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Abstract

We report on a first-principles numerical and theoretical study of plasma dynamo in a fully kinetic framework. By
applying an external mechanical force to an initially unmagnetized plasma, we develop a self-consistent treatment
of the generation of “seed” magnetic fields, the formation of turbulence, and the inductive amplification of fields by
the fluctuation dynamo. Driven large-scale motions in an unmagnetized, weakly collisional plasma are subject to
strong phase mixing, which leads to the development of thermal pressure anisotropy. This anisotropy triggers the
Weibel instability, which produces filamentary “seed” magnetic fields on plasma-kinetic scales. The plasma is
thereby magnetized, enabling efficient stretching and folding of the fields by the plasma motions and the
development of Larmor-scale kinetic instabilities such as the firehose and mirror. The scattering of particles off the
associated microscale magnetic fluctuations provides an effective viscosity, regulating the field morphology and
turbulence. During this process, the seed field is further amplified by the fluctuation dynamo until energy
equipartition with the turbulent flow is reached. By demonstrating that equipartition magnetic fields can be
generated from an initially unmagnetized plasma through large-scale turbulent flows, this work has important
implications for the origin and amplification of magnetic fields in the intracluster and intergalactic mediums.

Unified Astronomy Thesaurus concepts: Extragalactic magnetic fields (507); Cosmic magnetic fields theory (321);
Plasma astrophysics (1261); Intracluster medium (858); Intergalactic medium (813)

1. Introduction

The origin and evolution of cosmic magnetic fields is one of
the most important long-standing problems in astrophysics
and cosmology (Kulsrud & Zweibel 2008; Brandenburg &
Ntormousi 2023). In galaxies and clusters of galaxies, large-scale
magnetic fields with up to μG strengths are found to be ubiquitous
through observations of Faraday rotation, synchrotron emission,
and Zeeman splitting (e.g., Beck et al. 1996; Carilli &
Taylor 2002; Bonafede et al. 2010). The amplification of
preexisting “seed” magnetic fields—be they cosmological,
protogalactic, and/or plasma-kinetic in origin—by dynamo action
is believed to be essential in producing such dynamically
important magnetic fields. In contexts such as the intracluster
medium (ICM) of galaxy clusters, the dynamo is thought to
proceed through successive stretching of magnetic fields by
(gravitationally driven) chaotic flows, resulting on the average in
amplification of the magnetic energy via magnetic induction to
levels comparable to the kinetic energy of the flows.

Plasma dynamos have been studied extensively within a
magnetohydrodynamic (MHD) framework (Subramanian 1994;
Brandenburg & Subramanian 2005; Rincon 2019), but only
recently using a kinetic framework (Rincon et al. 2016; St-
Onge & Kunz 2018; Pusztai et al. 2020), even though a kinetic
treatment of the dynamo is important because cosmic plasmas
are typically weakly collisional, i.e., the particles Coulomb
mean free paths are comparable to or even exceed the

characteristic macroscopic length scale of an astrophysical
system. Under such conditions, the influence of microphysical
plasma processes on the dynamo is potentially significant. For
example, hybrid-kinetic (kinetic ions, fluid electrons) studies of
the dynamo (Rincon et al. 2016; St-Onge & Kunz 2018) have
shown that microscale kinetic instabilities determine the
effective viscosity of the turbulent plasma and, in so doing,
control the amplification rate of any seed magnetic field. Going
further—namely, realizing a self-consistently generated seed
field and capturing the influence of collisionless electrons—
requires a fully kinetic treatment of the dynamo process. This is
the purpose of this paper.
In a weakly collisional plasma, anisotropy in the thermal

motions of the particles provides free energy to create magnetic
fields from an initially unmagnetized state through the Weibel
instability (e.g., Weibel 1959; Pucci et al. 2021; Zhou et al.
2022). As the Weibel fields grow to deplete this thermal free
energy, the plasma ultimately becomes magnetized, and the
bulk flow is then able to stretch and fold the magnetic field to
increase its overall strength. The approximate conservation of
the adiabatic invariant of the magnetic moments μ by the
magnetized particles implies that the growth of the magnetic
field will again bias the thermal motion of the plasmas, but now
with respect to the magnetic-field direction. This field-biased
pressure anisotropy serves as a source of free energy for the
mirror and firehose plasma instabilities. The scattering of
particles off the Larmor-scale fluctuations driven by these two
instabilities plays an important role in the plasma dynamo by
controlling the plasma viscosity (and possibly resistivity as
well; Kunz et al. 2014; St-Onge & Kunz 2018), and by
breaking the adiabatic invariance of μ, the conservation of
which in the absence of pitch-angle scattering would place a
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prohibitive constraint on the energy budget for the growth of
magnetic fields (Helander et al. 2016).

In this work, we develop a fully kinetic, self-consistent
description of the generation and amplification of magnetic
fields in an initially unmagnetized plasma under large-scale
chaotic motions. In Section 2, we discuss our theoretical
expectations for four distinguishable phases of the ab initio
plasma dynamo, as well as the scale separation required
between the macroscopic flows and the electron plasma skin
depth to capture these phases in a numerical simulation. We
then present results from particle-in-cell (PIC) simulations of
the plasma dynamo in Section 3, which we find to be
qualitatively consistent with the theoretical expectations. We
conclude in Section 4 with a brief discussion of the properties
of a fully kinetic dynamo and how our results might fit into the
broader narrative of cosmic magnetogenesis.

2. Theoretical Expectations

In a collisionless plasma, kinetic instabilities often play an
essential role in generating seed magnetic fields and regulating
the material properties of the plasma (e.g., its effective
dynamical viscosity, thermal conductivity, and electrical
resistivity; Kunz 2019). The interplay between this microscale
physics, and its macroscale consequences for the establishment
of turbulent flows and the amplification and sustenance of
cosmic magnetic fields, are central ingredients in any predictive
theory for the plasma dynamo. In this section, we review some
of this physics, taking care to distinguish between what has
been rigorously established and what is more speculative.

We first define three dimensionless quantities to describe the
energetics of the system. The first, which quantifies the average
magnetic energy density in the plasma, is the (inverse) plasma
beta parameter, β−1≡ 〈B2/8π〉/〈P〉, where P is the plasma
pressure and 〈 · 〉 denotes the domain average. The bulk flow
energy is quantified using the square of the Mach number,

º ( )M U v2
rms th

2, with Urms being the rms bulk flow speed and
rº á ñv Pth being the thermal speed, with ρ the total mass

density. The free thermal energy of the plasma is represented
by the pressure anisotropy, Δ≡ 〈P⊥/P∥− 1〉, where P⊥ (P∥) is
the thermal pressure perpendicular (parallel) to the local
magnetic field. This definition presumes a magnetized plasma;
when the plasma is unmagnetized, the relevant pressure
anisotropy is measured with respect to the axis along which
the pressure tensor has its maximum eigenvalue (see Zhou et al.
2022 for details). In the Weibel-seeded plasma dynamo, there
are two ways in which pressure anisotropy is produced. The
first, most relevant to the early unmagnetized stage, issues from
the collisionless phase mixing of the driven shear flows (Zhou
et al. 2022). Unmagnetized particles carrying the momentum of
the local bulk flows have random thermal motions. The free
streaming of these particles smooths out the spatial variation of
the bulk flows and leads to the development of velocity-space
anisotropy in particle distributions and thus pressure aniso-
tropy. The second means of producing pressure anisotropy
requires the plasma to be magnetized, as it relies on the
adiabatic invariance of the particles’ magnetic moments
m º ^mv B22 , where m and v⊥ are the mass and perpendicular
velocity of each particle, to couple their perpendicular thermal
energy to the magnetic-field strength. Consequently, as the
bulk flows stretch and amplify the magnetic field, P⊥ increases
relative to P∥. Once produced, Δ provides a free-energy source
for driving rapidly growing kinetic instabilities, predominantly

in the form of skin-depth or Larmor-scale magnetic fluctua-
tions. The scattering or trapping of particles as they interact
with these fluctuations leads to an effective dynamical viscosity
(in addition to that caused by phase mixing and particle
collisions), which in turn constrains large-scale flows.
In what follows, we provide estimates for the evolution of

β−1 given driven turbulence characterized by Mach number M
and characteristic scale L. With asymptotically large-scale
separation between the macroscopic astrophysical flows and
the microscopic plasma-kinetic scales, we anticipate four main
phases of magnetic-field amplification, as illustrated schema-
tically in Figure 1 and detailed in the following subsections.

