GLn(R)
such that y = ata. Then gτ · i1n = τ . By (2.2.1.1) we have

(2.2.6.2) Ì∞(gτ )ϕ∞(x) = χ∞(det a)| det a|m/2 · q 1
2 (x,x).

Define the classical theta integral

(2.2.6.3) χ∞(det a)−1| det a|−m/2 ·
∫

H(Q)\H(A)

θ(gτ , h, ϕ) dh.

Then it recovers the weighted average of theta series in (2.1.3.1) (see e.g., [Han13,
§4.6], [KR14, §7]).

In fact, let K ⊆ H(A) be the stabilizer of Λ, then we have a bijection

H(Q)\H(A)/K
∼−→Gen(Λ), h �→ Λ′ := h(Λ⊗ Ẑ) ∩ V.
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Let {hi} be a complete set of representatives of H(Q)\H(A)/K and let {Λi} be
the corresponding representatives of Gen(Λ) under this bijection. Then

∫

H(Q)\H(A)

θ(gτ , h, ϕ) dh =
∑

i

∫

H(Q)\H(Q)hiK

θ(gτ , h, ϕ)dh.

Using H(Q) ∩ hiKh−1
i = Aut(Λi), each summand evaluates to

∫

H(Q)\H(Q)hiKh−1
i

θ(gτ , hhi, ϕ)dh =
1

#Aut(Λi)

∫

hiKh−1
i

θ(gτ , hhi, ϕ)dh.

Unfolding the definition, the second integral equals∫

K

θ(gτ , hih, ϕ)dh =

∫

K

∑

x∈V n

Ì∞(gτ )ϕ(h
−1h−1

i x)dh,

which by our choice of {ϕp} evaluates to

vol(K)
∑

x∈Λn
i

Ì∞(gτ )ϕ∞(x).

Thus, combining with (2.2.6.2), we know that the classical theta integral (2.2.6.3)
evaluates to

vol(K)
∑

i

1

#Aut(Λi)
·
∑

x∈Λn
i

q
1
2 (x,x) = vol(K)

∑

i

1

#Aut(Λi)
· θΛi

(τ ).

Finally notice that

vol(K)
∑

i

1

#Aut(Λi)
= vol(H(Q)\H(A)),

thus if we normalize the Haar measure dh such that vol(H(Q)\H(A)) = 1, then
the classical theta integral (2.2.6.3) recovers the weighted average of theta series in
(2.1.3.1).

Definition 2.2.7. Associated to ϕ ∈ S (V (A)n), also define the Siegel Eisenstein

series

E(g, s, ϕ) :=
∑

γ∈P (Q)\G(Q)

Φϕ(γg, s), g ∈ G(A), s ∈ C,

where
(2.2.7.1)

S (V (A)n) → Ind
G(A)
P (A)(χV | · |s+

n+1
2 ), ϕ �→ Φϕ(g, s) := Ì(g)ϕ(0) · | det a(g)|s−s0

is the standard Siegel–Weil section of the degenerate principal series representation
of G(A) and

s0 :=
m− (n+ 1)

2
.

Here we write g = nm(a)k under the Iwasawa decomposition G(A) = N(A)M(A)K
for K the standard maximal open compact subgroup of G(A), and the quantity
| det a(g)| := | det a| is well defined.
Example 2.2.8. Similarly, define the classical Siegel Eisenstein series

E(τ, s, ϕ) := χ∞(det a)−1| det a|−m/2 · E(gτ , s, ϕ).

When V is positive definite and ϕ is chosen as in Example 2.2.6, the special value
E(τ, s0, ϕ) at s = s0 essentially recovers EΛ(τ ) in (2.1.3.1).
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For example, consider the case m = 2, n = 1 and Λ = Z2 equipped with the
quadratic form Q = x2 + y2. We have disc(V ) = −1 and the quadratic character
χV corresponds to the quadratic extension Q(i)/Q, and hence corresponds to the
Dirichlet character χ : (Z/4Z)× � {±1}. For τ = x+ iy ∈ H, we have

gτ = ( 1 x

0 1 )
(

y
1/2 0

0 y
−1/2

)
∈ SL2(R).

For γ =
(
a b
c d

)
∈ SL2(Q), one can compute that the Siegel–Weil section evaluates

to

Φϕ(γgτ , s) =
χ(d) · y1/2
cτ + d

· Im(γτ )s/2 =
χ(d)

cτ + d
· y

(1+s)/2

|cτ + d|s ,

using (2.2.6.2) together with (2.2.3.1) (or the more general [Kud96, Proposition
4.3]). Comparing with (1.5.1.3), we see that the classical Eisenstein series

E(τ, 0, ϕ) = y
−1/2 · E(gτ , 0, ϕ)

at s0 = 0 essentially recovers the Eisenstein series EÇ
1 (τ ) of weight 1 (up to a

nonzero constant).

The Siegel Eisenstein series E(g, s, ϕ) converges absolutely when Re(s) > n+1
2 .

It has a meromorphic continuation to s ∈ C and satisfies a functional equation
relating s ↔ −s (i.e., centered at s = 0). The Siegel–Weil formula gives a precise
identity of the form

theta integral ←→ value of Siegel Eisenstein series at s = s0.

Notice that s = s0 is the unique point such that the map ϕ �→ Φϕ(g, s) in (2.2.7.1)
is G(A)-equivariant, so that both sides of the identity at least have the same trans-
formation behavior with respect to the Weil representation.

Theorem 2.2.9 (Siegel–Weil formula [Wei65, KR88a, KR88b]). Let α be the di-

mension of a maximal isotropic subspace of V . If α = 0 (i.e., V is anisotropic) or
α > 0 and m− α > n+ 1, then E(g, s, ϕ) is holomorphic at s0 and

κ ·
∫

H(Q)\H(A)

θ(g, h, ϕ) dh = E(g, s0, ϕ),

where κ = 1 if m > n + 1 or κ = 2 otherwise. Here the Haar measure dh is

normalized so that vol(H(Q)\H(A)) = 1.

Example 2.2.10. When V is positive definite (so α = 0), the Siegel–Weil formula
recovers Siegel’s formula (see Examples 2.2.8 and 2.2.6), and in particular recovers
Jacobi’s formula as a special case of m = 2, n = 1, (G,H) = (Sp(2),O(2, 0)) (see
Example 2.1.4).

Remark 2.2.11. The condition in Theorem 2.2.9 is known as Weil’s convergence

condition, which ensures the convergence of the theta integral. It has been a long
effort, starting with the work of Kudla–Rallis [KR94], to generalize the Siegel–Weil
formula outside the convergence range and for all reductive dual pairs of classical
groups. We refer to Gan–Qiu–Takeda [GQT14] for the most general Siegel–Weil
formula and a nice summary of its literature and history.

Remark 2.2.12. When m is odd, the theta series and Eisenstein series have half
integral weights m/2, and are automorphic forms on the metaplectic cover G̃ =
Mp(2n) of Sp(2n). In this case the Weil representation needs to be modified to
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be a representation of G̃(A) × H(A) and the Siegel–Weil formula still holds after
modification.

3. Geometric Siegel–Weil formula

In this section we discuss an example of the Siegel–Weil formula in the indefinite
case (G,H) = (Sp(4),O(2, 2)) originating from the classical work of Hurwitz, and
we use it to motivate the more general geometric Siegel–Weil formula.

3.1. Hurwitz class number relation.

Definition 3.1.1. For any positive integer D, the Hurwitz class number H(D) is
defined to be the weighted size of SL2(Z)-equivalence classes of positive definite
binary quadratic forms

ax2 + bxy + cy2 with discriminant b2 − 4ac = −D, a, b, c ∈ Z.

Here the forms equivalent to a(x2 + y2) (D = 4a2) and a(x2 + xy + y2) (D = 3a2)
are counted with multiplicities 1/2 and 1/3, respectively, due to extra symmetry.

Example 3.1.2.

H(3) =
1

3
←→ {x2 + xy + y2},

H(8) = 1 ←→ {x2 + 2y2},
H(11) = 1 ←→ {x2 + xy + 3y2},

H(12) =
4

3
←→ {2(x2 + xy + y2), x2 + 3y2},

H(20) = 2 ←→ {x2 + 5y2, 2x2 + 2xy + 3y2}.

Example 3.1.3. Table 1 lists the first few Hurwitz class numbers.

Table 1. Hurwitz class numbers

D 3 4 7 8 11 12 15 16 19 20 23 24

H(D) 1
3

1
2 1 1 1 4

3 2 3
2 1 2 3 2

Example 3.1.4. When −D is a fundamental discriminant and D > 4, the Hurwitz
class number H(D) is equal to the class number of the imaginary quadratic field
Q(

√
−D).

Understanding these class numbers H(D) remains a central subject in algebraic
number theory. The following remarkable formula, which we call the Hurwitz class

number relation or the Hurwitz formula, gives an elementary expression for a certain
sum of Hurwitz class numbers.

Theorem 3.1.5 (Kronecker [Kro60], Gierster [Gie83], Hurwitz [Hur85]). If m is

not a perfect square, then

(3.1.5.1)
∑

dd′=m

max{d, d′} =
∑

t∈Z,4m−t2>0

H(4m− t2).
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Example 3.1.6. When m = 3, the Hurwitz class number relation says

3 + 3 = H(3) +H(8) +H(11) +H(12) +H(11) +H(8) +H(3)

=
1

3
+ 1 + 1 +

4

3
+ 1 + 1 +

1

3
.

When m = 5, the Hurwitz class number relation says

5+5=H(4) +H(11) +H(16) +H(19) +H(20) +H(19) +H(16) +H(11) +H(4)

=
1

2
+ 1 +

3

2
+ 1 + 2 + 1 +

3

2
+ 1 +

1

2
,

A quite nontrivial way to decompose the integers 6 and 10, respectively!

Hurwitz [Hur85] proved this formula using the modular j-invariant and the mod-
ular polynomial Φm(x, y) ∈ Z[x, y] of level m (which defines the modular curve
Y0(m) over Z). He recognized the left-hand side (LHS) of (3.1.5.1) as degΦm(x, x)
and computed this degree in a different way involving Hurwitz class numbers to
arrive at formula (3.1.5.1).

