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Abstract. We consider the task of estimating a structural model of dynamic decisions by a 
human agent based on the observable history of implemented actions and visited states. 
This problem has an inherent nested structure: In the inner problem, an optimal policy for 
a given reward function is identified, whereas in the outer problem, a measure of fit is max
imized. Several approaches have been proposed to alleviate the computational burden of 
this nested-loop structure, but these methods still suffer from high complexity when the 
state space is either discrete with large cardinality or continuous in high dimensions. Other 
approaches in the inverse reinforcement learning literature emphasize policy estimation at 
the expense of reduced reward estimation accuracy. In this paper, we propose a single-loop 
estimation algorithm with finite time guarantees that is equipped to deal with high- 
dimensional state spaces without compromising reward estimation accuracy. In the pro
posed algorithm, each policy improvement step is followed by a stochastic gradient step 
for likelihood maximization. We show the proposed algorithm converges to a stationary 
solution with a finite-time guarantee. Further, if the reward is parameterized linearly, the 
algorithm approximates the maximum likelihood estimator sublinearly.
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1. Introduction
We consider the task of estimating a structural model 
of dynamic decisions by a single human agent based on 
the observable history of implemented actions and vis
ited states. This problem has been studied as the esti
mation of dynamic discrete choice (DDC) models in 
econometrics and inverse reinforcement learning (IRL) 
in artificial intelligence and machine learning research.

Rust (1987) is a seminal piece of literature on 
dynamic discrete choice estimation. In that paper, the 
estimation task is formulated as a bilevel optimization 
problem where the inner problem is a stochastic 
dynamic programming problem, and the outer prob
lem is the likelihood maximization of observed actions 
and states. Rust (1987) proposed an iterative nested 
fixed-point algorithm in which the inner dynamic pro
gramming problem is solved repeatedly followed by 

maximum likelihood updates of the structural para
meters. Over the years, a significant amount of litera
ture on alternative estimation methods requiring less 
computational effort has been developed. For example, 
Hotz and Miller (1993) and Hotz et al. (1994) proposed 
two-step algorithms that avoid the repeated solution of 
the inner stochastic dynamic programming problem. In 
the first step, a nonparametric estimator of the policy 
(also referred to as conditional choice probabilities) is 
obtained, and the inverse of a map from differences in 
Bellman’s value function for different states to random
ized policies is computed. In the second step, a pseudo- 
log-likelihood is maximized. Two-step estimators may 
suffer from substantial finite sample bias if the esti
mated policies in the first step are of poor quality. 
Sequential estimators that are recursively obtained by 
alternating between pseudo-likelihood maximization 
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and improved policy estimation are considered in 
Aguirregabiria and Mira (2002). In general, the compu
tational burden for all these methods is significant 
when the state space is either discrete with large cardi
nality, or they are continuous in high dimensions. Dis
cretization may be avoided using forward Monte Carlo 
simulations (Bajari et al. 2007, Reich 2018), but this also 
becomes computationally demanding in high dimen
sions. A constrained optimization approach for maxi
mum likelihood estimation of dynamic discrete choice 
models is considered in Su and Judd (2012). However, 
the number of constraints needed to represent Bell
man’s equation becomes a significant computational 
burden with discrete state space with large cardinality 
or continuous state space in high dimensions.

Recent work has addressed the computational chal
lenges posed by high-dimensional state space. For 
example, in Adusumilli and Eckardt (2019), the authors 
extend the CCP estimator approach proposed in Hotz 
and Miller (1993) by considering a functional approxi
mation approach coupled with a temporal difference 
(TD) algorithm to maximize pseudo-likelihood. In 
Chernozhukov et al. (2022), the authors consider an 
approach to adjust the Conditional choice probabilities 
(CCP) estimator to account for finite simple bias in 
high-dimensional settings.

The literature in IRL features the seminal work (Zie
bart et al. 2008) in which a model for the expert’s behav
ior is formulated as the policy that maximizes entropy 
subject to a constraint requiring that the expected fea
tures under such policy match the empirical averages 
in the expert’s observation data set.1 The algorithms 
developed for maximum entropy estimation (Ziebart 
et al. 2008, 2010; Wulfmeier et al. 2015) have a nested 
loop structure, alternating between an outer loop with 
a reward update step, and an inner loop that calculates 
the explicit policy estimates. The computational burden 
of this nested structure is manageable in tabular envir
onments, but it becomes significant in high dimen
sional settings requiring value function approximation.

Recent works have developed algorithms to alleviate 
the computational burden of nested-loop estimation 
methods. For example, in Garg et al. (2021), the authors 
propose to transform the standard formulation of IRL 
into a single-level problem by estimating the Q-function 
rather than estimating the reward function and associ
ated optimal policy separately. However, the implicit 
reward function in the Q-function identified is a poor 
estimate since it is not guaranteed to satisfy Bellman’s 
equation. Finally, Ni et al. (2020) considers an approach 
called f-IRL for estimating rewards based on the mini
mization of several measures of divergence with respect 
to the expert’s state visitation measure. The approach is 
limited to estimating rewards that only depend on state. 
Although the results reported are based upon a single- 

loop implementation, the paper does not provide a con
vergence guarantee to support performance.

In contrast to the lines of works surveyed above, we 
focus our efforts in developing estimation algorithms 
with finite-time guarantees for computing high-quality 
estimators. Toward addressing this challenge, in this 
paper, we propose a class of new algorithms that only 
require a finite number of computational steps for a 
class of (nonlinearly parameterized) structural estima
tion problems assuming the environment dynamics are 
known (or samples from the environment dynamics 
are available in real time). Specifically, the proposed 
algorithm has a single-loop structure wherein a single- 
step update of the estimated policy is followed by an 
update of the reward parameter. We show that the 
algorithm has strong theoretical guarantees: To achieve 
certain ɛ-approximate stationary solution for a nonli
nearly parameterized problem, it requires O(ɛ�2) steps 
of policy and reward updates each. To our knowledge, 
it is the first algorithm that has finite-time guarantee for 
the structural estimation of an Markov Decision Process 
(MDP) under nonlinear parameterization of the reward 
function. We conduct extensive experiments to demon
strate that the proposed algorithm outperforms many 
state-of-the-art IRL algorithms in both policy estimation 
and reward recovery. In particular, when transferring to 
a new environment, the performance of state-of-the-art 
reinforcement learning (RL) algorithms, using estimated 
rewards, outperform those that use rewards recovered 
from existing IRL and imitation learning benchmarks.

Finally, we consider the extension to the offline case 
in which the estimation task also includes the environ
ment dynamics. Referring to our recent work (Zeng 
et al. 2023), we consider a two-stage estimation ap
proach. First, a maximum likelihood model of dynam
ics is identified. However, this first stage estimator of 
the environment dynamics may be inaccurate due to 
limited data coverage. Thus, in the second stage, a 
“conservative” reward estimator is obtained by intro
ducing a penalty for model uncertainty.

The structure of this paper is as follows. In Section 2, we 
introduce the basic setting for structural estimation of 
MDPs. In Section 2.2, we introduce the problem formula
tion of the maximum likelihood IRL. In Section 3, we dis
cuss the problem approximation in high-dimensional 
spaces. In Section 4, we introduce a single-loop algorithm 
for estimation and formalize a finite-time performance 
guarantee for high-dimensional states. In Section 5, we 
present the convergence results of our proposed single- 
loop algorithm. In Section 6, we consider the case with lin
early parameterized rewards to show the proposed algo
rithm converges sublinearly to the maximum likelihood 
estimator. These results are proven by establishing a dual
ity relationship between maximum entropy IRL and max
imum likelihood IRL. In Section 7, we consider the case in 
which the agent’s preferences can be represented by a 
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reward that is only a function of the state. In Section 8, we 
outline the extension of the proposed algorithms to the 
offline case. Finally, in Section 9, we present the numerical 
results.

2. Background
2.1. Dynamic Discrete Choice Model
We now review the basic setting for dynamic discrete 
choice model as given for example in Rust (1994). At 
time t ≥ 0, the agent implements an action at from a 
finite (discrete) action space A and receives a reward 
r(st, at;θ) + ɛt(at), where st ∈ S is the state at time t, 
r(st, at;θ) is the reward associated to the state-action 
pair (st, at) with θ ∈ Rp a parameter and ɛt(at) : R | A | →

R is a random perturbation that is observable by the 
agent (decision maker) but not by the modeler.

Upon implementing the action at ∈ A, the state 
evolves according to a Markov process with kernel 
P(st+1 |st, at). Moreover, let µ(ɛt |st) denote the probabil
ity distribution for the random perturbation, where the 
probability distribution is a function of the state.

Let π(· |st, ɛt) denote a randomized policy, that is, 
π(at |st, ɛt) is the probability that action at is implemen
ted when the state is st and the observed reward pertur
bation vector is ɛt.

The agent’s optimal policy is characterized by the 
value function:

Vθ(s0, ɛ0) � max
π

Es0~ρ,τ~π
X∞

t�0
γt(r(st, at;θ) + ɛt(at))

�
�
�
�
�
s0, ɛ0

" #

, 

where the expectation is taken with respect to at ~ 
π(· |st, ɛt), st+1 ~ P(· |st, at), ɛt+1 ~ µ(· |st+1), and γ ∈ [0, 1)

is the discount factor. The Bellman equation is

Vθ(st, ɛt) � max
at∈A

[r(st, at;θ) + ɛt(at)

+ γEst+1~P(· | st, at), ɛt+1~µ(· | st+1)[Vθ(st+1, ɛt+1)]],
� max

at∈A
[Qθ(st, at) + ɛt(at)], 

where Qθ : S × A ⊢→ R is the fixed point of the soft- 
Bellman operator:

Λθ(Q(st, at)) � r(st, at;θ) + γEst+1~P(· | st, at), ɛt+1~µ(· | st+1)

max
a∈A

(Q(st+1, a) + ɛt+1(a))

� �

: (1) 

As the realization of the reward perturbations is not 
observable by the modeler, a parametrized model of 
the agent’s behavior is a map πθ(· |st) that satisfies Bell
man’s optimality as follows:

πθ(at |st) � P at ∈ arg max
a∈A

[Qθ(st, a) + ɛt(a)]

 !