2.1. Seeding of Magnetic Fields by Weibel Instability

The Weibel instability has been recognized and widely
studied as a mechanism to generate magnetic fields. It is
particularly versatile, as its only requirement is pressure
anisotropy in an unmagnetized plasma. Despite this versatility,
the Weibel instability has been studied mainly in the context of
local counter-streaming configurations such as collisionless
shocks (e.g., Medvedev & Loeb 1999; Medvedev et al. 2006;
Kato & Takabe 2008; Spitkovsky 2008) and laser-plasma
interactions (e.g., Schoeffler et al. 2014; Huntington et al.
2015), and has only recently been considered in the more
global context of low-Mach-number turbulence, e.g., in galaxy
clusters and the intergalactic medium (Zhou et al. 2022). In this
paper, we are concerned with the latter case.
Zhou et al. (2022) presented an analytical and numerical

investigation of the development and saturation of the Weibel
instability in an electron-positron plasma under the action of a
large-scale shear flow (as a local approximation of a turbulent
system). In an initially unmagnetized plasma, any inhomoge-
neous flow is subject to efficient phase mixing via the thermal
motions of the particles. This phase mixing leads to the
development of free energy in the plasma in the form of a
pressure anisotropy that increases on a hybrid thermal-dynamic
timescale,D  ( )M tv Lth

2. In response to this slowly evolving
background, the fast, kinetic-scale electron Weibel instability
is triggered, with an instantaneous linear growth rate
γw;Δ3/2ωpevth/c for the most unstable linear mode
kw;Δ1/2/de, where w pº ne m4e ep

2 is the plasma fre-
quency and de≡ c/ωpe is the electron skin depth. In
consideration of this electron-only (or electron-positron)
Weibel instability, Δ and M in these expressions are defined

Figure 1. Qualitative illustration of the predicted time evolution of β−1 (or
magnetic energy) in the Weibel-seeded, turbulent plasma dynamo, divided into
four main phases. Reference values of the predicted magnetic-field strength
given ICM conditions are given on the ordinate.
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using the electron thermal speed. As Δ increases slowly, the
linear growth rate of the Weibel instability also increases, and
the magnetic perturbations grow super-exponentially (Zhou
et al. 2022). This rapid growth proceeds until the instability
enters a nonlinear regime in which the depletion of the free
energy (quantified byΔ) by the instability balances its
replenishment by the persistent phase mixing of the bulk
momentum. In this nonlinear regime, the spontaneously
produced magnetic field continues its growth, but with a
decreased growth rate. At some point, this field begins to affect
the trajectories of the particles and eventually magnetize the
plasma. The instability then reaches saturation when the
electron Larmor radius ρe≡mevthc/eB decreases to become
comparable to the coherence scale of the Weibel seed field,
ρekw∼ 1; this is known as the trapping condition (Davidson
et al. 1972; Kato 2005).

The dependence of the saturated magnetic energy (∝β−1)
and coherence scale (µ -kw

1) of the Weibel seed field on the
scale separation L/de and the Mach number was found to be
given by (Zhou et al. 2022)

b ~- -( ) ( )L d M , 1ew
1 1 2 1 4

~ -( ) ( )k d L d M . 2e ew
1 4 1 8

These results set the expectation that, under the generic
motions of astrophysical turbulence, seed magnetic fields are
automatically generated through the Weibel instability and
plasmas are spontaneously magnetized. Without making
additional assumptions on the origins of seed fields, the b-

w
1

given by Equation (1) provides a lower bound on the seed
magnetic energy for any turbulent dynamo.

The above discussion only considered the electron Weibel
instability. In reality, as the ions develop a pressure anisotropy
of their own, they should also become unstable to a Weibel
instability, which would produce magnetic fields on the ion-
kinetic scales. Because the detailed effects of the magnetized
electrons on this ion-Weibel instability are still unclear at this
time, we simply assume that the magnetic energy and
wavenumber of the ion-Weibel fields should obey the same
scaling as Equations (1)–(2), with de replaced by the ion skin
depth di and M defined using the ion thermal speed. Adopting
these replacements would boost the value of b-

w
1 at the end of

the ion-Weibel stage by a relatively modest factor of
»( )m m 17i e

3 8 , and the value of kw given by the ion-Weibel
field would decrease by a factor of »( )m m 10i e

5 16 . For the
remainder of this section, we assume that there is a phase of
ion-Weibel growth of the magnetic field; the numerical
experiments presented in Section 3 adopt an electron-positron
plasma, for which no such phase exists.

2.2. Inverse Cascade of the Weibel Seed Field

Because the Weibel field is produced on a timescale much
shorter than the flow-crossing timescale ∼L/Urms, the impact
of the large-scale shear flow on its initial evolution is only
minimal. The Weibel field is thus expected to evolve without
directly interacting with the background flow for t L/Urms. It
has been repeatedly found that these Weibel fields, after their
formation and saturation, will coalesce and increase their
coherence length (e.g., Gruzinov 2001; Medvedev et al. 2005;
Kato & Takabe 2008; Zhou et al. 2022), that is, inverse cascade
to larger scales. In order to predict the properties of these fields
at the moment they become seeds for a fluctuation dynamo

(i.e., at t∼ L/Urms), it is essential to know what scale the
Weibel fields can reach through coalescence within one flow-
crossing time, and how their magnetic energy evolves during
this inverse cascade. Zhou et al. (2019, 2020, 2021) derived a
simplified analytical model based on fundamental conservation
laws to describe the evolution of initially small-scale magnetic
fields during their successive coalescence.7 Those authors
identified magnetic reconnection as the key mechanism
enabling the growth of magnetic fields’ characteristic length
scale and setting the associated timescale. They found that the
decay of magnetic energy and the growth of the coherence
length of the magnetic fields (or, equivalently, the decrease in
its corresponding wavenumber k) are described by scalings

b b t t~ ~- - - -( ) ( ) ( )t k k t, and , 31
w

1
rec

1
w rec

1 2

respectively. Here t bº - ( ) k vrec rec
1

w w th is the reconnection
timescale for the initial fields (i.e., the saturated Weibel fields
with energy b-

w
1 and wavenumber kw) and òrec is the

dimensionless reconnection rate; values of òrec∼ 0.1 are
usually found in numerical studies of reconnection in a
collisionless, well-magnetized plasma (e.g., Daughton &
Karimabadi 2007; Daughton et al. 2011; although the detailed
physics of magnetic reconnection in the high-β regime is still
unclear).
Combining Equations (1)–(3), we obtain the energy and

inverse length scale of the coalescing Weibel filaments at
t∼ L/Urms:

b ~- - -( ) ( )L d M , 4iseed
1 1

rec
1

~ - -( ) ( )k d L d M . 5i iseed
1 2 1 2

rec
1 2

In a typical ICM, M∼ 0.1 (and so ~-M 1rec
1 ) and L/di∼ 1014.

