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Transfer Learning in Bandits with Latent Continuity
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Abstract—A continuity structure of correlations among arms
in multi-armed bandit can bring a significant acceleration of
exploration and reduction of regret, in particular, when there
are many arms. However, it is often latent in practice. To cope
with the latent continuity, we consider a transfer learning setting
where an agent learns the structural information, parameterized
by a Lipschitz constant and an embedding of arms, from a
sequence of past tasks and transfers it to a new one. We
propose a simple but provably-efficient algorithm to accurately
estimate and fully exploit the Lipschitz continuity at the same
asymptotic order of lower bound of sample complexity in the
previous tasks. The proposed algorithm is applicable to estimate
not only a latent Lipschitz constant given an embedding, but
also a latent embedding, while the latter requires slightly more
sample complexity. To be specific, we analyze the efficiency of
the proposed framework in two folds: (i) our regret bound on
the new task is close to that of the oracle algorithm with the full
knowledge of the Lipschitz continuity under mild assumptions;
and (ii) the sample complexity of our estimator matches with the
information-theoretic fundamental limit. Our analysis reveals a
set of useful insights on transfer learning for latent Lipschitz
continuity. From a numerical evaluation based on real-world
dataset of rate adaptation in time-varying wireless channel, we
demonstrate the theoretical findings and show the superiority of
the proposed framework compared to baselines.

Index Terms—Multi-armed bandits, Lipschitz continuity, trans-
fer learning, wireless rate adaptation

I. INTRODUCTION

HE classical stochastic multi-armed bandit (MAB) [1]
Tof independent K arms in time-horizon 7' has the
fundamental limit of regret O(K logT") which scales linearly
with K and thus is infeasible in case of having large K.
To cope with large number of arms, one may exploit a
structural assumption on underlying correlations among the
arms. This idea has been demonstrated with a wide spectrum
of structural assumptions, e.g., Lipschitz continuity [2], [3],
weakly Lipschitz (X'-armed bandits) [4], linearity [5], convexity
[6], or graphical unimodality [7]. These studies indeed derive
bandit algorithms whose regret does not scale in K under
some canonical scenarios, i.e., scale-free regret. To be specific,
in case of the Lipschitz continuity structure described by a
Lipschitz constant L and an embedding = (x(1), ..., z(K))
of K arms on some metric space, it is possible to obtain a
regret bound of O(min{ K, poly(L)}logT) [8].

Such a benefit from the continuity structure, however,
requires prior knowledge on the Lipschitz constant L and
the embedding of arms. In this case, it is natural to estimate
the latent knowledge from similar tasks. For example, rate
adaptation over non-stationary wireless channels [9], [10] faces
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a sequence of bandit problems with similar structural properties,
while one can find a continuity structure among transmission
rates. The channel often changes discretely over time, and such
a discrete change distinguishes tasks in learning scenarios. This
motivates us to study a transfer learning problem, where we
aim to learn the latent Lipschitz continuity from previous tasks
and use it for the next task.

In order to build provably sample-efficient algorithms for the
transfer bandit problem, we investigate the risks of using wrong
estimation of Lipschitz constant L in two main failure scenarios
(Section II-C), where we focus on estimating the latent L for
simplicity. Overestimating L leads to an unnecessary regret,
attenuating the benefit from the structure, such as scale-free
regret. On the other hand, underestimating L can cause a
catastrophic failure of suffering a linear regret. Accordingly,
we design an estimator for L, which balances between the
two extremes. Using this estimator, we show that one can
nearly achieve the minimal regret of the oracle algorithm
knowing L exactly (Section III-B). Furthermore, our estimator
is asymptotically optimal in that the sample complexity on
previous tasks matches to the one in a fundamental limit
analysis (Section III-D).

In addition to transferring latent L, we also consider the
problem with latent embedding =z, as the embedding is
frequently unknown in practice (Section III-F). Interestingly,
our asymptotic analysis reveals that the sample complexity to
learn latent embedding is only slightly larger than that to learn
latent L. Finally, using the real-world dataset of rate adaptation
to time-varying wireless channel [9], we provide a numerical
justification for not only our theoretical findings but also the
superiority over baseline algorithms in a realistic scenario of
sequential bandit problem with latent continuity.

Related work. In [11], the authors provide a generic approach
to constructing optimal algorithms when we have the complete
knowledge on the structural property, including but not limited
to Lipschitz [2], linear [5], convex [6], or unimodal [7].
The structural knowledge, however, is often incomplete in
practice as aforementioned. In this regard, the work of [12]
has shown that it is possible to achieve the minimax optimal
regret of ©(LP/(P+2)(D+1)/(D+2)) without any knowledge
of the Lipschitz constant for the continuum of arms, i.e.,
infinite candidate structures, where D is the dimension of
the embedding space. Observing that the minimax regret is
mostly generated by neighboring arms of the optimal arm
(although they have only thimbleful gaps to the best arm), the
minimax analysis is extended to the case with unknown local
smoothness (a weaker notion of Lipschitz continuity) [13].
Moreover, a similar minimax analysis can be conducted for
online optimization problems to find a point 7 in an embedded
space so as to minimize its regret R} = sup,, f(z) — f(x7)
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given a payoff function f, and establish stochastic adaptive
strategies with optimal simple regret of O(T~1/?), e.g., [14]-
[19]. Another line of works on the incomplete knowledge of
structures formulate model selection problems to identify the
best structure providing the minimax regret given a finite set of
candidate structures [20], [21]. While minimax regret analysis,
which yields asymptotic regret O(+/T) from infinitesimally
sub-optimal arms in worst-case scenarios, provides meaningful
insights into these scenarios, it often overlooks the substantial
improvements possible through instance-dependent analyses
of O(logT) regret for various (known) structures [2], [5]-[7],
[11], [22]-[24]. Given these insights, we focus on instance-
dependent regret analysis with unknown structures, exploiting
latent patterns without prior structural knowledge.

For the instance-dependent regret analysis with unknown
structures, the pioneering work of [25] has proposed a transfer
learning framework where the learner faces a sequence of
bandit tasks that are randomly drawn from a distribution over
a finite set of problem instances. They suggest an algorithm
that leverages the robust tensor power method to learn the
underlying set of instances while repeatedly solving each task.
Their algorithms, however, only consider a finite number of
instances, in contrast to the Lipschitz structure we consider,
which consists of infinitely many instances. Although a few
follow-up studies [26], [27] explore infinite instance sets,
they focus on simple linear structures and minimax regret
rather than instance-dependent regret. Additionally, the work
of [28] addresses a meta-learning problem in non-stationary
bandit environments. While they focus on efficiently identifying
optimal arms that evolve with each task, our approach targets
minimizing instance-dependent regret by exploiting latent
patterns, emphasizing the need to adapt to unknown structures.
To our knowledge, we are the first to study transfer learning in
bandits with instance-dependent optimality beyond the simple
case of the finite instance set.

Contribution. Our main contributions of this article are
summarized below:

« We introduce the transfer learning problem for learning
the latent Lipschitz continuity where we aim to fully
exploit the benefit, e.g., scale-free regret for canonical
settings (Property 1), of the Lipschitz continuity structure,
parameterized by constant L and embedding x.

o In the problem of estimating the latent L, we propose
the provably efficient estimator ﬁﬂ from the knowledge
of previous tasks. Given rich enough experience from
past tasks, a bandit algorithm using the estimator ﬁg
closely achieves the problem-dependent regret lower
bound of oracle knowing true L (Theorem 3). Additionally,
the asymptotic order of the sample complexity that
Lg requires coincides with the information-theoretic
fundamental limit (Theorem 6).

« We postulate a plausible distribution of generating tasks
and establish a theoretical performance guarantee on the
proposed method (Theorem 5). This provide not only
useful guidance to tune the hyperparamter 3 of our
framework L 5 but also a heuristic algorithm automatically
adopting f.

« Building upon the estimation of latent L with known
embedding, we also study the case of latent embedding of
arms that have need of slightly more sample complexity
(Section III-F).

« We numerically demonstrate our insights from analysis and
justify the superiority of the proposed schemes compared
to baselines in a realistic scenario of sequential bandit
problems with latent continuity, built based on the real-
world dataset of rate adaptation over time-varying channel
[9] (Section IV).

Outline. The paper is organized as follows. In Section II,
we provide useful insights from the fundamental limit and
optimal algorithm with prior knowledge on Lipschitz constant
L and discuss the importance and challenges of estimating
L. In Section III, we describe the transfer learning setting
and the proposed framework with performance guarantees.
Section IV contains results of our numerical evaluation in
practical scenarios. We conclude our paper with exciting future
work in Section V.

II. PRELIMINARY
A. Lipschitz bandit model

Let 6 = (6(1),...,0(K)) denote a multi-armed bandit
instance, where each play of arm i € [K] := {1,2,...,K}
generates a random variable X (7,¢) drawn i.i.d. from Bernoulli
distribution with mean 6(¢) € [0, 1] in round ¢. For ease of
exposition, we restrict our attention to Bernoulli distribution,
while our analysis can be generalized to the exponential family
with a single parameter [29], [30]. At each round t = 1,2, ...,
the decision maker 7 selects an arm i; € [K], pulls it, and
then receives a reward X (i;,t) drawn from the distribution
associated with the arm ;. Let 6, := max;c[x]6(i) and
K.(0) == {i € [K] : 0(i) = 6.} denote the best mean
reward and the set of best arms, respectively. For a given multi-
armed bandit instance 6, an algorithm 7 aims to maximize the
expected cumulative rewards over the time horizon 7'. This
aim is equivalent to minimizing the regret defined as follows:

R7(0) := > (6. —60(i)) Exlnr(i)] ,

i€[K]

where nr (i) is the number of pulling arm 4 up to time 7, and
the expectation E is taken w.r.t. the randomness induced by
both the rewards and the algorithm 7. The regret R7.(6) can
also be viewed as the expected opportunity cost for selecting
sub-optimal arms.

