
SoftwareX 27 (2024) 101773

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

OpenRAND: A performance portable, reproducible random number
generation library for parallel computations
Shihab Shahriar Khan a,∗, Bryce Palmer b,c, Christopher Edelmaier d, Hasan Metin Aktulga a
a Department of Computer Science, Michigan State University, East Lansing, MI 48824, United States of America
b Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, United States of America
c Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
d Center for Computational Biology, Flatiron Institute, New York, NY 10010, United States of America

A R T I C L E I N F O

Keywords:
Pseudo random number generation
GPGPU
HPC
C++

A B S T R A C T

We introduce OpenRAND, a C++17 library aimed at facilitating reproducible scientific research by generating
statistically robust yet replicable random numbers in as little as two lines of code, overcoming some of
the unnecessary complexities of existing RNG libraries. OpenRAND accommodates single and multi-threaded
applications on CPUs and GPUs and offers a simplified, user-friendly API that complies with the C++ standard’s
random number engine interface. It is lightweight; provided as a portable, header-only library. It is statistically
robust: a suite of built-in tests ensures no pattern exists within single or multiple streams. Despite its
simplicity and portability, it remains performant—matching and sometimes outperforming native libraries.
Our tests, including a Brownian walk simulation, affirm its reproducibility and ease-of-use while highlight its
computational efficiency, outperforming CUDA’s cuRAND by up to 1.8 times.
Code metadata

Current code version V0.9
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00704
Permanent link to Reproducible Capsule https://codeocean.com/capsule/0144704/tree
Legal Code License MIT License.
Code versioning system used Git
Software code languages, tools, and services used C++ 17
Compilation requirements, operating environments & dependencies A compiler with C++17 support, optionally CMake
If available Link to developer documentation/manual https://msu-sparta.github.io/OpenRAND
Support email for questions khanmd@msu.edu
1. Background

Generating random numbers in a reproducible manner is pivotal
for ensuring the reliability and validity of scientific research outcomes,
especially in domains fundamentally reliant on random number gener-
ation, such as stochastic simulations, machine learning, and computer
graphics. This reproducibility permits the exact replication of sim-
ulations, facilitating meaningful comparisons devoid of unnecessary
variance and ensuring that any disparities arising are solely attributable
to external factors, such as discrepancies in floating-point arithmetic or-
dering. More explicitly, it allows simulations utilizing identical random

∗ Corresponding author.
E-mail address: khanmd@msu.edu (Shihab Shahriar Khan).

seeds to be compared directly, eliminating reliance on statistical aver-
ages and significantly simplifying debugging and regression testing, as
demonstrated in past works [1,2].

In single-threaded environments, the reproducibility of Pseudo Ran-
dom Number Generators (RNGs) is straightforward since the same
initial state (i.e., seed) results in an identical sequence of random
numbers (i.e., stream). Reproducible random number generation for
multi-threaded and multi-processed applications, on the other hand,
is nontrivial due to the unpredictability of execution orders and the
potential for race conditions. Strategies such as utilizing a single RNG
instance with synchronization or distributing pre-allocated random
https://doi.org/10.1016/j.softx.2024.101773
Received 17 October 2023; Received in revised form 11 April 2024; Accepted 20 M
vailable online 5 June 2024
352-7110/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
ay 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00704
https://codeocean.com/capsule/0144704/tree
https://msu-sparta.github.io/OpenRAND
mailto:khanmd@msu.edu
mailto:khanmd@msu.edu
https://doi.org/10.1016/j.softx.2024.101773
https://doi.org/10.1016/j.softx.2024.101773
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101773&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Shihab Shahriar Khan et al. SoftwareX 27 (2024) 101773
numbers to various threads are fraught with scalability issues [1,3].
Instead, contemporary research has predominantly focused on creating
multiple independent streams using distinct RNG instances per thread.
One approach is to split a single stream into multiple equally sized
streams. For example, one could split a single stream with period
264 to 232 independent streams, each with period 232. This sub-stream
approach, however, requires that the generator have a long period and
efficient jump-ahead capability [4]. Moreover, statistical independence
between these streams is a concern [5–7]. Another commonly employed
technique is pre-generating a set of (pseudo)random seeds for each
stream and employing them as starting points for generating multiple
streams, known as a multi-stream approach. Although the probability of
a direct seed collision, resulting in identical streams, can be minimized
for RNGs with sufficiently large periods, there remains the potential
for statistical correlation among streams, particularly when the bit
representations of two seeds are closely related [4]. An additional
intriguing class of generators are those based on chaotic dynamic
systems [8]; some of these generators are noted for exhibiting strong
parallel independence [9], offering a promising avenue for generating
uncorrelated streams. For an extensive treatment of parallelization
strategies and issues, please refer to [6,7].