If the above scalings are correct, the remnant Weibel seed fields
at the end of the inverse-cascade process would have an energy
of only b ~- -10seed

1 14 and reside on length scales much larger
than the kinetic scales, kseeddi∼ 10−7. Note that, during this
process, the ratio of the particles’ Larmor radii (ρi∝ β1/2) and
the coherence scale of the magnetic field, viz., r b~k ki w

1 2
w,

remains a constant. That is, after the particles become
magnetized at the saturation of Weibel fields, they remain
magnetized during the inverse cascade of these fields.

2.3. Accelerating Dynamo

At t∼ L/Urms, the large-scale plasma flow is established and
the coalescence of the Weibel fields is replaced by the
stretching and folding of the field lines by the flow. The
adiabatic conservation of the magnetic moment μ during this
stretching implies the generation of pressure anisotropy. As the
pressure anisotropy grows, the magnetized plasma becomes
unstable to kinetic plasma instabilities, namely, the
mirror (Shapiro & Shevchenko 1964; Barnes 1966; Southwood
& Kivelson 1993; Hellinger 2007) and the firehose
(Rosenbluth 1956; Chandrasekhar et al. 1958; Parker 1958;
Vedenov & Sagdeev 1958; Yoon et al. 1993; Hellinger &
Matsumoto 2000; the ion cyclotron instability may also play a
role whenΔ> 0 (Riquelme 2015)). The mirror instability, with
the threshold Δ 1/β, should occur in regions where the field

7 Their study was conducted using the resistive-MHD equations, but the
conservation laws they used to derive the scalings for the evolution of the
system are expected to hold more generally (beyond a fluid description).
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lines are stretched and the field strength increases; the firehose
instability, with the threshold Δ− 2/β, should occur in
regions where the field lines are bent (which, in the fluctuation
dynamo, are statistically also where the field strength has
decreased (Schekochihin et al. 2004)).

After these instabilities grow and saturate, particles scatter
off of the associated Larmor-scale distortions in the magnetic
field and isotropize the velocity distribution. This scattering can
be interpreted as an effective collisionality (Kunz et al. 2014;
Riquelme 2015), which we denote as νeff, and which supplants
the (typically slower) Coulomb collisionality νc. Following the
Chew–Goldberger–Low equations (Chew et al. 1956), assum-
ing incompressibility, and taking the isotropizing effect of
effective collisions into account (Schekochihin & Cowley 2006;
Rosinet al. 2011), the evolution of Δ with |Δ| 1/β= 1 can
be written heuristically as

n
D

» - D ( )d
dt

d B
dt

3
ln

. 6eff

This equation states that pressure anisotropy is produced
through adiabatic invariance and relaxed by an effective
collisionality.

In a turbulent environment, the spatiotemporal inhomogene-
ity of the fluctuations, the pressure anisotropy, and thus the
effective collisionality complicate a detailed description of the
plasma dynamo. What follows in the remainder of this
subsection and the next one (Section 2.4) is a scenario for
the inductive phase of the plasma dynamo, one that is based on
a combination of theoretical arguments and results from
existing hybrid-kinetic simulations of this phase.

We begin by associating an effective parallel Reynolds
number nº ( )Re U L vrms th

2
eff with the effective collisionality,

which for νeff> νc is larger than the Reynolds number associated
with Coulomb collisions. Because Re determines the maximum
value of the field-parallel rate of strain of the flow, bb:∇u, it
also controls the amplification rate of the magnetic field.
Assuming the Kolmogorov scaling (Kolmogorov 1941) for the
turbulent flow (which is not a priori guaranteed but finds support
in existing hybrid-kinetic simulations (St-Onge & Kunz 2018)),
the parallel rate of strain is largest at the parallel viscous scale

~n
-

 ℓ L Re 3 4. The parallel rate of strain, and thus the growth
rate of magnetic fields, can then be expressed as

g º ~  ( )/bb u
d B

dt
U

L
Re:

ln
. 7rms 1 2

In what follows, we adopt (and adapt) arguments made by
Schekochihin & Cowley (2006) for how the dependence of Re
on the magnetic-field strength through the action of these
kinetic instabilities might lead to an accelerating dynamo and
explosive growth of magnetic fields (phase III).

As the flows stretch and amplify the magnetic fields, the
mirror and firehose instabilities are triggered and their
associated fluctuations grow. In the early phase of the dynamo,
when magnetic fields are sufficiently weak, the scattering rate
needed to regulate Δ to within the firehose and mirror
thresholds is larger than the ion Larmor frequency, that is,
|bb : ∇u|/Δ?Ωi. Such a collisionality cannot be realized, i.e.,
the kinetic instabilities cannot scatter particles so fast that the
plasma de-magnetizes. In this regime, it is reasonable to believe
that the particle scattering rate is controlled by the growth rate of
the mirror and firehose instabilities, both of which are
proportional to the Larmor frequency times some power of the

pressure anisotropy. We therefore write νeff∝ Bα with α being
positive (Schekochihin & Cowley 2006; Melville et al. 2016).
Then, the dynamo growth rate nµ µ µ a

d B dt Re Bln 1 2
eff
1 2 2

increases with increasing field strength, resulting in an explosive
growth of magnetic energy (characterized by a finite-time-
singularity):

b b
a

= - -
a

- -
-⎡⎣ ⎤⎦ ( ) ( )U

L
Re t t1

2
, 81

seed
1 rms

0
1 2

seed

2

where tseed∼ L/Urms indicates the moment of time at the
beginning of this explosive phase. Here Re 0 is the parallel
Reynolds number at this time, which is expected to be provided
by phase mixing, collisions between particles, and/or the weak
scattering off Weibel fluctuations, with an estimated value
of ~ ( )Re 10 . Given the form of Equation (8), the actual
value of α does not affect the main feature of this phase. At the
early time of this stage (t− tseed= L/Urms), the magnetic energy
grows linearly b b= + -- -

[ ( ) ( )]U L Re t t11
seed

1
rms 0

1 2
seed .

The dynamo amplification starts to accelerate as it evolves with
time and the explosive phase ends at around
a - ~( )( ) ( )U L Re t t2 1rms 0

1 2
seed . Because both α and Re 0

are order-unity numbers, this phase III is expected to last for
(t− tseed)∼ L/Urms, roughly one more flow-crossing time. This
phase of accelerating dynamo growth, although short, is critical
to the overall amplification of magnetic fields because it allows

Re , and thus the dynamo growth rate, to increase to a
comparatively large value. Note that this phase has not yet been
clearly realized in kinetic simulations, though finds some support
in dedicated studies of the firehose and mirror (Melville et al.
2016).

2.4. Pressure-anisotropy-instability-regulated Dynamo

As the nonlinear mirror and firehose fluctuations continue to
grow alongside the dynamo field, the scattering of particles
eventually becomes efficient enough to regulate the plasma
anisotropy to values comparable to the instabilities’ thresholds,
viz. |Δ|∼ 1/β. We may then use Equation (6) to estimate the
value of νeff required for this to occur, namely, νeff≈ |bb : ∇u|β.
(Such a collisionality has been measured directly in the later
stages of the plasma dynamo using hybrid-kinetic simulations;
St-Onge & Kunz 2018.) The transition to this phase occurs when
the increasing Larmor frequency (as the magnetic field
grows) becomes comparable to this required collisionality,
viz.Ωi∼ |bb : ∇u|β, which is equivalent to the requirement that
(St-Onge et al. 2020)

b ~- -( ) ( )L d M . 9iani
1 2 5 6 5

Once this level of magnetic energy is reached, the hypothesized
phase of explosive growth should end and the dynamo will start
to be regulated by the pressure-anisotropy-instability (phase IV).
Under typical ICM conditions, this value of b-

ani
1 corresponds to

∼nG fields. That is, the magnetic fields are expected to be
amplified to have a similar amount of energy as the Weibel fields
before they coalesced and decayed, but presumably with a much
larger coherence scale than the Weibel fields. This phase of
dynamo starts with a large effective Re and thus the strength of
the magnetic fields increases significantly. As derived and
numerically confirmed in Melville et al. (2016) and St-Onge &
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Kunz (2018), the expression for the collisionality
νeff≈ 3|bb : ∇u|β when the anisotropy is regulated suggests
that

n b~ ~ ( )Re U L v M . 10eff rms th
2 4 2

That is, as magnetic fields are amplified by this pressure-
anisotropy-instability-regulated dynamo, the parallel Reynolds
number, and thus the parallel rate of strain, keeps decreasing.
[Note that Equation (10) implies a parallel viscous scale that is
commensurate with the scale on which the flow is Alfvénic,
and so the dynamo is intrinsically nonlinear during this phase.]
The amplification of the magnetic field thus gradually slows
down. This phase eventually ends either when the dynamo
saturates with approximate equipartition between the mean
kinetic and magnetic energies, viz. b ~- Msat