3.2. A geometric proof. (cf. [GK93]). From the modern point of view, we have
a nice geometric interpretation of Hurwitz’s proof, in terms of the geometry of the
modular curve

Y (C) = SL2(Z)\H.

The modular curve Y (C) is the moduli space of elliptic curves:

Y = {E : elliptic curve over C (up to isomorphism)}
τ �→ Eτ = C/(Z+ Zτ ),

which allows one to define a canonical model of Y as an algebraic curve over Q.
Each elliptic curve Eτ has a Weierstrass equation

Eτ : y2 = x3 +Aτx+Bτ .

The j-invariant

j(Eτ ) := 1728 · 4A3
τ

4A3
τ + 27B2

τ

only depends on the isomorphism class of Eτ and gives rise to an isomorphism

(3.2.0.1) j : Y
∼−→ A1, τ �→ j(Eτ ).

Definition 3.2.1. Define the surface X to be the product of two modular curves,

X := Y × Y = {(E,E′)},
which is the moduli space of pairs of elliptic curves (E,E′). For each positive integer
m, we define the modular correspondence Z(m) over the surface X by

Z(m) := {(E,E′, ϕ) : φ : E
degm−−−−→ E′} → X,

parameterizing a pair of elliptic curves (E,E′) together with a degree m isogeny
φ : E → E′.

The isogeny φ imposes one nontrivial condition, and thus Z(m) defines a divisor
on X. For example, when m = 1 the modular correspondence is nothing but the
diagonally embedded modular curve

Z(1) = ∆(Y ) ⊆ X = Y × Y.
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X = Y × Y

Z(1)

Z(m)

Figure 2. Geometric intersection number

Given two divisors Z(m) and Z(1) on the surface X, one expects that the in-
tersection Z(m) ∩ Z(1) should be zero dimensional. When this is the case (i.e.,
when Z(m) and Z(1) intersect properly), we obtain a geometric intersection number

〈Z(m), Z(1)〉X by counting the number of intersection points weighted by intersec-
tion multiplicities (see Figure 2).

A curious observation comes: the geometric intersection number 〈Z(m), Z(1)〉X
is equal to the LHS of (3.1.5.1),

(3.2.1.1) 〈Z(m), Z(1)〉X =
∑

dd′=m

max{d, d′}.

In fact, under the isomorphism (3.2.0.1) we know that X has a natural compacti-
fication

X = P1 × P1.

Since Z(1) = ∆(P1), the well-known cohomological equivalence on P1 × P1,

∆(P1) ∼ P1 × {pt}+ {pt} × P1

then implies that

〈Z(m), Z(1)〉X = 〈Z(m),P1 × {pt}〉X + 〈Z(m), {pt} × P1〉X = 2
∑

d|m
d,

where the last equality comes from counting the number of degree m isogenies
with a fixed source (resp., target) elliptic curve. The desired identity (3.2.1.1) then
follows from subtracting the contribution at {∞} = P1 \ A1.

On the other hand, via the moduli interpretation we have

Z(m) ∩ Z(1) = {(E,E) : E
degm−−−−→ E}.

When m is a perfect square, we know that Z(m) contains Z(1) (by considering the

multiplication-by-
√
m isogeny E

[
√
m]−−−→ E), and thus Z(m) and Z(1) do not intersect

properly. However, when m is not a perfect square (as assumed in Theorem 3.1.5),
E has to be an elliptic curve with complex multiplication by an imaginary quadratic
order Z[α], where αα = m, and thus Z(m) and Z(1) do intersect properly. Using
the theory of complex multiplication, counting the weighted number of such elliptic
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curves with complex multiplication exactly gives the sum of Hurwitz class numbers
as the right-hand side (RHS) of (3.1.5.1),

(3.2.1.2) 〈Z(m), Z(1)〉X =
∑

t∈Z,4m−t2>0

H(4m− t2).

Combining (3.2.1.1) and (3.2.1.2) completes our sketch of the geometric proof of
the Hurwitz formula (see Gross–Keating [GK93] for complete details).

3.3. Hurwitz formula as a geometric Siegel–Weil formula. The Hurwitz
class numbers appearing in the Hurwitz formula (3.1.5.1) also naturally appear as
Fourier coefficients of Siegel Eisenstein series. More precisely, consider the Siegel
Eisenstein series E(τ, s) on Sp(4) of weight 2,

E(τ, s) :=
∑

(A B
C D )∈P (Z)\Sp4(Z)

det(Cτ +D)−2 det Im(τ )s−1/2

| det(Cτ +D)|2s−1

=
∑

T∈Sym2(Z)>0

ET (τ, s)q
T + · · · .

Then we have (up to a normalizing constant)

H(4m− t2) = ET (τ, s0 = 1/2), T =
(

m t/2
t/2 1

)
.

Notice that the condition 4m− t2 > 0 neatly translates to the condition T > 0.
We summarize our discussion with the following diagram.

(3.3.0.1)∑

dd′=m

max{d, d′} =
∑

t∈Z,4m−t2>0

H(4m− t2)

〈Z(m), Z(1)〉X =
∑

T=

(

m t/2
t/2 1

)

>0

ET (τ, 1/2)

intersection number of
two divisors on X

��

��
��
��
��
��
��
��
��

=
sum of Fourier coefficients of

a Siegel Eisenstein series on Sp(4).

��

��

��
��
��

In this way the Hurwitz formula can be viewed as a geometric Siegel–Weil formula
for the pair (G,H) = (Sp(4),O(2, 2)), where one replaces the theta integral on
O(2, 2) by a geometric theta series, i.e., the generating series of geometric intersec-
tion numbers of modular correspondences for the surface X = Y × Y ,

geometric theta series on X
←→ value of Siegel Eisenstein series on Sp(4) at s0 = 1/2.

Notice here the natural appearance of the product of modular curves due to
the exceptional isomorphism SO(2, 2) � SL2 × SL2/{±1}. This geometric Siegel–
Weil formula further computes a more general geometric intersection number

〈Z(m), Z(n)〉X as the sum of ET (τ, 1/2) with T =
(

m t/2
t/2 n

)
> 0.



342 CHAO LI

Remark 3.3.1. The remarkable discovery that generating series involving intersec-
tion numbers of cycles are modular originates from the work of Hirzebruch–Zagier
[HZ76] on Hilbert modular surfaces. Historically [HZ76] was the primary motiva-
tion in Kudla’s work discussed below (cf. the introduction of [KM90,Kud97a]) and
also in the work of Gross–Kohnen–Zagier [GKZ87]. See Example 3.5.1 and Remark
3.5.5(i), (ii).

3.4. Orthogonal Shimura varieties. Kudla proved a more general geometric

Siegel–Weil formula by replacing the surface X = Y ×Y by an orthogonal Shimura
variety of arbitrary dimension. Our next goal is to discuss Kudla’s formula.

Let F be a totally real number field. Pick a real place w of F . Let V be a
quadratic space over F of dimension m such that for any place v|∞ of F ,

the Fv-quadratic space Vv := V ⊗F Fv has signature

{
(m− 2, 2), if v = w,

(m, 0), if v �= w.

Let G = GSpin(V ), which sits in an exact sequence

1 → Gm → G → SO(V ) → 1.

Associated to any open compact subgroup K ⊆ G(A∞
F ), we have a GSpin Shimura

variety X = ShG, which has a smooth canonical model of dimension m−2 over the
reflex field F (viewed as a subfield of C via the embedding induced by the place w)
and admits complex uniformization

X(C) = G(F )\[D×G(A∞
F )/K].

Here D is the hermitian symmetric domain of oriented negative 2-planes in Vw.
Unfolding the definition we may rewrite X(C) as a disjoint union of quotients of
D by congruence subgroups of G(F ) (see [Kud04, §1]). The Shimura variety X is
quasi-projective, and it is projective when V is anisotropic (e.g., when F �= Q, by
the signature condition).

Remark 3.4.1. One technical reason that one would prefer to work with the
Shimura variety X associated to G (instead of SO(V )) is that it is of Hodge type

(instead of abelian type), and it admits an embedding into a Siegel modular variety
(the moduli space of polarized abelian varieties) of larger dimension.

Example 3.4.2 (cf. [Kud04,HP14,FH00]). Consider F = Q. Via accidental iso-
morphisms between G = GSpin(m−2, 2) and classical groups of symplectic type in
low ranks, the Shimura varieties X recover many classical modular varieties in low
dimensions (see Table 2, where D is a quaternion algebra over Q and E = Q(

√
d)

is a real quadratic field). When dimX ≤ 19, X is also closely related to the mod-
uli space of polarized K3 surfaces and has proved to be useful for studying the
arithmetic of K3 surfaces.

3.5. Kudla’s generating series of special cycles and the modularity con-

jecture. The Shimura variety X is equipped with special divisors Z(m) → X
generalizing in the case X = Y × Y . Via an embedding into a Siegel modular vari-
ety, Z(m) parameterizes certain polarized abelian varieties together with a special

endomorphism of degree m (see [MP16, §5]).
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Table 2. Examples of GSpin Shimura varieties

dimX G = GSpin(m− 2, 2) X

1 GL2 or D× modular/Shimura curve

2 GL2 ×Gm
GL2 or GLdet∈Q×

2,E product of modular curves

or Hilbert modular surfaces
3 GSp4 Siegel 3-fold

(moduli of abelian surfaces)
4 GU(2, 2) (up to center) moduli of abelian 4-folds

with complex multiplication
6 GSp(4, D) moduli of abelian 8-folds

with quaternion multiplication

Example 3.5.1. The special divisor Z(m) recovers

• Heegner points on modular curves and Shimura curves when dimX = 1
(cf. [Kud04, Appendix]),

• modular correspondences Z(m) on X = Y × Y considered in §3.2 when
dimX = 2 and G is split,

• Hirzebruch–Zagier cycles [HZ76] on Hilbert modular surfaces when dimX =
2 and G is nonsplit.

More generally, for any y ∈ V with (y, y) > 0, its orthogonal complement Vy ⊆ V
has rank n − 1. The embedding Gy := GSpin(Vy) ↪→ G = GSpin(V ) defines a
Shimura subvariety of codimension 1,

ShGy
→ X = ShG.