The creation of performant Graphical Processing Unit (GPU) com-
patible RNGs introduces a distinct set of challenges as we shift from
CPU to GPU, from dozens or, at most, hundreds of threads to poten-
tially millions within a single node. Memory considerations serves as
a prime illustration. In the GPU environment, threads access only a
limited amount of high-speed private memory; hence, optimizing local
memory usage is essential for maintaining performance. For instance,
the default random engine in GNU’s libstdc++, Mersenne Twister [10],
requires approximately 624 32-bit words for internal state, exceeding
by more than double the maximum number of 32-bit registers permit-
ted per thread in CUDA. Further, the absence of certain instructions
in GPUs, common in most CPUs, leads to distinct CPU vs. GPU perfor-
mance characteristics for many generators [11], prompting the need
for specialized parallelization strategies. For example, the GPU-adapted
Mersenne Twister [12], requires a block of threads to share a single
state.

2. Motivation and significance

In High Performance Computing (HPC), the efficiency and repro-
ducibility of pseudo-random number generation are critical. Libraries
like cuRAND and rocRAND excel at generating reproducible pseudo-
random sequences in parallel environments but face challenges in
portability, limiting their adaptability to new architectures. Conversely,
while RandomCL [13] and clRNG [14] (though no longer actively
developed) successfully address hardware portability, they are limited
to the OpenCL software framework. Kokkos [15], on the other hand,
offers portability, but its random module offers only one generator
with known vulnerabilities [16]. Two challenges arise across these
platforms: seeding intricacies and the demands of state management.
For seeding, neither RandomCL nor clRNG allow arbitrary seeds; in-
stead, they use a host-based sequential generator to produce seeds
for a predetermined number of threads before transferring them to
the device’s global memory. cuRAND, rocRAND, and Kokkos allow
arbitrary seeds to produce distinct random streams but necessitate
complicated state initialization procedures. Moreover, these platforms
obligate developers to consistently manage memory states throughout
the lifecycle of a processing element or thread, adding computational
overhead. Overall, while these libraries offer potent tools, they intro-
duce multifaceted challenges, emphasizing the need for a streamlined
solution.

Counter-based generators (CBRNGs) offer a promising alternative
to traditional pseudo-random generators. Historically, these genera-
tors adapted cryptographic algorithms for HPC applications, albeit at
reduced cryptographic strength [11,17,18]. By mirroring the counter
2
mode used in block ciphers to encrypt messages exceeding one block,
CBRNGs can naturally generate a unique stream within a kernel for a
given seed [11,17]. They do so without requiring the complex state
transformation functions of traditional sub-stream-based RNGs or the
extraordinarily large periods of traditional multi-stream-based RNGs
(which come at a high initialization and storage cost). Consequently,
CBRNGs have compact states; for instance, OpenRAND’s 96-bit state is
over 200 times smaller than Mersenne Twister and well within CUDA’s
maximum 32-bit registers per thread. Furthermore, because of their
lightweight footprint and ease of initialization, a separate CBRNG can
be instantiated per processing element per kernel without significant
overhead, the utility of which has been demonstrated by HOOMD-
blue [19]. CBRNGs also champion the avalanche property, wherein
a minimal bit alteration in the seed or counter cascades into a sig-
nificantly altered, statistically independent new stream. This property
allows developers to use any unique values for the seed or counter
without worrying about correlations between streams, making CBRNGs
well-suited for both sub-stream-based and multi-stream-based random
number generation [11].