1 2 and ~Re 1, or
when the effective collisionality drops below the background
Coulomb collisionality and the plasma is no longer kinetically
unstable, viz. b l- ( ) M Lsat

1 3 2
mfp,c

1 2. In the latter case, the
magnetic fields would continue to be amplified to equipartition.
Coincidentally or not, the ICM seems to reside near the
boundary between these two cases, with β−1∼ 10−3–10−2,
M∼ 0.1, and λmfp,c/L∼ 10−2–10−1, and thus the anomalous
scattering from the putative firehose/mirror instabilities is
comparable to Coulomb scattering.

Though the aforementioned processes (except for the
explosive phase) have been investigated independently with
specific set-ups, how they transition from one to the other and
how they collectively shape the collisionless turbulent dynamo
is still unclear. In Section 3, we present a numerical study that
aims to include self-consistently all the relevant physical
processes (for the case of a pair plasma). Unfortunately, quite a
large-scale separation L/di is required to satisfy both
b b b- - - seed

1
ani

1
sat

1 and b b- -seed
1

w
1 and distinguish between

all of the hypothesized four phases of evolution. Using M∼ 0.1
and assuming these critical values of β−1 are separated by at
least a factor of 10, we require that L/di 105. This
requirement vastly exceeds that which can be achieved with
today’s computational resources [the cost of a simulation scales
as ( )L di

4], and the simulation discussed in the next section is
only able to provide qualitative evidence for many of these
theoretical predictions. In particular, phases II and III are barely
captured in the simulation and the numerical evidence can only
serve as a test of consistency with the above theoretical
expectations.

3. Numerical Experiments

3.1. Numerical Methods

We perform fully kinetic, particle-in-cell (PIC) simulations
to study the plasma dynamo with the code Zeltron (Cerutti &
Werner 2013). Because of the high computational cost inherent
to this problem, our simulations are performed with an
electron-positron plasma, in which the skin depths of both
species are identical, as are their Larmor-radius scales.
The system is initialized with a spatially uniform,
isotropic, unmagnetized, Maxwell–Jüttner plasma of subrelati-
vistic temperature Te0≡ θemc

2= 1/16. It is continuously
subjected to a random, time-correlated external volumetric
mechanical force, Fext, applied at the largest scales of the
domain (Zhdankin 2021; details in Appendix A.1). The force

Fext contains six solenoidal modes with time-dependent
random phases and is designed to drive incompressible flows.
Optically thin external inverse Compton (IC) radiative cooling
(parameters described in Appendix A.2) is included to achieve
a steady temperature close to Te0 and to suppress nonthermal
particle acceleration by cooling mainly at the high-energy tails
of the plasma distributions. The IC radiation is isotropic and
thus is not expected to affect the properties of the plasma
dynamo. The simulation is performed in a 3D periodic cubic
box and the separation between the domain scale (L) and the
plasma skin depth (de) is L/de= 378 so that the total number of
cells is 15123. We use 32 particles per cell (PPC; 16 per
species) for the simulation, so approximately 100 billion
particles in total. Simulations with PPC ranging from 32 to 128
show the same results. The grid spacing is uniform with
dx(= dy= dz)= λDe= de/4, where λDe is the (initial) Debye
length and l q= =d 1 4e e eD .

3.2. Numerical Results

The overall evolution of the system in our simulation can be
divided into four qualitatively different stages: the linear
Weibel stage (tUrms/L τw), the Weibel-filament coalescing
stage (τw< tUrms/L 1), the exponential dynamo stage
(1< tUrms/L 3), and then slow amplification until saturation
(3 tUrms/L 7). The first and second of these stages
correspond to Phase I (Section 2.1) and Phase II
(Section 2.2), respectively, of our theoretical expectations.
The third and fourth of these stages correspond to Phase IV
(Section 2.4) of our theoretical expectations. Note that Phase III
(Section 2.3) of our theoretical expectations is not clearly
realized in the PIC simulations due to limited scale separation,
as discussed below.

3.2.1. Generation and Evolution of Seed Magnetic Fields

The energetics of the system are described by the time
evolution of β−1, M2, and Δ (defined as described in Section 2
but instead using the electron mass and electron thermal speed),
shown in the top panel of Figure 2. As the plasma is stirred by
the applied force, bulk motions are established, and M2

increases. The phase mixing of the inhomogeneous flows by
the thermal motion of the particles leads to the development of
pressure anisotropyΔ. In an unmagnetized plasma, this
anisotropy triggers the Weibel instability (Fried 1959;
Weibel 1959) and generates the seed magnetic fields (Phase I of
Section 2.1), as indicated by the rapid increase of β−1. The
Weibel instability reaches its nonlinear phase and the Weibel
filaments become prominent at a time that we denote as τw
(≈0.16L/Urms; vertical dotted line), at which point the
morphology of the magnetic field is shown in the left panel of
Figure 3. Clear filamentary structures of the Weibel fields on
∼de scales emerge from the initial random noise and occupy an
appreciable fraction of the volume of the domain. We refer
readers interested in the finer details of Weibel growth and
saturation to Zhou et al. (2022), where these phases are studied
using the simplified setup of a large-scale shear flow; our
present simulation and those in Zhou et al. (2022) exhibit very
similar evolution during these two phases despite differences in
driving parameters.
The time evolution (over the whole simulation) of magnetic

and bulk kinetic energy spectra [integrated on spherical shells in
wavenumber (k) space], òp pº W( ) ( ) ∣ ( )∣ B kk d k1 4 8k

2 2
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(blue lines) and òp rº W á ñ( ) ( ) ∣ ( )∣ u kk d k1 4 2k
2 2 (orange

lines), is shown in Figure 4, with earlier times corresponding to
curves with greater transparency. The magnetic (kinetic) spectra
with blue (orange) curves are highlighted in the top (bottom)
panel, with the other one shown in the background for
reference.8 At early times (around τw), the bulk kinetic energy
concentrates at the system scale, with little energy cascading to
the smaller scales. This is consistent with the expectation that a
collisionless, unmagnetized plasma is very viscous with the
effective ~Re 1 due to unimpeded phase mixing. The magnetic
energy spectrum at τw (highlighted with the magenta curve)
peaks at kwL/2π≈ 20, i.e., a wavenumber kw≈ 0.3/de.