For any x ∈ V (A∞
F ) with (x, x) ∈ F>0, there exists y ∈ V and g ∈ G(A∞

F ) such
that y = gx. Define the special divisor

Z(x) → X

to be the g-translate of ShGy
. For any x = (x1, . . . , xn) ∈ V (A∞

F )n with (x,x) ∈
Symn(F )>0, define the special cycle (of codimension n)

Z(x) = Z(x1) ∩ · · · ∩ Z(xn) → X.

Here ∩ denotes the fiber product overX. More generally, for aK-invariant Schwartz
function ϕ ∈ S (V (A∞

F )n)K and T ∈ Symn(F )>0, define the weighted special cycle

Zϕ(T ) =
∑

x∈K\V (A∞
F

)n

(x,x)=T

ϕ(x)Z(x) ∈ CHn(X)C := CHn(X)⊗ C.

Here CHn(X) is the Chow group of algebraic cycles of codimension n on X (up to
rational equivalence). With extra care, we can also define Zϕ(T ) ∈ CHn(X)C for
any T ∈ Symn(F )≥0 (see [Kud04,YZZ09]).

Definition 3.5.2. Define Kudla’s generating series of special cycles,

(3.5.2.1) Zϕ(τ ) =
∑

T∈Symn(F )≥0

Zϕ(T )q
T ,

as a formal sum valued in CHn(X)C, where

τ ∈ Hn = {x+ iy : x ∈ Symn(F∞), y ∈ Symn(F∞)>0}, qT :=
∏

v|∞
e2πi trTτv .



344 CHAO LI

Remark 3.5.3. Analogous constructions of special divisors and Kudla’s generating
series also apply to Shimura varieties of unitary type associated to hermitian spaces
with signature (m−1, 1) at one archimedean place and signature (m, 0) at all other
archimedean places (see [Liu11a]). These Shimura varieties of orthogonal/unitary
type can be naturally viewed as Shimura varieties associated to totally definite
incoherent quadratic/hermitian spaces ([Z19,Gro20]); see §6.5. In the unitary case,
we obtain a generating series of the form

(3.5.3.1) Zϕ(τ ) =
∑

T∈Hermn(F )≥0

Zϕ(T )q
T ,

where we replace positive semidefinite symmetric matrices Symn(F )≥0 by positive
semidefinite hermitian matrices Hermn(F )≥0, and we replace Siegel’s half-space by
the hermitian half-space

τ ∈ Hn := {x+ iy : x ∈ Hermn(F∞), y ∈ Hermn(F∞)>0}.
We may view Zϕ(τ ) as a geometric theta series, now valued in Chow groups for

cycles of arbitrary codimension n. The analogy to Siegel’s theta series (2.1.1.1) and
the theta integral (2.2.6.1) leads to Kudla’s modularity conjecture:

Conjecture 3.5.4 (Kudla’s modularity). The formal generating series Zϕ(τ ) con-
verges absolutely and defines a modular form on Hn of weight m/2 valued in

CHn(X)C.

Remark 3.5.5.

(i) The analogous modularity in Betti cohomology, i.e., the modularity of the
generating series valued in H2n(X(C),C) defined by the image of Zϕ(T )
under the cycle class map

CHn(X) → H2n(X(C),Z),

is known by the classical work of Kudla–Millson [KM90]. The special case
of special divisors on Hilbert modular surfaces dates back to Hirzebruch–
Zagier [HZ76] (see also Funke–Millson [FM14]).

(ii) Kudla’s modularity conjecture was originally formulated for orthogonal
Shimura varieties over Q ([Kud97a,Kud04]). In this case, Borcherds [Bor99]
proved the conjecture for the divisor casem = 1 (the special case of Heegner
points on modular curves dates back to the classical work of Gross–Kohnen–
Zagier [GKZ87]). Zhang [Zha09] proved the modularity for general n as-
suming the absolute convergence of the series. Bruinier–Westerholt-Raum
[BWR15] proved the desired convergence and hence established Kudla’s
modularity conjecture for orthogonal Shimura varieties over Q. More re-
cently, Bruinier–Zemel [BZ22] have extended the modularity to toroidal
compactifications of orthogonal Shimura varieties when n = 1.

(iii) For orthogonal Shimura varieties over totally real fields, Yuan–Zhang–
Zhang [YZZ09] proved the modularity for n = 1 (see also Bruinier [Bru12]
for a different proof) and reduced the n > 1 case to the convergence.

(iv) Conjecture 3.5.4 in the unitary case was formulated by Liu [Liu11a], who
also proved the case n = 1 and reduced the n > 1 case to the convergence.
Recently Xia [Xia21] proved the desired convergence when E = Q(

√
−d)

for d = 1, 2, 3, 7, 11 (in the notation of §6.5), and thus established Conjec-
ture 3.5.4 in these cases.
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(v) Kudla [Kud04, Problem 4] also proposed the modularity problem in the

arithmetic Chow group ĈH
n
(X ) of a suitable (compactified) integral model

X of X (see [GS90, BGKK07] and also [Sou92]). The problem seeks to

define canonically an explicit arithmetic generating series Ẑϕ(τ ) valued in

ĈH
n
(X )C which lifts Zϕ(τ ) under the restriction map

ĈH
n
(X ) → CHn(X),

and such that Ẑϕ(τ ) is modular. When n = 1, this arithmetic modularity

was proved by Howard–Madapusi Pera [HMP20] (orthogonal groups overQ)
and Bruinier–Howard–Kudla–Rapoport–Yang [BHK+20] (unitary groups
over Q). Several low dimensional cases were also proved:

• Shimura/modular curves (Kudla–Rapoport–Yang [KRY06], Sankaran
[San14], and Du–Yang [DY19]),

• Hilbert modular surfaces (Bruinier–Burgos Gil–Kühn [BBGK07]),
• Product of modular curves (Berndt–Kühn [BK12,BK12a]).

We also mention the arithmetic modularity of the difference of two arith-
metic theta series by Ehlen–Sankaran [ES18] for n = 1 (unitary groups over
Q), the almost arithmetic modularity by Mihatsch–Zhang [MZ21, Theorem
4.3] for n = 1 (unitary groups over totally real fields F �= Q), the arithmetic
modularity of Fourier–Jacobi coefficients for general n by Sankaran [San20]
(anisotropic orthogonal groups), and several striking recent works involving
applications of arithmetic modularity [AGHM18,Zha21,SSTT22].

(vi) Finally, we mention several recent works on the modularity conjecture for
more general classes of orthogonal and unitary Shimura varieties (indefinite
at more than one archimedean place) by Rosu–Yott [RY20], Kudla [Kud21],
and Maeda [Mae21,Mae22].

3.6. Kudla’s geometric Siegel–Weil formula. In the special case n = dimX,
the generating series Zϕ(τ ) in (3.5.2.1) is valued in CHdimX(X)C (i.e., the Chow
group of 0-cycles). When X is projective, composing with the degree map

deg : CHdimX(X)C → C,

we obtain a generating series degZϕ(τ ) valued in C. Its terms encode geometric
intersection numbers between special divisors onX generalizing the case X = Y ×Y
considered in §3.3. Kudla proved the following remarkable geometric version of
the Siegel–Weil formula (by analogy with Theorem 2.2.9 specialized to the case
n = dimX = m− 2 and so s0 = 1/2).

Theorem 3.6.1 (Kudla’s geometric Siegel–Weil formula [Kud97a, Corollary 10.5]).
Assume that X is projective (i.e., V is anisotropic). Take n = dimX. Then for any

ϕ ∈ S (V (A∞
F )n)K the following identity holds (up to a nonzero constant depending

only on choices of measures)

(3.6.1.1) degZϕ(τ )
.
= E(τ, 1/2, ϕ⊗ ϕ∞).

Here ϕ∞ ∈ S (V (F∞)n) is a certain Schwartz function constructed from the Kudla–

Millson Schwartz form ([KM86]).

Thus Kudla’s geometric Siegel–Weil formula is a precise identity of the form

geometric theta series on X
←→ value of Siegel Eisenstein series on Sp(2n) at s0 = 1/2.
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Remark 3.6.2. Kudla in fact proved a geometric Siegel–Weil formula for the
generating series of special cycles of all dimensions, i.e., without assuming n =
dimX. Here and in the next section we focus on the case of 0-cycles and refer to
Kudla’s excellent surveys [Kud04,Kud02b,Kud02a] for the general case.

4. Arithmetic Siegel–Weil formula

In this section we discuss an arithmetic version of the Siegel–Weil formula.
Parallel to the previous section, we will use an example in the case (G,H) =
(Sp(6),O(2, 2)) considered by Gross–Keating to motivate the more general case.

4.1. Gross–Keating formula. Gross–Keating took the geometric point of view
of the Hurwitz class number relation and found a remarkable generalization for
arithmetic intersection numbers. As the moduli space of elliptic curves, the modular
curve Y has a canonical integral model Y over SpecZ such that Y(C) = Y . The
integral model Y is an arithmetic surface fibered over the arithmetic curve SpecZ,
and its fiber above p is a smooth curve in characteristic p (see Figure 3).

(2) (3) (5) · · ·

Z
(p) · · ·

Y
Yp YC = Y

∞

· · ·

Figure 3. Arithmetic surface

Analogously, the surfaceX has a canonical integral model X over SpecZ, which is
an arithmetic threefold. The modular correspondence Z(m) → X naturally extends
to a divisor Z(m) → X . Now on the arithmetic threefold X , we need three (instead
of two) divisors so that the intersection has the expected dimension 0. Define the
arithmetic intersection number by

〈Z(m1),Z(m2),Z(m3)〉X :=
∑

p

〈Z(m1),Z(m2),Z(m3)〉Xp
· log p,

where 〈Z(m1),Z(m2),Z(m3)〉Xp
encodes the intersection number supported in the

fiber Xp. This definition makes sense when these three divisors intersect properly
(or more generally when their intersection is supported in finitely many fibers Xp).