Building on this CBRNG foundation, Random123 is a pivotal library
in the realm of counter-based random number generation [11]. It
made significant strides by introducing three innovative generators
and was at the forefront in terms of performing comprehensive sta-
tistical testing. Nevertheless, despite its contributions, Random123 ex-
hibits notable drawbacks. The library does not incorporate more recent
CBRNGs [20,21]. Its API skews heavily toward lower-level implemen-
tations, exposing developers to the algorithmic details underpinning
its generators, making its use clunky and error-prone. Furthermore,
its reliance on intrinsics for performance enhancements compromises
portability and inflates the codebase.

Addressing the drawbacks of existing libraries in terms of usability,
flexibility, and performance (especially on GPUs) and in light of the
advantages of CBRNGs, we developed OpenRAND. OpenRAND amalga-
mates diverse counter-based generators with complementary strengths
under a unified, user-centric API that makes generating statistically
robust random numbers in parallel trivial. We designed OpenRAND
with an emphasis on simplicity and adaptability, without compromising
on performance or relying on intrinsics. As a header-only library with
its core header files comprising 470 source lines of code, it touts a
lightweight footprint and can be incorporated into existing projects
with ease. This simplicity facilitates the development of reproducible
parallel code, allowing developers to circumvent the complications of
API boilerplate and state maintenance. Still, despite our emphasis on
simplicity and ease-of-use, OpenRAND matches or surpasses the speed
of native CPU and GPU libraries. Most importantly, OpenRAND has
undergone extensive statistical testing to ensure its reliability and ro-
bustness. Together, these features make OpenRAND a viable alternative
to existing more complex, less performant RNG libraries.

3. Software description

3.1. API design

OpenRAND implements a core set of counter-based random num-
ber generators complemented by examples, benchmarks, and tests.
Complying with the C++17’s random engine interface, generators in
OpenRAND are compatible with standard library functions, including
randomly sampling various distributions. Each generator is created via
a constructor that requires two arguments: a 64-bit seed and a 32-bit
counter,1 which, together, produce a unique stream with a period of
232. Typically, the seed is chosen as the identity of a logical thread or
a processing element in the program [6], whereas the counter is used
to create multiple streams per seed as needed. Currently, OpenRAND

1 Except for one generator, Squares, which currently accepts 32-bit seeds.

Shihab Shahriar Khan et al.

a
o
R
p
c
w
b

SoftwareX 27 (2024) 101773
supports a variety of counter-based generators, including Philox [11],
Threefry [11], Squares [21], and Tyche [20]. They offer high-quality
streams in compact sizes, efficient construction/destruction of RNG
objects, and accept arbitrary seeds.

3.2. Seed and counter selection

It is important to emphasize that the seed/counter design of Open-
RAND allows developers the flexibility to achieve different RNG par-
allelization strategies. Consider a particle dynamics simulation where,
at each timestep, each particle needs to generate a single random
number. In this case, the seed could be the particle’s global id and
the counter the timestep number, as demonstrated in Section 4. If, on
the other hand, one wished to generate multiple random numbers per
particle per timestep within different parallel regions, then one could
simply store a counter on the particle itself and increment it after
each random number is generated. In either case, users can sidestep
all random state maintenance. In practical terms and in contrast to
Nvidia’s cuRAND library, this means that developers can often forgo the
hassles and performance degradations related to storing states in global
memory, launching a separate kernel on GPUs to initialize the states,
or the overhead of loading and saving states inside each kernel for
every thread. However, one could achieve the same design pattern as
cuRAND or Kokkos by initializing a different OpenRAND generator and
counter per thread within a global state and using the thread id as the
generator seed. To demonstrate this flexibility, we have implemented
each of these parallelization strategies within the examples directory of
our public repository.2