: (2) 

Assume observations are in the form of expert state- 
action trajectories τE � {(st, at)}t≥0 drawn from a ground- 

truth (or “expert”) policy πE, that is, at ~ πE(· |st), st+1 
~ P(· |st, at) and s0 ~ ρ(·), where ρ(·) denotes the initial 
distribution of the first state s0. The expected discounted 
log-likelihood of observing such trajectory under model 
πθ can be written as

EτE~πE

X∞

t�0
γt log(P(st+1 |st, at)πθ(at |st))

" #

� EτE~πE

X∞

t�0
γt logπθ(at |st)

" #

+EτE~πE

X∞

t�0
γt log P(st+1 |st, at)

" #

:

Given that the term EτE~πE [
P∞

t�0 γ
t log P(st+1 |st, at)] is 

independent of the reward parameter θ, the maximum 
likelihood estimation problem can be formulated as fol
lows:

max
θ

L(θ) :� EτE~πE

X∞

t�0
γt logπθ(at |st)

" #

(3a) 

s:t: πθ(at |st) � P at ∈ arg max
a∈A

[Qθ(st,a)+ɛt(a)]

 !

, (3b) 

where Qθ is the fixed point of the soft-Bellman operator 
in (1).

In the next section, we review the literature on the 
entropy-regularized RL model and then highlight the for
mal equivalence of entropy-regularized IRL with the 
dynamic discrete choice model just introduced in (3).

2.2. Maximum Likelihood Inverse Reinforcement 
Learning (ML-IRL)

A recent literature has considered MDP models with 
information processing costs (Tishby and Polani 2011, 
Ortega and Braun 2013, Matějka and McKay 2015, Han
sen and Miao 2018). In these papers, optimal behavior 
is modeled as the solution to the following problem:

max
π∈Π

Jθ(π;ρ)¢Es0~ρ, τA~π
X∞

t�0
γt(r(st, at;θ) � c(π(· |st))

" #

, 

where ρ(·) denotes the initial distribution of the first 
state s0, τA is a trajectory generate from the agent policy 
π, and c(·) is a function representing the information 
processing cost. A common specification is c(π(· |st)) �

αDKL(π(· |st) | |π0(· |st)), where DKL(π(· |st) | |π0(· |st)) �
P

a∈Aπ(a |st) log π(a | st)
π0(a | st)

is Kullback-Leibler divergence 
between π(· |st) and a reference (or default) policy 
π0(· |st) and α ≥ 0 is a scale parameter. As the objective 
function above can be rescaled by 1

α, we can set α � 1. 
To model no prior knowledge, the reference policy π0 
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is the uniformly random policy, that is, π0(a) � 1
| A |

for 
any a ∈ A. In this case, we can further rewrite the prob
lem as

max
π∈Π

Jθ(π;ρ)

¢Es0~ρ,τA~π
X∞

t�0
γt(r(st,at;θ) +H (π(· |st)))

" #

+
log |A |

1 �γ
, 

where H (π(· |st)) � �
P

a∈Aπ(a |st) logπ(a |st) is the entropy 
of π(· |st). This model has also been recently used in the 
RL literature (Haarnoja et al. 2017, 2018; Cayci et al. 
2021; Cen et al. 2022) where it is commonly referred to 
as an entropy regularized MDP.

Denoting the expert policy as πE and assuming an 
entropy-regularized MDP model for behavior. and the 
model for dynamic behavior described, the IRL prob
lem can be formulated as follows:

max
θ

L(θ) :� EτE~πE

X∞

t�0
γt logπθ(at |st)

" #

(4a) 

s:t: πθ :� arg max
π

Es0~ρ,τA~π
X∞

t�0
γt(r(st, at;θ) + H (π(· |st)))

" #

:

(4b) 

When the reward perturbations ɛt(a) follow indepen
dent and identically distributed (i.i.d.) Gumbel distri
bution with zero mean and variance π2

6 for a ∈ A, the 
models of Behavior (3b) and (4b) are equivalent (see 
proposition 1 in Mai and Jaillet 2020). Specifically, the 
fixed point Qθ(s, a) of the Bellman operator Λθ in (1) 
and the optimal policy (2) are of the form:

Qθ(s, a) :� r(s, a;θ) + γEs′~P(· | s, a)[Vθ(s′)]: (5a) 

Vθ(s) � log
X

ã~A

expQθ(s, ã)

 !

, (5b) 

πθ(a |s) �
exp(Qθ(s, a))

P
ã∈Aexp(Qθ(s, ã))

: (5c) 

As has been shown in Haarnoja et al. (2018) and Cen 
et al. (2022), the policy described in (5c) corresponds to 
the optimal policy in (4b) so that

Vθ(s) � max
π

Es0~ρ, τA~π

X∞

t�0
γt(r(st, at;θ) + H (π(· |st)))

�
�
�
�
�
s0 � s

" #

: (6) 

2.3. Computational Effort and Estimation Quality 
of Existing Algorithms

The existing solution and approximation methodolo
gies for solving (3) (or equivalently, (4)) are ill equipped 
for dealing with the high-dimensional state space. For 
example, the algorithms considered in Rust (1994), 

Ziebart et al. (2010), and Wulfmeier et al. (2015) rely on 
a nested-loop structure that requires the solution of a 
fixed-point problem in the inner loop before making 
any updates to the parameter estimates for the outer 
loop. Evidently, in high-dimensional environments. the 
inner-loop solution renders the nested-loop structure 
computationally intractable.

Similarly, with a high-dimensional continuous state, 
a discretization approach (Su and Judd 2012) to solving 
the inner problem (3b) (or equivalently, (4b)) is compu
tationally intractable. Forward Monte Carlo simula
tions (Bajari et al. 2007, Reich 2018) are an alternative to 
discretization, but this is also computationally demand
ing in high dimensions.

Approximation algorithms (Hotz and Miller 1993, 
Hotz et al. 1994, Ni et al. 2020, Garg et al. 2021) reduce 
the computational burden of the nested-loop structure. 
However, the resulting estimates may be of poor quality. 
For example, the CCP estimator from Hotz and Miller 
(1993) and Hotz et al. (1994) may suffer from finite sample 
bias because in the high-dimensional state space, initial 
policy estimates (i.e., conditional choice probabilities) 
based on empirical frequencies are likely of poor quality. 
Sequential estimators (Aguirregabiria and Mira 2002) 
reduce bias at the expense of significant computational 
burden. The reward estimates in Garg et al. (2021) do not 
approximate a solution to the inner problem and are thus 
likely to be of poor quality. Recently, Adusumilli and Eck
ardt (2019) and Chernozhukov et al. (2022) have proposed 
approaches to account for finite-sample bias in CCP esti
mators in high-dimensional environments.

In the present paper, we introduce a new class of single- 
loop algorithms that exhibits finite-time guarantees of 
performance for solving (3)) (or more precisely, its approx
imated version to be introduced in the next section).

As many papers in the dynamic discrete choice 
(DDC) estimation literature (Rust 1994) rely on a two- 
stage approach to estimating dynamics (first stage) and 
rewards (second stage), the results obtained in this 
paper address the computational complexity of the sec
ond-stage estimation task. This issue was ignored in 
Rust (1987) due the scale of the problem. However, 
computational complexity is an important concern in 
high-dimensional environments.

In Section 8, we also discuss how to extend the pro
posed method to the two-stage problem/offline setting 
where estimating dynamics should be considered.

3. Problem Approximation in High- 
Dimensional State Space

In practice, the IRL problem (4) (and its equivalent (3)) 
can only be approximated with a finite set of observed 
trajectories because the ground-truth behavior model 
(or “expert” policy) πE is not known. Let D :� {τE}

denote a finite data set of state-action trajectories 
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independently drawn from the expert policy and the 
environment dynamics. Let τE ~ D denote a uniformly 
sampled trajectory from D. Using a finite data set, a 
natural choice for an empirical approximation to the 
estimation problem is the following:

max
θ

L̃(θ;D) :� EτE~D

X∞

t�0
γt logπθ(at |st)

" #

(7a) 

s:t: πθ(at |st) :� arg max
π

Es0~ρ,τA~π
X∞

t�0
γt(r(st,at;θ) +H (π(· |st)))

" #

:

(7b) 

However, with high-dimensional state space, the above 
approximation L̃(θ,D) is likely to incur significant 
error because the observed transitions in the data may 
not adequately describe the ground-truth transition 
kernel. In what follows, we introduce a different surro
gate empirical objective L̂(θ,D), which provides a bet
ter approximation to the original likelihood function 
L(θ) given in (4) with a high-dimensional state.

To motivate the definition of L̂(θ,D), let us start by 
expressing the likelihood function L(θ) :� EτE~πE [

P∞
t�0 γ

t 

logπθ(at |st)] in terms of the difference in expected 
value:
L(θ)

� EτE~πE

X∞

t�0
γt logπθ(at |st)

" #

�
(i)EτE~πE

X∞

t�0
γt log expQθ(st, at)

P
a∈AexpQθ(st, a)

� �" #

�
(ii)EτE~πE

X∞

t�0
γt(Qθ(st, at) � Vθ(st))

" #

�
(iii)EτE~πE

X∞

t�0
γt(r(st, at;θ) + γEst+1~P(· | st, at)[Vθ(st+1)]

"

�Vθ(st))

#

� EτE~πE

X∞

t�0
γtr(st, at;θ)

" #

+
X∞

t�0
γt+1E(st, at)~τE [Est+1~P(· | st, at)[Vθ(st+1)]]

� EτE~πE

X∞

t�0
γtVθ(st)

" #

� EτE~πE

X∞

t�0
γtr(st, at;θ)

" #

�Es0~ρ(·)[Vθ(s0)], (8) 

where (i) follows the closed-form expression of the 
optimal policy πθ in (5c), (ii) follows the expression of 

the soft value function Vθ in (5b), and (iii) follows from 
the fixed point definition in (5a).