We consider the set of mean rewards where the arms are
constrained to satisfy Lipschitz condition w.r.t. an embedding
of the arms = = (z(1),...,2(K)) € [0,1]P*¥ which is com-
monly referred to as the Lipschitz structure with a constant L
[2]. Formally, denoting by d := (d(i, 7)) € RE*X the distance
matrix for each pair of arms such that d(i, j) := ||z(i) — z(j)||
for the embedding x, the Lipschitz structure ®(L; d) is defined
as follows:

O(L; d)
= {0€10,1%:100)~0(7)| < L-d(i.) Vi.j€[K]} . (1)
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As indicated in (1), the structure is encoded by Lipschitz
constant L and embedding distance d(i, j). To reduce com-
plexity, we assume that the Lipschitz constant L > 0 is latent,
while we know the embedding x, i.e., the relative similarity
(d(7,7))i,jex) among the arms. We first analyze the case of
a latent Lipschitz constant L with known embedding. Then,
we expands to the case of a latent embedding for arbitrary
known L, which requires learning each pair of arms. A detailed
description of the latter case, unknown embedding distance
learning, is postponed to Section III-F.

B. Optimal regret with known structure

In this subsection, for ease of exposition, we discuss the
gain from Lipschitz structure when varying L for given d (or
x). By omitting d, we assume that the learner knows that
the instance 6 conforms to the structure ®(L). We say an
algorithm 7 is uniformly good for ®(L) if E[nr(i)] = o(T?)
forall p> 0,0 € ®(L) and ¢ ¢ K.(6). That is, a uniformly
good algorithm has ability to adapt to any 6 € ®(L) and enjoys
a sublinear regret in 7". Then, any uniformly good algorithm
has the following fundamental limit:

Theorem 1 (Regret lower bound with known L [2]). Let 7
be a uniformly good algorithm for ®(L). For any 6 € (L),

lim inf RT(? >C(,L),

T—oo log

2)

where C(0, L) is the optimal value of the following linear
programming (LP):

,,m;g > (6. —6()n(i) (3a)
igK.(0)
- KL(OG)[|IN (330, L))n(i) > 1,¥j ¢ K.(0) . (3b)
ze?)C (0)

Here N (i;0,L) := max{0(i),0. — L -d(i,j)} for all i,j €
[K], and KL(0||\) is the Kullback-Leibler divergence between
Bernoulli distributions with mean 0 and X, i.e., KL(0]|\) :=
flog (6/X) + (1 —6)log((1 —6)/(1 — A)).

Consider 7(i) ~ np (i) log T as the rate of exploration arm i
and define D(@, L) as the set of all feasible € R verifying
all the constraints in (3b) where R, := {x € R : > 0}U{c0}.
Then, C(0, L) which is the optimal value of LP (3) is the
minimal rate of regret while n € D(0, L). Furthermore, the
condition with A’ in (3b) can be interpreted as a necessary
condition to statistically distinguish A/ from @, where the
construction of A/ from € is the minimal perturbation to
make (originally suboptimal) arm j ¢ K, (0) best in A7 while
verifying the Lipschitz continuity, i.e., AY € ®(L). To sum
up, it is the most confusing bandit problem which needs to be
distinguished from @ to identify the best arm under \7.

Optimal algorithms for known L. We set 7)(i; 0, L) = oo for
optimal arm ¢ € KC,.(@). Then, for i ¢ K.(0), n(i;0,L)logt
provides a suggestion on minimal exploration at time t. This
motivates to an algorithm that keeps tracking the estimated
LP solution (6, L) (if we knew L a priori) where , is the
estimation of @ at time ¢. Indeed, there have been a number of
algorithms that use this framework to achieve the asymptotic

lower bound in Theorem 1; e.g. OSSB (Optimal Sampling
for Structured Bandit) [11] and DEL (Directed Exploration
Learning) [8]. In this paper, we use Algorithm 1, denoted
by 7(L) for a given L, that is a simplified version of DEL
algorithm” [8], which is originally designed for structured
Markov decision process.

Algorithm 1 consists of four phases: monotonization, esti-
mation, exploitation, and exploration. In the monotionization
phase, the algorithm aims to accurately identify the true optimal
arm for exploitation phase, along with restrictions on set of
well-choosen arms using (; = 1/(1+41loglogt) [31]. Before the
exploitation and exploration phase, updating ét(z) = 0, within
the margin (; effectively expands the set of arms considered to
be near-optimal, treating them as potential optimal arms. This
ensures that the estimated mean rewards are closely aligned
with the true mean rewards, facilitating accurate identification
of the best arms. The estimation phase ensures that every arm
is sampled at least Q(log ¢/ loglogt). Although this additional
sampling does not significantly impact the regret asymptotically
log T'/loglogT' = o(log T'), it ensures concentrations of the
estimates 0; to @ and 1(;, L) to (8, L), respectively. In the
exploitation and exploration phase, the algorithm utilizes a
clipped LP solution 7; as follows:

(1) == min{logt,n(i;ét,L)},Vi € [K].

In the exploitation phase, the algorithm exploits the current
best arm if the current exploration is statistically sufficient to
identify the best arm. In other words, the number of pulling
arm up to time ¢ is sufficient to satisfy the minimal exploration
at time ¢, i.e., n¢(7) > (1+ X)n;(¢) log t for all arms with some
positive margin A > 0. In the exploration phase, it explores
the most under-explore arm toward clipped LP solution ;.

The following theorem shows the asymptotic optimality of
Algorithm 1 up to an arbitrarily small constant factor (1 + A).

Theorem 2 (Regret upper bound with known L [2]). Consider
0 € O(L) such that for each i ¢ K.(0), the LP solution
1(i;0, L) is unique and continuous at 0. Then, for any given
A >0, an algorithm m = w(L) has

; <(1+N)C(0,L). )

Theorem 2 implies that when using exact value of L, the
algorithm can asymptotically achieve the regret lower bound
derived in Theorem 1. It is remarkable to the fundamental limit
of regret C(0, L) in that there exist matching upper bounds
including our algorithm 7 (L). However, C(0, L) is implicitly
defined in that it hides its scaling with the number of arms K,
the dimension of the embedding space D, and other instance-
dependent characteristics such as the smallest gap Ag. To gain
more understanding, we provide an upper bound on C(6, L)
as a function of these parameters:

“We choose DEL algorithm as it has better empirical behavior than OSSB
thanks to the careful handling (such as monotization) for cases where the
assumptions for the analysis are broken.
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4
Algorithm 1 7(L)
if 3i € [K] s.t. n1(é) = 0 then
{Initialization} Play an arm chosen uniformly at random from {i € [K] : n1(:) = 0}
end if
fort=1,2,... do
if Vi € K.(0,) s.t. ny(i) <logt+ 1 then
{Monotonization} Play the most under-sampled current best arm i; € arg min, Ku(6)) n(7)
else if Ji € [K] s.t. ny(i) < log’itgtT then
{Estimation} Play the most under-sampled arm i; € argmin, (x| n¢(4)
else )
Compute 1(0;, L) and set 7, as follows:
ne(i) = min{log ", 7(i; 0;, L)} Vi € [K] (4)

Update 6, (i) = 6, s.t. |0,(i) — 0] < ¢, where ¢ :=
if Vie K] st ng(i)>(1+A)n(i)logt then

1

1+loglog i

{Exploitation} Exploit the most under-sampled current best arm i; € argmin, K. (61) ne(7)

else

{Exploration} Explore the most under-explored arm 4; € arg max;¢ (g (7:(i) logt — n4(7))

end if
end if

Update statistics ét+1 based on new reward r; corresponding to arm i; for each i € [K], set:

nt1 (i) = ne (i) + Lfie = d; and

end for

Ori1(i) = 0:(8) + 1[ir = 1] (W) '

T Positive constants can be multiplied to these terms for stabilizing the empirical behavior without harming the asymptotic optimality in Theorem 2.

Property 1. Let Ag := mingx, (9) 0« — 0(i) denote the
smallest suboptimality gap. Then, for L > 0 and 6 € ®(L),

D
X, (8L\/T7+1> R

8
< — mi
C(O, L) g min 0

where D is the dimension of the embedding space.

By an upper bound on C(0, L), it is worth noting that
exploiting the exact Lipschitz structure provides a drastic
reduction in regret. Given a fixed Ag and D, the fundamental
limit of C(0, L) is scale-free, meaning that it does not scale
with the number of arms K. In particular, this is a dramatic
advantage over no continuity structure, i.e., L. = oo, whose
optimal regret does scale with K.

C. Impact of incorrect estimation of L

In the context of latent Lipschitz constant L, one needs
to estimate L from observed samples, which can be quite
inaccurate. We study the impact of using an incorrect estimator
L’ in the following two cases: (i) L' > L; and (ii) L' < L.

(i) L' > L: When L’ is overestimated, we have ®(L) C
®(L'), thus yielding:

C(0,L) < C(6,L) V6 € d(L). (7)

In other words, a small L implies a stronger structure and thus
a smaller regret. In this case, the regret of algorithm 7 (L")
is provably bounded from above C(6, L’), and thus causes a

larger regret. Due to the conservative choice of L', the regret
rate of algorithm m(L’) can be degenerated into that of the
unstructured case. Then, in the most extreme case, the regret
scales with K as discussed above, which is problematic for
larger K.

(ii) L' < L: Tt can be highly risky to explore with a smaller
Lipschitz constant L’ (i.e., a stronger structure) than the true L.
L' is underestimated, which implies that € ®(L)\®(L’) # ().
The true parameter 8 ¢ ®(L') does not appear in the LP
constraints that the algorithm solves. This results that once
the algorithm starts exploiting an incorrect best arm, it may
not be able to collect sufficient statistical evidence to correct
itself. Therefore, the algorithm 7(L’) has a considerable risk
of suffering a linear regret.

