This article was downloaded by: [134.84.0.1] On: 03 October 2024, At: 22:13
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research
OPERATIONS E .

RESEARCH Publication details, including instructions for authors and subscription information:
¥ i I I ﬂ E http://pubsonline.informs.org
o : hc :
1N Structural Estimation of Markov Decision Processes
r ﬁ B | in High-Dimensional State Space with Finite-Time
e =L

Guarantees

g FI
= * H E. . Siliang Zeng, Mingyi Hong, Alfredo Garcia

ﬂ r|‘.|'rn'l|.

r_i ol s

To cite this article:
Siliang Zeng, Mingyi Hong, Alfredo Garcia (2024) Structural Estimation of Markov Decision Processes in High-
Dimensional State Space with Finite-Time Guarantees. Operations Research

Published online in Articles in Advance 19 Sep 2024
. https://doi.org/10.1287/opre.2022.0511

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-
Terms-and-Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or
systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval,
unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or support
of claims made of that product, publication, or service.

Copyright © 2024, INFORMS

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations
research (O.R.) and analytics professionals and students. INFORMS provides unique networking and learning
opportunities for individual professionals, and organizations of all types and sizes, to better understand and use
O.R. and analytics tools and methods to transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org



http://pubsonline.informs.org
https://doi.org/10.1287/opre.2022.0511
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Downloaded from informs.org by [134.84.0.1] on 03 October 2024, at 22:13 . For personal use only, all rights reserved.

https://pubsonline.informs.org/journal/opre

Crosscutting Areas

OPERATIONS RESEARCH

Articles in Advance, pp. 1-18
ISSN 0030-364X (print), ISSN 1526-5463 (online)

Structural Estimation of Markov Decision Processes in High-
Dimensional State Space with Finite-Time Guarantees

Siliang Zeng,® Mingyi Hong,** Alfredo Garcia®

a Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455; b Department of Industrial
and Systems Engineering, Texas A&M University College of Engineering, College Station, Texas 77843

*Corresponding author

Contact: zeng0176@umn.edu, (B https:// orcid.org/0009-0006-0765-5028 (SZ); mhong@umn.edu, () https: // orcid.org/0000-0003-1263-9365

(MH); alfredo.garcia@tamu.edu, (® https:

//orcid.org/0000-0002-2761-7479 (AG)

Received: September 30, 2022

Revised: March 1, 2024

Accepted: July 4, 2024

Published Online in Articles in Advance:
September 19, 2024

Area of Review: Machine Learning and Data
Science

https://doi.org/10.1287/opre.2022.0511

Copyright: © 2024 INFORMS

Abstract. We consider the task of estimating a structural model of dynamic decisions by a
human agent based on the observable history of implemented actions and visited states.
This problem has an inherent nested structure: In the inner problem, an optimal policy for
a given reward function is identified, whereas in the outer problem, a measure of fit is max-
imized. Several approaches have been proposed to alleviate the computational burden of
this nested-loop structure, but these methods still suffer from high complexity when the
state space is either discrete with large cardinality or continuous in high dimensions. Other
approaches in the inverse reinforcement learning literature emphasize policy estimation at
the expense of reduced reward estimation accuracy. In this paper, we propose a single-loop
estimation algorithm with finite time guarantees that is equipped to deal with high-
dimensional state spaces without compromising reward estimation accuracy. In the pro-
posed algorithm, each policy improvement step is followed by a stochastic gradient step
for likelihood maximization. We show the proposed algorithm converges to a stationary
solution with a finite-time guarantee. Further, if the reward is parameterized linearly, the
algorithm approximates the maximum likelihood estimator sublinearly.

Funding: M. Hong and S. Zeng are supported by the National Science Foundation [Grants EPCN-

2311007 and CCF-1910385]. This work is also part of AI-CLIMATE: “Al Institute for Climate-Land
Interactions, Mitigation, Adaptation, Tradeoffs and Economy” and is supported by the U.S. Depart-
ment of Agriculture National Institute of Food and Agriculture and the National Science Founda-
tion National Al Research Institutes [Competitive Award 2023-67021-39829]. A. Garcia is partially
supported by the Army Research Office [Grant W911NF-22-1-0213].

Supplemental Material: The computer code and data that support the findings of this study are available
within this article’s supplemental material at https: //doi.org/10.1287/opre.2022.0511.

Keywords: inverse reinforcement learning  dynamic discrete choice model

1. Introduction
We consider the task of estimating a structural model
of dynamic decisions by a single human agent based on
the observable history of implemented actions and vis-
ited states. This problem has been studied as the esti-
mation of dynamic discrete choice (DDC) models in
econometrics and inverse reinforcement learning (IRL)
in artificial intelligence and machine learning research.
Rust (1987) is a seminal piece of literature on
dynamic discrete choice estimation. In that paper, the
estimation task is formulated as a bilevel optimization
problem where the inner problem is a stochastic
dynamic programming problem, and the outer prob-
lem is the likelihood maximization of observed actions
and states. Rust (1987) proposed an iterative nested
fixed-point algorithm in which the inner dynamic pro-
gramming problem is solved repeatedly followed by

maximum likelihood updates of the structural para-
meters. Over the years, a significant amount of litera-
ture on alternative estimation methods requiring less
computational effort has been developed. For example,
Hotz and Miller (1993) and Hotz et al. (1994) proposed
two-step algorithms that avoid the repeated solution of
the inner stochastic dynamic programming problem. In
the first step, a nonparametric estimator of the policy
(also referred to as conditional choice probabilities) is
obtained, and the inverse of a map from differences in
Bellman’s value function for different states to random-
ized policies is computed. In the second step, a pseudo-
log-likelihood is maximized. Two-step estimators may
suffer from substantial finite sample bias if the esti-
mated policies in the first step are of poor quality.
Sequential estimators that are recursively obtained by
alternating between pseudo-likelihood maximization
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and improved policy estimation are considered in
Aguirregabiria and Mira (2002). In general, the compu-
tational burden for all these methods is significant
when the state space is either discrete with large cardi-
nality, or they are continuous in high dimensions. Dis-
cretization may be avoided using forward Monte Carlo
simulations (Bajari et al. 2007, Reich 2018), but this also
becomes computationally demanding in high dimen-
sions. A constrained optimization approach for maxi-
mum likelihood estimation of dynamic discrete choice
models is considered in Su and Judd (2012). However,
the number of constraints needed to represent Bell-
man’s equation becomes a significant computational
burden with discrete state space with large cardinality
or continuous state space in high dimensions.

Recent work has addressed the computational chal-
lenges posed by high-dimensional state space. For
example, in Adusumilli and Eckardt (2019), the authors
extend the CCP estimator approach proposed in Hotz
and Miller (1993) by considering a functional approxi-
mation approach coupled with a temporal difference
(TD) algorithm to maximize pseudo-likelihood. In
Chernozhukov et al. (2022), the authors consider an
approach to adjust the Conditional choice probabilities
(CCP) estimator to account for finite simple bias in
high-dimensional settings.

The literature in IRL features the seminal work (Zie-
bart et al. 2008) in which a model for the expert’s behav-
ior is formulated as the policy that maximizes entropy
subject to a constraint requiring that the expected fea-
tures under such policy match the empirical averages
in the expert’s observation data set." The algorithms
developed for maximum entropy estimation (Ziebart
et al. 2008, 2010; Wulfmeier et al. 2015) have a nested
loop structure, alternating between an outer loop with
a reward update step, and an inner loop that calculates
the explicit policy estimates. The computational burden
of this nested structure is manageable in tabular envir-
onments, but it becomes significant in high dimen-
sional settings requiring value function approximation.

Recent works have developed algorithms to alleviate
the computational burden of nested-loop estimation
methods. For example, in Garg et al. (2021), the authors
propose to transform the standard formulation of IRL
into a single-level problem by estimating the Q-function
rather than estimating the reward function and associ-
ated optimal policy separately. However, the implicit
reward function in the Q-function identified is a poor
estimate since it is not guaranteed to satisfy Bellman’s
equation. Finally, Ni et al. (2020) considers an approach
called f-IRL for estimating rewards based on the mini-
mization of several measures of divergence with respect
to the expert’s state visitation measure. The approach is
limited to estimating rewards that only depend on state.
Although the results reported are based upon a single-

loop implementation, the paper does not provide a con-
vergence guarantee to support performance.

In contrast to the lines of works surveyed above, we
focus our efforts in developing estimation algorithms
with finite-time guarantees for computing high-quality
estimators. Toward addressing this challenge, in this
paper, we propose a class of new algorithms that only
require a finite number of computational steps for a
class of (nonlinearly parameterized) structural estima-
tion problems assuming the environment dynamics are
known (or samples from the environment dynamics
are available in real time). Specifically, the proposed
algorithm has a single-loop structure wherein a single-
step update of the estimated policy is followed by an
update of the reward parameter. We show that the
algorithm has strong theoretical guarantees: To achieve
certain e-approximate stationary solution for a nonli-
nearly parameterized problem, it requires O(e~2) steps
of policy and reward updates each. To our knowledge,
it is the first algorithm that has finite-time guarantee for
the structural estimation of an Markov Decision Process
(MDP) under nonlinear parameterization of the reward
function. We conduct extensive experiments to demon-
strate that the proposed algorithm outperforms many
state-of-the-art IRL algorithms in both policy estimation
and reward recovery. In particular, when transferring to
a new environment, the performance of state-of-the-art
reinforcement learning (RL) algorithms, using estimated
rewards, outperform those that use rewards recovered
from existing IRL and imitation learning benchmarks.