Observe that in the above decomposition, the first 
term is related to the expert policy πE, whereas the sec
ond term is related to the initial distribution ρ and the 
transition kernel P. Note that in practice, we only have 
limited observations of expert trajectories from a fixed 
data set D, but cannot directly sample the trajectory 
from the expert policy πE in an online manner. Hence, 
we need to construct an estimation problem that uti
lizes limited observations of expert trajectories to 
approximate the original maximum likelihood objec
tive in (8). Because we assume the online setting in 
which the transition kernel P and the initial distribution 
ρ are either available for access or known, we can con
struct a surrogate approximation to the likelihood as fol
lows:

L̂(θ;D) :� Eτ~D

X∞

t�0
γtr(st, at;θ)

" #

�Es0~ρ[Vθ(s0)]: (9) 

In contrast, if we conduct the same analysis on the 
empirical approximation L̃(θ;D) presented in (7), we 
obtain

L̃(θ; D)

� EτE~D

X∞

t�0
γt logπθ(at |st)

" #

�
(i)EτE~D

X∞

t�0
γt log expQθ(st, at)

P
a∈AexpQθ(st, a)

� �" #

�
(ii)EτE~D

X∞

t�0
γt(Qθ(st, at) � Vθ(st))

" #

�
(iii)Eτ~D

"
X∞

t�0
γt(r(st, at;θ) + γEst+1~P(· | st, at)[Vθ(st+1)] � Vθ(st))

#

� Eτ~D

X∞

t�0
γtr(st, at;θ)

" #

+
X∞

t�0
γt+1E(st, at)~D[Est+1~P(· | st, at)[Vθ(st+1)]]

�Eτ~D

X∞

t�0
γtVθ(st)

" #

� Eτ~D

X∞

t�0
γtr(st, at;θ)

" #

� Es0~D[Vθ(s0)]

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T1: surrogate likelihood

+
X∞

t�0
γt+1E(st, at)~D, st+1~P(· | st, at)[Vθ(st+1)]

 

�
X∞

t�0
γt+1E(st, at, st+1)~D[Vθ(st+1)]

!

, (10) 

where the second term is the error introduced by 
approximating the transition using finite data.
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From the above analysis, we argue that the surrogate 
approximation L̂(θ;D) in (9) is a more accurate objec
tive function compared with the empirical likelihood 
L̃(θ;D) in (7a). Below, we show under a mild assump
tion, L̂(θ;D) can well approximate L(θ) when data are 
large enough.

Assumption 1. For any reward parameter θ, the follow
ing condition holds:

0 ≤ r(s, a;θ) ≤ Cr, ∀s ∈ S , a ∈ A, (11) 

where Cr > 0 is a fixed constant.

Lemma 1. Suppose Assumption 1 holds. Consider the like
lihood function L(θ) in (4a) and its surrogate empirical ver
sion L̂(θ;D) defined in (9). Then, with probability greater 
than 1 � δ, we have

|L(θ) � L̂(θ;D) | ≤
Cr

1 � γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln(2=δ)

2 |D |

s

: (12) 

The proof of Lemma 1 can be found in the Online 
Appendix.

In the rest of this work, we will consider the follow
ing surrogate estimation problem:

max
θ

L̂(θ; D) :� Eτ~D

X∞

t�0
γtr(st, at;θ)

" #

� Es0~ρ[Vθ(s0)]

(13a) 
s:t: πθ(at |st) :� arg max

π

Es0~ρ,τA~π
X∞

t�0
γt(r(st,at;θ)+H (π(· |st)))

" #

:

(13b) 

4. Proposed Algorithm
The main idea in the proposed algorithm is to alternate 
between one step of policy update to improve the solu
tion of the lower-level problem, and one step of the 
parameter update that improves the upper-level likeli
hood objective. At each iteration k, given the current 
policy πk and the reward parameter θk, a new policy 
πk+1 is generated from the policy improvement step, 
and θk+1 is generated by the reward optimization step.

In Sections 4 and 5, we will design an algorithm to 
solve the approximated maximum likelihood problem 
(13). We emphasize that, in Sections 4–7, we assume an 
online setting where the learner knows the transition 
kernel P(st+1 |st, at) or can sample from it. The motiva
tion is that understanding how to develop efficient 
algorithms for the online setting is the basis for addres
sing the more challenging offline setting. In Section 8, 
we will briefly outline how to extend this work to the 
offline setting. Below we present the details of our algo
rithm at a given iteration k.

4.1. Policy Improvement Step
Let us consider optimizing the lower-level problem (4b), 
when the reward parameter θk is held fixed. Toward this 
end, we define the so-called soft Q-function and soft value 
functions under a given policy-reward pair (πk,θk):

Vk(s) �EτA~πk

X∞

t�0
γt(r(st,at;θk)+H (πk(· |st)))

�
�
�
�
�
s0 � s

" #

,

(14) 
Qk(s,a) � r(s,a;θk)+γEs′~P(· | s,a)[Vk(s′)]: (15) 

Similarly, if the policy is optimal for a given parameter θ 
(as defined in (4b)), then we will denote the associated 
soft Q-function and soft value function as Qθ and Vθ.

To obtain an estimate of the policy at iteration k, let us 
suppose that we have access to an estimate of the soft 
Q-function, denoted as Q̂k(s, a), which satisfies ‖Q̂k � Qk‖∞

≤ ɛapp, with ɛapp > 0 being the approximation error. Then 
the estimated policy will be generated according to

πk+1(a |s) ∝ exp(Q̂k(s, a)), ∀s ∈ S, a ∈ A: (16) 

When ɛapp � 0, or equivalently when Q̂k(s, a) � Qk(s, a), 
∀s ∈ S , a ∈ A, and when r(·, ·;θk) is fixed, the above 
update is referred to as the soft policy iteration; it is 
known that the policy will be monotonically improved 
by soft policy iteration and will converge linearly to the 
optimal policy (Cen et al. 2022, theorem 1). In practice, 
when we do not have direct access to the exact soft 
Q-function Qk, one could use an estimated soft Q-function 
Q̂k to perform the approximated soft policy iteration in 
(16), which can be obtained by following the update 
schemes in soft Q-learning (Haarnoja et al. 2017) or soft 
actor-critic (SAC) (Haarnoja et al. 2018).

4.2. Reward Optimization Step
We propose to use a stochastic gradient-type algorithm 
to optimize the reward parameter θ. Toward this end, 
let us first derive the exact gradient ∇θL(θ). See the sup
plementary material for detailed proof.

Lemma 2. The gradient of the L(θ) and L̂(θ;D), as 
defined in (4a) and (9), respectively, can be expressed as

∇θL(θ) � EτE~πE

X∞

t�0
γt∇θr(st, at;θ)

" #

�EτA~πθ

X∞

t�0
γt∇θr(st, at;θ)

" #

, (17a) 

∇θL̂(θ;D) � EτE~D

X∞

t�0
γt∇θr(st, at;θ)

" #

�EτA~πθ

X∞

t�0
γt∇θr(st, at;θ)

" #

: (17b) 

We note that the gradient expression (17a) takes the same 
form as the one given in a recent work (Sanghvi et al. 2021, 
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equation (1)). However, our proof that focuses on the infi
nite horizon case is different. Moreover, we further derive 
the gradient expression of the sample-based estimation 
problem L̂(θ;D), which has not been considered in 
Sanghvi et al. (2021).

In order to obtain stochastic estimators of the empiri
cal gradient ∇θL̂(θk;D), we take two approximation 
steps: (1) approximate the optimal policy πθk by πk+1 in 
(16) because the optimal policy πθk is not available 
throughout the algorithm and (2) sample the trajectory 
τA from the current policy πk+1.

Following the approximation steps mentioned 
above, we construct a stochastic estimator gk to approx
imate the empirical gradient ∇θL̂(θk;D) in (17b) as fol
lows:

gk :� h(θk;τE
k ) � h(θk;τA

k ), (18) 

where h(θ;τ) :�
P∞

t�0 γ
t∇θr(st, at;θ). With the stochastic 

gradient estimator gk, the reward parameter θk is 
updated as

θk+1 � θk +αgk, (19) 

where α is the step size in updating the reward parameter.
Algorithm 1 summarizes the proposed two-step 

approach for solving the IRL problem (4). It is worth 
mentioning that the proposed algorithm can also be 
used to solve the DDC problem (3) due to the equiva
lence between (3) and (4).

Algorithm 1 (ML-IRL)
Input: Initialize reward parameter θ0 and policy π0. 

Set the reward parameter’s step size as α.
for k � 0, 1, : : : , K � 1 do

Policy Evaluation: Approximate the soft Q-function 
Qk(·, ·) by Q̂k(·, ·).
Policy Improvement: πk+1(a |s) ∝ exp(Q̂k(s, ·)), 
∀s ∈ S , a ∈ A. (Lower-Level Update)
Data Sampling I: Sample a trajectory τE

k from the 
data set D.
Data Sample II: Sample a trajectory τA

k :� {st, at}t≥0 
from the current policy πk+1
Estimating Gradient: gk :� h(θk,τE

k ) � h(θk,τA
k )

where h(θ,τ) :�
P∞

t�0 γ
t∇θr(st, at;θ)

Reward Parameter Update: θk+1 :� θk + αgk (Upper- 
Level Update)

end for

Before closing this section, let us note that the generic 
alternating update strategy adopted by our algorithm 
is efficient, because completely solving the policy opti
mization subproblem all the time could be redundant 
and could induce heavy computation burden. Such a 
kind of strategy has been used in many other 
RL-related settings as well. For example, the well- 
known AC algorithm for policy optimization (Konda 
and Tsitsiklis 1999, Hong et al. 2020, Wu et al. 2020) 
alternates between one step of policy update and one 

step of critic parameter update. However, these types 
of algorithms are known to be challenging to analyze, 
partly because when the inner problem (e.g., the policy 
optimization problem (4b)) is not solved exactly, the 
update direction for the main parameter (e.g., θ in (4)) 
can be very far from the desired descent directions. 
That is, gk in (18) can be a very coarse approximation of 
the exact gradient ∇θL̂(θk;D) as expressed in (17b). In 
the subsequent sections, we develop techniques to 
address the above-mentioned changes.

5. Theoretical Analysis
Our analysis is based on the so-called two-timescale sto
chastic approximation (TTSA) approach (Borkar 1997, 
Hong et al. 2020), where the lower-level problem 
updates in a faster time scale (i.e., converges faster) 
compared with its upper-level counterpart. Intuitively, 
the TTSA enables πk+1 to track the optimal πθk , so that 
the gradient estimate gk will stay close to the gradient 
∇θL̂(θk). Indeed, Algorithm 1 has the desired two time 
scale phenomenon because the policy update (16) con
verges linearly to the optimal policy under a fixed 
reward function (Cen et al. 2022, theorem 2) (hence it is 
fast), whereas the reward parameter update does not 
have such linear convergence property (hence it is 
slow). To begin our analysis, let us first present a few 
technical assumptions.

Assumption 2 (Ergodic Dynamics). For any policy π, 
assume the Markov chain with transition kernel P is irre
ducible and aperiodic under policy π. Then there exist con
stants κ > 0 and ρ ∈ (0, 1) such that 

sup
s∈S

‖P(st ∈ · |s0 � s,π) � µπ(·)‖TV ≤ κρt, ∀t ≥ 0, 

where ‖ · ‖TV is the total variation (TV) norm; µπ is the sta
tionary state distribution under π.