Is there a formula for this arithmetic intersection number analogous to (3.3.0.1)?
The index set for T should be Sym3(Z) to put the three diagonal entries m1,m2,m3

in T , and thus we need to look at the Siegel Eisenstein series E(τ, 0) on Sp(6) of
weight 2 (instead of on Sp(4)). Then the relevant special point in the Siegel–
Weil formula is s0 = 0, the central point. However, it is too naive to expect
〈Z(m1),Z(m2),Z(m3)〉X to be equal to E(τ, 0): the arithmetic intersection number
involves a Q-linear combination of log p’s and hence is no longer a rational number
like ET (τ, 1/2) in (3.3.0.1). Moreover, the Eisenstein series E(τ, s) turns out to have
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an odd functional equation at the center s = 0, and hence E(τ, 0) = 0 automatically!
This automatic vanishing suggests that it would be interesting to look at its first
derivative E′(τ, 0) at s = 0.

After these two appropriate modifications—replacing Sp(4) by Sp(6) and replac-
ing the value at s0 = 1/2 by the central derivative at s0 = 0—it turns out that
we do have the following remarkable formula relating the arithmetic intersection
numbers to E′(τ, 0) (see a nice exposition of the proof in [VGW+07]).

Theorem 4.1.1 (Gross–Keating [GK93], Gross–Kudla–Zagier). Assume there is

no positive definite binary quadratic form representing m1,m2,m3 simultaneously.

Then (up to an explicit constant)
(4.1.1.1)

〈Z(m1),Z(m2),Z(m3)〉X .
=

∑

T=

(m1 ∗ ∗
∗ m2 ∗
∗ ∗ m3

)

>0

E′
T (τ, 0)

arithmetic intersection number

of three divisors on X

��

��
��
��
��
��
��
��
��
��

sum of Fourier coefficients

of the derivative of a

Siegel Eisenstein series on Sp(6)

��

��
��
��
��
��

Remark 4.1.2. The assumption on m1,m2,m3 is analogous to the assumption
that m is not a perfect square in Theorem 3.1.5, which guarantees that the three
divisors intersect properly.

4.2. Arithmetic Siegel–Weil formula. Parallel to (3.3.0.1), the Gross–Keating
formula can be viewed as an arithmetic Siegel–Weil formula for the pair (G,H) =
(Sp(6),O(2, 2)), where one replaces the theta integral on O(2, 2) by a generating
series of arithmetic intersection numbers on the arithmetic threefold X ,

arithmetic theta series on X
←→ central derivative of Siegel Eisenstein series on Sp(6).

Of course there is nothing stopping us from considering the higher dimensional
case. In fact Kudla ([Kud97b]) and Kudla–Rapoport ([KR99,KR00a,KR14]) pro-
posed vast conjectural generalizations of the Gross–Keating formula by

(1) taking X to be a suitable regular integral model X of the Shimura va-
riety X of orthogonal/unitary type considered in §3.4–3.5 associated to
quadratic/hermitian spaces.

(2) defining suitable integral models Z(m) → X of the special divisors Z(m) →
X, and more generally integral models Z(T ) for special divisors Z(T ).

Remark 4.2.1. Such a regular integral model X is known to exist for certain
level subgroups K defining X (cf. [LZ22a, §14] in the unitary case). To avoid
technicalities, we will be vague about the choice of level structures and integral
models, but see Remark 5.3.2(iii), (iv).
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Now take n = dimX (which equals dimX + 1) so that the intersection of n
special divisors has expected dimension 0. We have a natural decomposition

Z(m1) ∩ · · · ∩ Z(mn) =
⊔

T=

(m1 ∗ ∗
∗ ··· ∗
∗ ∗ mn

)

Z(T )

index by symmetric/hermitian matrices T with diagonal entries m1, . . . ,mn. Here
∩ denotes the fiber product over X . When T > 0, it turns out that Z(T ) is
supported in finitely many fibers Z(T )p, and we have a well-defined T -part of the
arithmetic intersection number

〈Z(m1), . . . ,Z(mn)〉T :=
∑

p

〈Z(m1), . . . ,Z(mn)〉Z(T )p · log p.

Now we are ready to state the conjecture on an arithmetic version of the Siegel–
Weil formula (by analogy with Theorem 2.2.9 in the orthogonal case specialized to
n = m+1 and so s0 = 0 is the central point), which is known as the Kudla–Rapoport

conjecture in the unitary case ([KR14, Conjecture 11.10]).

Conjecture 4.2.2 (Arithmetic Sigel–Weil formula, nonsingular part). Take n =
dimX . Then for any T ∈ Symn(F )>0 (resp., T ∈ Hermn(F )>0) in the orthogonal

(resp., unitary) case with diagonal entries m1, . . . ,mn, the following identity holds

(up to a nonzero constant depending only on choices of measures).
(4.2.2.1)

〈Z(m1), · · · ,Z(mn)〉T ?
= E′

T (τ, 0)

arithmetic intersection number

of n divisors on X

��

��
��
��
�� Fourier coefficient of the

central derivative of a

Siegel Eisenstein series

on Sp(2n)(resp., U(n, n))

��

��

��

Remark 4.2.3. In general the n special divisors do not intersect properly, and a
more sophisticated definition of the arithmetic intersection numbers is needed (cf.
Definition 5.1.3). In particular, with the correct definition the conjecture works
even for improper intersections.

Thus the arithmetic Siegel–Weil formula is a precise conjectural identity of the
form

arithmetic theta series on X
←→ central derivative of Siegel Eisenstein series on Sp(2n) (U(n, n)).

Now we can state one of the main results of [LZ22a] (see [LZ22a, Theorem 1.3.1]
for more precise technical assumptions).

Theorem 4.2.4 (Li and Zhang [LZ22a]). Conjecture 4.2.2 holds for arbitrary n in

the unitary case.

Our recent work with Zhang [LZ22b] has also established a slightly weaker semi-
global (at a good odd prime p) version of Conjecture 4.2.2 in the orthogonal case.
We will discuss some key ideas of the proof in §5.
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Remark 4.2.5.

(i) When n = 3 and G is split (orthogonal case), the arithmetic Siegel–Weil
formula recovers the Gross–Keating formula, and also treats the case of
improper intersections (see Remarks 4.1.2, 4.2.3).

(ii) Theorem 4.2.4 was previously proved when n = 3 by Terstiege [Ter11,Ter13]
and when the intersection is zero dimensional ([GK93,KR99,KR00a,KR11,
BY21]).

(iii) There is also an archimedean part of the arithmetic Siegel–Weil formula,
relating archimedean arithmetic intersection numbers with the nonsingular
but indefinite Fourier coefficients of E′(τ, 0). These Fourier coefficients are
nonholomorphic, unlike the positive definite Fourier coefficients in Conjec-
ture 4.2.2. This archimedean arithmetic Siegel–Weil formula was proved by
Liu [Liu11a] (unitary case), and Garcia–Sankaran [GS19] in full generality
(see also Bruinier–Yang [BY21] for an alternative proof in the orthogonal
case).

(iv) Kudla conjectured that there should also be a singular part of the arith-
metic Siegel–Weil formula, relating the singular Fourier coefficients of
E′(τ, 0) to certain arithmetic intersection numbers. However the singular
part is more difficult to prove, or even to formulate precisely, cf. [Kud04,
Problem 6]. As a special case, the constant term of the arithmetic Siegel–
Weil formula should roughly relate the arithmetic volume of Xn to loga-
rithmic derivatives of Dirichlet L-functions. Such an explicit arithmetic
volume formula was proved by Hörmann [Hör14] (orthogonal case) and
Bruinier–Howard [BH21] (unitary case), though a precise comparison with
the constant term of E′(τ, 0) is yet to be formulated and established.

(v) Ideally, putting all singular/nonsingular and archimedean/nonarchimedean
parts together, one should arrive at a full arithmetic Siegel–Weil formula
of the form in complete analogy to (3.6.1.1),

d̂eg Ẑϕ(τ )
?
= E′(τ, 0, ϕ⊗ ϕ∞).

Here Ẑϕ(τ ) is the conjectural arithmetic theta series in Remark 3.5.5(v),

d̂eg is the arithmetic degree map

d̂eg : ĈH
dimX

(X )C → C,

and ϕ∞ is the standard Gaussian function on the totally positive definite
space over F∞. The full arithmetic Siegel–Weil formula was established by
Kudla, Rapoport, and Yang ([KRY99,Kud97b,KR00b,KRY06]) for n = 1, 2
(orthogonal case) in great generality. However, it remains an open problem
to formulate such a precise full arithmetic Siegel–Weil formula in higher
dimensions.

(vi) Recently Feng–Yun–Zhang [FYZ21] proved a higher Siegel–Weil formula
over function fields for unitary groups, which relates nonsingular coefficients
of the rth derivative of Siegel Eisenstein series and intersection numbers
of special cycles on moduli spaces of Drinfeld shtukas with r legs. The
case r = 0 (resp., r = 1) can be viewed as an analogue of the Siegel–
Weil formula (resp., the arithmetic Siegel–Weil formula). Over function
fields, the possibility of relating higher derivatives of analytic objects to
intersection numbers was first discovered by Yun–Zhang [YZ17,YZ19] in the
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context of the higher Gross–Zagier formula. Over number fields, however,
no analogue of such a higher Siegel–Weil formula (resp., higher Gross–Zagier
formula) is currently known when r > 1. Feng–Yun–Zhang [FYZ21a] also
defined higher theta series over function fields (including all singular terms)
and conjectured their modularity. Previously, an arithmetic Siegel–Weil
formula over function fields was proved by Wei [Wei19] for special cycles on
moduli spaces of Drinfeld modules of rank 2 with complex multiplication
(analogue of the special case n = r = 1).

5. Local arithmetic Siegel–Weil formula

In order to prove the arithmetic Siegel–Weil formula (Conjecture 4.2.2), one first
notices that it can be reduced to a local identity:

(1) Geometric side (LHS): The arithmetic intersection numbers corresponding
to nonsingular matrices T can be computed as a sum indexed by primes of
Z (or the ring of integers OF in general). The local term at a finite prime
p can be further reduced to an arithmetic intersection on a Rapoport–Zink
space Nn, which is a local analogue of Shimura varieties over Zp (or a
completion of OF in general), via the theory of p-adic uniformization of
Shimura varieties ([RZ96]).