4. Illustrative examples

To demonstrate OpenRAND’s advantages, we employ the Brownian
Dynamics macro-benchmark from [1], re-implemented in CUDA across
three RNG libraries. In this macro-benchmark the velocity of each
particle is perturbed by random fluctuations, requiring two random
numbers per particle per time step. Fig. 1 highlights OpenRAND, Fig. 2
cuRAND, and Fig. 3 Random123. Unlike cuRAND, both OpenRAND and
Random123 use CBRNGs, allowing us to use the unique particle IDs as
generator seeds and the time step number as the counter. This choice
ensures that the time series of random numbers generated per particle
is deterministic and replicable, independent of the number of threads.
It also circumvents the state maintenance associated with cuRAND
(seen in lines 3–6 and 33–37 of Fig. 2), eliminating the need for mem-
ory allocation, state initialization, and continuous memory operations
within each kernel thread. Nevertheless, random number generation
with Random123 requires excessive boilerplate for initialization and
random sampling, as seen in lines 14–29 of Fig. 3, burdening developers
with extra coding demands and amplifying the risk of inadvertently
introducing bugs. On the other hand, OpenRAND’s API required just
two lines of code (lines 14 and 15) for both generator initialization and
random number computation—over 14 fewer lines than the competing
libraries.

5. Empirical results

5.1. Performance benchmarks

To assess OpenRAND’s performance, we employ two benchmark
tests focusing on micro and macro performance metrics across CPU and
GPU platforms, respectively.

For our micro-benchmark, we measured the raw random number
generation speed for streams of varying sizes across all generators

2 https://github.com/msu-sparta/OpenRAND
3
Fig. 1. Illustrative example of OpenRAND’s API: A 2D Brownian walk simulation using
OpenRAND’s Philox generator.

within a CPU, similar to the experiments in [11,13,20,21]. We em-
ployed Google benchmark for evaluation, comparing against widely
used baselines: GNU libstdc++’s mt19937 [10], the default random en-
gine in GNU’s libstdc++, and PCG [4], a widely used, performant RNG
library. As Fig. 4(a) shows, OpenRAND is competitive with state-of-the-
art CPU-optimized generators for all stream sizes. OpenRAND’s edge
over mt19937 in smaller streams is likely due to mt19937’s complex
initialization routine. Threefry and Philox are generally slower as they
involve multiple diffusive ‘‘rounds’’, while the rest use a single-round
approach.

Transitioning to GPU performance, we employ the previously dis-
cussed macro-benchmark, a 2D Brownian dynamics simulation in CUDA.
This simulation involved one million independent particles diffus-
ing according to a Brownian random walk. Particles were monitored
over 10,000 steps, with the particles influenced by both a velocity-
proportional drag force and a random uniform motion. To maintain
consistency, pseudo-random number generation for all libraries used
their respective Philox generators (For details, refer to code3). This
benchmark was executed on two Nvidia GPUs: a Tesla V100 PCIe and
an A100 SXM.

As seen in Fig. 4(b), OpenRAND outperformed cuRAND by 1.8x
nd Kokkos’ random number module by 1.2x, while saving ∼64 MB
f GPU memory per million particles and performed on par with
andom123. Given the simplistic nature of the kernels used in the
rogram, where random number generation dominates computational
ost, such a performance margin between OpenRAND and cuRAND
as unanticipated. This comparison between cuRAND, a native li-
rary specifically optimized for these platforms, Kokkos, a performance

3 https://github.com/Shihab-Shahriar/brownian-dynamics

https://github.com/msu-sparta/OpenRAND
https://github.com/Shihab-Shahriar/brownian-dynamics

Shihab Shahriar Khan et al. SoftwareX 27 (2024) 101773
Fig. 2. Illustrative comparison with cuRAND’s API: Implementing the Brownian walk
simulation from Fig. 1.

portable library, and Random123, a library that utilized intrinsic in-
structions to enhance performance, offers confidence that the simplified
API and platform-independent code of OpenRAND do not compromise
its performance.

5.2. Statistical evaluation

To ensure the quality of our random number generation, OpenRAND
exclusively incorporates generators with rigorous empirical validations
and long-standing use. Even with this foundation, maintaining sta-
tistical integrity requires careful implementation, as subtle bugs can
compromise randomness. As such, we perform rigorous quality assur-
ance as part of our Continuous Integration pipeline: every generator
within OpenRAND was subjected to statistical testing using the popular
frameworks TestU01 [22] and PractRand [23]. These tools offer a suite
of complementary statistical tests designed to identify any underlying
patterns or irregularities in random streams of data. An example of
these tests is the Birthday Spacing test from TestU01 [22], which
4
Fig. 3. Illustrative comparison with Random123’s API: Implementing the Brownian
walk simulation from Fig. 1.

contrasts empirical results against known analytical solutions to detect
potential discrepancies.