Assumption 2 assumes the Markov chain mixes at a 
geometric rate. It is a common assumption in the litera
ture of RL (Bhandari et al. 2018, Zou et al. 2019, Wu et al. 
2020), which holds for any time-homogeneous Markov 
chain with finite-state space or any uniformly ergodic 
Markov chain with general state space.

Assumption 3 (Lipschitz Reward). For any s ∈ S, a ∈ A, 
and any reward parameter θ, the following holds:

|∇θr(s, a;θ) | ≤ Lr, (20a) 
|∇θr(s, a;θ1) � ∇θr(s, a;θ2) | ≤ Lg‖θ1 �θ2‖, (20b) 

where Lr and Lg are positive constants.

Assumption 3 assumes that the parameterized reward 
function has bounded gradient and is Lipschitz smooth. 
Such assumptions in Lipschitz property are common in 
the literature of min-max/bilevel optimization (Hong 
et al. 2020, Jin et al. 2020, Chen et al. 2021, Guan et al. 
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2021, Khanduri et al. 2021). Based on Assumptions 1–3, 
we next provide the following Lipschitz properties.

Lemma 3. Suppose Assumptions 1–3 hold. There are posi
tive constant Lq and Lc such that the following results hold 
for any reward parameter θ1 and θ2:
|Qθ1 (s, a) � Qθ2 (s, a) | ≤ Lq‖θ1 � θ2‖, ∀s ∈ S , a ∈ A,

(21a) 
‖∇θL̂(θ1; D) � ∇θL̂(θ2; D)‖ ≤ Lc‖θ1 � θ2‖, (21b) 

where Qθ(·, ·) denotes the soft Q-function under the reward 
parameter θ and the policy πθ.

The full proof of the result is delegated to the Online 
Appendix.

Next, we present the main results, which show the 
convergence speed of the policy {πk}k≥0 and the reward 
parameter {θk}k≥0 in Algorithm 1. Please see the appen
dix for the detailed proof.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let K denote 
the total number of iterations to be run by the algorithm. Let us 
select α :� α0

Kσ for the reward update step (19), where α0 > 0 and 
σ ∈ (0, 1) are some fixed constants. Then the following holds:

1
K
XK�1

k�0
E[ | logπk+1 � logπθk |∞]�O(K�1)+O(K�σ)+O(ɛapp),

(22a) 
1
K
XK�1

k�0
E[‖∇θL̂(θk;D)‖

2
]�O(K�σ)+O(K�1+σ)+O(K�1)+O(ɛapp),

(22b) 
where 
‖logπk+1�logπθk ‖∞ :� max

s∈S,a∈A
| logπk+1(a |s)�logπθk (a |s) | :

In particular, if setting σ � 1=2, then both quantities in 
(22a) and (22b) converge with the rate O(K�1=2) + O(ɛapp):

In Theorem 1, we present the finite-time guarantee for 
the convergence of the Algorithm 1. We note that our the
oretical guarantee is different from the existing works, 
such as Cen et al. (2022), who showed the convergence 
rate of soft policy iteration under a fixed reward function. 
Theorem 1 analyzes a more challenging setting where 
both the policy and reward parameter are kept changing. 
To our knowledge, this is the first result that characterizes 
the finite-time convergence for an algorithm developed 
for either the structural estimation problem (3) or the 
maximum likelihood IRL problem (4). In the following 
result, we characterize the dimension dependence of the 
performance of the policy estimated with Algorithm 1.

Remark 1. It is worth mentioning here that the 
Lipschitz constant Lc in (21b) is given by

Lc �
2LqLrCd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
|S | · |A |

√

1 � γ
+

2Lg

1 � γ
, 

where Cd is a constant given in (30). Hence, Lc and the 
subsequent convergence rate of the algorithm in Theorem 
1 are dependent on the dimension of the problem (i.e., the 
size of the state and action space). However, the empirical 
evidence (to be presented in Section 9) strongly indicates 
that the proposed algorithm performs well with high- 
dimensional neural network representations. This is 
mainly because our formulation allows us to directly take 
(approximate) gradient steps on updating θk, and that for 
fixed reward parameterization θk, the lower-level policy 
optimization problem we are interested in has a closed- 
form solution (as a function of the corresponding Qk). We 
believe that the extension of the analysis for our algorithm 
with function approximations (for the parameterized 
Q-function and the policy) will result in bounds that have 
less dependence on the dimension of the basis at the 
expense of additional approximation error term. The 
extension of our convergence analysis with function 
approximations is left for future research.

6. Linearly Parameterized Reward 
Function Case

The result in Theorem 1 can be further strengthened 
when rewards are a linear function of (possibly non
linear) features, that is, r(s, a;θ) � φ(s, a)

⊤θ with 
φ : R | S | × | A | → Rp, and the distribution of observations 
is consistent with optimal behavior for a ground truth 
parameter θ∗, πE � πθ∗ .

In this setting, the result in Theorem 1 can be 
strengthened to finite-time convergence to the optimal 
solution. To show this result, we first establish a duality 
relationship between the estimation problem in (13) 
and the maximum entropy estimator (Ziebart et al. 
2013) that is the solution to the following problem:

max
π

�EτA~π
X∞

t�0
γt logπ(at |st)

" #

(23a) 

s:t: EτA~π
X∞

t�0
γtφ(st, at)

" #

� EτE~D

X∞

t�0
γtφ(st, at)

" #

,

(23b) 
X

at∈A

π(at |st) � 1, ∀st ∈ S, t ≥ 0, (23c) 

π(at |st) ≥ 0, ∀st ∈ S , at ∈ A, t ≥ 0, (23d) 

where (23b) requires that the expected discounted fea
ture value under the model matches the expected dis
counted feature under the finite data set D of collected 
expert trajectories. When the expert policy is known or 
available for access, the maximum entropy estimation 
problem is defined as in (23) by replacing (23b) with

EτA~π
X∞

t�0
γtφ(st, at)

" #

� EτE~πE

X∞

t�0
γtφ(st, at)

" #

: (24) 

Zeng, Hong, and Garcia: Structural Estimation of Markov Decision Processes 
8 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

34
.8

4.
0.

1]
 o

n 
03

 O
ct

ob
er

 2
02

4,
 a

t 2
2:

13
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



The following result formalizes the relationship 
between the maximum entropy estimation problem 
(23) and the estimation problem (13).

Please see the detailed proof in the appendix.

Theorem 2. Under linear parameterization for reward 
function r(s, a;θ) � φ(s, a)

⊤θ, the estimation problem 
defined in (13) (respectively, the maximum likelihood IRL 
problem (4)) is the Lagrangian dual of the maximum entropy 
estimation problem (23) (respectively, the problem defined by 
(23a), (24), (23c), (23d)). Moreover, strong duality holds 
between the two problems.

Corollary 1. (i) The surrogate objective defined in (13a) (dual 
objective) is a concave function of θ. (ii) If the ground-truth 
reward values r(s, ã;θ∗) for a reference action ã ∈ A and s ∈ S 
are known, the optimal solution to (13) is unique.

Proof. The first result is a direct consequence of Theorem 
2 because the estimation problem (13) is a dual problem. 
Then we prove (ii) by contradiction. Let θ̂1, θ̂2 denote two 
distinct solutions of the estimation problem (13), which is 
the dual problem with respect to (w.r.t.) the maximum 
entropy IRL problem (23). From (17b), it follows that

∇θL̂(θ̂i;D) � EτE~D

X∞

t�0
γtφ(st, at;θ)

" #

�EτA~πθ̂ i

X∞

t�0
γtφ(st, at;θ)

" #

� 0, i � 1, 2:

(25) 

Let Qθ̂ i 
denote the unique fixed point of the soft- 

Bellman operator and Q̃θ̂ i
(s, a) :� Qθ̂ i

(s, a) � Qθ̂ i
(s, ã)

for all a ∈ A. The following mapping (from the param
eter space to the policy space)

πθ̂ i
(a |s) :�

expQ̃θ̂ i
(s, a)

P
a′∈AexpQ̃θ̂ i

(s, a′)

is one-to-one (see proposition 1 in Hotz and Miller 
1993) and πθ̂1

≠ πθ̂2
. By Theorem 2 (strong duality), it 

holds that

EτA~πθ̂ i

X∞

t�0
γt logπθ̂ i

(at |st)

" #

� EτA~π̂
X∞

t�0
γt log π̂(at |st)

" #

, 

where π̂ is an optimal solution to primal problem (23). 
This is a contradiction to the uniqueness of the optimal 
solution π̂ because the maximum entropy objective 
(23a) is strictly concave. Hence, we can show that the 
optimal solution to (13) is unique. w

Note that the concavity property does not hold for 
the estimation objective in Rust (1994). For example, 
the undiscounted empirical likelihood for group 2 data 
in Rust (1987) can be shown to be nonconcave.

Moreover, we note that the bilevel formulations (4) 
and (13) are quite involved, and it is difficult to directly 

show the concavity of Problems (4) and (13) with non
linear reward parameterization. Based on our observa
tions under linear reward parameterization, as well as 
the finite sample guarantee given in Lemma 1, we have 
the following corollary.

Corollary 2. Assume that the reward is linearly parame
terized, that is, r(s, a;θ) � φ(s, a)

⊤θ with θ ∈Θ ⊂ Rp where 
Θ is a compact set. Assume the ground-truth reward value 
r(s, ã;θ∗) for a reference action ã ∈ A and s ∈ S are known. 
Let θ̂ denote the optimal solution to (13). From Algorithm 
1’s output, define θ̂K :� θk∗(K), where

k∗(K) :� arg min
k∈{0,K}

{‖∇L̂(θk , D)‖
2
}, 

then θ̂K → θ̂ in probability with finite-time guarantee 
E[‖∇L̂(θ̂K , D)‖

2
] ≤ O(K�1=2). Furthermore, if |D | ≥

2C2
r

ɛ2(1�γ)
2 

ln 2
δ

� �
, then with probability greater than 1 � δ:

L(θ∗) � L(θ̂) ≤ ɛ, (26) 
where θ∗ is the ground truth parameter.