The scaling dependence of the saturated amplitude and
length scale of the Weibel seed fields on the rate of strain of the
flow (Urms/L) and the scale separation L/de, as determined by
Zhou et al. (2022), is given by Equation (1). With the limited
scale separation in our simulation, we expect the Weibel
instability to produce seed fields with energy b- - 10w

1 2 and
wavenumber kwde; 0.2. This is roughly consistent with our
measured β−1≈ 3× 10−3 (Figure 2) and kwde≈ 0.3 (Figure 4)
at τw. For comparison, using a value of L/de∼ 1016

characteristic of the bulk ICM in Equation (1) pre-
dicts b ~- -10w

1 8.
After τw, the system enters the second stage in which the

nonlinear effects of the Weibel instability become important
(Phase II of Section 2.2). The peak of the magnetic spectrum
shifts to lower k while continuing to grow in amplitude. Two

effects are responsible for this shift. The first is due to low-k
Weibel modes. While high-k, fastest-growing Weibel modes
become nonlinear and stop growing exponentially, the initially
subdominant longer-wavelength Weibel modes are still in the
linear stage and continue to grow exponentially, albeit with
lower linear growth rates, and thus start to overtake high-k
modes. The second, as described in Section 2.2, the Weibel
filaments, after they saturate, are expected to start to coalesce
with one another via reconnection (Zhou et al. 2020, 2022)
before being affected by the flow shear on the timescale
∼L/Urms. As mentioned at the end of Section 2, the
coalescence phase is difficult to identify unambiguously in
the simulation because of the limited scale separation. Some
coalescence events can be seen in the middle panel of Figure 5,
which plots representative field lines chosen from regions with
strong magnetic fields at t= 0.3L/Urms. At multiple locations,
distinct filaments are nested within shared field lines, suggest-
ing an ongoing coalescence. Through this process, the
coherence length scale of the magnetic fields grows and the
magnetic energy dissipates rapidly. This can also be seen in the
time evolution of magnetic energy densities at different k,
shown in the bottom panel of Figure 2. Initially, the fastest-
growing modes occur at around kL/2π≈ 20 (i.e., at
wavenumber kw). These modes saturate quickly (at
around τw), and are immediately followed by a sudden drop
of their energy densities due to filament coalescence, coincid-
ing with a jump in energy density at smaller wavenumbers by a
factor of 2 (consistent with flux conservation; e.g.,
Gruzinov 2001; Zhou et al. 2020).
With sufficient length scale separation L/de (and hence kwL)

and timescale separation between τw and L/Urms, we anticipate
a prolonged phase of successive coalescence of Weibel
filaments. The decay of magnetic energy and the growth of
coherence length scale during such a phase is expected to
follow the scaling laws given by Equation (3). In our
simulation, only a couple of generations of coalescence are
allowed before being interrupted by the flow shear and this
predicted phase in which β−1 decreases is not well captured.

3.2.2. Establishment of Plasma Dynamo

After the phase of Weibel growth and magnetization of the
plasma, the system is continuously driven by the external force
toward reaching a statistically steady state. As shown in the top
panel of Figure 2, both M2 and Δ continue to increase and
attain steady values by t≈ L/Urms. On this flow-crossing
timescale, the large-scale flows are fully developed and start to
stretch and deform the seed fields. The (coalesced) Weibel seed
fields reorganize, aligning with the large-scale flows, as shown
in the middle panel of Figure 3. The magnetic and kinetic
energy spectra at t= L/Urms are highlighted in Figure 4 with
green curves. The kinetic spectrum rapidly extends toward
smaller scales, with a knee forming at kL/2π≈ 5, where the
kinetic and magnetic energy are comparable. Below the knee, a
shallower kinetic spectrum is formed, where a k−5/3 line is
included as a visual reference. The broadening of the kinetic
spectrum indicates that some energy is cascading to smaller
scales and suggests the formation of a viscous scale slightly
smaller than the outer scale. The magnetic spectrum is also
broadened due to the combined effect of filament coalescence
and rearrangement, the growth of low-k Weibel modes, and the
stretching by the flow. As a consequence of limited scale
separation, when the bulk flows are well established, the

Figure 2. Top: time evolution of M2, Δ, and β−1. Bottom: time evolution of
magnetic energy density at various wavenumbers. The vertical dotted line
indicates the time τw when the Weibel instability reaches its largest growth rate.

8 The spectral bumps at large kL/2π (corresponding to length scales
comparable to λDe) are caused by numerical noise. They do not affect the
simulation given their low amplitudes and concentration at high k.
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magnetic energy density is already larger than the kinetic one
across a wide range of scales (at kL/2π 5). This leaves a
narrow range for the action of plasma dynamo because the
stretching and folding of magnetic-field lines can only happen
at scales where the flows are energetically dominant.

The geometry of the magnetic field can be characterized
using the wavenumbers º á ñ á ñ ·( ∣ ∣ )B Bk B2 4 1 2, º´kB J

´á ñ á ñ( ∣ ∣ )B J B2 4 1 2, and º á ñ á ñ·( ∣ ∣ )· B Jk BB J
2 4 1 2, which

quantify the variation of the magnetic field along itself, in the
direction of the field reversal, and in the cross direction,
respectively (Schekochihin et al. 2004). If the magnetic field
possesses a folded structure, its length, thickness, and width
can be represented by ℓ∼ 1/k∥, λ∼ 1/kB×J, and ξ∼ 1/kB·J,
respectively. The time evolution of k∥, kB×J, and kB·J is shown
in the top panel of Figure 5, together with the domain-averaged
normalized inverse particles’ Larmor radius (L/2π)/ρe. The
three wavenumbers initially have large values set by the Weibel
filaments, and drop rapidly from the beginning of the
simulation to t≈ 0.4L/Urms due to the rapid disentanglement
of the helical field lines by the turbulent flows, visualized in the
middle panel of Figure 5. Starting at t≈ 0.4L/Urms, the
wavenumbers decrease slowly to become nearly constant, with
the ordering k∥≈ kB·J= kB×J, indicative of a folded-sheet-like
structure. The inverse Larmor radius (L/2π)/ρe increases first
rapidly up until τw and then slower between τw and L/Urms. As
the growth of magnetic energy drastically slows down after
L/Urms, (L/2π)/ρe also reaches an approximate saturation. At
t≈ L/Urms, kB×J≈ 1/ρe is observed, suggesting that the
thickness of the folds is comparable to the Larmor radii of
particles. This is consistent with the argument that the length
scale for the magnetic-field reversal cannot become shorter than
the local Larmor radius as a result of the stretching and folding
of the flows, as the field lines are not frozen into the plasma
below the Larmor radius.

3.2.3. Inductive Dynamo Amplification

As the turbulent flows are established and the seed field
becomes coupled to the flow, it becomes possible for the flows
to stretch and fold the magnetic-field lines. The statistical
outcome of this process is an inductive amplification of the
magnetic field, known as the plasma dynamo, which leads to
another period of exponential growth of magnetic energy at
L/Urms t 3L/Urms in our simulation, as evidenced in
Figure 2. The overall growth of magnetic energy can be fit
with b µ- ( )U t Lexp 0.41

rms , corresponding to a magnetic
growth rate g º »d B dt U Lln 0.2 rms . This growth rate is
tied to the macroscopic eddy-turn-over rate and is thus much
slower than the rapid growth on the kinetic timescale during the

Figure 3. Visualization of (normalized) magnetic-field magnitude at peak Weibel growth (tUrms/L = τw; left), after one large-scale turnover time (t = L/Urms;
middle), and in the saturated state of the dynamo (right).