Finally, we consider the extension to the offline case
in which the estimation task also includes the environ-
ment dynamics. Referring to our recent work (Zeng
et al. 2023), we consider a two-stage estimation ap-
proach. First, a maximum likelihood model of dynam-
ics is identified. However, this first stage estimator of
the environment dynamics may be inaccurate due to
limited data coverage. Thus, in the second stage, a
“conservative” reward estimator is obtained by intro-
ducing a penalty for model uncertainty.

The structure of this paper is as follows. In Section 2, we
introduce the basic setting for structural estimation of
MDPs. In Section 2.2, we introduce the problem formula-
tion of the maximum likelihood IRL. In Section 3, we dis-
cuss the problem approximation in high-dimensional
spaces. In Section 4, we introduce a single-loop algorithm
for estimation and formalize a finite-time performance
guarantee for high-dimensional states. In Section 5, we
present the convergence results of our proposed single-
loop algorithm. In Section 6, we consider the case with lin-
early parameterized rewards to show the proposed algo-
rithm converges sublinearly to the maximum likelihood
estimator. These results are proven by establishing a dual-
ity relationship between maximum entropy IRL and max-
imum likelihood IRL. In Section 7, we consider the case in
which the agent’s preferences can be represented by a
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reward that is only a function of the state. In Section 8, we
outline the extension of the proposed algorithms to the
offline case. Finally, in Section 9, we present the numerical
results.

2. Background

2.1. Dynamic Discrete Choice Model

We now review the basic setting for dynamic discrete
choice model as given for example in Rust (1994). At
time t >0, the agent implements an action 4, from a
finite (discrete) action space A and receives a reward
r(st,ai; 0) + €1(a;), where s; € S is the state at time ¢,
r(st,a;;0) is the reward associated to the state-action
pair (s¢,a;) with 6 € R? a parameter and e;(a;) : RIAI -
R is a random perturbation that is observable by the
agent (decision maker) but not by the modeler.

Upon implementing the action a; € A, the state
evolves according to a Markov process with kernel
P(si41]st,a1). Moreover, let pi(e;|s;) denote the probabil-
ity distribution for the random perturbation, where the
probability distribution is a function of the state.

Let 7(-|st, €;) denote a randomized policy, that is,
i(a;|st, €;) is the probability that action 4; is implemen-
ted when the state is s; and the observed reward pertur-
bation vector is €;.

The agent’s optimal policy is characterized by the
value function:

50160} ’

where the expectation is taken with respect to a; ~
(- |st,€¢), 041 ~ P(-|st,a), €41 ~ p(-|se1), and y €[0,1)
is the discount factor. The Bellman equation is

VG(SO/ 60) = m;lx E50~p,r~n Z)/t (T’(Sf, at, 6) + Et(at))
t=0

V(s €r) = ﬁa}fx‘[r(sf’”“ 0) +e4(a)

+ VB, (150, e ~u 15 [V (Str1, €041)]],

= max[Qo(st, a;) + €:(ar)],
1A
where Qg: SX A— R is the fixed point of the soft-
Bellman operator:

A@(Q(St/ th)) = T’(Sf,blt; 6) + yESm**P(‘|Sr/ﬂf)/€z+1~#(' [st41)
{%%(Q(Sm,a) rent (u))] | M

As the realization of the reward perturbations is not
observable by the modeler, a parametrized model of
the agent’s behavior is a map 74(-|s;) that satisfies Bell-
man'’s optimality as follows:

ac A

ng(at|ss) = P <ﬂt € arg max[Qq(ss,a) + €t(ﬂ)]> . 2

Assume observations are in the form of expert state-
action trajectories % = {(s;,a;)};>o drawn from a ground-

truth (or “expert”) policy nt, that is, a; ~ 7E(-|s;), 8141
~P(:|st,a¢) and sy ~ p(-), where p(-) denotes the initial
distribution of the first state s,. The expected discounted
log-likelihood of observing such trajectory under model
Tlg can be written as

ETE~T[E

i?t log(P(st+1st, ar) 1o (as |St))‘|

t=0

=E;r_ &

> y'logmo(ay |St)]

t=0

+E ke
t=0

> V'og P(sia Isf,af)] :

Given that the term E.e_e[Y o) 7' log P(sei1 (s, a)] is
independent of the reward parameter 0, the maximum
likelihood estimation problem can be formulated as fol-
lows:

meax L(O) :=Eg&_z= lz y'log mo(a; |St)‘| (3a)

t=0

s.t. mg(a|s;) =P (at €arg max|[Qg(s:,a) + et(a)]> ,  (3b)
ae A

where Qg is the fixed point of the soft-Bellman operator

in (1).

In the next section, we review the literature on the
entropy-regularized RL model and then highlight the for-
mal equivalence of entropy-regularized IRL with the
dynamic discrete choice model just introduced in (3).

2.2. Maximum Likelihood Inverse Reinforcement
Learning (ML-IRL)

A recent literature has considered MDP models with

information processing costs (Tishby and Polani 2011,

Ortega and Braun 2013, Matéjka and McKay 2015, Han-

sen and Miao 2018). In these papers, optimal behavior

is modeled as the solution to the following problem:

max Jo(1t; P)EEg g e | D Y ((st, a1 0) — c(m(-|s)) |,
t=0

where p(-) denotes the initial distribution of the first
state sp, 7" is a trajectory generate from the agent policy
1, and c(-) is a function representing the information
processing cost. A common specification is ¢(7t(-|s;)) =
aDxr((-[so)|[70(-[s¢)), where D (m(-[s)|[7t0(:|s1)) =
> seam(alsi)log %(&l‘s;[)) is Kullback-Leibler divergence
between 7i(-|s;) and a reference (or default) policy
1o(+|s¢) and o > 0 is a scale parameter. As the objective
function above can be rescaled by 1, we can set a = 1.
To model no prior knowledge, the reference policy mg
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is the uniformly random policy, that is, 7p(a) = ﬁ for
any a € A. In this case, we can further rewrite the prob-
lem as

max Jo(15;p)

7

> log| A
BE, o | S Y 0s0050) + H(s)) | 41281
=0

where H (n(-|sy)) = =Y, cam(alsy) log m(als;) is the entropy
of 7t(-|s;). This model has also been recently used in the
RL literature (Haarnoja et al. 2017, 2018; Cayci et al.
2021; Cen et al. 2022) where it is commonly referred to
as an entropy regularized MDP.

Denoting the expert policy as i and assuming an
entropy-regularized MDP model for behavior. and the
model for dynamic behavior described, the IRL prob-
lem can be formulated as follows:

max L(O):=FE_

> y'logma(as ISt)] (4a)

t=0

s.t. Tg:=arg max
T

ESONPI TA~T [Zyt(r(st/at; 6) + _7-[(71( |St)))] .
t=0

(4b)

When the reward perturbations €;(a) follow indepen-
dent and identically distributed (i.i.d.) Gumbel distri-
bution with zero mean and variance %z for a€ A, the
models of Behavior (3b) and (4b) are equivalent (see
proposition 1 in Mai and Jaillet 2020). Specifically, the
fixed point Qg(s,a) of the Bellman operator Ag in (1)
and the optimal policy (2) are of the form:

QG(sr ﬂ) = T(S, a 0) + yEs’~P(-|s,a)[V9(s/)]- (Sa)

Vi(s) = log <Z epre<s,a>>, (5b)
a~A
_ exp(Qols,a)
T = exp(Qo(s, ) G

As has been shown in Haarnoja et al. (2018) and Cen
et al. (2022), the policy described in (5¢) corresponds to
the optimal policy in (4b) so that

Vo(s) = max E; 4
T

> Y (st,a50) + H(n(|s1)
t=0

So = s]. (6)

2.3. Computational Effort and Estimation Quality
of Existing Algorithms

The existing solution and approximation methodolo-

gies for solving (3) (or equivalently, (4)) are ill equipped

for dealing with the high-dimensional state space. For

example, the algorithms considered in Rust (1994),

Ziebart et al. (2010), and Wulfmeier et al. (2015) rely on
a nested-loop structure that requires the solution of a
fixed-point problem in the inner loop before making
any updates to the parameter estimates for the outer
loop. Evidently, in high-dimensional environments. the
inner-loop solution renders the nested-loop structure
computationally intractable.

Similarly, with a high-dimensional continuous state,
a discretization approach (Su and Judd 2012) to solving
the inner problem (3b) (or equivalently, (4b)) is compu-
tationally intractable. Forward Monte Carlo simula-
tions (Bajari et al. 2007, Reich 2018) are an alternative to
discretization, but this is also computationally demand-
ing in high dimensions.

Approximation algorithms (Hotz and Miller 1993,
Hotz et al. 1994, Ni et al. 2020, Garg et al. 2021) reduce
the computational burden of the nested-loop structure.
However, the resulting estimates may be of poor quality.
For example, the CCP estimator from Hotz and Miller
(1993) and Hotz et al. (1994) may suffer from finite sample
bias because in the high-dimensional state space, initial
policy estimates (i.e, conditional choice probabilities)
based on empirical frequencies are likely of poor quality.
Sequential estimators (Aguirregabiria and Mira 2002)
reduce bias at the expense of significant computational
burden. The reward estimates in Garg et al. (2021) do not
approximate a solution to the inner problem and are thus
likely to be of poor quality. Recently, Adusumilli and Eck-
ardt (2019) and Chernozhukov et al. (2022) have proposed
approaches to account for finite-sample bias in CCP esti-
mators in high-dimensional environments.

In the present paper, we introduce a new class of single-
loop algorithms that exhibits finite-time guarantees of
performance for solving (3)) (or more precisely, its approx-
imated version to be introduced in the next section).