Proof. The finite-time guarantee E[‖∇L̂(θ̂K , D)‖
2
] ≤

O(K�1=2) implies ‖∇L̂(θ̂K , D)‖
2

→ 0 in probability. By 
compactness, the set of accumulation points of the 
sequence {θ̂K : K ∈ N+} is nonempty. By Corollary 
1(ii), the set of limit points is a singleton, hence θ̂K →

θ̂ in probability. To prove the performance guarantee 
in (26), we can show the following decomposition of 
the error between the log likelihood objective evalu
ated at θ∗ and θ̂, respectively. With probability greater 
than 1 � δ, the following result holds:

L(θ∗) � L(θ̂)

� (L(θ∗) � L̂(θ∗;D)) + (L̂(θ∗;D) � L̂(θ̂;D)) + (L̂(θ̂;D) � L(θ̂))

≤
(i) Cr

1 �γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln(2=δ)

2 |D |

s

+ (L̂(θ∗) � L̂(θ̂)) +
Cr

1 �γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln(2=δ)

2 |D |

s

�
2Cr

1 �γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln(2=δ)
2 |D |

s

+ (L̂(θ∗;D) � L̂(θ̂;D)), (27) 

where (i) follows (12) in Lemma 1. Because we defined 
θ̂ as the optimal solution to L̂(·;D), we know that 
L̂(θ;D) � L̂(θ̂;D) ≤ 0 for any θ. Plugging this result 
into (27), the following result holds with probability 
greater than 1 � δ:

L(θ∗) � L(θ̂)

≤
2Cr

1 � γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln(2=δ)

2 |D |

s

+ (L̂(θ∗;D) � L̂(θ̂;D))

≤
2Cr

1 � γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln(2=δ)

2 |D |

s

: (28) 

Hence, when the number of expert trajectories in the 
demonstration data set satisfies |D | ≥

2C2
r

ɛ2(1�γ)
2 ln 2

δ

� �
, 
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then with probability greater than 1 � δ, we obtain

L(θ∗) � L(θ̂) ≤ ɛ, 

where θ∗ is the ground truth parameter, which is opti
mal w.r.t. the log-likelihood objective L(·) defined in 
(4a). The corollary is proved. w

It is worth mentioning that when relaxing the assump
tion that the ground-truth reward value r(s, ã;θ∗) for a 
reference action ã ∈ A and s ∈ S is known, we will no lon
ger have a guarantee on parameter convergence. How
ever, as shown below, the policy obtained by Algorithm 
1 still converges to the expert policy.

By defining the state-action visitation measure 
dE(s, a) :� (1 � γ)πE(a |s)

P∞
t�0 γ

tPπE
(st � s |s0 ~ ρ) under 

the expert policy πE, we can rewrite the expression of 
the log-likelihood objective L(·) in (4a) for any reward 
parameter θ as below:

L(θ) :� EτE~πE

X∞

t�0
γt logπθ(at |st)

" #

�
1

1 � γ
Es~dE(·), a~πE(· | s)[ logπθ(a |s)]:

Then the ɛ-optimal solution on the maximum likeli
hood IRL problem (4) implies

L(θ∗)�L(θ̂) �
1

1�γ
Es~dE(·),a~πE(· | s) log πθ

∗ (a |s)

πθ̂ (a |s)

� �� �

≤ε, 

where dE(s, a) :� (1 � γ)πE(a |s)
P∞

t�0 γ
tPπE

(st � s |s0 ~ ρ)

denotes the state-action visitation measure under the 
expert policy πE. Assume the expert behaviors are con
sistent with optimal behavior for a ground truth 
reward parameter θ∗, then it follows πE � πθ∗ . Because 
of this property, we can obtain the following result:

L(θ∗) � L(θ̂)

�
1

1 � γ
Es~dE(·), a~πE(· | s) log πE(a |s)

πθ̂(a |s)

� �� �

�
1

1 � γ
Es~dE(·)[DKL(πE(· |s)‖πθ̂(· |s))]

≤ ε:

Hence, Corollary 2 provides a formal guarantee that 
the recovered policy πθ̂ solved from the empirical esti
mation problem (13) is ɛ-close to the expert policy πE 

measured by the KL divergence.

Remark 2. We also believe the results for the linear 
reward parameterization case can be generalized to 
certain nonlinear parametric rewards representations. 
Such is the case, for example, of overparameterized neu
ral networks. In this setting, under certain structural 
assumptions such as neural tangent kernel and local 
linearity (Jacot et al. 2018, Du et al. 2019), we expect 
that the resulting reward representation is approximately 
linear in the parameters. Hence, it would be possible to 

identify the global optimal reward estimator. These direc
tions are left for future research.

7. Case with State-Only Dependent 
Rewards

In this section, we consider the IRL problems when the 
reward is only a function of the state. A lower- 
dimensional representation of the agent’s preferences 
(i.e., in terms only of states as opposed to states and 
actions) is more likely to facilitate counterfactual analy
sis such as predicting the optimal policy under differ
ent environment dynamics and/or learning new tasks. 
This is because the estimation of preferences that are 
only defined in terms of states is less sensitive to the 
specific environment dynamics in the expert’s demon
stration data set. Moreover, in applications such as 
healthcare (Yu et al. 2021) and autonomous driving 
(Kiran et al. 2021), simply imitating the expert policy 
can potentially result in poor performance because the 
learner and the expert may have different transition 
dynamics. Similar points have also been argued in 
recent works (Gangwani and Peng 2020, Ni et al. 2020, 
Viano et al. 2021).

Next, let us briefly discuss how we can understand 
(4) and Algorithm 1, when the reward is parameterized 
as a state-only function. First, it turns out that there is 
an equivalent formulation of (4a), when the expert tra
jectories only contain the visited states.

Lemma 4. Suppose the reward is parameterized as a state- 
only function r(s;θ). Then (4) is equivalent to the follow
ing:

min
θ

Es0~ρ(·)[Vθ(s0)] �Es0~ρ(·)[VE
θ(s0)] (29a) 

s:t: πθ :� arg max
π

EτA~π
X∞

t�0
γt(r(st;θ) + H (π(· |st)))

" #

,

(29b) 

where VE
θ(·) denotes the soft value function under reward 

parameter θ and the expert policy πE.

Please see Section 18 in the supplementary material 
for detailed derivation. Intuitively, the above lemma 
says that, when dealing with the state-only IRL, (29a) 
minimizes the gap between the soft value functions of 
the optimal policy πθ and the expert policy πE. More
over, Algorithm 1 can also be easily implemented with 
the state-only reward. In fact, the entire algorithm 
essentially stays the same, and the only change is that 
r(s, a;θ) will be replaced by r(s;θ). In this way, by only 
using the visited states in the trajectories, one can still 
compute the stochastic gradient estimator in (18). 
Therefore, even under the state-only IRL setting where 
the expert data set only contains visited states, our for
mulation and the proposed algorithm still work if we 
parameterize the reward as a state-only function. 
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Moreover, it is straightforward to show that the conver
gence results in Theorem 1 also hold under the state- 
only IRL setting.

8. Extension to the Offline Setting
Throughout this paper, we focused on the online setting 
where the transition kernel P(st+1 |st, at) is known or 
alternatively, samples from such kernel are available to 
the learner in an online fashion. However, in many 
applications, this assumption does not hold, and the 
available data are fixed. In such an offline setting, one 
strategy to deal with the problem is to estimate both the 
transition kernel and the reward function based on the 
finite data set of state-action sequences. In our follow- 
up work (Zeng et al. 2023) to the present paper, we 
extended Algorithm 1 to the offline setting. In particu
lar, a two-stage estimation procedure has been pro
posed, where in the first stage a maximum likelihood 
estimate of the transition kernel is obtained from transi
tion triples (s, a, s′) in a transition data set denoted as 
D

T, that is, P̂ :� arg maxP̃E(s, a, s′)~D
T [ log P̃(s′ |s, a)]:

Given that finite-data estimation of high-dimensional 
environment dynamics likely leads to an inaccurate 
model, in the second stage, a “conservative” reward 
estimator is obtained using P̂ by introducing a regulari
zation term U(s, a) to account model uncertainty:

max
θ

L̂(θ) :� EτE~D

X

t≥0
γt logπθ(at |st)

" #

(30a) 

s:t: πθ :� arg max
π

EτA~(ρ,π, P̂)

X

t≥0
γt(r(st, at;θ) + H (π(· |st)) � U(st, at))

" #

:

(30b) 

The regularization term in the lower-level problem 
(30b) induces conservative policies that assign low prob
ability to state-action pairs in which P̂ cannot provide 
an accurate prediction on the dynamics. Clearly, the 
second stage is closely related to the online setting dis
cussed in this work. Therefore, algorithms and intui
tions developed in the present work for the online 
setting is crucial for the offline setting as well.

There are many other outstanding issues to be 
resolved for the offline setting. For example, how well 

the estimated transition function can be recovered, 
how the error will propagate to the error of the reward 
estimation, and how to compute (stochastic) gradient 
for the new formulation (30a) and (30b). Because these 
investigations are out of the scope of this paper, we 
refer the readers to Zeng et al. (2024) for more details.

9. Testbed
In this section, we test the performance of our algorithm 
with limited expert trajectories on a diverse collection of 
RL tasks and environments. In each experiment set, we 
train algorithms until convergence and average the 
scores of the trajectories over multiple random seeds.

9.1. Mujoco Tasks for IRL
In this experiment set, we test the performance of our 
algorithm on imitating the expert behavior. We con
sider several high-dimensional robotics control tasks in 
Mujoco (Todorov et al. 2012). Two classes of existing 
algorithms are considered as the comparison baselines: 
(1) imitation learning algorithms that only learn the 
policy to imitate the expert, including behavior cloning 
(BC) (Pomerleau 1988) and generative adversarial imi
tation learning (GAIL) (Ho and Ermon 2016); (2) IRL 
algorithms that learn a reward function and a policy 
simultaneously, including adversarial inverse rein
forcement learning (AIRL) (Fu et al. 2017), f-IRL (Ni 
et al. 2020), and IQ-learn (Garg et al. 2021). To ensure 
fair comparison, all imitation learning/IRL algorithms 
use soft AC (Haarnoja et al. 2018) as the base RL algo
rithm. For the expert data set, we use the data provided 
in the official implementation2 of f-IRL.