Figure 4. Magnetic (blue) and bulk kinetic (orange) energy spectra at various
times, with earlier times corresponding to lines with greater transparency. The
top (bottom) panel highlights the magnetic (kinetic) spectrum, with the other
shown in the background for reference. The spectra at tUrms/L = τw (L/Urms)
are highlighted in magenta (green). The magnetic (kinetic) spectrum at t = L/
Urms is highlighted with a black solid (dashed) curve. The silver, blue, and
green vertical lines indicate the scales of the electron skin depth, the Weibel
filaments, and the Larmor radius of particles after dynamo saturation,
respectively.
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Weibel stage. The dynamo growth rate being comparable to the
flow-crossing rate suggests that the inductive amplification is
given by the flow on scales not far removed from the domain
scale, and is another manifestation of the lack of scale
separation in our simulation: it is consistent with the fact that,
at t≈ L/Urms, the seed field is so strong that only at scales
comparable to the domain size are bulk flows energetically
dominant (see Figure 4). The strong magnetic field exerts a
back reaction on the plasma flow through the Lorentz force,
causing the dynamo to start in an already nonlinear regime,
skipping the kinematic phase. In this case, although the mirror
and firehose instabilities start to grow at t≈ L/Urms (details
explained in the next section), the accelerating dynamo phase
described in Section 2.3 cannot be clearly identified in the
simulation because the magnetic-field strength at this stage is
already too close to its saturated level. Instead, the system
transitions directly into Phase IV of Section 2.4. As shown in
the bottom panel of Figure 2, at larger scales where the strength
of the seed field is smaller, the dynamo growth rate at
L/Urms t 3L/Urms is higher (e.g., γ≈ 0.7Urms/L for kL/
2π= 1) due to the weaker back reaction of the field on the flow.
This leads to a further broadening of the magnetic spectrum and
accumulation of energy at the system scale (Figure 4, top
panel). The magnetic spectrum at large scales is flatter than k3/2

(shown with the black dotted line), which is expected for the
kinematic dynamo (Kazantsev 1968)). This is consistent with
the observation that the dynamo starts in a nonlinear regime.
For t 3L/Urms, as the magnetic energy becomes larger and
approaches the kinetic energy, the growth of the magnetic field
slows down further.
The time evolution of the characteristic wavenumbers and

Larmor radius shown in Figure 5 is consistent with the
amplification of the magnetic field and the broadening of the
magnetic spectrum toward larger scales. As the magnetic field
grows in strength, the domain-averaged Larmor radius
decreases [(L/2π)/ρe increases] and becomes smaller than the
length scale of the magnetic field in all dimensions. All three
wavenumbers slowly decrease, with k∥ and kB·J approaching
kL/2π≈ 2–3 at late times. This suggests the formation of
magnetic folds with sizes comparable to the system scale. Such
large-scale folded sheets are clearly seen in the right panel of
Figure 3.
The dynamo eventually saturates by the end of the simulation

when approximate equipartition between kinetic and magnetic
energy is reached, M2β∼ 1 (Figure 2, top panel). As shown in
Figure 4, the peak of the magnetic energy spectrum continues to
shift to larger scales until saturation (with the energy density at
small k increasing and that at large k decreasing). Although an
overall equipartition is reached, the scale-by-scale equipartition
does not exist in any scale range of the spectra. The kinetic
energy dominates at small k whereas the magnetic energy
dominates at large k. Starting from t∼ L/Urms, the local (in k-
space) equipartition ~[ ( ) ( )] k k first occurs at around kL/
2π≈ 5 and then slowly shifts to smaller k. The structure of the
turbulence and the energy cascade in this turbulent dynamo
remain to be investigated.

3.2.4. Instability-regulated Turbulence

In this fully collisionless turbulent dynamo (Phase IV of
Section 2.4), important parameters such as viscosity and
resistivity are self-consistently determined by the interaction
between the plasma and microscale fluctuations. The large-

Figure 5. Morphology of the magnetic field. Top: time evolution of
characteristic wavenumbers describing the magnetic field and the averaged
Larmor radius. The vertical dotted line indicates the time τw. Magnetic-field
lines at t = 0.3L/Urms (middle) and at saturation (bottom) are shown. The
colored field lines are chosen from regions with strong magnetic fields. The
gray-shaded field lines are randomly sampled through the domain. The color
corresponds to the normalized field strength, |B/Brms|.
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scale motions in a collisionless plasma push it out of local
thermodynamic equilibrium, and various kinetic instabilities
can become unstable due to the developed pressure anisotropy.
After the triggered Weibel instability magnetizes the plasma,
the Larmor-scale instabilities, namely, the mirror and firehose
instabilities, become unstable when |P⊥− P∥| B2/4π.

The presence of these kinetic instabilities in our simulation is
indicated in the probability density distribution of P⊥/P∥ and
β∥ shown in Figure 6. During the Weibel phase, the kinetic-
scale filamentary seed field naturally causes a short mean free
path of the particles, as the largest distance that a particle can
travel before pitch-angle scattering is not longer than the length
of the Weibel filaments. The scattering off the Weibel seed field
confines the pressure anisotropy at small values, i.e., P⊥≈ P∥
[panel (a)]. The saturated seed field is then organized into
folded-sheet structures (at t≈ L/Urms) with coherence scales
much larger than the Weibel field. As described in Section 2.4,
due to the near conservation of μ, local changes in the
magnetic-field strength trigger the mirror and firehose instabil-
ities. The Larmor-scale fluctuations generated by these
instabilities start to grow on top of the folded magnetic field
and scatter the particles, limiting the growth of pressure
anisotropy [panel (b)]. The growing fluctuations eventually
become strong enough to pin the pressure anisotropy around
the mirror instability’s threshold [e.g., at t= 5L/Urms shown in

panel (c)]. Because the strength of the magnetic field is overall
growing, P⊥> P∥ is expected to populate the domain and the
mirror instability is dominant. After the saturation of the
dynamo, the regions where the field is amplified should balance
those where the field is diminished, and therefore, both mirror
and firehose instabilities are active, regulating the pressure
anisotropy in between their thresholds [panel (d)].
The scattering of particles off the mirror and firehose

fluctuations provides an effective collisionality, νeff, which can
be quantified by a pitch-angle scattering rate and measured
using the trajectories of tracked particles. One way of
quantifying the scattering rate is to study the time evolution
of particles’ magnetic moments μ, and compute the histogram
of the collision time τcoll, defined as the time interval for μ of
each particle to change by a factor e. The characteristic
collision time 〈τcoll〉 is obtained by fitting the histogram with
an exponential function (see Appendix A.3) and is the average
timescale on which the conservation of μ is violated. The
effective collisionality thus obtained, νeff= 1/〈τcoll〉, is shown
as a function of time in the top panel of Figure 7. In the same
panel, the time evolution of vthk∥/2π and 3〈 BB: ∇u〉/〈B2Δ〉
are shown for comparison. The former quantity represents the
scattering rate assuming that the particles’ mean free paths are
comparable to the length of the magnetic folds, as would be the
case for particles either becoming demagnetized at the bends of
the folded fields where the field is statistically weaker
(Kempski 2023) or scattering off firehose fluctuations that
populate these weak-field regions where Δ< 0 locally
(St-Onge & Kunz 2018). The latter quantity is based on the
assumption that the anisotropy evolves following Equation (6),
which yields a Braginskii-type scattering rate. By t; L/Urms,
the folded-sheet structures are formed, the system is magne-
tized, and the Larmor-scale mirror and firehose fluctuations
start to grow. From then on, 1/〈τcoll〉 approaches and, in
saturation, matches ≈3〈BB:∇u〉/〈B2Δ〉. With these rates
being ?vthk∥/2π, this suggests that the collisionality is caused
mainly by the particles scattering off microinstabilities (which
regulates the pressure anisotropy) before the particles are able
to traverse the fold length. This is consistent with the fact that
Δ reaches a steady state at t≈ L/Urms (Figure 2, top panel).
An effective field-parallel Reynolds number is determined

by the effective collisionality nº ( )Re U L vrms th
2

eff , and its
time evolution is shown in the bottom panel of Figure 7. The

Re first increases at t< L/Urms as the flows develop, and then
decreases until »Re 1. This is consistent with the expectation
discussed in Section 2.4 that, as the particle scattering off
nonlinear Larmor-scale fluctuations becomes sufficient to
regulate the pressure anisotropy, νeff decreases as the magnetic

Figure 6. Normalized probability density distribution of pressure anisotropy and β∥ at various moments of time. The solid (dashed) curve represents the threshold for
the mirror (firehose) instability.