We confirm this phenomenon by a numerical sim-
ulation where the mean rewards of 6 arms 6 =
(0.1,0.0005, 0.0005, 0.2005, 0.0005, 0.0005) and their embed-
ding = (0,0.995,0.996,0.997,0.998,0.999) are illustrated
in Fig. 1(a). We set the true Lipschitz constant L to be 200 and
the second steepest slope to be 0.1. For each time step ¢, we
%ﬁg(]‘)‘. According
to this setting, we compare four algorithms: 7(c0), m(Ly),
7(200), and 7(0.1). Fig. 1(b). shows the mean and variance of
100 iterations of the experiment with the four algorithms, and
time horizon of each iteration is T = 5 x 10%. We observe that
the most conservative choice of L = oo and the exact choice of
L = 200 show similar logarithmic regrets. On the other hand,
the aggressive choice of L = 0.1 can suffer from an almost

define the estimator L, := max;jc|K]
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Fig. 1. Comparison among 7 (c0), 7(200), 7(0.1) and 7(L;) for given 6 and @ shown in Fig. 1(a).

linear regret due to the mismatch between the true structure
and its belief. The last method 7(L;) also shows an almost
linear regret, despite continuing to update its estimator for L
after each time step. This is because the Lipschitz constant is
often underestimated by undersampling the hidden true best
arm 4. The underestimated L, reinforces the algorithm to
reduce the exploration rate on the true best arm, thus losing the
opportunity to correct L. Indeed, in Fig. 1(c), each of 7 (L)
and 7(0.1) suffers a certain portion of catastrophic failures out
of 100 sample paths, that also explains relatively large regrets
in Fig. 1(b).

We further analyze the failure of ﬂ(ﬁt) with Fig. 2. Fig. 2(a)
presents the histogram of Ly at T = 50k for 100 iterations.
A sustainable portion of sample paths (6 out of 100; the first
bin in Fig. 2(a)) has the estimation Lt concentrated around
the second-steepest slope (0.1) in Fig. 1(a). Suppose that
at certain iteration t, the second best arm 1 (accidentally)
has a much higher empirical mean than the others, i.e.,
é(l) > max;=2, 6 é(z) ~ 0. Then, the value of L; is much
lower than true L as arm 1 is far from every other point.
The underestimated L; forces the algorithm overgeneralize
and excessively reduces the exploration rate on arms 2-6 and
also the chance of correcting L;. This is demonstrated in
Fig. 2(b) and Fig. 2(c) which compare two groups of sample
paths with the bottom-5% or top-5% values of Ly at T = 50k
in Fig. 2(a). As shown in Fig. 2(b), the bottom-5% group
with under-estimated ﬁt misidentifies the second best arm 1
(i.e., x = 0) as the best arm and mainly contributes the linear
regret. In Fig. 2(c), the best arm is hidden from the fact that
the Lipschitz constant of the bottom-5% group is estimated
to be almost 0.1 continuously over time. In other words, the
bottom-5% group can hardly recover from the estimation error
in L, which provides an explanation on such a catastrophic
failure. To summarize, our simulation shows that simultaneously
learning structure and minimizing regret in ﬁ(ﬁt) in transfer
learning setting is highly nontrivial and cannot be done via
naive methods.

ITI. MAIN RESULTS
A. Transfer learning model

To learn latent L, we consider a scenario of transfer learning
illustrated in Fig. 3. where one aims to transfer the knowledge
on L extracted from M past episodes with the mean rewards
(0m)me(n satistying 0, € ®(L) to a new episode M + 1

with mean rewards 6 € ®(L). For simplicity, we assume that
each episode has the same length 7.
Let Ly, = maX;4;c[x] W denote the tightest
Lipschitz constant of episode m. For the transfer learning
framework, we let L = maxy,¢[a] L be the maximum value
of Lipschitz constant in episode M and the (M + 1)-th episode
shares the same L, i.e., L is the smallest Lipschitz constant
that explains all the episode up to M. We make the following

assumption on L,,’s:

Assumption 1 (Learnability). At least a-portion of the previous
M episodes have their L., close to L with certain margin
€q > 0. Formally, there exist o > 0 and €, > 0 such that

{me[M]:Ly>L—¢en}| >aM.

The parameters a and €, in Assumption 1 quantify the
difficulty of estimating L on the new episode tightly, where
larger o and smaller ¢, imply sharper concentration of L,,’s
around L and thus easier setting. Recalling that smaller L
implies smaller regret, we aim to estimate the smallest possible
L. Notice that max(L,,) can be easily manipulated with any
large L,,,. Thus, through the assumption on tail distribution
of L,,’s which allows a robust estimation of L, it is possible
to securely recover the Lipschitz constant. Our analysis under
Assumption 1 can be easily applied to the case assuming
a plausible family of prior distribution of bandit parameter
over structure ®(L). We provide a guideline for the choice of
the parameters a and €, controlling this tail distribution in
Section IV.

Additionally, the difficulty of estimating L also depends on
the sampling scheme in the prior tasks. Hence, we make the
following assumption:

Assumption 2 (Minimal exploration). For each episode m,
every arm i € [K| is pulled at least 7 > 0.

In Assumption 2, a small value of 7 implies a high risk of
having insufficient samples for estimation of L. Thus, when T
is sufficiently large, the conditions on 7 are naturally verified.

B. Extracting Lipschitz constant

To analyze with latent L, we take a two-step approach.
First, we estimate L from extracting structural information in
previous M episodes, and then use this value to run 7(L).
Let 6,, be the estimated mean rewards in episode m and
[0m (1) =0m (5]

EOEO] be the estimated Lipschitz

IA/m = maxi#e[K]
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Fig. 3. Transfer learning framework; the knowledge of latent Lipschitz constant is learned from previous M episodes and transferred to a new M + 1 episode.

constant in episode m. For an efficient estimate of L, we
introduce two hyperparameters 8 € (0, ) and eg > €, to set
our estimator as an upper confidence bound on L:

Lgi=tg+ep. (8)

Here {5 := [BM]-max,,c(py Ly, where k-max denotes the
operator taking the k-th largest element. For better understand-
ing, we present a table of description of hyperparameters in
Table I. Note that the margin g is imposed to reduce the
risk of underestimating L since structured bandit algorithms
with the underestimated Lipschitz constant can induce almost
linear regret as shown in Section II-C. While algorithms with
any overestimated Lipschitz constant may generate additional
logarithmic regret to the fundamental limit, it does not make
such catastrophic failures. Let A, := min;»; d(¢,j) > 0. By
running ﬂ(f)g), we get the following performance guarantee:

Theorem 3. Suppose Assumptions I and 2 hold for o, e, and .
If TM > AZW(T) with Z = xzo—smmiza—ay: for any

6 € ®(L), Algorithm 7(Lg) with X > 0 has

R7.(0)
logT

The proof of Theorem 3 is provided in Section III-E. The
upper bound of C(@,L’) in Property 1 is continuous L’ for
L’ > L and @ € ®(L). Under mild additional assumptions, we
also have a continuity of C(@,L’) in L' for L’ € [L, L+¢) and
6 € ®(L). Then, we provide a formal description of continuity
of C(0, L) in L, implying a near optimality of the regret upper
bound of 7(Lg), and more details in Appendix C:

lim sup <(1+X) C(0,L+2ep5—cq) -

T—o0

Theorem 4. For given 8 € ®(L), the optimal value of
(3a)-(3b), C(0, L") is locally upper-continuous at L (to be
specified in the proof), provided that the optimal arm x*(0)
and the solution to problem (3a)—(3b) in Theorem 1 are unique.

Hence, Theorem 3 implies that when 7 and M are sufficiently
large, i.e., we have rich experiences with prior tasks, the
algorithm W(ﬁg) closely achieves the fundamental limit of
oracle performance with known L in advance. One can
interpret 7M as the sample complexity per arm for some
probably approximately correct (PAC) learning of L. The
sample complexity per arm required in Theorem 3 can be
written as follows:

1
=0 logT
™ Q<Ai(€65a)2@ - > ’

which matches with the information-theoretic lower bound for
the PAC learning obtained later (Section III-D). In Section III-C
below, we discuss on how to select hyperparamters J and e
of Lg.

)

C. Hyperparameter choice for Iig

General guideline. Theorem 3 includes an intrinsic trade-off
for the choice of (8, which appears in the requirement of
™ > (:)(max{%, a=5)) where © hides logarithmic factors.
The value of S should not be too close to « nor 0. When g
is too small (choosing near the top of {ﬁm}), the estimate
L can be too large and overshoot whereas when f is too
large, the estimate falls below L and risks incurring linear
regret. Furthermore, the requirement on 7 becomes Q(é)
When multiple valid («, e,)’s are known, one should pick «
that is not too small. Our theorem also suggests that when
a valid (a, &, ) is available, one should set eg = 2¢,, which
prevents the requirement on 7 from exploding, and § ~ «/2,
which prevents the requirement on 7M from exploding. Such
a choice implies that the Lipschitz constant ﬁg used by our
algorithm is at most 3¢, away from L.

Exploiting distributional assumption. While Assumption 1
characterizes the difficulty of transfer learning, there are many
pairs of («,e,) that satisfy the assumption. Since these pairs
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TABLE I
DESCRIPTION OF HYPERPARAMETERS @, €qa, 3, AND £5.
Hyperparameter Description
o The proportion of episodes where L, is greater than I — £, in all episodes M
£a The margin for setting the degree of concentration of L, to L
B The proportion of episodes for the efficient estimation of Lipschitz constant on the new episode
8 The margin for preventing catastrophic failures in the estimation of Lipschitz constant on the new episode

(@avy<1 b)y>1

Fig. 4. Example plot of the cumulative histogram function c(z) and a lower
approximation f(z) defined in Assumption 3.

are a function of the past Lipschitz constants {L,,} given
arbitrarily from the environment, it is not easy to understand
which pair would provide the strongest theoretical guarantee.

To get around this issue, we consider a parametric assumption
on {Ly,} that characterizes the density of {L,,} near the true
Lipschitz constant L. Let &, := L — Ly,,Ym € [M], be the
Lipschitz gap. We define

_H{meM]:&m <z}
a(z) = i

which computes how much fraction of the past episodes have
their Lipschitz constant L,, within distance z from L. Note
that (a, £4) with a = a(e,) satisfies Assumption 1. In other
words, a(z) is a cumulative histogram of the Lipschitz gaps
{&n}. Examples of a(z) can be found in Fig. 4. We assume
that a(z) is under-approximated by a polynomial function:

Assumption 3. There exist a>0 and ~ >0 such that

z

o(2) > £2) = (322

)’Y,Vz e[o,L].

Examples of such functions can be found in Fig. 4. When
chosen tightly, the parameter a characterizes the smallest
Lipschitz gap ming, &, and the parameter -~y characterizes how
densely Lipschitz gaps are located around min,, &,,. A smaller
~ means a higher such density, which should help transfer
learning. Such a parameterization resembles the Tsybakov
noise condition [32], [33] and S-regularity in infinite-armed
bandits [34].