In this experiment, we implement two versions of our 
proposed algorithm: ML-IRL (state-action) where the 
reward is parameterized as a function of state and action 
and ML-IRL (state-only) that utilizes the state-only 
reward function. In Table 1, we present the simulation 
results under a limited data regime where only five 
expert trajectories are collected. The scores (cumulative 
rewards) reported in the table is averaged over five ran
dom seeds. In each random seed, we train the algorithm 
from initialization and collect 20 trajectories to average 
their cumulative rewards after the algorithms converge. 
According to the results reported in Table 1 where we 
run the experiments with only five expert trajectories in 
the demonstration data set D, it shows that our 

Table 1. MuJoCo Results

Task BC GAIL IQ-learn f-IRL ML-IRL (state-only) ML-IRL (state-action) Expert

Hopper 102.74 2,762.77 3,039.21 3,116.02 3,131.45 3,290.02 3,530.63
Half-cheetah 155.64 3,085.18 4,562.51 4,751.63 4,661.04 4,846.43 5,072.53
Walker 283.43 3,610.49 4,361.27 4,562.48 4,367.81 4,703.35 5,471.58
Ant 961.58 2,971.57 4,362.90 5,124.13 4,832.38 5,157.03 5,856.84
Humanoid 547.62 3,174.66 5,227.10 5,399.67 5,149.39 5,281.93 5,339.12

Notes. The performance of benchmark algorithms under five expert trajectories. Bold entries indicate the best performance for a specific task.
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proposed algorithms outperform the baselines on most 
tasks.

We observe that BC fails to imitate the expert’s 
behavior. It is likely because BC is based on supervised 
learning and thus could not learn a good policy under 
such a limited data regime. Moreover, we notice the 
training of IQ-learn is unstable, likely due to its inaccu
rate approximation to the soft Q-function. Therefore, in 
the Mujoco tasks where IQ-learn does not perform 
well, we cannot match the results presented in the orig
inal paper (Garg et al. 2021). For those cases, we directly 
report results from the original paper. The results of 
AIRL are not presented in Table 1 because it performs 
poorly even after spending significant efforts in param
eter tuning; note that similar observations have been 
made in Liu et al. (2020) and Ni et al. (2020).

9.2. Transfer Learning Across Changing Dynamics
We further evaluate IRL algorithms on the transfer 
learning setting. We follow the environment setup in Fu 
et al. (2017), where two environments with different 
dynamics are considered: Custom-Ant versus Disabled- 
Ant. We compare ML-IRL (state-only) with several exist
ing IRL methods: (1) AIRL Fu et al. (2017), (2) f-IRL Ni 
et al. (2020), and (3) IQ-learn (Garg et al. 2021).

We consider two transfer learning settings: (1) data 
transfer and (2) reward transfer. For both settings, the 
expert data set/trajectories are generated in Custom- 
Ant. In the data transfer setting, we train IRL agents in 
Disabled-Ant by using the expert trajectories, which are 
generated in Custom-Ant. In the reward transfer setting, 
we first use IRL algorithms to infer the reward func
tions in Custom-Ant, and then transfer these recovered 
reward functions to Disabled-Ant for further evaluation. 
In both settings, we also train SAC with the ground- 
truth reward in Disabled-Ant and report the scores.

The numerical results are reported in Table 2. The 
proposed ML-IRL (state-only) achieves superior perfor
mance compared with the existing IRL benchmarks in 
both settings. We notice that IQ-learn fails in both set
tings since it indirectly recovers the reward function 
from a soft Q-function approximator, which could be 
inaccurate and is highly dependent on the environment 
dynamics. Therefore, the reward function recovered by 
IQ-Learn cannot be disentangled from the expert 
actions and environment dynamics, which leads to its 
failures in the transfer learning tasks.

10. Conclusions
The nested structure of the structural estimation of 
MDPs entails a significant computational burden in 
environments with a high-dimensional continuous state 
or discrete state with large cardinality. To alleviate such 
burden several approaches have been proposed in both 
the econometrics (dynamic discrete choice estimation) 
and artificial intelligence (inverse reinforcement learn
ing) literature. For example, the approximation algo
rithms in Hotz and Miller (1993) and Hotz et al. (1994) 
reduce the computational burden, but the resulting 
estimates suffer from finite sample bias because in 
high-dimensional state space, initial policy estimates are 
likely of poor quality. Recent approaches in inverse rein
forcement learning that lessen the computational burden 
(Ni et al. 2020, Garg et al. 2021) do so either at the 
expense of reward estimation accuracy or lack theoreti
cal guarantees.

In this paper, we introduce a class of single-loop algo
rithms for the structural estimation of MDPs with non
linear parametrization. In each iteration a policy 
improvement step is followed by a stochastic gradient 
step for likelihood maximization. We show that the pro
posed algorithm converges to a stationary solution with 
a finite-time guarantee. Further, if the reward is parame
terized linearly, we show that the algorithm approxi
mates the maximum likelihood estimator in sublinear 
time. Extensive experimentation in standard testbeds 
for robotics control problems show that the proposed 
algorithm achieves superior performance compared 
with other IRL and imitation learning approaches. In 
future work, we will consider extensions of the pro
posed algorithm when a model of the state dynamics is 
not available and thus must also be estimated.

Appendix
A.1. Auxiliary Lemmas
Before starting the proof of the main theorems in this 
paper, we first introduce several supporting lemmas in 
this section. Throughout this section, we assume Assump
tions 2 and 3 hold true.

Lemma A.1 (Xu et al. 2020, Lemma 3). Consider the initial
ization distribution ρ(·) and transition kernel P(· |s, a). Under 
ρ(·) and P(· |s, a), denote dw(·, ·) as the state-action visitation 
distribution of MDP with the softmax policy parameterized 

Table 2. Transfer Learning

Setting IQ-learn AIRL f-IRL ML-IRL (state-only) Ground truth

Data transfer �11.78 �5.39 188.85 221.51 320.15
Reward transfer �1.04 130.3 156.45 187.69 320.15

Notes. The performance of benchmark algorithms under a single expert trajectory. The scores in the table are obtained similarly as in Table 1. 
Bold entries indicate the best performance for a specific task.
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by parameter w. Suppose Assumption 2 holds, for all policy 
parameter w and w′, we have

‖dw(·, ·) � dw′ (·, ·)‖TV ≤ Cd‖w � w′‖ (A.1) 

where Cd is a positive constant.

Lemma A.2. Suppose Assumption 3 holds. Under the approxi
mated soft policy iteration in (15), denote the soft Q-function 
under reward parameter θk and policy πk+1 as Qk+1

2
; further 

note that Qk+1 has been defined as the soft Q-function under 
the reward parameter θk+1 and policy πk+1. Then for any s ∈

S, a ∈ A and k ≥ 0, the following inequality holds:

|Qk+1
2
(s, a) � Qk+1(s, a) | ≤ Lq‖θk �θk+1‖, (A.2) 

where Lq :� Lr
1�γ and Lr is the positive constant defined in 

Assumption 3.

Lemma A.3. Using approximated soft policy iteration (15), the 
following holds for any iteration k ≥ 0:

Qk(s, a) ≤ Qk+1
2
(s, a) +

2γɛapp

1 � γ
, ∀s ∈ S, a ∈ A, (A.3) 

‖Qθk � Qk+1
2
‖∞ ≤ γ‖Qθk � Qk‖∞ +

2γɛapp

1 � γ
, (A.4) 

where Qk+1
2
(·, ·) denotes the soft Q-function under reward param

eter θk and updated policy πk+1, and ‖Qθk � Qk+1
2
‖∞ � maxs∈S 

maxa∈A |Qθk (s, a) � Qk+1
2
(s, a) | .

A.2. Proof of Theorem 1
In this section, we prove (21a) and (21b), respectively, to 
show the convergence of the lower-level problem and the 
upper-level problem.

A.2.1. Proof of Relation (21a). In this proof, we first show 
the convergence of the lower-level variable {πk}k≥0. Recall 
that we approximate the optimal policy πθk by πk+1 at each 
iteration k. Moreover, the policy πk+1 is generated as below:

πk+1(a |s) ∝ exp(Q̂k(s, a)), where ‖Q̂k � Qk‖∞ ≤ ɛapp: (A.5) 

We first analyze the approximation error between πθk and 
πk+1. Recall that both policies πk+1 and πθk are in the soft
max form parameterized by Q̂k and Qθk , then it holds

‖ logπk+1 � logπθk ‖∞ ≤
(i)

2‖Q̂k � Qθk ‖∞

� 2‖Q̂k � Qk + Qk � Qθk ‖∞ ≤ 2ɛapp + 2‖Qk � Qθk ‖∞, (A.6) 

where (i) follows the Lipschitz property of softmax policy, 
which is shown in proof of Lemma 3.

Based on Inequality (A.6), we further analyze ‖Qk � Qθk ‖∞

to show the convergence of the policy estimates. Here, we 
use an auxiliary sequence {Qk+1

2
}k≥0, where Qk+1

2 
is defined 

as the soft Q-function under reward parameter θk and the 
policy πk+1, its expression follows its

Qk+1
2
(s, a) :� r(s, a;θk) +EτA~πk+1

X∞

t�1
γt(r(st, at;θk) + H (πk+1(· |st)))

�
�
�
�
�
(s0, a0) � (s, a)

" #

:

(A.7) 

Then, the following relations hold:

‖Qk � Qθk ‖∞ � ‖Qk � Qθk + Qθk�1 � Qθk�1 + Qk�1
2
� Qk�1

2
‖∞

≤ ‖Qθk � Qθk�1 ‖∞ + ‖Qk�1
2
� Qθk�1 ‖∞ + ‖Qk � Qk�1

2
‖∞

≤
(i)

Lq‖θk �θk�1‖ + ‖Qk�1
2
� Qθk�1 ‖∞ + ‖Qk � Qk�1

2
‖∞

≤
(ii)

‖Qk�1
2
� Qθk�1 ‖∞ + 2Lq‖θk �θk�1‖, (A.8) 

where (i) is from (20a) in Lemma 3; (ii) follows Lemma 2. 
Based on (A.8), we further analyze the two terms in (A.7) 
as below.