As many papers in the dynamic discrete choice
(DDC) estimation literature (Rust 1994) rely on a two-
stage approach to estimating dynamics (first stage) and
rewards (second stage), the results obtained in this
paper address the computational complexity of the sec-
ond-stage estimation task. This issue was ignored in
Rust (1987) due the scale of the problem. However,
computational complexity is an important concern in
high-dimensional environments.

In Section 8, we also discuss how to extend the pro-
posed method to the two-stage problem/offline setting
where estimating dynamics should be considered.

3. Problem Approximation in High-

Dimensional State Space
In practice, the IRL problem (4) (and its equivalent (3))
can only be approximated with a finite set of observed
trajectories because the ground-truth behavior model
(or “expert” policy) nF is not known. Let D :={t%}
denote a finite data set of state-action trajectories
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independently drawn from the expert policy and the
environment dynamics. Let ¥ ~ D denote a uniformly
sampled trajectory from . Using a finite data set, a
natural choice for an empirical approximation to the
estimation problem is the following:

max L(6; D) :=Fe_p Zyt logng(atlst)] (7a)

t=0
s.t. mg(as|s;) :=arg max
s

Esyp, ther LZO:)/ (r(st,a1;0) + H (n(- Ist)))l :
(7b)

However, with high-dimensional state space, the above
approximation L0, D) is likely to incur significant
error because the observed transitions in the data may
not adequately describe the ground-truth transition
kernel. In what follows, we introduce a different surro-
gate empirical objective L(0, D), which provides a bet-
ter approximation to the original likelihood function
L(0) given in (4) with a high-dimensional state.

To motivate the definition of ﬁ(@, D), let us start by
expressing the likelihood function L(0) := Ee_&[> 00 7!
log mo(ar|s;)] in terms of the difference in expected
value:

L(O)

=EE ¢
t=0

U] S t eXPQG(St,ﬂt) )
=E_ E 1
L:o o8 (ZaeﬂleprQ(St/ a)

PEor e lZﬂQe(st,a» ~Vo(s)
t=0

> y'logmo(a |St)]

8

8

(i)

= ETE~7-[E

> Y (r(s1,a50) + VB, b 1,00 [ Vo (51:1)]
t=0
—Vo(st))

Z)/fr(st,at; 9)1
=0

+ Zyt+l]E(st,at)~rE [Es,.~p( 15,0 [Va(sir1)]]

= ]ETE~7-[E

=0
- ETE~7'(E Z)/tVQ(St)
=0
= ]ETE~TLE Zytr(st/ ag, 9) - E50~p(-)[V9(50)]r (8)
t=0

where (i) follows the closed-form expression of the
optimal policy mg in (5¢), (ii) follows the expression of

the soft value function Vy in (5b), and (iii) follows from
the fixed point definition in (5a).

Observe that in the above decomposition, the first
term is related to the expert policy ¥, whereas the sec-
ond term is related to the initial distribution p and the
transition kernel P. Note that in practice, we only have
limited observations of expert trajectories from a fixed
data set D, but cannot directly sample the trajectory
from the expert policy 7F in an online manner. Hence,
we need to construct an estimation problem that uti-
lizes limited observations of expert trajectories to
approximate the original maximum likelihood objec-
tive in (8). Because we assume the online setting in
which the transition kernel P and the initial distribution
p are either available for access or known, we can con-
struct a surrogate approximation to the likelihood as fol-
lows:

L6; D) :=E..p —Eq—p[Vo(s0)]. (9)

Z)/tr(st,ﬂt} 0)
t=0

In contrast, if we conduct the same analysis on the
empirical approximation L(6; D) presented in (7), we
obtain

L(6; D)
=Ex.p|y y'log n@(ﬂt|5t):|
=0
U) - t eXPQe(St,IZt) )
=]ETEN 1 _ POV
D[;y Og(ZueﬂeXer(sha)

g,

> V' (Qolst ar) — Valst))

=0

-

8

(iii

=) IE’T~D

> V(51,015 0) + VEq,,-p. 15, a0 [Vo(si:1)] = Vo(st)
t=0

ZV'Y(St/ at; 9):|

8

=E..p
t=0

+Zyt+lE(s,/at)~D[Es,+1~P(-|st,u,)[vb’(stﬂ)]]
t=0

7ET~D

= <E1~D

+ (ZyHlIE(s,,m%D,sm~P(-|st,ut)[V6(St+1)]

t=0

ZV'VO(St)
=0

Z)/t"(st, at; 9)} - E50~D[V6(50)]>

t=0

T1: surrogate likelihood

_Z)/HlE(s;,a,,sm)~D[V6(St+1)]> 7 (10)

t=0

where the second term is the error introduced by
approximating the transition using finite data.
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From the above analysis, we argue that the surrogate
approximation L(6; D) in (9) is a more accurate objec-
tive function compared with the empirical likelihood
L(0; D) in (7a). Below, we show under a mild assump-
tion, L(6; D) can well approximate L(6) when data are
large enough.

Assumption 1. For any reward parameter 0, the follow-
ing condition holds:

0<r(s,a;0)<C,, VseS,aeA, (11)

where C, > 0 is a fixed constant.

Lemma 1. Suppose Assumption 1 holds. Consider the like-
lihood function L(0) in (4a) and its surrogate empirical ver-
sion L(0; D) defined in (9). Then, with probability greater
than 1 — 6, we have

o C, [In(2/0)
LO-LODI <=\ 550 (12

The proof of Lemma 1 can be found in the Online
Appendix.

In the rest of this work, we will consider the follow-
ing surrogate estimation problem:

max L(0; D) :=E..p

Z Vtr(st/ at; 6)‘| - ]Eso~p[V9(SO)]
=0

(13a)
s.t. Tg(at|s):=arg max
T

Ego-p,h-n l;yt(r(st,m;@) +H (n(- |5t)))] ~

(13b)

4. Proposed Algorithm
The main idea in the proposed algorithm is to alternate
between one step of policy update to improve the solu-
tion of the lower-level problem, and one step of the
parameter update that improves the upper-level likeli-
hood objective. At each iteration k, given the current
policy m; and the reward parameter 0y, a new policy
Tiks1 is generated from the policy improvement step,
and Oy, is generated by the reward optimization step.
In Sections 4 and 5, we will design an algorithm to
solve the approximated maximum likelihood problem
(13). We emphasize that, in Sections 4-7, we assume an
online setting where the learner knows the transition
kernel P(s;41|st,a¢) or can sample from it. The motiva-
tion is that understanding how to develop efficient
algorithms for the online setting is the basis for addres-
sing the more challenging offline setting. In Section §,
we will briefly outline how to extend this work to the
offline setting. Below we present the details of our algo-
rithm at a given iteration k.

4.1. Policy Improvement Step

Let us consider optimizing the lower-level problem (4b),
when the reward parameter 0, is held fixed. Toward this
end, we define the so-called soft Q-function and soft value
functions under a given policy-reward pair (77, O):

SOZS‘|,

(14)
Qx(s,a) =7(5,a;0k) + VEgp(.|s,a) [ Vi(s")]- (15)

Similarly, if the policy is optimal for a given parameter 0
(as defined in (4b)), then we will denote the associated
soft Q-function and soft value function as Qg and V.

To obtain an estimate of the policy at iteration k, let us
suppose that we have access to an estimate of the soft
Q-function, denoted as Q, (s, a), which satisfies ||Q; — Q||
< €app, With €4pp > 0 being the approximation error. Then
the estimated policy will be generated according to

Vse S,ae A. (16)

Vi(s)=Eqa_r, Z)/t(f(st/ﬂt} 0) + H (- [s1)))
t=0

T (a]s) oc exp(Qx(s,)),

When €,pp, = 0, or equivalently when O, (s,a) = Qk(s,a),
Vse S,ae A, and when r(-,-;0y) is fixed, the above
update is referred to as the soft policy iteration; it is
known that the policy will be monotonically improved
by soft policy iteration and will converge linearly to the
optimal policy (Cen et al. 2022, theorem 1). In practice,
when we do not have direct access to the exact soft
Q-function Qy, one could use an estimated soft Q-function
Oy to perform the approximated soft policy iteration in
(16), which can be obtained by following the update
schemes in soft Q-learning (Haarnoja et al. 2017) or soft
actor-critic (SAC) (Haarnoja et al. 2018).

4.2. Reward Optimization Step

We propose to use a stochastic gradient-type algorithm
to optimize the reward parameter 0. Toward this end,
let us first derive the exact gradient VyL(6). See the sup-
plementary material for detailed proof.

Lemma 2. The gradient of the L(0) and L(0; D), as
defined in (4a) and (9), respectively, can be expressed as

VoL(60) = B Zythr(st, ag; 6)1
=0
- ]ETA~T[3 [Zytvﬂr(st/ at; 6)] ’ (17&)
=0
VoL(0; D) =E.p Zytvﬂr(st/at; 9)1
=0

—Eirr, [iytv,gr(st,at;e)] . (17b)

t=0

We note that the gradient expression (17a) takes the same
form as the one given in a recent work (Sanghvi et al. 2021,
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equation (1)). However, our proof that focuses on the infi-
nite horizon case is different. Moreover, we further derive
the gradient expression of the sample-based estimation
problem L(6; D), which has not been considered in
Sanghvi et al. (2021).

In order to obtain stochastic estimators of the empiri-
cal gradient Veﬁ(Gk ; D), we take two approximation
steps: (1) approximate the optimal policy g, by mi11 in
(16) because the optimal policy 7, is not available
throughout the algorithm and (2) sample the trajectory
7 from the current policy 741 .