Theorem 5. Suppose Assumptions 2 and 3 hold for some a €
i ¥
(0,L) and ~ > 0. There exists 3y = © ((%) )

_ In(K) (244)?
=0 ( AZ (min{L.eg}—a)?

), and

— 0 wax 2+7)* 1 11
7=9 {(mm{L,sﬁ}—a)z B’ Gin{L, 517 5}

where f(z) in Assumption 3 such that, for all B < By, T > 7o,
and TM > ZIn(T'), Algorithm n(Lg) with v > 0 has

R7(6)

7 < (14208, L+265) V6 € B(L).

lim sup ———
T—oo

For simplicity, assume a = 0 and ¢ 5 < L. Theorem 5 shows
that the requirement on M is {2 (( )l) This means that

as + goes to 0, the transfer learning ﬁcomes easy in the sense
that the requirement on M becomes close to €2(1/3). On the
other hand, as + goes to infinity, the requirement of the number
of past episodes M increases exponentially. This is not too
surprising since even with + = 2 the density of Lipschitz gaps
around 0 becomes very low. This aligns well with the intuition
that the density of {L,,} around L, which is encoded by ~,
should determine the difficulty of transfer learning.

~-tuning algorithm. In addition to general guideline, we
present a heuristic Algorithm 2, denoted by L(~), that can
automatically tune the appropriate hyperparameter 3 and £g.
Since the range of 8 and £5 depends on o and &,, we
first assume a(z) using the density of {L,,}. Based on
distributional assumption a(z), we can estimate ~ which
encodes approximated function in Assumption 3. In other
words, Algorithm 2 estimates an optimal parameter -y of poly-
nomial function f(z), which approximates to the cumulative
histogram of the Lipschitz gap {,,} from previous episodes
as shown in Fig. 4. We use the maximum value of {L bre[m]
obtained from m(occ), which means no continuity structure,
as pre-estimated Lipschitz constant to calculate the Lipschitz
gap in advance. Then, the algorithm computes /3 based on
Theorem 5. The detailed procedure of the algorithm is as
follows: there are two initialization constant a and ¢ € (0, 1),
which is a L,, that satisfies L — L,, = 0 and which is a
scale factor for calculating €5 proportion to true Lipschitz
constant, respectively. The hyperparmeter ¢ and the pre-
estimated Lipschitz L’ are calculated via {Ek}ke[m]. Ifm=1,
meaning that there is no history of episode, 5 is 1 and &g is Lm
multiplied by ¢. For m > 2, to obtain a temporary pre-estimated
L’, the maximum value of the cumulative Lipschitz constant
is multiplied by some constant ¢ > 1. To calculate ¢, we split
k-fold and measure g; = maXme|n] Lm/ MaXme[M]\fold; L,

, and take average over j. As k increases, g also increases,
so that the algorithm can be robust to the suddenly large L,
However, if g is too large, the pre-estimated Lipschitz constant
L becomes large, k = 5 is set as the default. Notice that
L 4 2¢4 is within a constant factor of L. Therefore, we set
gg = c-L’ for some ¢ € (0, 1). We use a least square for finding
the best value of ~ for fitting f(z) utilizing the cumulative
estimated Lipschitz constant. Note that the 5y of Theorem 5
requires knowledge of (a,L,£5) and 8 < fy. Based on this,
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Algorithm 2 L(v)

Initialize the constant ¢ =0 and ¢ € (0,1)
for m=1,2,... do

if m = 1 then R
Set B, =1and egm =c- Ly,
else

Set the constant ¢ using k-fold as follows:

q=X;q;/k where ¢; = gnfmx] Ly/
em

i/k Vi e [k’],

max
ke[m]/fold;

Compute pre-estimated Lipschitz constant L' = ¢ - maxe ] Ly

Calculate the Lipschitz gap &, := L' — Ly, Vk € [m] and e, = ¢ MaXpe[m) L

Find ~ using a least square:

afz) = ik € [m]m & < Z}|, and f(z) = <;_C;)’y, Vz € [a, L.
Set (3,,, as follows:
ZremonPr i > 1
P = (%)W , otherwise.

end if . R
Calculate L,,(vy) = [ﬁmM]—maxme[M] Ly, +€8,m
end for

£ — .
we calculate 3,, = (=%7—*)7. However, as v increases, /3

has a very small value, e.g., § < 0.1. This can occur with
arbitrarily large L, resulting in v being greater than 1, which
is the case in Fig. 4(b). Therefore, if v > 1, the average of
the /3 of the previous episode is used as S3,,. Lastly, L(v) is
calculated using 3, and g ,,, which are obtained through
Algorithm 2. In summary, Algorithm 2 provides a heuristic
approach to automatically tune the hyperparameters S and
€g by estimating the optimal parameter  for appproximating
the cumulate histogram of the Lipschitz gap. The experiment
results using hyperparameters calculated through the ~-tuning
algorithm can be found in Section IV-B.

D. Lower bound of sample complexity ™M

We study a fundamental limit of sample complexity in
estimating L from M prior tasks. For the concentration of
L to L, we define an event £, := {L ¢ [L,L + ¢]}. Let
Tm denote the number of playing the most under-sampled
arm in episode m. Then, Assumption 2 can be equivalently
written as min,,,cas) Tm > 7. For given a > 0,4 > 0,7 > 0,
and € > ¢,, we say an estimator L is uniformly good for
(a,€q, T, ) if the estimator L verifies the following for any L,
(Om € ®(L))mem) and (T )me(n satisfying Assumptions 1
and 2:

P[L]<O(T™°) Fe>0. (10)

The concentration in (10) can be interpreted as a minimal
condition to conclude the desired regret upper bound in
Theorem 3 recalling that 7w(L’) with wrong L' ¢ [L, L+¢] can
generate linear regret. Using a change-of-measure argument
based on Lemma 2 (Lemma 19 in [35]) in Appendix E,

under the supposition that estimator L from M prior tasks is
uniformly good for (o, e, T, €), one can prove the following
theorem:

Theorem 6. Suppose that an estimator L is uniformly good
for a > 0,64 > 0,7 >0, and € > €. Then, we must have

A2(s —e4)*arM = Q(logT) . (11)

The proof of Theorem 6 is provided in Appendix E. Notice
that when we set ¢ = 2e3 — €4, the concentration of L in
(10) becomes the one required to conclude the regret bound
of w(f/) in Theorem 3. Hence, Theorem 6 provides a lower
bound on K7M to obtain the desired concentration of L as ©)]
which asymptotically matches with the lower bound on 7M in
Theorem 3 with 8 = ca for any positive constant ¢ < 1 since
the choice of 8 implies min{f3, a — } = min{ca, (1 — ¢)a}.

E. Proof of Theorem 3

As defined above, we set A, = min,; d(i,j) and L :=
lg +¢€p in (8). The key analysis of Theorem 3 lies in deriving
the concentration of Lg to L:

Lemma 1. Take Assumptions 1 and 2 with o, €., and T.
Let B € (0,a) and e > €q. If T > o (In(2K) +

(ep—ea)?

1
min{ﬁ,afﬂ})’
PIL > lg+es]|+Plls > L+es—ea)

20 )2 12
< 2exp (_Aw(sg €a) (12)

1 min{ﬁ,a—ﬁ}w-M)

We leave the detailed proof of Lemma 1 in Appendix A. To
avoid linear regret, we desire to control P[L > {g+eg]+P[¢g >
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L+¢e5—¢e,] <O(1/T) by bounding the RHS from Lemma 1.
Then, it suffices to control

A2(eg —€q)? 1
exp (_ m(sﬁ 5a)

< —=.
- T

1 min{f, « —ﬁ}TM)

One can show that a sufficient condition on 7M to
satisfy this inequality is 7M > 4ZIn(T) where Z =
A;(Eﬁ_aa)}min{ﬂ,a_ﬁ}. Assuming the condition on 7M holds
true, the following regret decomposition concludes the proof:

R3(9) < EW{ > (0.~ 00))nr(i) | L< Ly < L+2e5— aa]
1€[K]

+ AT (P[ﬁﬁ <L +Pllg>L+25— sa])
<1+ NC(O,L+2ep —e4)logT + o(log T)

+ AGT 2exp <_A:2”(€ﬁ€a)2m1n{ﬂ,a — 6}7’M>

4
<(14+NC(O,L+ 25 —e4)logT +o(logT)

where we use Theorem 2 and Ag := max;e(g] 0« — 0(i) < 1
for the second and last inequality, respectively.

F. Embedding distance learning

Heretofore, we assumed that embedding « is a fixed vector,
but sometimes it is unknown in practice. In this subsection,
we aim to learn a latent embedding distance (d(i, j));,je[k]s
c.f., estimating latent L with known embedding x. To avoid
confusion, along with arbitrary fixed L, we set L = 1 for
embedding distance learning and omit the notation L. Then,
we reuse the notation d for embedding distance matrix. Let
dm(i,7) = 10m (i) — 0:(j)| be the embedding distance of
episode m € [M] for each pair of arms i,j € [K] and
dn = (dn(i,j)) € RE*XK be the embedding distance
matrix in episode m. The hat operator denotes an estimated
value. We assume a «'-portion concentration of d(i,j) =
max,,e(ar dm (i, §) for all 4,5 € [K] to ensure learning of all
pairs of arms, and make the following assumption analog to
Assumption 1:

Assumption 1'. At least o/ -portion of the previous M episodes
have their d,, (i, j) close to d(i, j) with certain margin £, > 0.
Formally, for any i,j € [K)], there exist o/ > 0 and £, > 0
such that

[{m € [M] : dyni, ) > d(i,5) — ear}] > o/M .