Recall that we have already shown the following rela
tion in (A.4):

‖Qθk � Qk+1
2
‖∞ ≤ γ‖Qθk � Qk‖∞ +

2γɛapp

1 � γ
: (A.9) 

Through plugging (A.9) into (A.8), we have the following 
result:

‖Qk � Qθk ‖∞ ≤ ‖Qk�1
2

� Qθk�1 ‖∞ + 2Lq‖θk � θk�1‖

≤ γ‖Qθk�1 � Qk�1‖∞ +
2γɛapp

1 � γ
+ 2Lq‖θk � θk�1‖:

(A.10) 
To show the convergence of the soft Q-function based on 
(A.10), we further analyze the error between the reward 
parameters θk and θk�1. Recall that in Algorithm 1, the 
reward parameter is updated as

θk � θk�1 + αgk�1 � θk�1 +α(h(θk�1,τE
k�1) � h(θk�1,τA

k�1)), 

where we denote τ :� {(st , at)}
∞
t�0, h(θ,τ) :�

P∞
t�0 γ

t∇θr(st, at;θ)

and gk�1 is the stochastic gradient estimator at iteration k � 1. 
Here, τE

k�1 denotes the trajectory sampled from the expert’s 
data set D at iteration k � 1, and τA

k�1 denotes the trajectory 
sampled from the agent’s policy πk at time k � 1. Then according 
to Inequality (19) in Assumption 3, we could show that

‖gk�1‖ ≤ ‖h(θk�1,τE
k�1)‖ + ‖h(θk�1,τA

k�1)‖ ≤ 2Lr
X∞

t�0
γt �

2Lr

1 � γ
� 2Lq,

(A.11) 

where the last equality follows the fact that we have 
defined the constant Lq :� Lr

1�γ. Then we could further show 
that

‖Qk � Qθk ‖∞ ≤
(i)
γ‖Qθk�1 � Qk�1‖∞ +

2γɛapp

1 � γ
+ 2Lq‖θk �θk�1‖

�
(ii)
γ‖Qθk�1 � Qk�1‖∞ +

2γɛapp

1 � γ
+ 2αLq‖gk�1‖

≤
(iii)
γ‖Qθk�1 � Qk�1‖∞ +

2γɛapp

1 � γ
+ 4αL2

q ,

(A.12) 
where (i) is from (A.10); (ii) follows the reward update 
scheme in (18); and (iii) is from (A.11).

Summing Inequality (A.12) from k � 1 to k � K, it holds that

XK

k�1
‖Qk � Qθk ‖∞ ≤ γ

XK�1

k�0
‖Qk � Qθk�1 ‖∞ + K

2γɛapp

1 � γ
+ 4αKL2

q:

(A.13) 
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Rearranging Inequality (A.13) and dividing (A.13) by K on 
both sides, it holds that

1 � γ

K
XK

k�1
‖Qk � Qθk ‖∞ ≤

γ

K (‖Q0 � Qθ0 ‖∞ � ‖QK � QθK ‖∞)

+
2γɛapp

1 � γ
+ 4αL2

q: (A.14) 

Dividing the constant 1 � γ on both sides of (A.14), it 
holds that

1
K
XK

k�1
‖Qk � Qθk ‖∞ ≤

γC0

K(1 � γ)
+

2γɛapp

(1 � γ)
2 +

4L2
q

1 � γ
α, (A.15) 

where we denote C0 :� ‖Q0 � Qθ0 ‖∞. Add ‖Q0 � Qθ0 ‖∞ and 
subtract ‖QK � QθK ‖∞ on both sides of (A.15), and it follows 
that

1
K
XK�1

k�0
‖Qk � Qθk ‖∞ ≤

γC0

K(1 � γ)
+

C0

K �
‖QK � QθK ‖∞

K

+
2γɛapp

(1 � γ)
2 +

4L2
q

1 � γ
α

≤
C0

K(1 � γ)
+

2γɛapp

(1 � γ)
2 +

4L2
q

1 � γ
α:

Recall the step size is defined as α � α0
Kσ where σ > 0. Then 

we have

1
K
XK�1

k�0
‖Qk � Qθk ‖∞ � O(K�1) + O(K�σ) + O(ɛapp): (A.16) 

Summing Inequality (6) from k � 0 to K � 1, it holds that

1
K
XK�1

k�0
‖ logπk+1 � logπθk ‖∞ ≤

2
K
XK�1

k�0
(ɛapp + ‖Qk � Qθk ‖∞)

� O(K�1) + O(K�σ) + O(ɛapp):

Therefore, we complete the proof of (21a) in Theorem 1. w

A.2.2. Proof of Relation (21b). In this part, we prove the 
convergence of reward parameters {θk}k≥0.

We have the following result of the empirical estimation 
objective L̂(θ;D):

L̂(θk+1;D) ≥
(i)

L̂(θk;D) + 〈∇θL̂(θk;D),θk+1 �θk〉 �
Lc

2 ‖θk+1 �θk‖
2

�
(ii) L̂(θk;D) +α〈∇θL̂(θk;D), gk〉 �

Lcα2

2 ‖gk‖
2

� L̂(θk;D) +α〈∇θL̂(θk;D), gk � ∇θL̂(θk;D)〉

+ α‖∇θL̂(θk;D)‖
2

�
Lcα2

2 ‖gk‖
2

≥
(iii)

L̂(θk;D) + α〈∇θL̂(θk;D), gk � ∇θL̂(θk;D)〉

+ α‖∇θL̂(θk;D)‖
2

� 2LcL2
qα

2, (A.17) 

where (i) is from the Lipschitz smooth property in (20b) of 
Lemma 3; (ii) follows the reward update scheme (18); and 
(iii) is from constant bound of the gradient estimator gk in 
(A.11).

Taking an expectation over both sides of (A.17), it holds 
that

E[L̂(θk+1;D)]

≥ E[L̂(θk;D)] + αE[〈∇θL̂(θk;D), gk � ∇θL̂(θk;D)〉]

+αE[‖∇θL̂(θk;D)‖
2
] � 2LcL2

qα
2

� E[L̂(θk;D)] + αE[〈∇θL̂(θk;D),E[gk � ∇θL̂(θk;D) |θk]〉]

+αE[‖∇θL̂(θk;D)‖
2
] � 2LcL2

qα
2

�
(i) E[L̂(θk;D)] + αE 〈∇θL̂(θk;D),EτA~πθk

X

t≥0
γt∇θr(st, at;θk)

" #"

�EτA~πk+1

X

t≥0
γt∇θr(st, at;θk)

" #

〉
#

+αE ‖∇θL̂(θk;D)‖
2

h i
� 2LcL2

qα
2

≥
(ii)
E[L̂(θk;D)] � 2αLq

E

�
�
�
�
�

�
�
�
�
�
EτA~πθk

X∞

t�0
γt∇θr(st, at;θk)

" #

�EτA~πk+1

X∞

t�0
γt∇θr(st, at;θk)

" #�
�
�
�
�

�
�
�
�
�

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term A

+αE[‖∇θL̂(θk;D)‖
2
] � 2LcL2

qα
2, (A.18) 

where (i) follows the expressions of ∇θL̂(θ;D) in (16b) and 
the gradient estimator gk in (17); and (ii) is due to the fact 
‖∇θL̂(θ;D)‖ ≤ 2Lq according to (A.11).

Then we further analyze term A as below:

E

�
�
�
�
�

�
�
�
�
�
EτA~πθk

X∞

t�0
γt∇θr(st,at;θk)

" #

�EτA~πk+1

X∞

t�0
γt∇θr(st,at;θk)

" #�
�
�
�
�

�
�
�
�
�

" #

�
(i) E

"�
�
�
�
�

�
�
�
�
�

1
1 �γ

E(s,a)~d(·, ·;πθk )[∇θr(s,a;θk)]

�
1

1 �γ
E(s,a)~d(·, ·;πk+1)[∇θr(s,a;θk)]

�
�
�
�
�

�
�
�
�
�

#

�
1

1 �γ
E

�
�
�
�
�

�
�
�
�
�

X

s∈S,a∈A

∇θr(st,at;θk)(d(s,a;πθk ) � d(s,a;πk+1))

�
�
�
�
�

�
�
�
�
�

2

4

3

5

≤
1

1 �γ
E

X

s∈S,a∈A

‖∇θr(st,at;θk)‖ · |d(s,a;πθk ) � d(s,a;πk+1) |

2

4

3

5

≤
(ii) 2Lr

1 �γ
E[‖d(·, ·;πθk ) � d(·, ·;πk+1)‖TV]

� 2LqE[‖d(·, ·;πθk ) � d(·, ·;πk+1)‖TV]

≤
(iii)

2LqCdE[‖Qθk � Q̂k‖]

≤
(iv)

2LqCd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
|S | · |A |

p
E[‖Qθk � Q̂k‖∞]

≤ 2LqCd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
|S | · |A |

p
E[ɛapp + ‖Qθk � Qk‖∞], (A.19) 

where (i) follows the definition of the state-action visitation 
measure d(s, a;π) � (1 � γ)π(a |s)

P∞
t�0 γ

tPπ(st � s |s0 ~ ρ); (ii) 
follows Inequality (19) in Assumption 3 and the definition 
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of the total variation norm ‖ · ‖TV; (iii) follows the definition 
of the constant Lq :� Lr

1�γ; and (iv) follows Lemma A.2 and 
the fact that πθk (· |s) ∝ exp(Qθk (s, ·)), πk+1(· |s) ∝ exp(Q̂k(s, ·))

follows the conversion between Frobenius norm and infin
ity norm.

Through plugging Inequality (A.19) into (A.18), this 
leads to

E[L̂(θk+1; D)]

≥ E[L̂(θk; D)] � 2αLqE

"�
�
�
�
�

�
�
�
�
�
EτA~πθk

X∞

t�0
γt∇θr(st, at;θk)

" #

� EτA~πk+1

X∞

t�0
γt∇θr(st, at;θk)

" #�
�
�
�
�

�
�
�
�
�

#

+ αE[‖∇θL̂(θk; D)‖
2
] � 2LcL2

qα
2

≥
(i)
E[L̂(θk; D)] � 4αCdL2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
|S | · |A |

p
E[‖Qθk � Qk‖∞ + ɛapp]

+ αE[‖∇θL̂(θk; D)‖
2
] � 2LcL2

qα
2, 

where (i) follows Inequality (A.19).
Denoting C1 :� 4CdL2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
|S | · |A |

√
and rearranging the inequal

ity above, it holds that

αE[‖∇θL̂(θk;D)‖
2
] ≤ 2LcL2

qα
2 +αC1E[‖Qθk � Qk‖∞ + ɛapp]

+E[L̂(θk+1;D) � L̂(θk;D)]:

Summing the inequality above from k � 0 to K � 1 and 
dividing both sides by αK, it holds that

1
K
XK�1

k�0
E[‖∇θL̂(θk;D)‖

2
] ≤ 2LcL2

qα+
C1

K
XK�1

k�0
E[‖Qθk � Qk‖∞ + ɛapp]

+E
L̂(θK;D) � L̂(θ0;D)

Kα

" #

:

According to Assumption 1, we assume that the reward 
function is bounded. Based on this assumption, we know 
that the empirical estimation objective L̂(·;D) is bounded. 
Then we could plug (A.16) into the inequality above, and 
we obtain

1
K
XK�1

K�0
E[‖∇θL̂(θK;D)‖

2
]�O(K�σ)+O(K�1)+O(K�1+σ)+O(ɛapp):

(A.20) 

This completes the proof of this result. w

A.2. Proof of Theorem 2
In this section, we prove the duality between the estima
tion problem (13) and the maximum entropy IRL problem 
(22). To state the proof, we first write down the partial 
Lagrangian function, when only dualizing the constraint 
(22b) and (22c). After we derive the dual form for the 
problem with Constraint (22b) and (22c), we will make 
sure that Constraint (22d) is satisfied.