(2) Analytic side (RHS): The nonsingular Fourier coefficients ET (τ, s) has a
product expansion indexed by primes of Z, and thus the derivative E′

T (τ, 0)
can also be written as a sum indexed by the primes of Z. The term indexed
by a finite prime p can be further reduced to the derivative of the local
representation density of quadratic/hermitian forms over Zp.

This reduction step is illustrated in the following diagram.

arithmetic intersection number
of n special divisors on X

��

��
��
��
��
��
��
��
��
��
��

?
=

sum of Fourier coefficients
of a central derivative

of a Siegel Eisenstein series
on Sp(2n) or U(n, n)

��

��

��
��
��
��
��

arithmetic intersection number
of n special divisors on Nn

?
=

central derivative
of the local density of a

hermitian or quadratic form
in n-variables

The conjectural local identity on the bottom is known as the local arithmetic Siegel–

Weil formula. The local arithmetic Siegel–Weil formula has been recently proved
in our work with Zhang [LZ22a] (resp., [LZ22b]) in the unitary (resp., orthogonal)
case. Next we will make this local conjecture more precise in the unitary case. In
the unitary case, this reduction step was made precise by Kudla–Rapoport ([KR11],
[KR14]), and the local conjecture is also known as the local Kudla–Rapoport con-

jecture.

5.1. Geometric side. Let p be an odd prime. Let F0 be a finite extension of Qp

with residue field k = Fq and uniformer �. Let F be the unramified quadratic
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extension of F0 (e.g., F/F0 = Qp2/Qp). Associated to this datum, we have the
unitary Rapoport–Zink space Nn:

• It is a formal scheme over SpfOF̆
of relative dimension n − 1, parameter-

izing deformations (up to quasi-isogenies) of a fixed OF -hermitian formal
p-divisible group Xn/k̄ of relative height 2n, dimension n, and signature
(1, n− 1). Here OF̆ is the completion of the maximal unramified extension
of OF .

• The space of special homomorphisms

Vn = HomOF
(X1,Xn)⊗OF

F

has a structure of a (nonsplit) F -hermitian space of dimension n, coming
from the principal polarization on Xn.

• The unitary group U(Vn) naturally acts on Nn via the action on Xn.
• Each vector x ∈ Vn gives rise to a special divisor or Kudla–Rapoport (KR)
divisor Z(x) ⊆ Nn, defined to be the locus where the homomorphism x
deforms. This is the local analogue of the special divisor considered in
Conjecture 4.2.2.

The Rapoport–Zink space Nn is formally smooth over Spf OF̆ , but its geometric
structure is rather complicated. For example, Nn is highly nonreduced: the reduced
subscheme N red

n has dimension �n−1
2 �, near the middle dimension of Nn. The

structure of N red
n was studied by Vollaard–Wedhorn ([VW11]), and they showed

that N red
n has a nice stratification into smooth varieties, known as the Bruhat–Tits

stratification. Each closed stratum of the Bruhat–Tits stratification is isomorphic
to a smooth projective variety DLi of dimension i over k̄ (0 ≤ i ≤ �n−1

2 �), and the
incidence relation between the closed strata resembles the combinatorial structure
of the Bruhat–Tits building for quasi-split unitary groups over F0. Here each DLi

is a generalized Deligne–Lusztig variety associated to the unitary group U(2i + 1)
over k.

Example 5.1.1. Take n = 1. Then N1
∼= Spf OF̆ , and N red

1 = {pt}.
Example 5.1.2. Take n = 3. Then N3 has relative dimension 2 over Spf OF̆ , while

the reduced subscheme N red
3 has dimension 1 (see Figure 4). In this case only two

types of Deligne–Lusztig variety show up:

(1) DL0 = {pt}, a single point.
(2) DL1 = {xq+1 + yq+1 + zq+1 = 0} ⊆ P2, the Fermat curve of degree q + 1.

And N red
3 is an infinite tree, where

(1) the number of DL1 containing a given DL0 is exactly q + 1.
(2) the number of DL0 contained in a given DL1 is exactly q3 + 1.

Definition 5.1.3. Let L ⊆ Vn be an OF -lattice of rank n. Let x1, . . . , xn be an
OF -basis of L. Define the special cycle or Kudla–Rapoport (KR) cycle

Z(L) := Z(x1) ∩ · · · ∩ Z(xn) ⊆ Nn.

Define the arithmetic intersection number

Int(L) := χ(OZ(x1) ⊗L · · · ⊗L OZ(xn)),

where χ denotes the Euler–Poincaré characteristic, OZ(xi) denotes the structure

sheaf of the Kudla–Rapoport divisor Z(xi), and ⊗L denotes the derived tensor
product of coherent sheaves on Nn. It is known (by Terstiege [Ter13], as extended
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F̆ k̄
SpfO

F̆

DL1

DL0

Figure 4. n = 3

in [LZ22a, Corollary 2.8.2] or by Howard [How19]) that Int(L) is independent of
the choice of the basis x1, . . . , xn and hence is a well-defined invariant of L itself,
justifying the notation.

Remark 5.1.4. When the intersection Z(L) is zero dimensional, we have

OZ(x1) ⊗L · · · ⊗L OZ(xn) = OZ(x1) ⊗ · · · ⊗ OZ(xn) = OZ(L),

and thus Int(L) is nothing but the OF̆ -length of OZ(L) (which equals the sum of
intersection multiplicities at all points). Even though Z(L) is the intersection of
n divisors in a n-dimensional formal scheme, in general Z(T ) may be fail to have
the expected dimension 0 due to improper intersection. In this case, the derived
intersection is needed so that the intersection number is well behaved.

Example 5.1.5. Take n = 3 and L ∼= 〈�〉3 (the hermitian form with respect to
an OF -basis of L is diag{�,�,�}). In this case the intersection Z(L) is not zero
dimensional, and in fact

Z(L) ∼= DL1 = {xq+1 + yq+1 + zq+1 = 0} ⊆ P2.

The arithmetic intersection number turns out to be its topological Euler character-
istic

Int(L) = χ(DL1) = 2− 2g = 2− q(q − 1) = 2 + q − q2.

5.2. Analytic side.

Definition 5.2.1. Let L,M be two hermitian OF -lattices of rank n, m, respec-
tively. Let S = Rep(M,L) be the OF0

-scheme such that for any OF0
-algebra R,

S(R) = Herm(L⊗F0
R,M ⊗F0

R),

where Herm denotes the set of hermitian module homomorphisms. The local density
of representations of M by L is defined to be

Den(M,L) := lim
N→+∞

#S(OF0
/�N )

qN ·dimSF0

.

It gives a quantitative measure of “how many different ways” one can embed L into
M as a hermitian submodule.
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Example 5.2.2. Consider L = M = 〈1〉n, the rank n lattice with hermitian form
given by the identity matrix. Then one can compute that

Den(〈1〉n, 〈1〉n) =
n∏

i=1

(1− (−q)−i).

One can recognize it as the number G(k)
qdim G , where G is the unitary group U(〈1〉n)

defined over OF0
, or in fancier language, as the local L-factor of the Gross motive

[Gro97] of the quasi-split unitary group in n variables.

The local density Den(M,L) has nice compatibility when replacing M by M ⊕
〈1〉k for k ≥ 0. More precisely, it is known ([Hir98, Theorem II]) that Den(〈1〉n+k, L)
is a polynomial in (−q)−k with Q-coefficients.

Example 5.2.3 ([KR11, p.677]).

(5.2.3.1) Den(〈1〉n+k, 〈1〉n) =
n∏

i=1

(1− (−q)−iX)

∣∣∣∣
X=(−q)−k

.

Definition 5.2.4. Define the normalized Siegel series Den(X,L) ∈ Z[X] such that

Den((−q)−k, L) =
Den(〈1〉n+k, L)

Den(〈1〉n+k, 〈1〉n) .

These polynomials Den(X,L) play an important role in computing the Fourier
coefficients of Siegel Eisenstein series, and many works are devoted to proving more
explicit formulas for them (see, e.g., [Kit83,Kat99,Hir98,Hir12, IK22,CY20]). The
local Siegel series satisfies a functional equation ([Hir12, Theorem 5.3])

(5.2.4.1) Den(X,L) = (−X)val(L) ·Den

(
1

X
,L

)
.

Here val(L) := val(det(L)) ∈ Z is the valuation of L. This may be viewed as a local
analogue of the functional equation of Eisenstein series.

Definition 5.2.5. If val(L) is odd (equivalently, L⊗OF
F is a nonsplit hermitian

space), then Den(1, L) = 0 by the functional equation (5.2.4.1). In this case, define
the central derivative of the local density by

∂Den(L) := − d

dX

∣∣∣∣
X=1

Den(X,L).

5.3. Local arithmetic Siegel–Weil formula. Now we are ready to state the
local arithmetic Siegel–Weil formula in the unitary case, originally conjectured by
Kudla–Rapoport [KR11, Conjecture 1.3].

Theorem 5.3.1 (Local arithmetic Siegel–Weil formula, Li and Zhang [LZ22a, The-
orem 1.2.1]). Let L ⊆ Vn be an OF -lattice of full rank n. Then

Int(L) = ∂Den(L).

Remark 5.3.2.

(i) The theorem was proved by Kudla–Rapoport [KR11] for n = 2 and Ter-
stiege [Ter13] for n = 3.

(ii) The local arithmetic Siegel–Weil formula is proved for the orthogonal case
in our work with Zhang [LZ22b] for arbitrary n. The case n = 3 was
previously proved by Gross–Keating [GK93] and Terstiege [Ter11].
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(iii) The local arithmetic Siegel–Weil formula is proved when the quadratic ex-
tension F/F0 is ramified for exotic smooth models in our work with Liu
[LL21] for arbitrary even n, and for Krämer models2 by Shi and by He–
Shi–Yang [Shi20,HSY20] for n = 2.

(iv) It is more difficult to prove or formulate the local arithmetic Siegel–Weil
formula in the presence of more general level structures (even when the
quadratic extension F/F0 is unramified). In the unitary case [LZ22a] for-
mulates and proves a local arithmetic Siegel–Weil formula when the level is
the parahoric subgroup given by the stabilizer of an almost self-dual lattice
(the case n = 2 was previously proved by Sankaran [San17]). Recently Cho
[Cho20] proposed a general formulation for all minuscule parahoric levels
in the unitary case.