Based on Assumption 1’, we suggest an estimator (d(¢, j)) s
using two hyperparameters ' and g for each pair of arms
individually, which is the similar way to Lg:

(d(i,§))g = [B'M]-max d(i,j) +eg -
me[M]

13)

Our estimator (d(7,7))s adds margin s/ to top-/3’ portion
of M episodes to avoid incurring linear regret. Then, one
can apply our algorithm to estimate a latent embedding
distance independently for each pair (i,j) by using the

estimator (d(%,j))a . As discussed on Theorem 2, we get the
following regret upper bound which is asymptotically close to

fundamental limit for the true embedding distance matrix d
by running 7(dg/) where dg := ((d(i,j))p) € REXK:

Theorem 3. Suppose Assumptions 1 and 2 hold
for oel, and 1. Let B € (0,&) and T >
ﬁ(mmwm). If ™M > Z'In(KT)
with Z' = L for any 0 € ®(d), the

(sﬁ/—ea/)2 min{B’,a’—B"}’
algorithm w(dg:) with A > 0 has

R7(6) _

lim sup
og T —

T—o00

(14 3) C(8.d+ (25 — o)) -

where I is K X K identity matrix.
The following statement shows a continuity of C(0,d) in d:

Theorem 4'. For given bandit structure ®(L,d’) with fixed
0 and x, the optimal value of (3a)-(3b), d' — C(0,d’) is
locally continuous at d', provided that the optimal arm x*(0),
the solution to problem (3a)—(3b) in Theorem 1, is unique.

Henceforward, we present a concentration bound for verify-
ing the minimal condition of desired upper bound in Theorem 3.
Notice that a certain (i’, j') pair of arms quantifies the accuracy
of estimates of i’ and j'. To well estimate the expected reward
for all arms, it is sufficient to track the distance between one
of any fixed arm i € [K] and all others. Accordingly (and
similarity to the notion of uniformly good estimator L), for
given o’ > 0, 4, 7 > 0 and € > &,/, We say an estimator
matrix d is uniformly good for (¢, ¢!, 7, &), if the estimator
matrix d verifies the following for any d, (6,,, € O(d))me[m]s
and (7y)mepn satisfying Assumption 1" and 2:

PlU

JEIRNi}
log T
<o<°§ ) Vi € [K] .

({d(i,5) < d(i, )} U{dG. ) > dGi.5) +<} )

(14)

We define the event for any fixed i € [K]|, X =

{Njerrnqay (d(i, j) < (d(i,5))pr < d(i, j)+2e3 —€p,) }- Then,

we derive the concentration of (d(i,j))s to d(i,j) using the
following lemma:

Lemma 1'. Take Assumptions 1’ and 2 with o/, €./, and 7.
4 1

Let ﬂ/ & (070/)_ IfT > m <1H(4)+ m),

for any i, j € [K],

P|d(i.j) > (d(i. 1)) |+ |(dli ) > d(i,5) + 2250 — 2o

< 2exp (W min{f’, o/ — ﬂ'}TM> : (15)
Using Lemma 1’ to bound P[X€],
Pl <p| U {did) > (@G )
JElKN}
+p| U {6 > dig) + 205 —2ar)

Je[KN\{#}
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Fig. 5. Analysis of experienced episodes for the importance of the conservative estimation.

(@) . G
Y Pl > ()]
JEIKN\ i}
b3 B[ > ) + 20 2]
JE[KN\{i}
— ’ 2
< Kexp _(ngaa) min{3’, o/ — B'}7M | |

where for (a), we use Boole’s inequality. Then, we control

7 \2
- 1
(e —a)” 1 2, min{3’, o/ - B} M| < =,

Kexp

in order to prevent linear regret. A sufficient condition on 7 M
is TM > Z'In(KT) where Z' =
Therefore, the sample complexity for all arms which can be
interpreted as K7M in embedding distance learning required

KtM =Q - log(KT) (16)

(epr — €ar)?ax

For the desired concentration of each pair of arms, we drive a
lower bound on K7M,

Theorem 6. Suppose that an estimator matrix d is uniformly
good for a > 0,eo > 0,7 >0, and € > 4. Then, we must
have

(6 —ea)?/TM = Q(log T) . (17)

Setting € = 2¢3 — £, makes the concentration of each of
d(i, j) which is required to conclude the desired regret upper
bound in Theorem 3. It is confirmed that the sample complexity
bound of order in embedding distance learning, which transfers
for all (7, ) pairs of arms, is the similar asymptotic growth

(651 —€4)?2 min{p’,a’—p"}"

rate to Lipschitz constant learning case (9), which transfers
only L. Notice that the logarithmic order of growth can be
neglected by the linear scale of K in case of having large
K. The detailed proofs of embedding distance learning are
provided in Appendix F.

IV. NUMERICAL EVALUATION

In this section, we present experiments to compare the
performance of estimators with an asymptotically optimal
algorithm. We validate the proposed framework for estimating
latent Lipschitz constant L and latent embedding distance
(d(7,7))i,je[x) in various settings. We first observe two episodic
cases to scrutinize the estimation of latent L: a case where
it is hard to estimate true L with one arm hidden, as shown
in Fig. 1(a) (Section IV-A), and a case where it is relatively
easy to estimate L through the specific process of generating
instances (Section IV-B). For analyzing the estimation of latent
embedding distance, real-world dataset [9] in an application of
rate adaptation is used (Section IV-C). The simulation is built
on SMPyBandits package for MAB algorithms [36]."

A. Importance of the conservative estimation

Setup for episodic framework. We consider a scenario
of transfer learning, where one episode corresponds to
the setting that one arm is hidden as in Fig. 1(a), i.e.,
0 (0.1,0.0005, 0.0005, 0.2005, 0.0005, 0.0005) and true
Lipschitz constant L is 200. Based on 0, 0,, € ®(L)
is independently generated by adding a constant, which is
randomly selected in [0, 0.7995], to all arms. Fig. 5(a) shows

“The detailed source code for this project is available on Github:
https://github.com/hyejin-s/transfer-learning-bandits.git.
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Fig. 6. Analysis of experienced episodes for the benefit from exploiting the continuity structure.

five incidences of 0,,’s. For each episode m € [M = 100],
we set time horizon T = 5 x 10* and multiply 5 to the
estimation term in algorithm 7 for more accurate Lipschitz
constant estimation and transfer learning.

Cumulative regret. Fig. 5(c) and Fig. 5(d) show evolution
of estimation of Lipschitz constant and cumulative regret
over episodes, respectively, using various estimators on L
—Lys taking the Lipschitz constant which is estimated at
each time step t € [T7, maxgﬁm)’s taking the maximum of
previous estimated L., two Lg’s with (3,¢3) € {(0.1,0.05),
(0.3,0.05)}, and L(7)’s with ~y-tuning of L. Fig. 5(b) presents
the histogram of empirical Ly, of w(ﬁt) estimator. Compared
with Lg and L(y) estimators, which transfers structural
knowledge using history of previous episodes (L nl\ff;ll, in
the case of ﬂ(ﬁt) updating L at each time step ¢, it sometimes
shows an unstably estimated Lipschitz constant in Fig. 5(b).
As discussed in Section II-C, the hidden optimal arm is often
undersampled, indicating that the estimated Lipschitz constant

is smaller than the true Lipschitz constant 200 and causing

linear regret. As a result, n(]it) has a large cumulative regret.

Even if the optimal arm is hidden, all other estimators except
for (L) estimate L close to 200 as shown in Fig. 5(c) and plot

the curves of similar cumulative regret as shown in Fig. 5(d).

This shows the risk of estimating L at each time step, implying
the importance of conservative estimation in transfer learning
scenarios.

B. Benefit from exploiting the continuity structure

In this subsection, we demonstrate the importance of
utilizing the continuity structure by comparison of various
hyperparameter estimators.

Setup for episodic framework. For numerical simulations,
we configure an environmental setting to take advantage of the
structure for a clear performance comparison of algorithms.
We assume that there are C' clusters in which ¢, arms with the
same mean form a cluster. Notice that the number of arms in
the bandit instance is C' X c;. However, if there is the knowledge
of structure among arms arms in the cluster is restricted by
the continuity. Therefore, it can be considered as C' arms in
the bandit instance. Let the distance between the arms in a
cluster be constant p. The constant p should be small enough
to utilize the structural information. However, if p is too small
than 0.1, the estimated Lipschitz constant L = |0(i) — 6(j)|/p
can be large by an erroneously predicted mean of arms. In
addition, the distance between clusters y, which is greater
than p, is set within the range that structure benefits. We
consider Lipschitz structure ®(L) with L = 0.02, the length
of episodes M = 50, and time horizon T' = 10°. We set the
time horizon T for sufficient exploration in order to estimate L
more accurately. For each episode m € [M = 50], 0,,, € ®(L)
is independently generated by the following procedure: starting
with cluster 1, §; € [0.05,0.95] for selected uniformly at
random, for i = 2,3, ..., C, select 6; uniformly at random from
[91'_1 —L'd(i—l, i), Hi_1+L-d(i—1, Z)]ﬂ[005, 095] The arms
in a cluster have the same mean. We choose C = 2 clusters
that is sufficient to show the results, although we can make
several clusters. We place ¢, = 4 arms in each cluster, which
have the same mean with a distance of p = 1 from each other.
We set the distance of each cluster y = 10. Fig. 6(a) shows
five incidences of 8,,,’s generated from the above procedure.
Fig. 6(b) presents the histogram of empirical L,,. For every
estimator (stated below), we use the same sequence of ﬁm’s
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Fig. 7. Instantaneous throughput and success probability of eight rates.

generated by 7(co) that uses no continuity structures.

Stable estimator ﬁg. Fig. 6(c) illustrates the comparison
between the accuracy of five estimators on L —Ly’s taking
the Lipschitz constant which is estimated at each time step
t € [T], two ﬁg’s with (8,e5) € {(0.1,0.002), (0.3,0.002)},
max(L,,)’s taking the maximum of previous estimated L,y,,
and L(v)’s with y-tuning of L. For estimator L(v), we
set initial value @ = 0 and ¢ = 0.1. As expected, the
most conservative estimation of max(Ly,) has monotonically
increasing estimation of Lipschitz constant as the past episodes
piling up. Theoretically, Limax can explode up to 1/A, =1 in
a finite number of episodes with positive probability. Indeed,
max(]im) is easily manipulated by a single episode with
arbitrarily large f/m, e.g., 0.175 < ﬁm < 0.2 in Fig. 6(b).
Therefore, it is important to appropriately select 8 to exclude
the right tail of histogram of L, and to avoid the aggressive
choice that lead to linear regret. The choice of 3 = 0.1 prevents
some large estimated Lipschitz constant of im, but also shows
a difference from the true Lipschitz value. In this case, a
larger 8 is more helpful to reduce regret. As expected, the
hyperparameter choice of y-tuning algorithm leads us to obtain
an accurate and stable estimation of L, yielding the lower regret.
Notice that in y-tuning estimator L(v), when an estimated
Lipschitz constant value deviates from the distribution, v > 1
is used to exclude the outlier by using the mean of § in previous

episodes.