Following the approximation steps mentioned
above, we construct a stochastic estimator g to approx-
imate the empirical gradient VoL (6y; D) in (17b) as fol-
lows:

gk = (0 15) — h(Ok; T1), (18)

where h(0;7) := Y2, ¥ Vor(s;, a; 0). With the stochastic
gradient estimator g, the reward parameter O is
updated as

Oks+1 = Or + gy, (19)

where a is the step size in updating the reward parameter.

Algorithm 1 summarizes the proposed two-step
approach for solving the IRL problem (4). It is worth
mentioning that the proposed algorithm can also be
used to solve the DDC problem (3) due to the equiva-
lence between (3) and (4).

Algorithm 1 (ML-IRL)
Input: Initialize reward parameter 6, and policy 7.
Set the reward parameter’s step size as a.
fork=0,1,...,K—1do
Policy Evaluation: Approximate the soft Q-function
Qi(,) by O(-, ). )
Policy Improvement: 7i.q1(a|s) oc exp(Qy(s,-)),
Vs € S,a e A. (Lower-Level Update)
Data Sampling I: Sample a trajectory 7} from the
data set D.
Data Sample II: Sample a trajectory 7} := {s;,a},50
from the current policy i1
Estimating Gradient: g :=h(0k, 1}) — h(6, 1)
where h(0,7) := > 12, V' Vor(s:, ai; 0)
Reward Parameter Update: Oy, := Oy + agy (Upper-
Level Update)
end for

Before closing this section, let us note that the generic
alternating update strategy adopted by our algorithm
is efficient, because completely solving the policy opti-
mization subproblem all the time could be redundant
and could induce heavy computation burden. Such a
kind of strategy has been used in many other
RL-related settings as well. For example, the well-
known AC algorithm for policy optimization (Konda
and Tsitsiklis 1999, Hong et al. 2020, Wu et al. 2020)
alternates between one step of policy update and one

step of critic parameter update. However, these types
of algorithms are known to be challenging to analyze,
partly because when the inner problem (e.g., the policy
optimization problem (4b)) is not solved exactly, the
update direction for the main parameter (e.g., 0 in (4))
can be very far from the desired descent directions.
That is, gx in (18) can be a very coarse approximation of
the exact gradient VoL(6; D) as expressed in (17b). In
the subsequent sections, we develop techniques to
address the above-mentioned changes.

5. Theoretical Analysis

Our analysis is based on the so-called two-timescale sto-
chastic approximation (TTSA) approach (Borkar 1997,
Hong et al. 2020), where the lower-level problem
updates in a faster time scale (i.e., converges faster)
compared with its upper-level counterpart. Intuitively,
the TTSA enables 7y to track the optimal g, so that
the gradient estimate g will stay close to the gradient
VoL (6y). Indeed, Algorithm 1 has the desired two time
scale phenomenon because the policy update (16) con-
verges linearly to the optimal policy under a fixed
reward function (Cen et al. 2022, theorem 2) (hence it is
fast), whereas the reward parameter update does not
have such linear convergence property (hence it is
slow). To begin our analysis, let us first present a few
technical assumptions.

Assumption 2 (Ergodic Dynamics). For any policy m,
assume the Markov chain with transition kernel P is irre-
ducible and aperiodic under policy 1. Then there exist con-
stants k > 0 and p € (0,1) such that

supl|P(s: € [s0 = 5.70) — pt Cllry < ', VE20,

seS
where || - ||ry is the total variation (TV) norm; u_ is the sta-
tionary state distribution under 7.

Assumption 2 assumes the Markov chain mixes at a
geometric rate. It is a common assumption in the litera-
ture of RL (Bhandari et al. 2018, Zou et al. 2019, Wu et al.
2020), which holds for any time-homogeneous Markov
chain with finite-state space or any uniformly ergodic
Markov chain with general state space.

Assumption 3 (Lipschitz Reward). For any s€ S,a € A,
and any reward parameter 0, the following holds:

|Vor(s,a;0)| <L, (20a)
|Vor(s,a;01) — Vor(s,a;02)| < Lgl|01 — 02|,  (20b)

where L, and L, are positive constants.

Assumption 3 assumes that the parameterized reward
function has bounded gradient and is Lipschitz smooth.
Such assumptions in Lipschitz property are common in
the literature of min-max/bilevel optimization (Hong
et al. 2020, Jin et al. 2020, Chen et al. 2021, Guan et al.
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2021, Khanduri et al. 2021). Based on Assumptions 1-3,
we next provide the following Lipschitz properties.

Lemma 3. Suppose Assumptions 1-3 hold. There are posi-
tive constant L, and L. such that the following results hold
for any reward parameter 61 and O5:

1Qo,(s,a) — Qo,(s,a)] < Lyll01 — 02f|, VseS,aeA,
(21a)
[VoL(01; D) — VoL(02; D)|| < Lcl|61 — 02, (21b)

where Qg(-,-) denotes the soft Q-function under the reward
parameter O and the policy Ttg.

The full proof of the result is delegated to the Online
Appendix.

Next, we present the main results, which show the
convergence speed of the policy {7y };»o and the reward
parameter {0y}, in Algorithm 1. Please see the appen-
dix for the detailed proof.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let K denote

the total number of iterations to be run by the algorithm. Let us

select ov := g5 for the reward update step (19), where g > 0 and

o € (0,1) are some fixed constants. Then the following holds:
K-1

1
> El|10g 1 ~ 10870, | o] = O(K ™)+ O(K )+ Oleagp),
k=0

(22a)
K-1
%;E[Hveﬁ(ek; D)1= 0K )+ OK )+ O(K")+ O(€app),
(22b)
where

log 1 ~log g, l:= max_[log e (als)—log g, (als)].
se€S,ac A

In particular, if setting o =1/2, then both quantities in
(22a) and (22b) converge with the rate O(K~Y/2) + O(€,pp).

In Theorem 1, we present the finite-time guarantee for
the convergence of the Algorithm 1. We note that our the-
oretical guarantee is different from the existing works,
such as Cen et al. (2022), who showed the convergence
rate of soft policy iteration under a fixed reward function.
Theorem 1 analyzes a more challenging setting where
both the policy and reward parameter are kept changing.
To our knowledge, this is the first result that characterizes
the finite-time convergence for an algorithm developed
for either the structural estimation problem (3) or the
maximum likelihood IRL problem (4). In the following
result, we characterize the dimension dependence of the
performance of the policy estimated with Algorithm 1.

Remark 1. It is worth mentioning here that the
Lipschitz constant L. in (21b) is given by

_ 2L, LCATST-TAT | 2L
- 1—y 1—y

L

7

where C; is a constant given in (30). Hence, L, and the
subsequent convergence rate of the algorithm in Theorem
1 are dependent on the dimension of the problem (i.e., the
size of the state and action space). However, the empirical
evidence (to be presented in Section 9) strongly indicates
that the proposed algorithm performs well with high-
dimensional neural network representations. This is
mainly because our formulation allows us to directly take
(approximate) gradient steps on updating 0y, and that for
fixed reward parameterization 6y, the lower-level policy
optimization problem we are interested in has a closed-
form solution (as a function of the corresponding Q). We
believe that the extension of the analysis for our algorithm
with function approximations (for the parameterized
Q-function and the policy) will result in bounds that have
less dependence on the dimension of the basis at the
expense of additional approximation error term. The
extension of our convergence analysis with function
approximations is left for future research.

6. Linearly Parameterized Reward
Function Case

The result in Theorem 1 can be further strengthened
when rewards are a linear function of (possibly non-
linear) features, that is, r(s,a;0)=¢(s,a)'0 with
¢ : RISXIA1 5 RP, and the distribution of observations
is consistent with optimal behavior for a ground truth
parameter 0", iF = Ty

In this setting, the result in Theorem 1 can be
strengthened to finite-time convergence to the optimal
solution. To show this result, we first establish a duality
relationship between the estimation problem in (13)
and the maximum entropy estimator (Ziebart et al.
2013) that is the solution to the following problem:

max —FE.a_; (23a)
T

>y logm(a|st)
t=0

st. Ea_, Z ytqb(st, a)| =Ez.p [Z thb(str ﬂt)] ’
t=0 =0
(23b)
Y n@ls)=1, Vs €S>0, (230)
aeA
mi(as|s;)) =0, Vs;€S,a,€ A,t>0, (23d)

where (23b) requires that the expected discounted fea-
ture value under the model matches the expected dis-
counted feature under the finite data set D of collected
expert trajectories. When the expert policy is known or
available for access, the maximum entropy estimation
problem is defined as in (23) by replacing (23b) with

Ech-n Zytqb(st,at)] =Bt [Zytqb(sf,af)]- (24)
=0 =0
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The following result formalizes the relationship
between the maximum entropy estimation problem
(23) and the estimation problem (13).

Please see the detailed proof in the appendix.

Theorem 2. Under linear parameterization for reward
function r(s,a;0) = P(s,a)" 0, the estimation problem
defined in (13) (respectively, the maximum likelihood IRL
problem (4)) is the Lagrangian dual of the maximum entropy
estimation problem (23) (respectively, the problem defined by
(23a), (24), (23¢c), (23d)). Moreover, strong duality holds
between the two problems.

Corollary 1. (i) The surrogate objective defined in (13a) (dual
objective) is a concave function of 0. (ii) If the ground-truth
reward values 1(s,d; 0") for a reference action i € A and s € S
are known, the optimal solution to (13) is unique.