Example 5.3.3. Take n = 3 and L ∼= 〈�〉3. Specializing the formula of Cho–
Yamauchi [CY20] (extended to the unitary case in [LZ22a, Theorem 3.5.1]) gives

Den(X,L) = (1−X)(1 + qX)(1− q2X) + (q3 + 1)(1−X)X2

= 1− (1− q + q2)X + (1− q + q2)X2 −X3.

It satisfies the functional equation

Den(X,L) = −X3 ·Den

(
1

X
,L

)
.

It is easy to compute

∂Den(L) = − d

dX

∣∣∣∣
X=1

Den(X,L)

= (1− q + q2)− 2(1− q + q2) + 3

= 2 + q − q2.

So combining Example 5.1.5 we obtain Int(L) = ∂Den(L) in this case! It is mira-
culous that the purely analytic quantity ∂Den(L) secretly knows about the Euler
characteristic χ(DL1) = Int(L) of the Deligne–Lusztig curve DL1.

5.4. Strategy of the proof: uncertainty principle. The previously known spe-
cial cases of Theorem 5.3.1 were proved via explicit computation of both the geo-
metric and analytic sides. Explicit computation seems infeasible for the general
case. The proof in [LZ22a] instead proceeds via induction on n using the uncer-

tainty principle, a standard tool from local harmonic analysis. Even for n = 2, 3,
this proof is different from the previous proofs.

More precisely, for a fixed OF -lattice L� ⊆ V := Vn of rank n − 1, consider
functions on x ∈ V \ L�

F ,

IntL�(x) := Int(L� + 〈x〉), ∂DenL�(x) := ∂Den(L� + 〈x〉).
Then it remains to show the equality of the two functions

IntL� = ∂DenL� .

By the definition of Int(L) and ∂Den(L), both functions are easily seen to vanish
when x is nonintegral, i.e., val(x) < 0. Here val(x) denotes the valuation of the

2During the refereeing process of this article, He–Shi–Yang [HSY21] formulated a conjectural
local arithmetic Siegel–Weil formula for Krämer models for arbitrary n and proved it for the case
n = 3. The case for arbitrary n has been proved in our work with He–Shi–Yang [HLSY22].
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F̆ k̄

SpfO
F̆

Z(L )ℋ
Z(L )ý

Figure 5. Decomposition

norm of x. By utilizing the inductive structure of Rapoport–Zink spaces and local
densities, it is not hard to see that if x ⊥ L� with val(x) = 0, then

IntL�(x) = Int(L�), ∂DenL�(x) = ∂Den(L�)

for the lattice L� ⊆ Vn−1
∼= 〈x〉⊥F of full rank n − 1. Thus by induction on n, the

difference function φ = IntL� − ∂DenL� already vanishes on a large subset

{x ∈ V : x ⊥ L�, val(x) ≤ 0}.
We would like to deduce that φ indeed vanishes identically. To this end, we apply
the following uncertainty principle.

Proposition 5.4.1 (Uncertainty Principle, [LZ22a, Proposition 8.1.6]). Let φ ∈
S (V) be a Schwartz function on V. If both φ and its Fourier transform φ̂ vanish

on {x ∈ V : val(x) ≤ 0}, then φ = 0.

In other words, φ, φ̂ cannot simultaneously have small support unless φ = 0.
Applying the uncertainty principle to the difference function φ, we can then finish

the proof as long as we get a good control over the support of φ̂. However, both
functions IntL� , ∂DenL� have singularities along the hyperplane L�

F := L�⊗OF
F ⊆

V. Intuitively, if x is closer to L�, then Z(x) and Z(L�) intersect more improperly,
which results in the blowup of IntL�(x) along L�

F . These singularities cause trouble
in computing the Fourier transforms or even in showing that φ ∈ S (V).

5.5. Strategy of the proof: decomposition and local modularity. To over-
come this difficulty, we isolate the singularities by decomposing

IntL� = IntL�,H + IntL�,V , ∂DenL� = ∂DenL�,H + ∂DenL�,V

into horizontal and vertical parts. Here on the geometric side IntL�,H (resp.,
IntL�,V ) is the contribution from the horizontal (resp., vertical part) of the KR
cycles, illustrated in Figure 5 (by the red (resp., blue) part in the online color
version of this article). One can hope to understand the horizontal part explicitly
using deformation theory, and the vertical part using algebraic geometry over the
residue field k̄.

By the uncertainty principle and the induction on n, it remains to prove the
following.
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Theorem 5.5.1 (Key Theorem).

(KR1) IntL�,H = ∂DenL�,H .

(KR2) IntL�,V ∈ S (V) and ̂IntL�,V = − IntL�,V .

(KR3) ∂DenL�,V ∈ S (V) and ̂∂DenL�,V = −∂DenL�,V .

In other words, the horizontal part ∂DenL�,H matches IntL�,H , and subtracting

the horizontal parts removes the singularities along L�
F so that vertical parts are

indeed in S (V). The extra invariance under Fourier transform,

(5.5.1.1) ÎntL�,V = −IntL�,V , ∂̂DenL�,V = −∂DenL�,V ,

can be thought of as a local modularity, by analogy with the global modularity of
arithmetic generating series (such as in Bruinier–Howard–Kudla–Rapoport–Yang
[BHK+20] discussed in Remark 3.5.5(v)) encoding an extra global SL2-symmetry.

5.6. Ingredients of the Key Theorem. Some key ingredients of the proof of the
Key Theorem 5.5.1 include the following.

(KR1) We describe explicitly the horizontal part of KR cycles in terms of Gross’s
quasi-canonical liftings [Gro86], using the work of Tate, Grothendieck–
Messing and Breuil on the deformation theory of p-divisible groups.

(KR2) On the geometric side we show (5.5.1.1) by reducing to the case of in-
tersection with Deligne–Lusztig curves DL1. This reduction requires the
Bruhat–Tits stratification ofN red into the Deligne–Lusztig varieties DLi, as
discussed in §5.1, and the Tate conjecture [Tat94] for these Deligne–Lusztig
varieties. We prove the latter by reducing to a cohomological computation
of Lusztig [Lus76].

(KR3) On the analytic side we show (5.5.1.1) using Cho–Yamauchi’s explicit for-
mula [CY20] for ∂Den(L) in terms of weighted lattice counting, and reduce
to a (rather subtle) lattice theoretic problem. (In fact we only show directly
something weaker than (5.5.1.1), which is enough to imply Theorem 5.3.1,
and we then deduce (5.5.1.1) a posteriori.)

6. Arithmetic inner product formula

In this last section we discuss an application of the arithmetic Siegel–Weil formula
to the Beilinson–Bloch conjecture and the arithmetic inner product formula.

6.1. Birch and Swinnerton-Dyer conjecture. One long-standing problem in
number theory is the determination of the rational points E(Q) for an elliptic curve
E : y2 = x3 + ax + b defined over Q. The celebrated Birch and Swinnerton-Dyer

(BSD) conjecture predicts a deep link between E(Q) and its L-function L(E, s).
Define the algebraic rank

ralg(E) := rankE(Q)

to be the rank of the finitely generated abelian group E(Q). Define the analytic

rank

ran(E) := ords=1 L(E, s)

to be the order of vanishing of L(E, s) at the central point s = 1. The BSD con-
jecture predicts the rank equality between these two notions of ranks of seemingly
different nature,

(6.1.0.1) ran(E)
?
= ralg(E),
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and a refined BSD formula

(6.1.0.2)
L(r)(E, 1)

r!

?
=

Ω(E)R(E)
∏

p cp(E) · |X(E)|
|E(Q)tor|2

for the Taylor expansion of L(E/Q, s) at s = 1 (here r = ran(E)) in terms of
various important arithmetic invariants of E. Among these invariants are the or-
der of the (mysterious) Tate–Shafarevich group X(E), and the regulator R(E) :=
det(〈Pi, Pj〉NT)r×r, where

〈 , 〉NT : E(Q)× E(Q) → R

is the Néron–Tate height pairing and {Pi} is a basis of the free part of E(Q).
The BSD conjecture is still widely open in general, but much progress has been

made in the rank 0 or 1 case. The seminal work of Gross–Zagier [GZ86], Kolyvagin
[Kol90] proved the implications

(6.1.0.3) ran(E) = 0 ⇒ ralg(E) = 0, ran(E) = 1 ⇒ ralg(E) = 1,

confirming (6.1.0.1) when ran(E) ≤ 1. Due to the work of many people, many cases
of (6.1.0.2) are also known when ran(E) ≤ 1.

The key to relate ran(E) and ralg(E) is the Gross–Zagier formula

(6.1.0.4) L′(E, 1)
.
= 〈P, P 〉NT,

(up to an explicit nonzero constant, including the period of E and other rational
factors) relating the first derivative of the L-function at s = 1 and the Néron–Tate
height of certain rational points P on E known as Heegner points (cf. Example
6.4.1). It gives one crucial implication in (6.1.0.3),

(6.1.0.5) ran(E) = 1 =⇒ ralg(E) ≥ 1.

The tools of Heegner points and L-functions, linked via the Gross–Zagier for-
mula, are indispensable in studying the arithmetic of elliptic curves. We refer
to Zhang [Zha14a] for an excellent recent survey on Heegner points and the Birch–
Swinnerton-Dyer conjecture (see also Gross [Gro04] and Darmon [Dar04]).

6.2. Beilinson–Bloch conjecture. In the 1980s, Beilinson ([Bem̆87, Conjecture
5.9]) and Bloch ([Blo84a, Recurring Fantasy] and [Blo84b, Conjecture]) proposed
vast generalizations of the BSD conjecture to higher dimensional varieties.