We began testing by evaluating individual data streams, probing
them to their theoretical limit of 232 integers using PractRand across
a comprehensive range of keys and counters. To perform our par-
allel stream tests, we followed the procedure outlined in [19]—we
simulated a scenario with 16,000 particles, generating micro-streams
comprising three random numbers for each particle. These individ-
ual micro-streams for each particle were first combined into a sin-
gle concatenated stream. This unified stream was then lengthened
over successive iterations to examine correlations across the entire
system.

All generators were successfully tested for at least 1TB of data using
PractRand and TestU01’s comprehensive BigCrush battery of tests. Out
of BigCrush’s suite of 160 tests, the Threefry and Tyche generators
passed all 160 tests, and Philox and Squares passed 159. It is worth
noting that during repeated trials with multiple global seeds, occasional
failures are expected. This is not unique to OpenRAND; the authors of

Shihab Shahriar Khan et al.

g

6

f
a
I
b
a
e
i
g
t
o
s
p
R
b
m
l
g
a
i

s

i
o
r
S
E
c
V
q

D

c
i

D

l

D
w

o
e

SoftwareX 27 (2024) 101773
Fig. 4. Performance of OpenRAND on host and device respectively.

cuRAND4 noted similar failures. For an exhaustive breakdown of our
statistical results, we direct readers to our documentation.5 To the best
of our knowledge, this is the first time Tyche [20] and Squares [21]
enerators have undergone correlation tests for parallel streams.

. Impact

Random number generation plays a fundamental role in the ef-
iciency and reliability of larger software systems across fields such
s stochastic simulations, machine learning, and computer graphics.
deally, there would exist a good off-the-shelf RNG library that could
e used in various contexts, including multi-threaded/multi-process
pplications, without introducing excessive boilerplate code, unnec-
ssary complexity, or restrictions on applicable architecture. The ex-
sting software landscape is, however, fraught with challenges. Some
ood options expose low-level algorithmic and implementation de-
ails (e.g., Random123, cuRAND), leading to increased complexity;
thers are intrinsically bound to specific hardware (like cuRAND) or
oftware platforms (such as rocRAND, OneAPI MKL). Several once-
opular, platform-agnostic alternatives are now abandonware (clRNG,
andomCL), and even universal options, like the C++ Standard li-
rary, prove ill-suited for GPGPU programs. This landscape has led
any open-source platforms to either layer atop a low-level library,
ike HOOMD-Blue’s use of Random123, or to write custom random
enerators—as seen in Tensorflow, Pytorch, VTK, Jax, Alpaka, Kokkos,
nd others—sometimes without the benefit of thorough statistical val-
dation.
In light of the deficiencies of the existing software landscape, we de-

igned OpenRAND to be that off-the-shelf solution, a simplistic library

4 https://docs.nvidia.com/cuda/curand/testing.html
5 https://msu-sparta.github.io/OpenRAND/md_statistical_results.html
 t

5
that developers could pull into their projects with ease and use to gener-
ate random numbers in parallel in as little as two lines of code. Meeting
the criteria for such a library, OpenRAND is trustworthy—validated
for statistical robustness for single and parallel streams across CPU
and GPU platforms (including standard C++, CUDA, and HIP). It is
as performant, if not better, than existing libraries such as cuRAND,
Kokkos, Random123, and the C++ Standard library while maintaining
portability across different architectures. Most importantly, it has a
clean, intuitive API that complies with the C++ standard’s random
number engine interface, making its use familiar and compatible with
existing libraries. As such, OpenRAND is uniquely positioned as a
solution to elevate various projects by simplifying development, boost-
ing performance, and enhancing portability while ensuring statistical
validity and reproducibility for single and parallel streams.

7. Conclusion

To summarize, while the realm of random number generation
presents numerous software options riddled with deficiencies—from
being difficult and error-prone to use to being tightly bound to spe-
cific architectures—OpenRAND provides an off-the-shelf solution with
a clean, intuitive API and competitive performance on CPUs and
GPUs, without introducing boilerplate code, unnecessary complexity,
or restrictions on applicable architecture. Its focus on counter-based
generators was made strategically due to their low-memory footprint,
flexibility with respect to RNG parallelization strategy, and avalanche
property. Together, these features simplify the development of repro-
ducible parallel code, avoiding the complications and redundancies
faced by other libraries. Given its features, rigorous statistical valida-
tion, and performance benchmarks, OpenRAND has the potential to
significantly aid developers in various scientific fields, ensuring that
random number generation remains reliable, efficient, and easy to use.