Cumulative regret. Fig. 6(d) plots the curves of cumulative
regret over time under various estimators. The regret of five
estimators on L take on some value between m(oco) which
means no continuity structures and (L) which uses the full
knowledge of the Lipschitz continuity. As discussed in our
theoretical analysis, we observe that the more accurate the
estimator leads the greater reduction in regret. Notice that
m(max(L,,)), which uses the most conservative choice of L,
gets closer to 7(00). Employing small value of 8 provides much
conservative estimation of L, but it can be too conservative
to exploit the Lipschitz constant. This gives insight into the
importance of transfer the knowledge of L via delivering
appropriate hyperparameters (3, ).

C. Latent optimal embedding

Recall that in the previous subsection (Section IV-B), we
consider a fixed embedding setting. However, it is often the

case that the embedding is latent in practice. This motivates us
to consider embedding distance learning in Section III-F, where
we assume that embedding « is unknown. In particular, in this
subsection, we consider the problem of rate adaptation (RA)
in which non-stationary radio channels can be differentiated
into tasks as the channel changes discretely over time and can
capture the availability of embedding learning. We start by
briefly recapitulate as to how the RA problem can be reduced
to multi-armed bandit problem, as in [9].

Rate adaptation. Rate adaptation (RA) aims to maximize a
throughput of packets given wireless link conditions. Let » =
(r(1),...,7(K)) denote the set of rates and 8 = (0(1), ..., 0(K))
denote a probability of success transmission from here. For
some ¢ € [K], we assume that a rate r(¢) with which each
packet is desired to be transmitted is first chosen. This packet
is then transmitted with a probability of success transmission
6(4). For each round ¢, in particular, the success probability is
modeled by a binary random variable X (7,¢) which is drawn
i.i.d. from the Bernoulli distribution with mean 6(z) € [0, 1].
The throughput p, representing the amount of data transferred
per unit hour, is then defined as follows:

p(i) = r(i) - 0(i) i € [K] .

From this, it can be seen that the rates correspond to arms
in MAB problems. In general, notice that a reward in MAB is
given directly from observations X (i,¢). On the contrary, RA
aims to maximize the throughput g rather than the success
transmission probability @ itself. For simplicity, when a rate
is chosen for a certain packet, we assume that this packet
transmission lasts during one slot. All packets are assumed
to have unit sizes, implying that a packet with rate r; is then
transmitted over a period of 1/r;. Let 0, := max;c[x 0(i),
K.(0) :={i € [K] : 6(i) = 0.} and r, denote the best success
probability, the set of best arms, and the corresponding rate to
0., respectively. From the assumptions, the regret that we aim
to minimize can be rewritten as follows:

R3(0) := Y (rf. — r(0)0(i)) Ex[sr(i)] ,
1€[K]

where sp(i) denotes the number of decision for choosing
rate r(i) for each packet up to time 7. We assume the
continuity of # for the RA problem.” Accordingly, as in

“The continuity of throughput g was considered as well, but the gain for
structure did not appear significantly.
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Theorem 1, we can write the asymptotic lower bound of regret
as liminfp_, o, R7.(0)/logT > C(0, L) for uniformly good
algorithm. Here C(0, L) indicates the solution of the following
minimization problem:

min 70, — r(2)0(2))n(i 18
mi ig*;(e)( ()6(0))n(i) (s)
st KL(O()| N (50, L))n(i) > 1,¥) ¢ K.(60), (19)
igK.(0)
where
- %7 if ¢ = j;
N (i;0,L) == ni;x{é(z'), b — L-d(i,j)}, otherwise.

Setup for episodic framework. We note that non-stationary
test-bed trace dataset in [9] is used in our simulation, demon-
strating instantaneous throughput over time of eight rates
(6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,
54Mbps) in Fig. 7(a). We first define a single task to reproduce
the episodic simulation in wireless link. We set m episodes in
a sequential manner over 5s sliding window, as if the algorithm
selects transmission rate based on estimated success probability
every 1ms. The throughput corresponding to these episodes
is calculated as the average value of that time. Notice that
the probability of success transmission 8 affects the agent’s
decision of choosing rates (among eight arms). Fig. 7(b) plots
the curves of success probability over episodes.

Cumulative regret in rate adaptation. We compare (i) the
case where the embedding is arbitrarily fixed (estimation of
L) and (ii) the case where embedding distance is learned
(estimation of d) with real-data. For the first case, we
assume fixed embedding as = = [6,9,12, 18,24, 36,48, 54]
which is proportional to rate. We compare 7(cc), (i) 7(Ls)
with (8,e5) € {(0.1,0.05),(0.3,0.05)}, (i) w(dg/) with
(8',e5) € {(0.1,0.05), (0.3,0.05)}, and each of true values
L and d to see if we can leverage the Lipschitz structure. For
each episode, we set time horizons 7' = 5 x 103. We utilize the
structural information from the sequence generated by 7(o0),
which is no continuity structure algorithm for estimator ﬁg
and cig/. As observed in Fig. 8, the case of finding the optimal
embedding distance outperforms the case of arbitrary fixed
embedding x. In addition, if we select the parameters well, it
shows almost optimal regret in each case. Therefore, even if
embedding distance learning may require more complexity (16),
it shows better performance than when the embedding is set
arbitrarily.

V. CONCLUSION

We have investigated the role of transfer learning with
incomplete knowledge of Lipschitz continuity. Our main
contribution lies in our estimator ﬁg, its information-theoretic
optimality, and regret analysis when using f/ﬁ for future tasks,
that is shown to be close to the one with known Lipschitz
structures. We have reported useful insights on transfer learning
with latent Lipschitz constants, as well as demonstrating
the superiority of the proposed framework via numerical
evaluations.

In a further direction, by analysis of estimating the optimal
embedding distance with (5, €gr), we confirmed that our
proposed algorithm is applicable even when the embedding
x is not available. One exciting future research is to extend
our setup to fully adaptive sequential transfer setting where
we require the learner to adjust €5 automatically to a given
precision (e.g., within a constant factor of L). Moreover, while
our current focus is on finite-armed bandits with Lipschitz
continuity, our approach can be extended to a broader class
of continuous-armed bandits and continuous reward functions.
Such extensions could make our approach applicable to wider
range of real-world problems.

APPENDIX A
PROOF OF LEMMA 1

We begin with a concentration analysis on Ly, to L,y,. Notice
that Assumption 2 guarantees that every arm is played at least
T times in each episode. Hence, using Hoeffding’s inequality,
it follows that for each m € [M],

P [\em(z‘) — 0, ()] ze} < 2exp (—2527) . Qo)
which implies
P{|Lm—ﬁm| zg]
<P (i € (K] 0m(i) — bu(i)] > 52
< 1€ Om() — O (2)] 2 5 (21)

2 A2
< 2K exp <—8'“”T>
2
For the following proofs, without loss of generality, we
assume that L; > --- > Ly and define &,, = L — L,,, as the
Lipschitz gaps.

Bound of P[L > {3 + €g]. Let us first show the upper
confidence bound derivation. Let [z]+ = max {0,z}. Let Sj
be the k-th smallest element of the set S and mg := [BM].
Define S := {S C [M]:|S| = M —mg + 1}. Then,

P mﬁ—maxf,m <L —eg

me[M)]
M—-mg+1
< Z H P(Ls, <L —¢p)
Ses k=1
M—-mg+1
=TT B(Ls Lo < (o5 50)
Ses k=l
M—mg+1
<> II 1r2Kexp(-LA2es —&s,)%)
Ses k=1

Notice that |S| = M —mg + 1 and Sy, is the k-th smallest
element of the set S. For all k € [M — mg + 1], we have
Sg <M — (M —mg+1)+k=mg+ k — 1. Recalling that
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&m is non-decreasing by definition, we have s, < §mir—1.
Then, the RHS above is bounded by

M—mg+1 ’

> I tA2Kewp(-5A2Es — Gmorrai]?)
Ses k=1

M

T 2 2
= Z H 1A 2Kexp(—§Aw[€5 - gm]-',-)
SeS m=mg
M
_ M T 2 2
= <M - 1) H 1A QKGXP(*gAm[é‘ﬁ - fm]—i—) :
m=mg
Note that
M T
H 1A 2K6Xp(—§Ai[5ﬁ —&m)3)
m=mg

(a) T {m>mgp: Em<s}|
< min<1 N2K exp(—gAi[sg — s]i))

()

T OL]\/IfmﬁJrl
< (1 A 2Kexp(—§Ai(6g — Ea)z))

< exp <(ln(2K) - gAi(fﬁ - €a)2> (a— ﬁ)M> ,

where (a) is for the tightest bound using &,,, with monotonically
increasing property; and (b) is by Assumption 1. Using the
fact that (, +1) < 2M < exp(M), we finally get:

P [ mg-max L, <L —¢ps
me[M]

< exp ((1 +(a=p) 1H(2K)—2Ai(€ﬁ —ea)(a - 5)) M)

< exp (—ZAi(Eg - Ea)2(a - ﬂ)M) ,

Where the last inequality is from the assumption 7 >

Bound of Plég > L+e5— sa]. The proof is analogous to the
proof of bound of P[L > {5 + £]. From the definition of /3
in (8), it follows that

P mﬁ-maxf,m > L+eg—eq
me[M]

< P(35 C [M]:|S]
=P(35 C [M]:

|S| =mg VS € S, [A/Sk —Lg, > — ((8
777/13

< > T 1 A2K exp( —fAQ[( £p)

SeS k=1

M M T o
<, [I 1r2Kexp(—5AL (0 —2p) -
B m=M-mg+1

< (f)i) <2Kexp (;Ai(sﬁ - 5a)2)>

=mg VS € S, Ls, — (65 —€a) > L)

a 53) - gSk))
_gskﬁ—)

Eml?)