Proof. The first result is a direct consequence of Theorem
2 because the estimation problem (13) is a dual problem.
Then we prove (ii) by contradiction. Let 01,0, denote two
distinct solutions of the estimation problem (13), which is
the dual problem with respect to (w.r.t) the maximum
entropy IRL problem (23). From (17b), it follows that

Vol(0;; D) =Ex_p lZVtCP(St,ﬂt; 9)1

Bran, [Z)/fqb(st,at; 9)] =0, i=12
t=0

(25)
Let Qg denote the unique fixed point of the soft-
Bellman operator and Qéi(s,a) = Qg,(5,a) — Qg (s,a)
for all a € A. The following mapping (from the param-
eter space to the policy space)

epr él(s,zz)

Za'eAeXpQéi(Sra/)
is one-to-one (see proposition 1 in Hotz and Miller

1993) and 1y # mp,. By Theorem 2 (strong duality), it
holds that

ETAJ‘(% [Z yt log T[éi(at ls)| =E
t=0

g (als) :=

TA~T

Z )/f log 7t (ay |St):| ’

t=0

where 7t is an optimal solution to primal problem (23).
This is a contradiction to the uniqueness of the optimal
solution 7@ because the maximum entropy objective
(23a) is strictly concave. Hence, we can show that the
optimal solution to (13) is unique. O

Note that the concavity property does not hold for
the estimation objective in Rust (1994). For example,
the undiscounted empirical likelihood for group 2 data
in Rust (1987) can be shown to be nonconcave.

Moreover, we note that the bilevel formulations (4)
and (13) are quite involved, and it is difficult to directly

show the concavity of Problems (4) and (13) with non-
linear reward parameterization. Based on our observa-
tions under linear reward parameterization, as well as
the finite sample guarantee given in Lemma 1, we have
the following corollary.

Corollary 2. Assume that the reward is linearly parame-
terized, that is, r(s,a; 0) = cp(s,a)TQ with 0 € © C R where
® is a compact set. Assume the ground-truth reward value
r(s,d; 0%) for a reference action i € A and s € S are known.
Let O denote the optimal solution to (13). From Algorithm
1's output, define Oy := O (), where

K(K) := arg min{|[VL(6), D)II*},
ke{0,K}
then Ox — O in probability with finite-time guamntee
E[|[VL(Ox, D)|*] < O(K~'/2). Furthermore, if | D| >
In(2), then with probability greater than 1 — 6
L(O) - L(O) <e, (26)
where 6" is the ground truth parameter.

62(1 7/)

Proof. The finite-time guarantee E[|IVL(6k, D)|*] <
O(K~'/2) implies IVL(6g, D)|* — 0 in probability. By
compactness, the set of accumulation points of the
sequence {0x:KeN'} is nonempty. By Corollary
1(ii), the set of limit points is a singleton, hence 0 K=
0 in probability. To prove the performance guarantee
in (26), we can show the following decomposition of
the error between the log likelihood objective evalu-
ated at 0" and 0, respectively. With probability greater
than 1 — §, the following result holds:

L(0") — L(D)
=(L(6") — L(6%; D)) + (L(6"; D) — L(O; D)) + (L(O; D) — L(D))

0 C n@/8) .+ o s C [In2/s)
<1\ [arpp @ -LE)+ D]

~ In(2/5) .

=\ 2oy O D) -LO:D), @)

where (i) follows (12) in Lemma 1. Because we defined
0 as the optimal solution to L(;D), we know that
L(6;D)—L(6;D) <0 for any 0. Plugging this result
into (27), the following result holds with probability
greater than 1 — 6:

L(6") —L()

In@/6) oo

_1_7/ 2|D| +(L(6/®)_L(61@))
In(2/6)

<5\ 200 (28)

Hence, when the number of expert trajectories in the

demonstration data set satisfies |D| > 2(1 7 -In(2),
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then with probability greater than 1 — 6, we obtain
L(O")—L(O) <e,

where 0" is the ground truth parameter, which is opti-
mal w.r.t. the log-likelihood objective L(-) defined in
(4a). The corollary is proved. O

It is worth mentioning that when relaxing the assump-
tion that the ground-truth reward value r(s,4; 0") for a
reference actioni € A and s € S is known, we will no lon-
ger have a guarantee on parameter convergence. How-
ever, as shown below, the policy obtained by Algorithm
1 still converges to the expert policy.

By defining the state-action visitation measure
d%(s,a) := (1 — ) (als)Y 520 Y'P™ (st = s|sp ~ p) under
the expert policy 7i¥, we can rewrite the expression of
the log-likelihood objective L(:) in (4a) for any reward
parameter 0 as below:

t=0

L(O) :=FE & _ li)/t logﬂe(ﬂt|5t)l

1

T1- yE“dE('%%nE«ls)[lOg mo(als)]-

Then the e-optimal solution on the maximum likeli-
hood IRL problem (4) implies

. A 1 Tie(als
L(6")—L(6) :EESNdE(,),aNnE(. Is) {log (né; ((a ||S))>] <g,

where d8(s,a) := (1 — y)r(als)> 520 ' P™ (s: = s|so ~ p)
denotes the state-action visitation measure under the
expert policy . Assume the expert behaviors are con-
sistent with optimal behavior for a ground truth
reward parameter 0", then it follows 7t = mg. Because
of this property, we can obtain the following result:

L(6) — L(6)
_ %Eyd}:('),%ﬁ(' 9 [log <M> ]

gl
— e DS 1)

<e.

Hence, Corollary 2 provides a formal guarantee that
the recovered policy 115 solved from the empirical esti-
mation problem (13) is e-close to the expert policy 7i®
measured by the KL divergence.

Remark 2. We also believe the results for the linear
reward parameterization case can be generalized to
certain nonlinear parametric rewards representations.
Such is the case, for example, of overparameterized neu-
ral networks. In this setting, under certain structural
assumptions such as neural tangent kernel and local
linearity (Jacot et al. 2018, Du et al. 2019), we expect
that the resulting reward representation is approximately
linear in the parameters. Hence, it would be possible to

identify the global optimal reward estimator. These direc-
tions are left for future research.

7. Case with State-Only Dependent
Rewards

In this section, we consider the IRL problems when the
reward is only a function of the state. A lower-
dimensional representation of the agent’s preferences
(i.e., in terms only of states as opposed to states and
actions) is more likely to facilitate counterfactual analy-
sis such as predicting the optimal policy under differ-
ent environment dynamics and/or learning new tasks.
This is because the estimation of preferences that are
only defined in terms of states is less sensitive to the
specific environment dynamics in the expert’s demon-
stration data set. Moreover, in applications such as
healthcare (Yu et al. 2021) and autonomous driving
(Kiran et al. 2021), simply imitating the expert policy
can potentially result in poor performance because the
learner and the expert may have different transition
dynamics. Similar points have also been argued in
recent works (Gangwani and Peng 2020, Ni et al. 2020,
Viano et al. 2021).

Next, let us briefly discuss how we can understand
(4) and Algorithm 1, when the reward is parameterized
as a state-only function. First, it turns out that there is
an equivalent formulation of (4a), when the expert tra-
jectories only contain the visited states.

Lemma 4. Suppose the reward is parameterized as a state-
only function r(s;0). Then (4) is equivalent to the follow-
ing:

min Esy-p()[Vo(50)] = Esy-p [V (50)] (29a)

s.t. mp:=arg max E.a_, Z)/t(r(s[; 0) + H (n(-]s1))) |,
n =0

(29b)

where VE(-) denotes the soft value function under reward
parameter 6 and the expert policy T&.

Please see Section 18 in the supplementary material
for detailed derivation. Intuitively, the above lemma
says that, when dealing with the state-only IRL, (29a)
minimizes the gap between the soft value functions of
the optimal policy g and the expert policy 7E. More-
over, Algorithm 1 can also be easily implemented with
the state-only reward. In fact, the entire algorithm
essentially stays the same, and the only change is that
7(s,a; 0) will be replaced by r(s; ). In this way, by only
using the visited states in the trajectories, one can still
compute the stochastic gradient estimator in (18).
Therefore, even under the state-only IRL setting where
the expert data set only contains visited states, our for-
mulation and the proposed algorithm still work if we
parameterize the reward as a state-only function.
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Moreover, it is straightforward to show that the conver-
gence results in Theorem 1 also hold under the state-
only IRL setting.

8. Extension to the Offline Setting
Throughout this paper, we focused on the online setting
where the transition kernel P(s;1]|s:,a;) is known or
alternatively, samples from such kernel are available to
the learner in an online fashion. However, in many
applications, this assumption does not hold, and the
available data are fixed. In such an offline setting, one
strategy to deal with the problem is to estimate both the
transition kernel and the reward function based on the
finite data set of state-action sequences. In our follow-
up work (Zeng et al. 2023) to the present paper, we
extended Algorithm 1 to the offline setting. In particu-
lar, a two-stage estimation procedure has been pro-
posed, where in the first stage a maximum likelihood
estimate of the transition kernel is obtained from transi-
tion triples (s,4,s’) in a transition data set denoted as
D', that is, P:= arg maxPE(s,a,S,)NDT[logf’(s’ |s,a)].
Given that finite-data estimation of high-dimensional
environment dynamics likely leads to an inaccurate
model, in the second stage, a “conservative” reward
estimator is obtained using P by introducing a regulari-
zation term U(s, a) to account model uncertainty:

max LO) :=Ex_p [Z y'log mo(a; |st)1 (30a)

>0

s.t. mp:=arg max ETA~(p,n,13)
us

lz Vt(f’(st/ﬂt; 0) + 5‘[(71(' [s¢)) — U(St,ﬂt))] .

>0

(30b)

The regularization term in the lower-level problem
(30b) induces conservative policies that assign low prob-
ability to state-action pairs in which P cannot provide
an accurate prediction on the dynamics. Clearly, the
second stage is closely related to the online setting dis-
cussed in this work. Therefore, algorithms and intui-
tions developed in the present work for the online
setting is crucial for the offline setting as well.