Let X be a smooth projective variety of dimension n over a number field F .
For 1 ≤ m ≤ n, denote by CHm(X) the Chow group of algebraic cycles of codi-
mension m on X defined over F (up to rational equivalence), and CHm(X)0 ⊆
CHm(X) the subgroup of geometrically cohomologically trivial cycles. Denote by
L(H2m−1(X), s) the motivic L-function associated to the (2m − 1)-th étale coho-
mology H2m−1(XF ,Q	). Then the Beilinson–Bloch (BB) conjecture predicts the
equality between analytic and algebraic ranks

(6.2.0.1) ords=m L(H2m−1(X), s) = rankCHm(X)0,

and a refined formula

L(r)(H2m−1(X),m)
.
= det〈 , 〉BB
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for the leading coefficient at s = m in terms of the determinant of the Beilinson–
Bloch height pairing3

〈 , 〉BB : CHm(X)0 × CHn+1−m(X)0 → R.

Example 6.2.1. When X/F = E/Q and m = 1, we recover the BSD conjecture
as

CH1(E)0 � E(Q), L(H1(E), s) = L(E, s) and 〈 , 〉BB = −〈 , 〉NT.

The BB conjecture is even more elusive than the BSD conjecture: in gen-
eral we do not know that CHm(X)0 is finitely generated, nor do we know that
L(H2m−1(X), s) can be analytically continued to the central point s = m, so nei-
ther side of (6.2.0.1) is well defined! This may be more an exciting challenge than
disappointment for mathematicians—after all we were in a similar circumstance
when the BSD conjecture was formulated in the 1960s: we knew neither the ana-
lytic continuation of L(E, s) (except when E has complex multiplication) nor the
finiteness of X(E) in order to make sense of either side of (6.1.0.2).

A good testing ground for the BB conjecture is by taking X to be Shimura
varieties. By Langland’s philosophy, their L-functions can be computed in terms of
automorphic L-functions, so the analytic rank in (6.2.0.1) becomes accessible. Even
though we do not known if CHm(X)0 is finitely generated, it still makes sense to test
if it is nontrivial. It is thus tempting to relate special cycles on Shimura varieties to
automorphic L-functions, and in particular, to generalize the Gross–Zagier formula
(6.1.0.4) to higher dimensional Shimura varieties and prove the analogue of (6.1.0.5)
towards the BB conjecture

(6.2.1.1) ords=m L(H2m−1(X), s) = 1 =⇒ rankCHm(X)0 ≥ 1.

Here we use the notation rankCHm(X)0 ≥ 1 to stand for the nontriviality of
CHm(X)0Q.

6.3. Arithmetic inner product formula. As discussed in §3.5, Shimura vari-
eties X of type GSpin(n − 1, 2) and U(n − 1, 1) admit a rich supply of special
cycles, recovering Heegner points in the case of modular curves. As explained in
[Kud04, III], when n is even, the arithmetic Siegel–Weil formula together with the
doubling method of Piatetski-Shapiro–Rallis [PSR84] has important applications
to the arithmetic inner product formula of the form

L′(1/2, π)
.
= 〈Θϕ(φ),Θϕ(φ)〉BB.

Here

• π is a certain cuspidal automorphic representation on Mp(n) or U(n).
• L′(1/2, π) is the central derivative the standard L-function L(s, π) of π (cf.
[Yam14]) with global root number ε(π) = −1.

• Θϕ(φ) is an algebraic cycle on X of codimension n/2, constructed from
holomorphic forms φ ∈ π using the method of arithmetic theta lifting (see
Definition 6.6.3).

3When m > 1, the Beilinson–Bloch height pairing is only defined assuming certain conjectures
on algebraic cycles on X (see [Bem̆87, Conjectures 2.2.1 and 2.2.3]). This important technical
issue is addressed in [LL21, LL22] so that the RHS of (6.7.1.1) in Theorem 6.7.1 can be defined
unconditionally, but we will intentionally ignore it for the purpose of this article.
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This arithmetic inner product formula can be viewed as an arithmetic analogue
of the Rallis inner product formula (see [GQT14]) of the form

(6.3.0.1) L(1/2, π)
.
= 〈θϕ(φ), θϕ(φ)〉Pet,

which relates the central value L(1/2, π) when ε(π) = +1 and the Petersson inner
product of the (usual) theta lift θϕ(φ) discussed in Remark 2.2.5. It can also be
viewed as a higher dimensional generalization of the Gross–Zagier formula (the case
n = 2). Thus the arithmetic Siegel–Weil formula is intimately linked to the Birch–
Swinnerton-Dyer conjecture, and more generally the Beilinson–Bloch conjecture for
higher dimensional Shimura varieties.

The conjectural arithmetic inner product formula was formulated by Kudla
[Kud97b] using the Gillet–Soulé height and in more generality by Liu [Liu11a] using
the Beilinson–Bloch height (in the unitary case). In the unitary case the arithmetic
inner product formula has been recently proved under mild local assumptions and
Kudla’s modularity conjecture in our works with Liu [LL21,LL22], which has been
applied to prove the first unconditional theorem for the Beilinson–Bloch conjecture
for higher dimensional Shimura varieties. Our remaining goal is to explain some
details about the main results of [LL21,LL22].

6.4. Arithmetic theta lifting on modular curves. To motivate the construc-
tion of arithmetic theta lifting, let us first consider an example of Heegner points
on elliptic curves.

Example 6.4.1 (cf. [Zag85]). Consider the curve 37a1 in Cremona’s table,

E = 37a1 : y2 + y = x3 − x,

It is the rank one optimal curve over Q of smallest conductor (N = 37). It is
isomorphic to the modular curve X+

0 (N) = X0(N)/〈wN 〉 for N = 37 (N is the
smallest such that X+

0 (N) has positive genus). The Mordell-Weil group E(Q) ∼= Z,
generated by P = (0, 0). Let

fE =
∑

n≥1

anq
n

= q − 2q2− 3q3+ 2q4− 2q5+ 6q6− q7+ 6q9+ 4q10− 5q11− 6q12 + · · · ∈ S2(N)

be the weight 2 newform of level N = 37 associated to E. It gives a modular
parametrization

ϕE : H → E = C/Λ,

ϕE(τ ) =
∑

n≥1

anq
n

n
= q − q2 − q3 +

1

2
q4 − 2

5
q5 + q6 − 1

7
q7 + · · ·

such that ϕ∗
E(ÌE) = 2πifE(τ )dτ . The Shimura–Waldspurger correspondence,

which can be viewed as an instance of the theta correspondence for the pair
(G,H) = (Mp(2),O(3)),

θ : S+
3/2(4N) → S2(N),

gives a weight 3/2 newform in Kohnen’s plus space S+
3/2(4N),

gE =
∑

d≥1

cdq
d = −q3 − q4 + q7 − q11 + q12 + 2q16 + 3q27 + · · · − 6q67 + · · ·

such that θ(gE) = fE .
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Table 3. Heegner points on E = X+
0 (37)

d 3 4 7 11 12 16 27 · · · 67 · · ·

Pd (0,−1) (0,−1) (0, 0) (0,−1) (0, 0) (1, 0) (−1,−1) · · · (6,−15) · · ·

nd −1 −1 1 −1 1 2 3 · · · −6 · · ·

Let d be a positive integer such that −d ≡ 0, 1 (mod 4). If N = 37 splits in
K = Q(

√
−d), then one can construct a rational point Pd ∈ E(Q) using Heegner

points on X0(N) associated to quadratic orders of discriminant −d. For example,
when −d is a fundamental discriminant, we have a Heegner point yK ∈ X0(HK)
defined over the Hilbert class field HK of K, and Pd = trHK/K ϕE(yK −∞). The
point Pd may depend on the choice of d, even when E(Q) ∼= Z. In Table 3, we
compute a list of Heegner points Pd ∈ E(Q) for small d’s, and also the integer
multiples nd such that Pd = nd · P for the generator P = (0, 0).

From Table 3, we observe the miraculous coincidence that the integer nd exactly
matches the coefficient cd of gE ! In other words, the generating series

Z(τ ) =
∑

d≥1

Pdq
d = gE · P ∈ S+

3/2(4 · 37)⊗ E(Q)

is a modular form valued in E(Q)⊗C. This allows us to define the arithmetic theta

lift by taking the Petersson inner product of Z(τ ) with gE ,

Θ(gE) := 〈Z(τ ), gE〉Pet = 〈gE , gE〉Pet · P ∈ E(Q)⊗ C,

which is now a canonical element in E(Q)⊗C (i.e., no need to choose any particular
d). The arithmetic inner product formula in this case asserts the identity

(6.4.1.1) L′(E, 1)
.
=

〈Θ(gE),Θ(gE)〉NT

〈gE, gE〉Pet
.

In fact, in this case we have 〈Θ(gE),Θ(gE)〉NT

〈gE ,gE〉Pet
= 〈gE , gE〉Pet · 〈P, P 〉NT and we can

compute explicitly

〈gE , gE〉Pet = 0.7146356107 · · · = 3Ì+(E)

4π
,

〈P, P 〉NT = 0.0511114082 · · · ,
L′(E, 1) = 0.3059997738 · · · .

Here Ì+(E) is the real period of E. Therefore

L′(E, 1)

〈gE , gE〉Pet · 〈P, P 〉NT
= 8.37758040956 · · · = 8π

3

and the equality (6.4.1.1) indeed holds up to an elementary constant 8π
3 .

6.5. Unitary Shimura varieties. Now let us come to the setting of unitary
Shimura varieties. Let E/F be a CM extension of a totally real number field.
Let V be a totally definite incoherent hermitian space over AE of rank n. Here “in-
coherent” means that V is not the base change of a global E/F -hermitian space, or
equivalently the product of the local Hasse invariants of the local hermitian spaces
Vv := V⊗AF

Fv is ∏

v

ε(Vv) = −1.
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Picking any place w|∞ of F gives a nearby global E/F -hermitian space V such
that

Vv
∼= Vv, if v �= w, but Vw has signature (n− 1, 1).