CRediT authorship contribution statement

Shihab Shahriar Khan: Writing – review & editing, Writing – orig-
nal draft, Visualization, Validation, Supervision, Software, Method-
logy, Formal analysis, Conceptualization. Bryce Palmer: Writing –
eview & editing, Writing – original draft, Visualization, Validation,
upervision, Software, Investigation, Conceptualization. Christopher
delmaier: Writing – review & editing, Validation, Investigation, Con-
eptualization. Hasan Metin Aktulga: Writing – review & editing,
alidation, Supervision, Software, Project administration, Funding ac-
uisition, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The source code for the library and the benchmarks have been
inked in the paper.

eclaration of Generative AI and AI-assisted technologies in the
riting process

During the preparation of this work the authors used ChatGPT in
rder to improve language and readability. The authors reviewed and
dited the final content and take full responsibility for the content of

he publication.

https://docs.nvidia.com/cuda/curand/testing.html
https://msu-sparta.github.io/OpenRAND/md_statistical_results.html

Shihab Shahriar Khan et al. SoftwareX 27 (2024) 101773
Acknowledgments

This material is based upon work supported by the National Science
Foundation Office of Advanced Cyberinfrastructure, United States of
America under Grant 2007181 and used resources provided by Michi-
gan State University’s High-Performance Computing Center, United
States of America.

References

[1] Phillips CL, Anderson JA, Glotzer SC. Pseudo-random number generation for
Brownian dynamics and dissipative particle dynamics simulations on GPU
devices. J Comput Phys 2011;230(19):7191–201.

[2] Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, et
al. NetPyNE, a tool for data-driven multiscale modeling of brain circuits. Elife
2019;8:e44494.

[3] L’Ecuyer P, Nadeau-Chamard O, Chen Y-F, Lebar J. Multiple streams with
recurrence-based, counter-based, and splittable random number generators. In:
2021 winter simulation conference. WSC, 2021, p. 1–16. http://dx.doi.org/10.
1109/WSC52266.2021.9715397.

[4] O’Neill ME. PCG: A family of simple fast space-efficient statistically good
algorithms for random number generation. ACM Trans Math Software 2014.

[5] De Matteis A, Pagnutti S. Parallelization of random number generators and
long-range correlations. Numer Math 1988;53:595–608.

[6] L’Ecuyer P, Munger D, Oreshkin B, Simard R. Random numbers for parallel
computers: Requirements and methods, with emphasis on GPUs. Math Comput
Simulation 2017;135:3–17.

[7] Fog A. Pseudo-random number generators for vector processors and multicore
processors. J Modern Appl Stat Methods: JMASM 2015;308–34. http://dx.doi.
org/10.22237/jmasm/1430454120.

[8] Matthews R. On the derivation of a ‘‘chaotic’’ encryption algorithm. Cryptologia
1989;13(1):29–42.

[9] Tutueva AV, Nepomuceno EG, Karimov AI, Andreev VS, Butusov DN. Adaptive
chaotic maps and their application to pseudo-random numbers generation. Chaos
Solitons Fractals 2020;133:109615.
6
[10] Matsumoto M, Nishimura T. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans Model Comput
Simul (TOMACS) 1998;8(1):3–30.

[11] Salmon JK, Moraes MA, Dror RO, Shaw DE. Parallel random numbers: as easy as
1, 2, 3. In: Proceedings of 2011 international conference for high performance
computing, networking, storage and analysis. 2011, p. 1–12.

[12] Saito M, Matsumoto M. Variants of Mersenne twister suitable for graphic
processors. ACM Trans Math Softw 2013;39(2):1–20.

[13] Ciglarič T, Češnovar R, Štrumbelj E. An OpenCL library for parallel random
number generators. J Supercomput 2019;75:3866–81.