mg

(d)
< exp

<(; + 1n(2K)) BM — gAi(Eﬁ = fa)25M>

(e)
< exp

<A2 (5 — €a) 5M>

where (c) is from Sy, < M — mg + k for all k € [mg];
(d) obtained by the fact that ( ) < 2M < exp(M); and (e)
follows from our assumption on . ]

APPENDIX B
PROOF OF THEOREM 2

We note that our analysis can be concluded with any other
algorithm than Algorithm 1 if it achieves the asymptotic opti-
mality provided in Theorem 2. Algorithm 1 is a simplification of
DEL algorithm in [8] originally designed for Markov decision
process (MDP). It is straightforward to correspond the bandit
problem with Lipschitz continuity to an MDP of single state
and K actions with Lipschitz continuity. Hence, the proof will
be concluded by Theorem 4 in [8] once we correspond the
following linear programming to the one in (3):

min > (0. — 000))n(i) (22a)
igK.(0)

st Y KL(O()|[A(@)n(i) > 1 VA € ¥(6,L), (22b)
igK.(0)

where ¥(0,L) C ®(L) is the set of confusing parameters to
0 defined as

U(0,L):={Ae®(L): K()NK.(A) =0 and

0(i) = \(i) Vi € K. (0)} .
The correspondence is provided by Theorem 1 in [2]. This
completes the proof. ]
APPENDIX C

PROOF OF THEOREM 4

To prove the local upper-continuity of C'(6, L") in (3a)—(3b)
for L' € [L, L+4] , we consider a modified linear programming
(LP) of which the optimal value is denoted by C’(0, L’):

min > (6. - 0(0)n(i) (23a)
i#K.(0)

- KL(O(0)||X (50, L))n(i) > 1,V ¢ K.(6) (23b)
ze»c ©)

> (6. —6(i))n(i) < C(6,00) . (23¢)
i¢K.(0)

The only modification is the additional constraint (23c).

We will first show the equivalence between C(0, L’) and
C'(0, L), and then the local upper-continuity of C’'(6,L'),
which completes the proof. Recalling that C(6, L') is increas-
ing in L” > L/, it follows that C(0,L") < C(8,00), ie.,
the solution n* of C(6,L’) should verify >, .« (o) (6.
0(i))n*(i) < C(6,00). This shows the equivalence, i..,
co,L'y=c',L)

To show the local upper-continuity of C'(80,L’) for L' €
[L, L + ¢], we will use Berge’s maximum theorem. To do
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so, we check the conditions for Berge’s maximum theorem:
(i) the objective function (23a) is continuous with respect to
L' € [L,L+¢] and np > 0 and (ii) the constraint set (23b)-(23c)
is non-empty and compact. The continuity of the objective
function is straightforward as it is a linear function in 7. To
show that the constraint set is non-empty, we construct i’ such
that 7' (7) = gpypeey for @ ¢ K.(0). Noting that 0’ is the
solution for C(Q, 00), we have 3=, k(g (0. —0(i))n' (i) =
C(6,00) and Vj ¢ K.(0),

1 = KL(0(i)[|0.)n'(5) 24)

= > KL (5;6,00))n' () (25)
i¢K. ()

< > KOOIV, L) (), Q6)
i¢K. ()

where the inequality holds as A (i; 0, L') := max{0(i), 0. —
L' - d(i,j)} > 6(i) is non-decreasing in L’ and thus
KL(6(i)||\ (i; 0, L")) is also non-decreasing. This implies 1’
verifies the constraints (23b)-(23¢) and thus the constraint set
is non-empty. To show the compactness, we observe that the
constraint (23c) upper-bounds a weighted sum of 17 where the
weights are strictly positive for i ¢ K.(0). Noting n > 0,
the constraint set is compact. This completes the proof of
Theorem 4.

O

APPENDIX D
PROOF OF THEOREM 5

Throughout the proof, we assume that eg < L without loss
of generality; one can verify that the same proof goes through
when we replace €3 with min{L,ez}. To avoid clutter, let us
use ¢ instead of eg.

Following the proof of Lemma 1, we have

P mﬁ-maxf,m <L-c¢
me[M]

T Hmzmﬂ: fmSSH
< B-min <2Kexp(—2Ai[E - s]i))
S

- {m>mg: &m<e—v}]
: Invin <2K exp(2Ai[vﬁ_)>

- min
V>Vmin

T [{m>mg: §m<e—v}|
<2K exp(—QAiUQ))

< B- min exp <—ZA§ 2. {m >mg : §m<5—v}>

V> Umin

max 'U
V2>Vmin

~exp(—ZAi~ {m >mg: §m<5—v}>

Umin,€— a]

(c)
< B-exp(—TAi - max
4 vE|

where

o B=(,,_M .)) denotes the binomial coefficient.
s+l
e (a) is by introducing a free variable vy, > 0 that we
choose later.

e (b) is by assuming In(2K) — ZAZv? <
v > Umin. Equivalently, we assume that

—ZAZ02, for all

7272 5

e (¢) is by [{m > mp : & < e —v}| > M- f(e—v) -
(mg—1),Vv € [0,e —al,and € < L.
For the moment, let us focus on the optimization problem:

In(2K) . Q7

v vt (M- (e = v) = (mg — 1))
Bl
— 2 (2 a) -1
ve[vrilii*a] ! ( L—-a (mﬁ )
M 2 ~ mg — 1
= — — — — L — Y
(L — a)’Y ve[v{?ﬁ?{a—a]v <(€ v a) M ( a)
_ M(e—a)*™
(L —a)

2 o _ _ ~
< max v 1Y ~mg—1(L—a)
VE[Vmine—a] \ € — @ e—a M (e—a)

—q)?t
@M((z - a>)w 22 ((1—2)" - A)

x€[Zmin 1]

e—a’?

where (a) is by defining A = 721 (é:g)):

Inspecting the objective function, the optimal solution z*
must satisfy 1 — x* > A, Unfortunately, the optimization
problem does not have an explicit closed-form solution. One
can find an integral approximation:

— )" - A)

2
max x 1
xe[Zmin 1] ((

e—a’

1
>—/ 2P ((1—2)" — A)da
1= A7 — (i) Joe[pmin 1-47]

which does have a closed form and seems to be a good
approximation (numerically). This can be useful for deriving a
tight confidence bound to use.

On the other hand, the equation above is hard to interpret, and
we thus turn to restricting the regime of 3 because useful values
for 5 are small in general. This way, we gain interpretability.

Let us assume

1
A< 202 (28)
which becomes our requirement on 3 as we show later. We
plugin = = % (motivation: this would be the solution of the
optimization problem if A were 0). Note that this requires the
following condition, which we assume hereafter:

2 Umin

244

1 4
= a2 In(2K) (29)

E—a

Then,

(M- f(e =) (mﬁ—n)) e sz(uxﬁA)z(QiV)Q( 2%)”14)
)
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=1/e2.

. v 1 1
where (a) is by (ﬁ) = (H—%)ﬂ/ 2 (exp(2/7))”
Thus, altogether,

P | mg- rnaXL <L-¢
me[M]
< -
M(e —

(a) v A2 2+’Y
<ex T :
g T e TP
where (a) is from the fact (ij\nfﬁﬂ) < 2M < exp(M).

Finally, we want to control the RHS above to be smaller than
1/T.
Let us summarize the assumptions we have made:

T> AT, In(2K) (30)
2 1 4
In(2K 1
2+ " e—a TAZ n(2K) GD
1 mg—1 (L—a)’
> A= . 2
2e2 M (e —a)” (32)
M(e—a)?*™ 1 4
_ 2, < =
exp (M TAL 22(L—a)y @2+ T - (33)
We take v, =4 - T %2 and merge (30) and (31):
(244) W@2K)
> . = .
T > (c—a)y Az To (34)

Recall that mg = [SM]. One can verify that the following is
a sufficient condition for (32):

1 e—a\”
6§262<L—a) =Po -

Finally, using our combined condition above, the condition (33)
is implied by the following:

exp <_TA2 M(e—a)™ 1

2e2(L —a)Y 2+~
For the lower confidence bound, from the proof of Theorem 3,

)2> <1T. (35

P mﬂ-maxf/m >L+e
me([M]

< exp (—ZA%EQBM) (36)

which requires 7 > &7 In(2K), but that is satisfied by 7 >
To. We wish to control the equation above under 1/7. For
this, using 7 > 79 and 2 > (¢ — a)?, the requirements (35)
and (36) can be satisfied by the following:

2 Y2
9 . e—a 1 (e—a e’
exp —Awmln{<2+7) 2€2<L—a> 74}7'M

<1/T .

Using the same argument as the proof of Theorem 3, we see
that the above takes the form of exp(—Z~'rM) < 1/T for
some Z, and a sufficient condition for satisfying it is 7M >

Z In(T). Altogether, we can conclude that there exists Z =

@(max{( dory 7 5}) such that when 7M > Z1In(T),
T > 79, and B > By, we enjoy the stated regret bound. |
APPENDIX E

PROOF OF THEOREM 6

A2 M(e —a)* ( 2 >2>
2¢4(L —a)? \2+7y Let n,,(i) denote the number of playing arm i € [K] in

episode m € [M] with slight abuse of notation. Let F be
the sigma-field of observations in M episodes of length 7', in
which Assumption 2 holds, i.e., n,, (i) > 7 for every episode
m € [M] and arm ¢ € [K]. Then, the uniformly good estimator
L verifies (10) for (@m)me(m) satisfying Assumption 1. Let
P and P’ be the probability measures on F w.r.t. M and M’,
respectively. Similarly, denote the expectations on F w.r.t. M
and M’ by E and E’ respectively. We use a change-of-measure
argument which compares two sequences of M parameters,
denoted by M = (0:1)mem St. 0 € (L) and M’ :=
(Am)me(m) 8t A € ®(L'). We will construct M and M’
to conclude the proof using the following lemma:

Lemma 2 (Lemma 19 in [35]). For every event £ € F,
E[G] > KL(P[E]|[P'[€]) , (37)

where G is the log-likelihood ratio of M to M’ defined as:

Z an ) log O (0)

me[M] i€ [K] /\m(i)