There are many other outstanding issues to be
resolved for the offline setting. For example, how well

Table 1. MuJoCo Results

the estimated transition function can be recovered,
how the error will propagate to the error of the reward
estimation, and how to compute (stochastic) gradient
for the new formulation (30a) and (30b). Because these
investigations are out of the scope of this paper, we
refer the readers to Zeng et al. (2024) for more details.

9. Testbed

In this section, we test the performance of our algorithm
with limited expert trajectories on a diverse collection of
RL tasks and environments. In each experiment set, we
train algorithms until convergence and average the
scores of the trajectories over multiple random seeds.

9.1. Mujoco Tasks for IRL

In this experiment set, we test the performance of our
algorithm on imitating the expert behavior. We con-
sider several high-dimensional robotics control tasks in
Mujoco (Todorov et al. 2012). Two classes of existing
algorithms are considered as the comparison baselines:
(1) imitation learning algorithms that only learn the
policy to imitate the expert, including behavior cloning
(BC) (Pomerleau 1988) and generative adversarial imi-
tation learning (GAIL) (Ho and Ermon 2016); (2) IRL
algorithms that learn a reward function and a policy
simultaneously, including adversarial inverse rein-
forcement learning (AIRL) (Fu et al. 2017), f~IRL (Ni
et al. 2020), and IQ-learn (Garg et al. 2021). To ensure
fair comparison, all imitation learning/IRL algorithms
use soft AC (Haarnoja et al. 2018) as the base RL algo-
rithm. For the expert data set, we use the data provided
in the official implementation” of f-IRL.

In this experiment, we implement two versions of our
proposed algorithm: ML-IRL (state-action) where the
reward is parameterized as a function of state and action
and ML-IRL (state-only) that utilizes the state-only
reward function. In Table 1, we present the simulation
results under a limited data regime where only five
expert trajectories are collected. The scores (cumulative
rewards) reported in the table is averaged over five ran-
dom seeds. In each random seed, we train the algorithm
from initialization and collect 20 trajectories to average
their cumulative rewards after the algorithms converge.
According to the results reported in Table 1 where we
run the experiments with only five expert trajectories in
the demonstration data set D, it shows that our

Task BC GAIL 1Q-learn FIRL ML-IRL (state-only) ML-IRL (state-action) Expert
Hopper 102.74 2,762.77 3,039.21 3,116.02 3,131.45 3,290.02 3,530.63
Half-cheetah 155.64 3,085.18 4,562.51 4,751.63 4,661.04 4,846.43 5,072.53
Walker 283.43 3,610.49 4,361.27 4,562.48 4,367.81 4,703.35 5,471.58
Ant 961.58 2,971.57 4,362.90 5,124.13 4,832.38 5,157.03 5,856.84
Humanoid 547.62 3,174.66 5,227.10 5,399.67 5,149.39 5,281.93 5,339.12

Notes. The performance of benchmark algorithms under five expert trajectories. Bold entries indicate the best performance for a specific task.
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Table 2. Transfer Learning

Setting 1Q-learn AIRL fIRL ML-IRL (state-only) Ground truth
Data transfer —11.78 —5.39 188.85 221.51 320.15
Reward transfer —1.04 130.3 156.45 187.69 320.15

Notes. The performance of benchmark algorithms under a single expert trajectory. The scores in the table are obtained similarly as in Table 1.

Bold entries indicate the best performance for a specific task.

proposed algorithms outperform the baselines on most
tasks.

We observe that BC fails to imitate the expert’s
behavior. It is likely because BC is based on supervised
learning and thus could not learn a good policy under
such a limited data regime. Moreover, we notice the
training of IQ-learn is unstable, likely due to its inaccu-
rate approximation to the soft Q-function. Therefore, in
the Mujoco tasks where 1Q-learn does not perform
well, we cannot match the results presented in the orig-
inal paper (Garg et al. 2021). For those cases, we directly
report results from the original paper. The results of
AIRL are not presented in Table 1 because it performs
poorly even after spending significant efforts in param-
eter tuning; note that similar observations have been
made in Liu et al. (2020) and Ni et al. (2020).

9.2. Transfer Learning Across Changing Dynamics
We further evaluate IRL algorithms on the transfer
learning setting. We follow the environment setup in Fu
et al. (2017), where two environments with different

dynamics are considered: Custom-Ant versus Disabled-
Ant. We compare ML-IRL (state-only) with several exist-

ing IRL methods: (1) AIRL Fu et al. (2017), (2) fIRL Ni
etal. (2020), and (3) IQ-learn (Garg et al. 2021).

We consider two transfer learning settings: (1) data
transfer and (2) reward transfer. For both settings, the
expert data set/trajectories are generated in Custom-
Ant. In the data transfer setting, we train IRL agents in
Disabled-Ant by using the expert trajectories, which are
generated in Custom-Ant. In the reward transfer setting,
we first use IRL algorithms to infer the reward func-
tions in Custom-Ant, and then transfer these recovered
reward functions to Disabled-Ant for further evaluation.
In both settings, we also train SAC with the ground-
truth reward in Disabled-Ant and report the scores.

The numerical results are reported in Table 2. The
proposed ML-IRL (state-only) achieves superior perfor-
mance compared with the existing IRL benchmarks in
both settings. We notice that IQ-learn fails in both set-
tings since it indirectly recovers the reward function
from a soft Q-function approximator, which could be
inaccurate and is highly dependent on the environment
dynamics. Therefore, the reward function recovered by
IQ-Learn cannot be disentangled from the expert
actions and environment dynamics, which leads to its
failures in the transfer learning tasks.

10. Conclusions

The nested structure of the structural estimation of
MDPs entails a significant computational burden in
environments with a high-dimensional continuous state
or discrete state with large cardinality. To alleviate such
burden several approaches have been proposed in both
the econometrics (dynamic discrete choice estimation)
and artificial intelligence (inverse reinforcement learn-
ing) literature. For example, the approximation algo-
rithms in Hotz and Miller (1993) and Hotz et al. (1994)
reduce the computational burden, but the resulting
estimates suffer from finite sample bias because in
high-dimensional state space, initial policy estimates are
likely of poor quality. Recent approaches in inverse rein-
forcement learning that lessen the computational burden
(Ni et al. 2020, Garg et al. 2021) do so either at the
expense of reward estimation accuracy or lack theoreti-
cal guarantees.

In this paper, we introduce a class of single-loop algo-
rithms for the structural estimation of MDPs with non-
linear parametrization. In each iteration a policy
improvement step is followed by a stochastic gradient
step for likelihood maximization. We show that the pro-
posed algorithm converges to a stationary solution with
a finite-time guarantee. Further, if the reward is parame-
terized linearly, we show that the algorithm approxi-
mates the maximum likelihood estimator in sublinear
time. Extensive experimentation in standard testbeds
for robotics control problems show that the proposed
algorithm achieves superior performance compared
with other IRL and imitation learning approaches. In
future work, we will consider extensions of the pro-
posed algorithm when a model of the state dynamics is
not available and thus must also be estimated.

Appendix

A.1. Auxiliary Lemmas

Before starting the proof of the main theorems in this
paper, we first introduce several supporting lemmas in
this section. Throughout this section, we assume Assump-
tions 2 and 3 hold true.

Lemma A.1 (Xu et al. 2020, Lemma 3). Consider the initial-
ization distribution p(-) and transition kernel P(-|s,a). Under
p(-) and P(:|s,a), denote d(-,-) as the state-action visitation
distribution of MDP with the softmax policy parameterized
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by parameter w. Suppose Assumption 2 holds, for all policy
parameter w and w’, we have

oo (-, ) = dur (-, My < Calleo —w’|| (A1)
where C; is a positive constant.

Lemma A.2. Suppose Assumption 3 holds. Under the approxi-
mated soft policy iteration in (15), denote the soft Q-function
under reward parameter O and policy T,y as Q,y; further
note that Q.1 has been defined as the soft Q functzon under
the reward parameter Oy,q and policy Ty,q. Then for any s e
S,ae A and k>0, the following inequality holds:

IQk+1(S/a) — Qr(s,a)| < Lquek — Okall, (A2)

where Ly : _ﬁ and L, is the positive constant defined in

Assumption 3.

Lemma A.3. Using approximated soft policy iteration (15), the
following holds for any iteration k > 0:

Qx(s,a) < Qk+1(s a) + al;P , VseS,aeA, (A.3)

”QQk - Qk+l||oo < V”Q@k Qk”oo

where Q, +1( -) denotes the soft Q-function under reward param-
eter Oy and updated policy Ty, and ||Qg, — Qk+;||m = MaXses

maxaeﬂl|Q8k(S a)— Qk-%(s a)|.

zyeapp (A4)
-y’

A.2. Proof of Theorem 1

In this section, we prove (21a) and (21b), respectively, to
show the convergence of the lower-level problem and the
upper-level problem.

A.2.1. Proof of Relation (21a). In this proof, we first show
the convergence of the lower-level variable {r};~o. Recall
that we approximate the optimal policy g, by 741 at each
iteration k. Moreover, the policy ;.1 is generated as below:

ms1(a]s) ec exp(Qi(s,)), where [1Qy — Qlleo < €app- (A)

We first analyze the approximation error between g, and
Tii+1. Recall that both pohc1es M1 and g, are in the soft-
max form parameterized by Q; and Qg,, then it holds

@) A
||108 Tle+1 — log nek”oo < 2||Qk - Q@k”oo
=2/10x — Qk + Qk — Qoylleo < 2€app +211Qk — Qoylleo,  (A6)

where (i) follows the Lipschitz property of softmax policy,
which is shown in proof of Lemma 3.