Figure 7. Top: time evolution of normalized (to q c L) effective collisionality
νeff = 1/〈τcoll〉 (orange), compared to a parallel streaming frequency vthk∥/2π
(blue), and a “Braginskii” collision frequency assuming Equation (6) (green).
Bottom: effective parallel Reynolds number implied by νeff.
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energy increases. This leads to a decreasing Re and an
increasing parallel viscous scale ℓν∥, which could be the reason
for the knee of the kinetic spectrum to shift slightly toward
smaller wavenumbers, shown in the bottom panel of Figure 4.
The parallel rate of strain of the flow, and hence the dynamo
growth rate, are expected to decrease, consistent with the
progressively slower growth of magnetic energy before
saturation (Figure 2). The detailed scaling dependence of Re
[Equation (10)], derived under the assumption of Kolmogorov
scalings, is not expected to hold in our simulations due to the
lack of scale separation and of an inertial range of the
turbulence.

4. Conclusions and Discussion

In this work, we present an analytical theory and a first-
principles numerical demonstration of the generation, amplifi-
cation, and sustenance of magnetic fields under the action of
large-scale turbulent flows in a collisionless plasma. In an
initially unmagnetized Maxwellian plasma, the developed
thermal pressure anisotropy resulting from the phase mixing
of large-scale flows triggers the Weibel instability, which
depletes the thermal free energy in the pressure anisotropy to
produce a filamentary seed magnetic field at plasma-kinetic
scales strong enough to magnetize the plasma. After a brief
phase of filament coalescence, at around one flow-crossing
time, the seed field becomes coupled to the large-scale flows.
The turbulent flows start to stretch and fold the magnetic field,
producing a field-biased pressure anisotropy via the approx-
imate conservation of the magnetic moments of magnetized
particles. The mirror and firehose instabilities become unstable
to this pressure anisotropy and generate Larmor-scale fluctua-
tions. The scattering of particles off of these fluctuations leads
to an effective collisionality, which in return regulates the
pressure anisotropy, and controls the parallel rate of strain of
the flow and thus the dynamo growth rate. The magnetic field is
inductively amplified until it reaches approximate energy
equipartition with the flow. The length scale of the field is
found to approach the system scale at saturation, suggesting
that a collisionless fluctuation dynamo can produce a magnetic
field that is coherent on scales comparable to the turbulence
forcing scale. Most importantly, our results provide a proof-of-
principle demonstration that equipartition magnetic fields can
be produced in an unmagnetized system by large-scale
astrophysical flows without resorting to other magnetic seeding
mechanisms.

Despite these successes, the predictive ability of our
numerical simulations is rather limited. In Section 2, we
introduced theoretical arguments and leveraged previous
numerical simulations of the plasma dynamo to advance a
four-phase evolutionary scenario for the ab initio plasma
dynamo (see Figure 1). In this scenario, magnetic fields are
self-consistently seeded by the Weibel instability and
amplified inductively by random bulk flows in a plasma
whose viscosity is ultimately controlled by rapidly growing,
microscale, mirror, and firehose instabilities and therefore
dependent upon the plasma β. Some features of this scenario
are borne out by our numerical simulations, but several others
cannot be tested at this time because of the very-large-scale
separation they require (namely, L/di 105, if not larger). In
our simulation with L/de= 378, processes such as the
decrease of β−1 during the predicted reconnection-controlled

coalescence of the Weibel seed field and the kinematic (and
potentially explosive) phase of the dynamo cannot be
unambiguously identified. Because of the limited L/de, the
length scale for the Weibel fields and the effective parallel
viscous scale ℓν∥ are not well separated from the domain
scale. Therefore, future studies are required to test the
tentative conclusion that, in the collisionless plasma dynamo,
the coherence scale of the saturated magnetic field is close to
the forcing scale and that the Weibel-generated fields at
plasma-kinetic scales can transition into astrophysical scales.
Another unconstrained piece of physics concerns what sets the

characteristic reversal scale of the amplified magnetic field,
particularly during the “kinematic” linear phase in which the back
reaction of the magnetic field on the flow (through the Lorentz
force) is negligible and the magnetic energy resides at the smallest
available scale. In the kinematic phase of the Pm� 1 MHD
dynamo, this scale is the resistive scale (Kazantsev 1968; Kulsrud
& Anderson 1992; Schekochihin et al. 2002; Galishnikova et al.
2022). In a collisionless dynamo, it is reasonable to expect this
scale to instead be comparable to (or at least related to) ρe, the
scale below which the magnetic field is not “frozen” into the
plasma and the flow cannot efficiently stretch and amplify the
magnetic field. If true, then 1/kJ×B∼ ρe∝B−1 during the linear
phase of the dynamo; as the magnetic field is amplified, the
characteristic reversal scale of the field would then continuously
shrink. This would be a unique feature of a fully kinetic dynamo.
In an electron-proton plasma, the expectation for the reversal scale
is less clear. The above argument would continue to hold for
ρe; we cannot think of any fundamental reason why the reversal
scale could not be below the proton Larmor scale. Indeed, in the
hybrid-PIC simulations performed by St-Onge & Kunz (2018), in
which the explicit resistivity is a (constant) input parameter, there
are stages of the dynamo in which kJ×Bρi> 1. Those authors
argued that, in this case, the protons would undergo Bohm-type
diffusion, rather than scatter off of the mirror (firehose)
fluctuations located within (at the ends of) the folds. Dynamo
simulations with mi/me? 1, though too computationally expen-
sive at this time, could test this idea.
The demonstrated self-consistent generation of near-equi-

partition magnetic fields under the action of large-scale
turbulent flows has important implications for the origin of
intracluster fields. The energy density of a ∼μG magnetic field
in the ICM is usually comparable to that of the turbulent
motions; for example, the energy density of a 10 μG magnetic
field approximately matches the kinetic energy density of a
hydrogenic plasma with velocity dispersion ≈164 km s−1 at a
number density ≈0.02 cm−3, parameters measured in the ICM
of Perseus (Hitomi Collaboration 2016). This suggests that
astrophysical turbulence may itself explain the observed
∼1–10 μG intracluster fields (Kunz et al. 2022). Future
numerical studies that achieve asymptotically large-scale
separation, or perhaps reduced models adopting accurate
microphysical closures, are needed to further test this
statement.
Finally, we note that other important and often-advocated

origins of cosmic seed magnetic fields are not considered in this
work. One idea is that very weak seed fields are generated by
various fluid or plasma-kinetic instabilities—e.g., the Biermann
(1950) and/or Durrive & Langer (2015) batteries—during
large-scale structure formation in the early Universe in
cosmological accretion shocks, (re)ionization fronts, and/or
cosmological linear over-densities (Pudritz & Silk 1989;
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Subramanian 1994; Kulsrud et al. 1997; Ryu et al. 1998;
Gnedin et al. 2000; Naoz & Narayan 2013). The resulting
large-scale seed fields have strengths ∼10−25–10−18 G, which
are then supposedly amplified to dynamical strengths through
gravitational collapse and/or stellar evolution within galaxies,
and subsequently injected into and diluted throughout the
intergalactic medium by powerful galactic winds or jets (Rees
& Setti 1968; Rees 1987; Furlanetto & Loeb 2001). The
conjecture of a such protogalactic origin is supported indirectly
by observations of early enrichment of galaxy clusters by
metals (Mantz et al. 2020), namely, XMM-Newton observa-
tions of a cluster at redshift z; 1.7 with high metal enrichment
(∼1/3 Solar). If such galactic pollutants were accompanied by
∼μG galactic magnetic fields, it is possible that the seed fields
in the ICM have a protogalactic origin. However, the feasibility
of this seeding mechanism depends upon the efficiency with
which such fields are dispersed and diluted throughout a
turbulent, weakly collisional ICM, a process that remains to be
studied in detail. These mechanisms, as well as other more
exotic cosmological origins of primordial seed fields, are
reviewed by Durrer & Neronov (2013), Subramanian (2016),
and (Brandenburg & Ntormousi 2023, Section 5). Our paper
explores the scenario that magnetic fields can originate from
the gravitationally driven macroscopic flows in the ICM
without relying on assumptions about protogalactic magnetic
fields. However, it is important to note that the various
conjectured origins of magnetic fields are not mutually
exclusive, and future studies are required to distinguish their
respective contributions to the production of intracluster
magnetic fields.