Associated to any open compact subgroup K ⊆ U(V )(A∞
F ), we have a unitary

Shimura variety X = ShU(V ) (cf. [Z19, Gro20]), which has a smooth canonical
model of dimension n − 1 over E (viewed as a subfield of C via the embedding
induced by a place above w) and admits complex uniformization

X(C) = U(V )(F )\[D×U(V )(A∞
F )/K],

where

D := {z ∈ Cn−1 : |z| < 1} ∼= U(n− 1, 1)

U(n− 1)×U(1)

is the hermitian symmetric domain associated to U(V∞).
We remark that X is a Shimura variety of abelian type (rather than of PEL or

Hodge type). Unlike Shimura varieties of PEL type associated to unitary similitude
groups, it lacks a good moduli description in terms of abelian varieties with addi-
tional structures, and thus it is technically more difficult to study. Nevertheless, its
étale cohomology and L-function will be computed in terms of automorphic forms in
the forthcoming work of Kisin–Shin–Zhu [Kisina], under the help of the endoscopic
classification for unitary groups due to Mok [Mok15] and Kaletha–Minguez–Shin–
White [KMSW14]. In particular, the analytic side of (6.2.1.1) indeed makes sense.

6.6. Arithmetic theta lifting. From now on assume that n = 2m is even. Let
W = En be the standard E/F -skew-hermitian space with matrix

(
0 1m

−1m 0

)
. Its

unitary group U(W ) is a quasi-split unitary group of rank n. Let π be a cuspidal
automorphic representation of U(W )(AF ).

Assumption 6.6.1. We impose the following (mild) local assumptions on E/F
and π.

(1) E/F is split at all 2-adic places and F �= Q. If v � ∞ is ramified in E,
then v is unramified over Q. Assume that E/Q is Galois or contains an
imaginary quadratic field (for simplicity).

(2) For v|∞, πv is the holomorphic discrete series with Harish-Chandra param-
eter {n−1

2 , n−3
2 , . . . , −n+3

2 , −n+1
2 }.

(3) For v � ∞, πv is tempered.
(4) For v � ∞ ramified in E, πv is spherical with respect to the stabilizer of

O2m
Ev

.
(5) For v � ∞ inert in E, πv is unramified or almost unramified with respect to

the stabilizer of O2m
Ev

. If πv is almost unramified, then v is unramified over
Q.

Remark 6.6.2. In Assumption 6.6.1(5), πv is “almost unramified” means that
it has a nonzero Iwahori-fixed vector and its Satake parameter contains {qv, q−1

v }
and 2m − 2 complex numbers of norm 1. Equivalently, the theta lift of πv to the
non-quasi-split unitary group of the same rank is spherical with respect to the
stabilizer of an almost self-dual lattice (see [Liu22]).

Let Sπ = {v inert : πv almost unramified}. Then under Assumption 6.6.1, the
global root number for the (complete) standard L-function L(s, π) (cf. [Yam14])
equals

ε(π) = (−1)|Sπ| · (−1)m[F :Q]
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by the epsilon dichotomy for unitary groups due to Harris–Kudla–Sweet [HKS96]
and Gan–Ichino [GI14, Theorem 11.1]. When ords=1/2 L(s, π) = 1, we have ε(π) =
−1, and hence there is a canonical choice of totally definite incoherent space V = Vπ

of rank n such that for v � ∞,

ε(Vv) = −1 exactly for v ∈ Sπ.

Let X be the associated unitary Shimura variety of dimension n− 1 = 2m− 1 over
E. The assumption F �= Q implies that X is projective.

Definition 6.6.3. Assuming Kudla’s modularity conjecture (Conjecture 3.5.4),
then Kudla’s generating series Zϕ(τ ) of codimension m special cycles is a her-
mitian modular form on the hermitian half-plane Hm valued in CHm(X)C. For
holomorphic forms φ ∈ π, define the arithmetic theta lift by taking the Petersson
inner product on Hm,

Θϕ(φ) := (Zϕ(τ ), φ)Pet ∈ CHm(X)C.

Moreover, under Assumption 6.6.1, Θϕ(φ) is in fact cohomologically trivial and lies
in the π-isotopic Chow group CHm(X)0π (see [LL21, Proposition 6.10]).

6.7. Arithmetic inner product formula. Now we are ready to state the arith-
metic inner product formula for unitary Shimura varieties.

Theorem 6.7.1 (Li and Liu [LL21,LL22]). Let π be a cuspidal automorphic rep-

resentation of U(W )(AF ) satisfying Assumption 6.6.1. Assume that ε(π) = −1.
Assume that Kudla’s modularity conjecture (Conjecture 3.5.4) holds. Then for any

holomorphic φ ∈ π and ϕ ∈ S (V(A∞
F )m), the following identity holds (up to sim-

pler factors depending on φ and ϕ),

(6.7.1.1) L′(1/2, π)
.
= 〈Θϕ(φ),Θϕ(φ)〉BB.

Remark 6.7.2. The simpler factors can further be made more explicit. For exam-
ple, if

• π is unramified or almost unramified at all finite places,
• φ ∈ π is a holomorphic newform such that (φ, φ)π = 1,
• ϕv is the characteristic function of self-dual or almost self-dual lattices at
all finite places v,

then we have
(6.7.2.1)

L′(1/2, π)∏2m
i=1 L(i, η

i
E/F )

C [F :Q]
m

∏

v∈Sπ

qm−1
v (qv + 1)

(q2m−1
v + 1)(q2mv − 1)

= (−1)m〈Θϕ(φ),Θϕ(φ)〉BB,

where Cm = 2−2mπm2 Γ(1)···Γ(m)
Γ(m+1)···Γ(2m) .

Notice that the grand Riemann hypothesis predicts that L′(1/2, π) ≥ 0, while
Beilinson’s Hodge index conjecture ([Bem̆87, Conjecture 5.5]) predicts that

(−1)m〈Θϕ(φ),Θϕ(φ)〉BB ≥ 0.

It is a good reality check that these two (big) conjectures are compatible with
(6.7.2.1).

Without assuming Kudla’s modularity conjecture, we cannot define Θϕ(φ) but
we may still obtain unconditional nonvanishing results on Chow groups as predicted
by the Beilinson–Bloch conjecture in (6.2.1.1).
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Theorem 6.7.3 (Li and Liu [LL21,LL22]). Let π be a cuspidal automorphic repre-

sentation of U(W )(AF ) satisfying Assumption 6.6.1. Let CHm(X)0
mπ

be the local-

ization of CHm(X)0C at the maximal ideal mπ of the spherical Hecke algebra (away
from all ramification) associated to π. Then the implication

(6.7.3.1) ords=1/2 L(s, π) = 1 =⇒ rankCHm(X)0
mπ

≥ 1

holds when the level subgroup K ⊆ U(V )(A∞
F ) is sufficiently small.

Remark 6.7.4. The implication analogous to (6.7.3.1) was previously known for
several low dimensional X, including

• modular curves (Gross–Zagier [GZ86]),
• Shimura curves (Zhang [Z01], Kudla–Rapoport–Yang [KRY06], Yuan–
Zhang–Zhang [YZZ09], Liu [Liu11b]),

• certain U(2)×U(3) Shimura threefolds when π is endoscopic (Xue [Xue19]).

6.8. Symmetric power L-functions of elliptic curves. We illustrate Theorem
6.7.3 by an example coming from symmetric power L-functions of elliptic curves,
which is particularly attractive in view of recent progress on the symmetric power
functionality by Newton–Thorne [NT21].

Example 6.8.1. Let A/F be a modular elliptic curve without complex multipli-
cation such that

• Sym2m−1 A is modular.
• A has bad reduction only at places v split in E.

Assume that E/F satisfies Assumption 6.6.1. Then there exists π satisfying As-
sumption 6.6.1 such that

L(s+ 1/2, π) = L(Sym2m−1 AE , s+m).

As Sπ = ∅ and ε(π) = (−1)m[F :Q], Theorem 6.7.3 applies to π when m[F : Q] is
odd (e.g., when m = 3 and F is a totally real cubic field).

6.9. Summary. We end our discussion by the analogy between geometric and
arithmetic formulas in Table 4.

Table 4. Summary

Automorphic/Geometric Arithmetic

Hurwitz formula (3.1.5.1) Gross–Keating formula (4.1.1.1)

Geometric Siegel–Weil formula (3.6.1.1) Arithmetic Siegel–Weil formula (4.2.2.1)
(Kudla’s formula) (Kudla–Rapoport Conjecture)

Rallis inner product formula (6.3.0.1) Arithmetic inner product formula (6.7.1.1)
(Gross–Zagier formula in higher dimensions)
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Formen von negativer Determinante (German), Math. Ann. 25 (1885), no. 2, 157–
196, DOI 10.1007/BF01446402. MR1510301

[IK22] Tamotsu Ikeda and Hidenori Katsurada, An explicit formula for the Siegel series of
a quadratic form over a non-archimedean local field, J. Reine Angew. Math. 783

(2022), 1–47, DOI 10.1515/crelle-2021-0061. MR4373241
[Jac1820] Carl Gustav Jacob Jacobi, Fundamenta nova theoriae functionum ellipticarum. auc-

tore d. carolo gustavo iacobo iacobi. . . , sumtibus fratrum Borntræger, 1829.
[KMSW14] Tasho Kaletha, Alberto Minguez, Sug Woo Shin, and Paul-James White, Endoscopic

Classification of Representations: Inner Forms of Unitary Groups, arXiv:1409.3731,
2014.

[Kat99] Hidenori Katsurada, An explicit formula for Siegel series, Amer. J. Math. 121 (1999),
no. 2, 415–452. MR1680317

[Kisina] Mark Kisin, Sug Woo Shin, and Yihang Zhu, Cohomology of certain Shimura varieties
of abelian type, in preparation.

[Kit83] Yoshiyuki Kitaoka, A note on local densities of quadratic forms, Nagoya Math. J. 92
(1983), 145–152, DOI 10.1017/S0027763000020626. MR726146

[Kol90] V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math.,
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[Sie37] Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen. III
(German), Ann. of Math. (2) 38 (1937), no. 1, 212–291, DOI 10.2307/1968520.
MR1503335

[Sie51] Carl Ludwig Siegel, Indefinite quadratische Formen und Funktionentheorie. I
(German), Math. Ann. 124 (1951), 17–54, DOI 10.1007/BF01343549. MR67930

[Sie52] Carl Ludwig Siegel, Indefinite quadratische Formen und Funktionentheorie. II
(German), Math. Ann. 124 (1952), 364–387, DOI 10.1007/BF01343576. MR67931
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