Based on Inequality (A.6), we further analyze ||Qx — Qp, |l
to show the convergence of the policy estimates. Here, we
use an auxiliary sequence {Q; +%}k20, where Q1 is defined
as the soft Q-function under reward parameter 0, and the
policy 71, its expression follows its
Qpss(s,a) :=7(5,8;0¢) + Eqa

~Tles1

> 7 (51,06 61) + H (i (-|s1))
t=1

(s0,a0) = (S,ﬂ)} .

(A7)

Then, the following relations hold:
1Qk — Qocllo = 1Qk — Qo, + Qo,., — Qo s + Qi1 — Qrillo
<11Qe: — Qo lleo +11Qk-3 — Qoyy oo +11Qk — Qeilleo

(0]
< LyllOk — Okall + 11Qk—3 — Qo oo +11Qk — Qk-slleo

(ii)
< 11Qk-3 — Qo oo + 2L4l10k — O, (A.8)

where (i) is from (20a) in Lemma 3; (ii) follows Lemma 2.
Based on (A.8), we further analyze the two terms in (A.7)
as below.

Recall that we have already shown the following rela-
tion in (A.4):

Q6 — Qrstlle = VI1Q0, — Qillew + j;p (A9)

Through plugging (A.9) into (A.8), we have the following
result:

1Qk — Qolleo < M1Qk-1 — Qo lloo + 2Lgl1Ok — Opall

2v€;
= Qucll + T+ 2Lk — Ol

<YlQe, .,
(A.10)

To show the convergence of the soft Q-function based on
(A.10), we further analyze the error between the reward
parameters 0, and Oi_;. Recall that in Algorithm 1, the
reward parameter is updated as

Ok = Or1 + agi1 = Okt + a((Ok_1, Tf_1) — h(Ok_1,741)),

where we denote 7:={(s;,ar)} oo, M0,7) 1= 1o ¥ Vor(ss, a; 0)
and gy is the stochastic gradient eshmator at iteration k — 1.
Here, 7} | denotes the trajectory sampled from the expert’s
data set D at iteration k — 1, and 1{* ; denotes the trajectory
sampled from the agent’s policy 7t at time k — 1. Then according
to Inequality (19) in Assumption 3, we could show that

= 2L,
lgi-all < WOk, Tl + (B 1, T I < 2Ly o' = -y
t=0

=21,

(A11)

where the last equality follows the fact that we have
defined the constant L, := 1%’), Then we could further show
that

() 2ve
10 — Qaylle <1IQ0, , = Qealles + yj‘;f’ +2L,]16 — O

(if)
Z901Q0, , — Qk-1llo 42 “;" +2aL,llgk 1l

(iii) zyea
< V”Q@k 1 Qk*l”oo + — I;/P + 404[%/

(A.12)
where (i) is from (A.10); (ii) follows the reward update

scheme in (18); and (iii) is from (A.11).
Summing Inequality (A.12) from k =1 to k = K, it holds that
K K-1 2y ,
D lIQk — Qollee < 7Y NIk — Qoy lloo + K=—2 + 4aKL?.
k=1 k=0 L—y

(A.13)



Downloaded from informs.org by [134.84.0.1] on 03 October 2024, at 22:13 . For personal use only, all rights reserved.

Zeng, Hong, and Garcia: Structural Estimation of Markov Decision Processes

14

Operations Research, Articles in Advance, pp. 1-18, © 2024 INFORMS

Rearranging Inequality (A.13) and dividing (A.13) by K on
both sides, it holds that

1— K
— 5D 10k — Qe < 210 — oyl — 10k — Qo)
k=1

2
4 2VCae | g2, (A.14)
1-vy q
Dividing the constant 1 -3 on both sides of (A.14), it
holds that

1& yCo 2ye, AL

=3 NI — Qo,ll < + Py a, (A15)

Kk; UK=Y -y 1oy
where we denote Cp :=||Qp — Qg - Add [|Qo — Qg, |l and
subtract ||Qk — Qo ll. 0N both sides of (A.15), and it follows
that

14 yCo | Co [1Qk — Qoxlleo
+ 2y€app 4L$
(1-y?* 1=y

412
< Co + 2y€”””2+ 1 q.
Kd=7) (1-y7? 1-»
Recall the step size is defined as a = £ where ¢ > 0. Then
we have

1K1 B .
2210k = Qo/lls = OK™) + OK ") + Oleap)-  (A16)
k=0
Summing Inequality (6) from k = 0 to K — 1, it holds that

1 K-1 2 K-1
22 lNog i — log g ll < 2D (€app + [1Qk — Qoll)
k=0 k=0

= O(K™)+ O(K™) + O€qpp).
Therefore, we complete the proof of (21a) in Theorem 1. O

A.2.2. Proof of Relation (21b). In this part, we prove the
convergence of reward parameters {0y }so-

We have the following result of the empirical estimation
objective L(6; D):

N @ A A L
L(Ok1; D) 2 L(O; D) + (VoL (0 D), Ohsr — 1) — - 16k — Ol

(i) ~ A La?, o
= L(0; D) + a({VoL(Ok; D), &) — 5 Il
= L(6; D) + (VoL (6x; D), gk — VoL(61; D))
. L.a?
+allVoL(Ok; D)II* - ) llgxll®

(iii) A ~ ~
> L(Ox; D) + a{VeL(0r; D), gx — VoL (0r; D))
+a|[VoL (6 D)|* - 2L L2a?, (A.17)

where (i) is from the Lipschitz smooth property in (20b) of
Lemma 3; (ii) follows the reward update scheme (18); and
(iii) is from constant bound of the gradient estimator g in
(A.11).

Taking an expectation over both sides of (A.17), it holds
that

E[L(Ok1; D)]

> E[L(6); D)] + aE[(VoL(6); D), gk — VoL (6; D))]
+aE[|[VoL(6; D)IF] - 2LcL2a?

=E[L(6y; D)] + aE[(VoL(6); D), E[gi — VoL (0x; D)|6:])]

+aE[|IVoL (6 D)I'] - 2LcL70?

9 ®1(6,; D)] + aE

VoL (0 D),Ecary, [Z V'Vor(se, az; 6k):|

>0

t>0

- Eﬂhnm {Z ythr(s,,at; Qk)} >

+ak DWQi(Gk} @)Hz] - 2LcLsa2

(i) ~
> E[L(6; D)] - 2al,

| |

+aE[|[VoL(0x; D)I] - 2LcL2a?, (A.18)

IETA~n(7k |:Z7/tvt9r(str a, 6k)
t=0

- E7A~nk+1 {Zytvef’(shﬂr; 6k):|

t=0

term A

where (i) follows the expressions of VoL(6; D) in (16b) and
the gradient estimator g in (17); and (ii) is due to the fact
IVoL(6; D)) < 2L, according to (A.11).

Then we further analyze term A as below:

invar(st/ﬂt} Qk)} ‘H
=0

E ETANT["k 7]ETA~7T;;+1

Zytvﬁr(strat/' O)
t=0

0

1
T Bsade, o) [Vor(s,a;0¢)]

e

D" Veorls,a; 04)(d(s,a;70,) — d(5,8;7111))
seS,ae A

1
- T)/E(s,a%d(«,-;nkﬂ [ Vor(s,a;0)]

= |

1
<7 E Z (IVor(st,as; Ol - |d(s,a;q,) — d(s,a;Tt41) |
- se€S,ae A

(i) 2L,
< 1Tyyﬂ3:[||d(‘,';776k)—d(',‘}le+1)||TV]

= 2LE[lld (s 0,) — (s sy ]

<21, CEIIQu, — Ol

@ 2L,Cor/TST-TATENIQs, - Oyl

< 2L,Ca /181 | AlEleapp +11Q0, — Qilleo], (A.19)

where (i) follows the definition of the state-action visitation
measure d(s,a;7) = (1 —y)m(als)> oy V' P (st = s|so ~ p); (ii)
follows Inequality (19) in Assumption 3 and the definition
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of the total variation norm || - ||y (iii) follows the definition
of the constant L, : 1L1, and (iv) follows Lemma A.2 and

the fact that to,(-15) oc exp(Q, (5,°)), e (15) o exp(Oy(s, )
follows the conversion between Frobenius norm and infin-
ity norm.

Through plugging Inequality (A.19) into (A.18), this
leads to

E[L(04+1; D)]

> E[L(6k; D)] — 2aL,E
t=0

+ aE[|IVoL(6i; D)I] - 2LcL3a?

—4aCyLy/|S| - | AIE[IQa, —

+ aB[[[VoL(6x; D)IP] - 2LcL3a?,

ETA~7Tgk [Zytvsi’(st, ag; 6k):|

—Eu

~Tlet1

Z)/tver(st, ag; Gk)}

t=0

@ .
> E[L(Gk,' 1))] Qk“oo + €app]

where (i) follows Inequality (A.19).
Denoting C; :=4C4L;V/[S]- [A] and rearranging the inequal-
ity above, it holds that

aE[|[VoL(6; D)IF] < 2LcL20® + aCiE[|Qq, — Qilleo + €app]
+E[L(6k+1; D) — L(6; D).