In the final stage of this work, we became aware of a similar
paper presenting results from an independent PIC simulation
study of Weibel-seeded fluctuation dynamo in a pair
plasma (Sironi et al. 2023). In areas of overlap between our
results and theirs, we find agreement.
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Appendix A
Details of Numerics

A.1. External Forcing

In our simulations, an external mechanical body
force, = + +( ) ( ) ˆ ( ) ˆ ( ) ˆF x x x x y x zt F t F t F t, , , ,x y zext ext, ext, ext, ,
is applied to particles to drive large-scale bulk flows. The
forcing is composed of a superposition of sinusoidal modes in
space, having six solenoidal (shearing) modes at the box scale,
with wavevectors kL/2π ä {(0, 1, 0), (0, 0, 1)} for Fext,x,
kL/2π ä {(1, 0, 0), (0, 0, 1)} for Fext,y, and kL/2π ä {(0, 1, 0),
(1, 0, 0)} for Fext,z. The amplitude for each mode of the force is
chosen to be ( )T L6e0 . Although the force is correlated at a
large scale, it has a random phase at each value of k that is
evolved independently following the Langevin equation in
TenBarge et al. (2014). To obtain a low-Mach-number flow, we
choose a very low driving frequency ω0 and decorrelation
rate γ0 relative to the thermal timescale; in particular,
ω0= 0.03vth/(L/2π) and γ0= 0.83ω0.

A.2. Inverse Compton (IC) radiation

In order to achieve a steady temperature, external IC
radiative cooling is included in the simulations. The emission
process of IC radiation (in the optically thin limit) exerts a
radiation back-reaction force

s g= - ( )F vU c
4
3

A1IC T ph
2

to electrons and positions Landau & Liftshitz 1975. Here
s p= ( )( )e m c8 3 eT

2 2 2 is the Thomson cross-section, Uph is
the energy density of the ambient photon field (with the photon
density assumed to be isotropic), and g = - -( )v c1 2 2 1 2 is
the particle Lorentz factor. In contrast to synchrotron cooling,
which drives pressure anisotropy of the plasma by reducing
the field-perpendicular component of the plasma pressure
(Zhdankin et al. 2023), the IC cooling is isotropic and mainly
radiates at the high-energy tails of the plasma distribution.
Therefore, the IC cooling is not expected to affect the dynamics
of the mirror and firehose instabilities, or the properties of the
plasma dynamo.

A.3. Measurements of Effective Collisionality

The effective collisionality presented in the numerical results
(in Figure 7) is quantified by the pitch-angle scattering rate and
measured by studying the time evolution of magnetic moments

Figure A1. Example histogram of collision time τcoll of tracked particles,
grouped according to their ρe/L, during the time interval 6.33 < tUrms/L <
6.58.
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μ of 104 tracked particles. We first divide the entire evolution
into 20 time intervals. In each time interval, we look at the time
evolution of μ for each tracked particle, compute the collision
time τcoll required for μ to change by a factor of e, and record
the particleʼs gyro-radius ρe averaged over all the time steps
within the time interval τcoll. We then divide the ensemble of
τcoll into three groups based on the associated ρe (ρe� L/2,
L/30< ρe< L/2, and ρe� L/30), and compute the histogram
of τcoll for each group.

An example histogram for the time interval 6.33<
tUrms/L< 6.58 is shown in Figure A1. The τcoll of particles
from the unmagnetized group ρe� L/2 cannot be used to
calculate the scattering rate, because μ is not an adiabatic
invariant for unmagnetized particles. The histogram of the
group L/30< ρe< L/2 is similar to that of the well-
magnetized group ρe� L/30, suggesting that the particles are
sufficiently magnetized to study the statistics of τcoll. The
characteristic collision time 〈τcoll〉 is obtained by fitting the
histogram with an exponential function, t t- á ñ[ ]exp coll coll ,
while the range τcollVth/L< 0.2 is not taken into account for
the fitting to exclude the change of μ due to Bohm-like
diffusion (i.e., particles sampling multiple field reversals during
their gyromotion). The effective collisionality for each time
interval is then evaluated as νeff≡ 1/〈τcoll〉.

Appendix B
Parameter Scan of L/de

As a supplement to the main text, we present two groups of
runs with varying scale separation. The first group has M; 0.3
at steady state and L/deä {126, 189, 252, 378}, as well as one
run with uncharged particles (of which Lde is an irrelevant
parameter because de has no physical meaning). The second
group hasM; 0.1 and L/de ä {48, 64, 96, 126, 189, 252}. The
time evolution of M2 and β−1 for the first (second) group is
shown in Figure B1 (Figure B2).

The run with uncharged particles provides a benchmark for
the effects of magnetic fields. As the system is continuously
driven by the external force, the β−1 stays at the level of
numerical noise. The M2 increases slowly and is of a much
smaller value than other runs, consistent with the argument that
an unmagnetized plasma (or the neutral gas here) is subject to
efficient phase mixing, and thus is effectively viscous.

The time evolution of M2 differs for systems with varying
L/de. Within each group, although the values of M2 at the
steady state are similar, runs with larger L/de have a faster
acceleration of the flow in the beginning and shoot to a higher
value of M2 before decreasing to the steady value. This is
consistent with the argument made in the main text that during
the initial Weibel phase, the effective collisionality is
determined by the particle scattering at the ends of the Weibel
filaments. With larger L/de, the Weibel filaments have smaller
length scales compared to the system size in each dimension

~ ( )k L L d Mew
3 4 1 8, equivalent to Equation (2), which leads

to a shorter mean free path of the particles, i.e., larger effective
collisionality or smaller viscosity for the system, and thus a
faster acceleration and higher peakM for the flows. However, it
seems unlikely that this trend will continue to values of M> 1
when the flow becomes supersonic.

Systems with varying L/de (for L/de 100) show similar
evolution of β−1 (Figure B1, bottom panel). The levels of β−1

given by the Weibel seed fields have a weak dependence on
L/de, as expected given Equation (1). The subsequent plasma
dynamo amplifies the magnetic fields with a growth rate that is
similar for all these runs. This is consistent with the fact that
even for the run with the largest L/de (=378), which is
analyzed in the main text, the parallel rate of strain is mainly
given by flows at the forcing scale. The dynamo growth rate
(for runs with L/de� 378) is tied to the flow-crossing rate (at
the forcing scale), independent of L/de. The effective
collisionality is expected to be caused by particle scattering
off the Weibel filaments in the Weibel phase, and by the
particle scattering off the mirror and firehose fluctuations in the
dynamo phase. The dependence of the collisionality on L/de
during these two phases is different, which leads to the results
that the effective collisionality (viscosity) is larger (smaller)
with larger L/de in the early Weibel phase, but does not have a
strong dependence on L/de during the dynamo phase.
For the run with L/de= 48 (Figure B2, bottom panel), it is

unclear whether a dynamo phase exists after the Weibel stage.
This could be due to the significant electron Landau damping
of the magnetic fields under the very limited scale separation.
This suppression of dynamo at small system sizes is consistent
with the previous study demonstrating the role of electron
Landau damping in inhibiting dynamo (Pusztai et al. 2020).

Figure B1. Time evolution of M2 (top panel) and β−1 (bottom panel) for runs
with varying L/de ä {63, 126, 189, 252, 378} and steady-state Mach number
M ≈ 0.3. The run with L/de = 63 uses uncharged particles.
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