[14] L’Ecuyer P, Munger D, Kemerchou N. clRNG: A random number API with mul-
tiple streams for OpenCL. 2015, URL https://api.semanticscholar.org/CorpusID:
56334678.

[15] Trott CR, Lebrun-Grandié D, Arndt D, Ciesko J, Dang V, Ellingwood N, et
al. Kokkos 3: Programming model extensions for the exascale era. IEEE Trans
Parallel Distrib Syst 2022;33(4):805–17. http://dx.doi.org/10.1109/TPDS.2021.
3097283.

[16] Lemire D, O’Neill ME. Xorshift1024*, Xorshift1024+, Xorshift128+ and
Xoroshiro128+ fail statistical tests for linearity. 2018, CoRR abs/1810.05313,
arXiv:1810.05313.

[17] Bernstein DJ, et al. ChaCha, a variant of Salsa20. In: Workshop record of SASC,
vol. 8, (no. 1):Citeseer; 2008, p. 3–5.

[18] Zafar F, Olano M, Curtis A. GPU random numbers via the tiny encryption
algorithm. In: Proceedings of the conference on high performance graphics. 2010,
p. 133–41.

[19] Anderson JA, Glaser J, Glotzer SC. HOOMD-blue: A Python package for high-
performance molecular dynamics and hard particle Monte Carlo simulations.
Comput Mater Sci 2020;173:109363.

[20] Neves S, Araujo F. Fast and small nonlinear pseudorandom number generators
for computer simulation. In: Parallel processing and applied mathematics: 9th
international conference, PPAM 2011, torun, Poland, September 11-14, 2011.
revised selected papers, part i 9. Springer; 2012, p. 92–101.

[21] Widynski B. Squares: A fast counter-based RNG. 2020, arXiv preprint arXiv:
2004.06278.

[22] L’Ecuyer P, Simard R. TestU01: A C library for empirical testing of random
number generators. ACM Trans Math Softw 2007;33(4):1–40.

[23] Doty-Humphrey C. Practically random: C++ library of statistical tests for RNGs.
2010, https://sourceforge.net/projects/pracrand.

http://refhub.elsevier.com/S2352-7110(24)00144-4/sb1
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb1
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb1
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb1
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb1
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb2
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb2
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb2
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb2
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb2
http://dx.doi.org/10.1109/WSC52266.2021.9715397
http://dx.doi.org/10.1109/WSC52266.2021.9715397
http://dx.doi.org/10.1109/WSC52266.2021.9715397
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb4
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb4
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb4
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb5
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb5
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb5
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb6
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb6
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb6
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb6
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb6
http://dx.doi.org/10.22237/jmasm/1430454120
http://dx.doi.org/10.22237/jmasm/1430454120
http://dx.doi.org/10.22237/jmasm/1430454120
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb8
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb8
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb8
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb9
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb9
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb9
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb9
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb9
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb10
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb10
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb10
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb10
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb10
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb11
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb11
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb11
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb11
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb11
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb12
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb12
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb12
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb13
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb13
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb13
https://api.semanticscholar.org/CorpusID:56334678
https://api.semanticscholar.org/CorpusID:56334678
https://api.semanticscholar.org/CorpusID:56334678
http://dx.doi.org/10.1109/TPDS.2021.3097283
http://dx.doi.org/10.1109/TPDS.2021.3097283
http://dx.doi.org/10.1109/TPDS.2021.3097283
http://arxiv.org/abs/1810.05313
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb17
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb17
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb17
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb18
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb18
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb18
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb18
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb18
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb19
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb19
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb19
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb19
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb19
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb20
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb20
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb20
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb20
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb20
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb20
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb20
http://arxiv.org/abs/2004.06278
http://arxiv.org/abs/2004.06278
http://arxiv.org/abs/2004.06278
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb22
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb22
http://refhub.elsevier.com/S2352-7110(24)00144-4/sb22
https://sourceforge.net/projects/pracrand

	OpenRAND: A performance portable, reproducible random number generation library for parallel computations
	Background
	Motivation and significance
	Software description
	API Design
	Seed and counter selection

	Illustrative examples
	Empirical Results
	Performance Benchmarks
	Statistical Evaluation

	Impact
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Acknowledgments
	References