Summing the inequality above from k = 0 to K — 1 and
dividing both sides by aK, it holds that

K 1

_Z]E[”VHL(Qk/ D)|*]<2LLia +—ZE[|IQ9k Qxlleo + €appl

. L(0x; D) —L(00; D)
Ka ’

According to Assumption 1, we assume that the reward
function is bounded. Based on this assumption, we know
that the empirical estimation objective L(; D) is bounded.
Then we could plug (A.16) into the inequality above, and
we obtain

K 1

—ZE IVoL(8x; D)1= O(K %)+ OK ™)+ O(K ™) + O(€app)-

(A.20)
This completes the proof of this result. O

A.2. Proof of Theorem 2
In this section, we prove the duality between the estima-
tion problem (13) and the maximum entropy IRL problem
(22). To state the proof, we first write down the partial
Lagrangian function, when only dualizing the constraint
(22b) and (22c). After we derive the dual form for the
problem with Constraint (22b) and (22c), we will make
sure that Constraint (22d) is satisfied.

Let 0 and C,, denote the dual variables of Constraints
(22b) and (22¢), respectively; define ¢(nif; D) :=Ee_p[> o0

y!¢(st,ar)]. Then the partial Lagrangian can be expressed as

L(1,0) := —Eor_r [ZV logn(at|sf)}
+07 (ETAW [Zytq)(st,at)} — ¢(n; @))
t=0
+ > G, (Z n(als;) — 1). (A21)

1>0,s€S acA

Our plan is to show that the dual function, as defined by
L£(0) := max, L(n,0), has the following expression:

£(0) = Eqy-p[Vo(s0)] — Evep nyr(sf,at;m}, (A22)
=)

so that the dual problem can be shown to be equivalent to
Problem (22), as follows:
Z )/ r(st/ a; 6):|

= Es-p[Vo(so)]-

mgin E(@) mm Eso p[VQ(SO) Ex.p

Z 7/ r(sh ag, 6)

t=0

= max Ex.p

Toward this end, let us compute the gradient of L(r,0)
with respect to the policy m(a|s; =s):
Vﬂ(ﬂ‘S[:s) L(T‘/ 9)

= Vn(a |s¢=s) (_]ETA~‘R
x=0

>y logm(as ISK)}

+ QTE7A~71 ZVqu(SK/ a?\'):| )
x=0
+ v11(a|s,:s) 76T¢(HE; D) + Z Cs,\.:s (Z 7'(((1|S,C) - 1)
k>0,s€S aeA

(1—) v17(a|s;—s) <_]E‘{A~Tl |:Z7/k log R(IZK |SK):|
K=t
ZVQP(St, at):| ) + Csfzs
K=t
=Vials=s) | — Z P™(sy =s|sp ~ p)ri(als; = s)
se€S,ae A

(Sh af) = (S,ﬂ):|>

+vn(a|s,:s) Z Pn(StZS|50~p)Tl({Z|S[ :S)
seS,ae A
(st,a1) = (s,a)]) + Csy=5

=P"™(s; = 5|50 ~ p)(—yt(logn(ulst =5)+1)

+9TIETA~77

> y*logn(ax|s,)

K=t

Eoar

Eoaor

> V0T P50 )
K=t

+ ]ETA~‘IT nym—l 108 7-[(a1<+1 |S1<+1)

K=t

(st,a¢) = (s,a)]

+ IE.[ANTZ

ZVK9T¢(SK/ aK) (St/at) = (S,IZ):|> + Cs,:s/
K=t

(A.23)
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where (i) follows the fact that the probability 7t(a|s; = s) has
no effect on the trajectory generated before time . Setting
Vials=s) £(11,60) =0, we obtain the following first-order
condition:

Coms )
1 alsi=s)=| rom—————=—1
ogi(als;=s) (.)/t.PT!(s,:s|So~P)

Z)/Kﬂit 108 T[(ﬂkﬂ |SK+1)

K=t

—Eoar

(st,a0) = (S,a)}

+ETA~,.!

STy (s,
K=t

(st,a1) = (S,a)} -

Then, we can express 7(a|s; = s) as below:

mi(als; = s)
=exp (— Eeror | Yy log ml@s [ses1)|(s1,ar) = (s,a)}
K=t
+Epa_y [Zyk‘tGTcp(sK,aK) (st,a5) = (s,a)}
K=t
Cs =s
+——1. A24
YR =3) ) (A2
Note that (ﬁ - 1> is independent of the action
a;. Hence, the following result holds:
m(alsi=s)
& eXP <E1A~n ZVK#(QT‘P(SK,“K) - )/logﬂ(ﬂxﬂ |5x+l )) (St/af) = (s,a):| >
K=t
=exp <E1A~n ZVK(QTq)(SK/aK) - ylogﬂ(u7<+1 |S7<+1)) (S(],ﬂ[)) = (Sru):| ) .
x=0

(A.25)

According to (A.25), we could conclude that m(als; =s)
only depends on the state-action pair (s, a) and is inde-
pendent of the time index t>0. Hence, we have shown
that the policy 7 is a stationary policy and mt(a|s; =s) =
ni(als) for any £ > 0.

Therefore, we can rewrite (A.25) with f = 0 as follows:

(So,ﬂ()) = (S,ﬂ):| >
(S(],ﬂ[)) = (S,ﬂ):| >

(A.26)

mi(als)

ocexp <IETA~,1

o

> (0" Pse,ax) —Y10g (@i [5c41))

x=0

9 exp (r(so,ao; 0)

+Ea ZVKH (r(Syes1,0x41;0) — 10g71(ﬂy<+1 [Si+1))

k=0

2 exp(Q™(s,a),

where (i) follows the linear approximation of the reward
function that r(s,a;0) := 6T¢(s,a). Clearly, the right-hand
side of (i) is the soft Q-function under reward parameter 0
and the stationary policy 7; therefore in (ii), we use Q™ (s, a)
to denote such a soft Q-function.

Recall that we have defined Vy, Qg as the soft value
function, soft Q-function under reward parameter 0, and

the optimal policy 7g. For any s€ S and a € A, it follows
that

Vio(s) 1= Eor oy | ' (r(s1,a1;0) + H (mo(-]51))) |50 = 5|,
t=0
(A.27a)

Qo(s,a) :=7(5,a;0) + YEg _p(.js,0) [ Vo (s")]. (A.27b)
According to Haarnoja et al. (2017) and Cen et al. (2022),
the optimal policy 7 in the entropy-regularized MDP
satisfies the following expression for any s € S and a € A:

exp(Qo(s,4))
> aeaep(Qols,a))”

Therefore, we know the policy in (A.26) is the optimal
policy mg. Using 7y to replace the policy m in the
Lagrangian function L(r,0) as given by (A.21), we can
express the dual function as

Tig(als) = (A.28)

L£(9)

= _ETA~T[g |:Zyt IOgng(ut |St):|

t=0

+67 <E1A~T(0 |:i)/t<f’(srﬂt)] —Ez.p |:i)/t(f)(5t/ﬂt)]>
=0 =0
+ > G, (Zne(alsf)—1>

t>0,s5,€S acA

T | T
=y >

1e2€XpQo(st,a)

~Epp

+Ea_g, [Zytr(st,at;e)

t=0

inT(St,ﬂt}Q)]

t=0

=—Eu g, {i# (Qe(sf,ut) —log <ZEXPQ9(5t/a)> ) ]
t=0

ae A

[N}

+ ETA~ng [Zytr(st/ut; 9):| _ETE~D

t=0

i)/[r(st,aw)]

t=0

Q B, [ny(r(sf,af;e) +yVolsi) — Volse)
=0

~Eup

+ ]ETA~7'[3 [Zytr(st/ﬂh' 0)

t=0

ZVtV(St,ﬂt; 6)]
t=0

= 7ETA~779 |:iyt(]/v9(st+l) - VQ(St))

t=0

- ]E'(E~D |:Zytr(st/at} 9):|
t=0

=Es-p[Vo(s0)] = Eer_p

i)/'r(st,at;e)} , (A.29)

+=0

_oPQo(st,m) (see
- AePQa(s1/0)
(A.28)) and 7(s,a; 0) := 07 ¢(s,a), and (ii) follovjls (A.27b) and

(A.27a). Then we can show the equivalence between (A.28)

where (i) follows the fact that 7o(a;|s;) =
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and (13a):

8

H})in Z(e) = n})m ]ESU~p[V6(SO)] —Ex.p

Z Vtr(sf/ﬂt} 6):|
t=0

Z ‘)/tr(st/at; 6) - ]ES()~p[V9(SO)]'

=max E:_p
o t=0

Hence, we proved that (13a) and (13b) is the dual form of
(22a)-(22c) and Constraint (22d) is satisfied due to the
closed form of the optimal policy 7 in (A.28).

Note Objective (22a) is concave, and (22b) and (22c) are
affine. In addition, the interior of the feasible region is not
empty (i.e., Slater’s condition). Hence, under linear param-
eterization of the reward function, there is strong duality
(no gap) between the solutions of (13) and (22).

When the expert policy is known or available for access,
following the derivations in (A.29), we show the dual
problem of the maximum entropy estimation problem
((22a), (23), (22¢), (22d)) as follows:

o0

> (s 6)} = Eqp-p[Vo(so)]

max Ex_ &
o =0

st mo(als,) = argmax By, s r {Zy’(r(st,af;G) +H (r(-|s1))) |-

t=0

(A.30)

Then based on our derivations in (8), we obtain the equiv-
alence between (A.30) and (4a):

Ee e Z )/tr(st/ a1;0)| — Esy~p[Va(s0)]
t=0
=Er_ = Z ytlnﬂg(ﬂt |Sf):| .
t=0

Therefore, we obtain the duality between the maximum
likelihood estimation problem (4) and the maximum
entropy estimation problem ((22a), (23), (22¢), (22d)). O

Endnotes

" In Section 6, we show that if the reward is linearly parametrized, the
maximum entropy formulation in Ziebart et al. (2008) is the dual of the
maximum likelihood formulation of the estimation problem.

2 See https: // github.com /twni2016/f-IRL.
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