Let i’ be an arm such that min; ;s d(i,7") = A. For some
€ (0,1), we consider M such that for each m € [M],

enl (7,) _ {C =+ LAz

¢ otherwise

ifi =14

Note that L, := max;4je(x] W = L for all m €
[M], ie., 6,, € ®(L). In addition, M verifies Assumption 1
for L, e, and o. We now construct a perturbation M’ which
verifies Assumption 1 for L' = L + ¢, ¢, and «. For each

€ [[aMT],

if i =4

., (39)
otherwise

which implies L}, := max;; ROAG] — 7,4 (e —€q) due

d(i,7)
to the construction of 0,,: for 7 £ 7/,

)‘m(i/) - )‘m(i) = (em(i/) + (5 - Ea)Aw) - em(i)
=0m(i) + LAz + (£ — €0) Az — 0,,()
=(L+e—ca)lg

For the rest, i.e., m € [M]\ [[aM]], we set A,, = O,,.
Hence, M’ verifies Assumption 1 for L' := L + ¢, «
and e,. Assume that for each m € [M], n,,(i') = 7 and
Ny (i) > 7 if i # /. This implies Assumption 2. Note that

EG] = X meian) Srei) Elrtm (0)KL(Grn ()] A (1)) thanks
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to Markov property of bandit. With the construction of M and which implies

M, it follows that

[aM]

E[G] <7 | D KL(On () An(i"))

where for the last inequality, we use the fact that KL(0]|\) <

X2(0,)) = %’ c.f,. Lemma 2.7 in [37]. It is not hard to

select constant ¢ € (0, 1) such that

(" 0n) 22
A= A (@) (1 = An())
[aM]
=Qfr (O (i) = A (i)

With such choice of ¢ and the construction of A, in (38), we
obtain

E[G] = O (mMAi(g - ga)2) . (39)

To complete the proof using Lemma 2, we define an event
& = {L € |[L,L + €]}, and its complement &£’. Under
Assumption 2 with 7 > 0 and the supposition that estimator L
is uniformly good for (a,£4,7,€), we have P[€'] = o (T°)
and further

PE]=P[Le[L,L+e|=P[Le[l —¢ L) =0(T"°,

where the last equality is from the construction of M’ verifying
Assumption 1 for L’ = L + ¢, a, and &, i.e.,

PLe[l —e L) <PIL<L]+P[L>L +¢
=o0 (T_C) .
From this, it follows that
KL(P[€]|[P[€]) = — log (0 (T‘C)) = O(logT).  (40)

Therefore, combining (39) and (40), Lemma 2 concludes the
proof of Theorem 6. ]

APPENDIX F
PROOF OF EMBEDDING DISTANCE LEARNING

A. Proof of Lemma 1’

The flow of this proof is analogous to the proof of Lemma 1.
First, we analyze a concentration on dy, (i, j) to d,(i,j) for
any ¢,j € [K]. Notice that a confidence interval of d,, (3, j)
requires exploration only for arm ¢ and j. Using Hoeffding’s
inequality with Assumption 2, for every m € [M], we have

P (|6, (i) — 1 (i) > e} < 2exp (f2527) . @)

where B’ denotes (

P {[dun(i, ) = din(i,5)] > €]

< P [(00(0) = 0 )] 2 5} 0 10 (0) — 0,0 2 5)

2
< dexp (?) . (42)

For the following proofs, without loss of generality, we assume
that dy(¢,5) > -
dp(i,7) as the distance gaps.

> d]%(ivj) and define ¢m = d(Z,j) -

Bound of P[d(i,j) > (d(i,7))s]. Recall that Sy, be the k-th
smallest element of the set .S and [z]; = max {0, z}. Define
mg = [f'M] and § := {S C [M]:|S| =M —mp + 1}.
Then,

P mgs-max d7n(l7]) S d(’l,,]) —&p

me[M]
Mfmﬁ/Jrl
<> I

SeS k=1
Mfmﬁ/ +1

=TI P (dsilid)— dsi () < (e — 0s,))

SeSs k=1

P<CZSIC (Z7]) < d(l7]) - 55’)

M—mg+1
-
< Z H 1A 4eXp(—§[55/ - ¢S(k)]3-) .
Ses k=1

USing Sk- g mﬁ/ —+ k -1 Vk S [M — mB/ —+ 1]’ we have
¥s, < Ymy +k—1. Then,

]\/Ifmﬂl +1
1 A 4exp(

-
_5[5& - wmﬂ,ﬂcq]i)

Ses k=1

M
:Z H 1/\46Xp(*%[5,8/*7pmﬁ-)

Ses m=mg
M T
2
=8 [[ 1rdep(-gles —vml?).
m:mﬁ/
T |{m2mﬁ’: Ym <s}
< B'min (1 A 4exp(—§[€g/ — s]i))

T

O/M—mﬁ/-i-l
5 (e = Ea')2)>

(a)
<B'[1A4exp(

(2 exp ((1 + (o =) ln(4))M_%(€ﬁ’ —ea)?(a’ — 6/)M)
(o)

< exp (—Z(Eﬂ/ — €a,)2(a’ — B’)M) )

M_%ﬂ/+1); (a) is by Assumption 1’; (b)

follows using the fact that (W]LV;/) < 2M < exp(M); and (c)

holds from the assumption 7 > m (1n(4) + a,%ﬁ,)
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Bound of P[(d(i,j))s > d(i,j) + 2e30 — €q/]. From the

'J
definition of (d(i,j))s = [8'M|-max,, .y dm(i,j) +ep,

it follows that

P mﬁl—maxczm >d+epg —ew
me[M]

<P@EH C [M]:
‘H| = mpg Vm € H,dAm(Z,j) - (5[3’ _50/) > d(Zv.j))

mip
M T(Eﬂ/ — ga/)Z
< 4 _—r -7
- <mﬁ’> op < 2

(%) exp ((ﬂl/ + ln(4)> B'M — %(85/ - Ea/)25/M>

(e)
< oxp (- Few w80
where (d) is by (n]l\ﬁ/) < 2M < exp(M); and (e) holds from

our assumption 7 > (%,%,)2 (ln(4) + ﬁ) O

B. Proof of Theorem 3’

Define the event X' = {Ncx)\ i3 (d(4,7) < (d(4,7))p <
d(i, j)+2e3 —eqr) } to ensure that the concentration conditions
of estimators are satisfied for all pairs of arms. Therefore, the
regret bound of the algorithm 7 is derived as follows:

R7(6) < Bx | 3 (6. = 0)nr() | X | + AoT (PIXC])
1€[K]

where Ag := max;¢c(x) 0 — 0(i) < 1.
Bound of P[X’C]. Through the Lemma 1/, for any fixed i € [K],

P <P |
JEIK\ i}

+P|

Je[K\{i}

{ati.5) > (dG. 7)) }

{(ti.9)p > di.g) + 209 =< |

< > (elws> i)
JelKN\{i}

P[00y > dld) + 22 - 2] )

2
< Ko (_w

1 min{3’,a’ — ﬁ’}TM) ,

where for (a), we use Boole’s inequality. We control
2

_
K oxp (_ ey = c2)

1
min{3’, o' — B’}TM) < T
Then, a sufficient condition on 7M is TM > Z'In(KT) where
7' = GEEEME m‘lin{ﬁ, T Therefore, when the condition
for 7M is satisfied, the regret bound is as follows:

R7(0)

<Eq | 3 (6. = 0()ne(i) | X| + AgT (IP’[XC])
i€[K]
(2(1 +A)C(0,d+ (26 — o)1) logT + o(log T)

4
< (1+MN)C(0,d+ (265 — o)1) logT + o(log T) ,

+ AgT-K exp <(E[3’_€O")2 min{ﬂ’, (o — 6/)}7M>

where the inequality (b) is from Theorem 2. d

C. Proof of Theorem 6

The proof is parallel flow with the proof of Theorem 6, but
difference in M and M’ for change-measure argument. Let j
be an arm such that min;»; d(4, j) = Ag. For some ¢ € (0, 1),
we consider M such that for each m € [M],

) = {HAw

c otherwise

ifi=j

Notice that one pair of arms d(i,7) = |0,,(j) — 0m(3)| =
A and the others are 0. Then M satisfies 6,, € ®(d) and
verifies Assumption 1-1 for d(i,j), e, and o’. We construct
a perturbation M’: for each m € [[o/M]],
rnli) = {em(jw(ssa/) =i
0, (1) otherwise

For i # j, dp, := [An(j) — Am(i)| = [0 (j) + (e —ear) —
0m(i)] = Az + (¢ — e4/) which verifies Assumption 1’
for d'(i,j) = d(i,j) + ¢, er and /. For m € [M]\
[[&/MT], we set 8,, = A, where M’ verifies Assump-
tion 1’. Assume that for each m € [M], n,, (') = 7 and
nm(#) > 7 if © # j. which implies Assumption 2. Note that
EIG] = Yt Srein Bl ()KL (D)l|An (i) thanks
to Markov property of bandit. With the construction of M and
M, it follows that

where for the last inequality, we use the fact that KL(A||\) <

X2(0,)) = ;‘9(1_:\;2), c.f.,, Lemma 2.7 in [37]. We can select

constant ¢ € (0,1) such that

[a' M)
(0 (§) — Am(5))?
T mZZI A () (A = Am(5))
[’ M7
=Q|7 Z (Om(5) /\"L(-]))Q
m=1
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With such a choice of ¢ and the construction of \,, in (43),
we obtain

E[G] = Q <TO/M(5 — 50/)2) (44)

To comp}ete the proof, we define the event & =
{Ni<jerx(d(i, j) € [d(i,7),d(i, ) +¢€])} and its complement
&’. Under Assumption 2 with 7 > 0 and the supposition that
estimator matrix d is uniformly good for (o', e4/,7,¢€), We

have P[&'] = o (%) and further

_ (45)
—p[ () () e i dig) +e]) ]
i<jE[K]
=P () (d6.j)ed ) -=di))]
1<jE[K]
<P[ N (WdG.g)<dG.0) 06 ) >d G 5)+2))]
1<jE[K]

Y logT
= - ,

where the last equality is from the construction of M’ verifying
Assumption 1’ for d'(i,75) = d(i,j) + &, ¢/, and £,/. From
this, it follows that

logT'

KL(P[E]||P'[€]) = —log | o ( ) =O(logT) . (46)

Therefore, combining (44) and (46), Lemma 2 concludes
the proof. (]
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