Let θ and Cst denote the dual variables of Constraints 
(22b) and (22c), respectively; define φ(πE;D) :� EτE~D[

P∞
t�0 

γtφ(st, at)]. Then the partial Lagrangian can be expressed as

L(π,θ) :� �EτA~π
X∞

t�0
γt logπ(at |st)

" #

+θ⊤ EτA~π
X∞

t�0
γtφ(st, at)

" #

�φ(πE;D)

 !

+
X

t≥0, st∈S

Cst

X

a∈A

π(a |st) � 1
 !

: (A.21) 

Our plan is to show that the dual function, as defined by 
L̄(θ) :� maxπ L(π,θ), has the following expression:

L̄(θ) � Es0~ρ[Vθ(s0)] �EτE~D

X∞

t�0
γtr(st, at;θ)

" #

, (A.22) 

so that the dual problem can be shown to be equivalent to 
Problem (22), as follows:

min
θ

L̄(θ) � min
θ

Es0~ρ[Vθ(s0)] �EτE~D

X∞

t�0
γtr(st, at;θ)

" #

� max
θ

EτE~D

X∞

t�0
γtr(st, at;θ)

" #

�Es0~ρ[Vθ(s0)]:

Toward this end, let us compute the gradient of L(π,θ)

with respect to the policy π(a |st � s):
∇π(a | st�s) L(π,θ)

� ∇π(a | st�s) �EτA~π
X∞

κ�0
γκ logπ(aκ |sκ)

" # 

+θ⊤EτA~π
X∞

κ�0
γκφ(sκ, aκ)

" #!

+ ∇π(a | st�s) �θ⊤φ(πE;D) +
X

κ≥0, s∈S

Csκ�s
X

a∈A

π(a |sκ) � 1
 !0

@

1

A

�
(i)

∇π(a | st�s) �EτA~π
X∞

κ�t
γκ logπ(aκ |sκ)

" # 

+θ⊤EτA~π
X∞

κ�t
γtφ(st, at)

" #!

+ Cst�s

� ∇π(a | st�s) �
X

s∈S,a∈A

Pπ(st � s |s0 ~ ρ)π(a |st � s)

0

@

EτA~π
X∞

κ�t
γκ logπ(aκ |sκ)

�
�
�
�
�
(st, at) � (s, a)

" #1

A

+ ∇π(a | st�s)

X

s∈S, a∈A

Pπ(st � s |s0 ~ ρ)π(a |st � s)

0

@

EτA~π
X∞

κ�t
γκθ⊤φ(sκ, aκ)

�
�
�
�
�
(st, at) � (s, a)

" #1

A+ Cst�s

� Pπ(st � s |s0 ~ ρ)

 

� γt( logπ(a |st � s) + 1)

+EτA~π
X∞

κ�t
�γκ+1 logπ(aκ+1 |sκ+1)

�
�
�
�
�
(st, at) � (s, a)

" #

+EτA~π
X∞

κ�t
γκθ⊤φ(sκ, aκ)

�
�
�
�
�
(st, at) � (s, a)

" #!

+ Cst�s,

(A.23) 
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where (i) follows the fact that the probability π(a |st � s) has 
no effect on the trajectory generated before time t. Setting 
∇π(a | st�s) L(π,θ) � 0, we obtain the following first-order 
condition:

logπ(a |st � s) �
Cst�s

γt ·Pπ(st � s |s0 ~ρ)
�1

� �

�EτA~π
X∞

κ�t
γκ+1�t logπ(aκ+1 |sκ+1)

�
�
�
�
�
(st,at) � (s,a)

" #

+EτA~π
X∞

κ�t
γκ�tθ⊤φ(sκ,aκ)

�
�
�
�
�
(st,at) � (s,a)

" #

:

Then, we can express π(a |st � s) as below:

π(a |st � s)

� exp
 

�EτA~π
X∞

κ�t
γκ+1�t logπ(aκ+1 |sκ+1)

�
�
�
�
�
(st, at) � (s, a)

" #

+EτA~π
X∞

κ�t
γκ�tθ⊤φ(sκ, aκ)

�
�
�
�
�
(st, at) � (s, a)

" #

+
Cst�s

γt · Pπ(st � s)
� 1
!

: (A.24) 

Note that 
�

Cst�s
γt ·Pπ(st�s | s0~ρ)

� 1
�

is independent of the action 
at. Hence, the following result holds:

π(a |st � s)

∝ exp
 

EτA~π
X∞

κ�t
γκ�t(θTφ(sκ,aκ)�γlogπ(aκ+1 |sκ+1))

�
�
�
�
�
(st,at) � (s,a)

" #!

� exp EτA~π
X∞

κ�0
γκ(θ⊤φ(sκ,aκ)�γlogπ(aκ+1 |sκ+1))

�
�
�
�
�
(s0,a0) � (s,a)

" # !

:

(A.25) 

According to (A.25), we could conclude that π(a |st � s)

only depends on the state-action pair (s, a) and is inde
pendent of the time index t ≥ 0. Hence, we have shown 
that the policy π is a stationary policy and π(a |st � s) �

π(a |s) for any t ≥ 0.
Therefore, we can rewrite (A.25) with t � 0 as follows:

π(a |s)

∝ exp
 

EτA~π

"
X∞

κ�0
γκ(θTφ(sκ,aκ)�γlogπ(aκ+1 |sκ+1))

�
�
�
�
�
(s0,a0) � (s,a)

#!

�
(i) exp

 

r(s0,a0;θ)

+EτA~π
X∞

κ�0
γκ+1(r(sκ+1,aκ+1;θ)� logπ(aκ+1 |sκ+1))

�
�
�
�
�
(s0,a0) � (s,a)

" #!

�
(ii) exp(Qπ(s,a)),

(A.26) 

where (i) follows the linear approximation of the reward 
function that r(s, a;θ) :� θTφ(s, a). Clearly, the right-hand 
side of (i) is the soft Q-function under reward parameter θ 
and the stationary policy π; therefore in (ii), we use Qπ(s, a)

to denote such a soft Q-function.
Recall that we have defined Vθ, Qθ as the soft value 

function, soft Q-function under reward parameter θ, and 

the optimal policy πθ. For any s ∈ S and a ∈ A, it follows 
that

Vθ(s) :� EτA~πθ

X∞

t�0
γt(r(st, at;θ) + H (πθ(· |st))) |s0 � s

" #

,

(A.27a) 

Qθ(s, a) :� r(s, a;θ) + γEs′~P(· | s, a)[Vθ(s′)]: (A.27b) 

According to Haarnoja et al. (2017) and Cen et al. (2022), 
the optimal policy πθ in the entropy-regularized MDP 
satisfies the following expression for any s ∈ S and a ∈ A:

πθ(a |s) �
exp(Qθ(s, a))

P
ã∈Aexp(Qθ(s, ã))

: (A.28) 

Therefore, we know the policy in (A.26) is the optimal 
policy πθ. Using πθ to replace the policy π in the 
Lagrangian function L(π,θ) as given by (A.21), we can 
express the dual function as

L̄(θ)

� �EτA~πθ

X∞

t�0
γt logπθ(at |st)

" #

+ θ⊤ EτA~πθ

X∞

t�0
γtφ(st,at)

" #

�EτE~D

X∞

t�0
γtφ(st,at)

" # !

+
X

t≥0,st∈S

Cst

X

a∈A

πθ(a |st)�1
 !

�
(i)

�EτA~πθ

X∞

t�0
γt log expQθ(st,at)

P
a∈AexpQθ(st,a)

� �" #

+EτA~πθ

X∞

t�0
γtr(st,at;θ)

" #

�EτE~D

X∞

t�0
γtr(st,at;θ)

" #

� �EτA~πθ

X∞

t�0
γt Qθ(st,at)� log

X

a∈A

expQθ(st,a)

 ! !" #

+ EτA~πθ

X∞

t�0
γtr(st,at;θ)

" #

�EτE~D

X∞

t�0
γtr(st,at;θ)

" #

�
(ii)

�EτA~πθ

X∞

t�0
γt(r(st,at;θ)+γVθ(st+1)�Vθ(st))

" #

+EτA~πθ

X∞

t�0
γtr(st,at;θ)

" #

�EτE~D

X∞

t�0
γtr(st,at;θ)

" #

� �EτA~πθ

X∞

t�0
γt(γVθ(st+1)�Vθ(st))

" #

�EτE~D

X∞

t�0
γtr(st,at;θ)

" #

�Es0~ρ[Vθ(s0)]�EτE~D

X∞

t�0
γtr(st,at;θ)

" #

, (A.29) 

where (i) follows the fact that πθ(at |st) �
expQθ(st,at)P
a∈A

expQθ(st,a)
(see 

(A.28)) and r(s, a;θ) :� θTφ(s, a), and (ii) follows (A.27b) and 
(A.27a). Then we can show the equivalence between (A.28) 
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and (13a):

min
θ

L̄(θ) � min
θ

Es0~ρ[Vθ(s0)] �EτE~D

X∞

t�0
γtr(st, at;θ)

" #

� max
θ

EτE~D

X∞

t�0
γtr(st, at;θ)

" #

�Es0~ρ[Vθ(s0)]:

Hence, we proved that (13a) and (13b) is the dual form of 
(22a)–(22c) and Constraint (22d) is satisfied due to the 
closed form of the optimal policy πθ in (A.28).

Note Objective (22a) is concave, and (22b) and (22c) are 
affine. In addition, the interior of the feasible region is not 
empty (i.e., Slater’s condition). Hence, under linear param
eterization of the reward function, there is strong duality 
(no gap) between the solutions of (13) and (22).

When the expert policy is known or available for access, 
following the derivations in (A.29), we show the dual 
problem of the maximum entropy estimation problem 
((22a), (23), (22c), (22d)) as follows:

max
θ

EτE~πE

X∞

t�0
γtr(st,at;θ)

" #

�Es0~ρ[Vθ(s0)]

s:t πθ(at |st) :� arg max
π

Es0~ρ,τA~π
X∞

t�0
γt(r(st,at;θ) + H (π(· |st)))

" #

:

(A.30) 
Then based on our derivations in (8), we obtain the equiv
alence between (A.30) and (4a):

EτE~πE

X∞

t�0
γtr(st, at;θ)

" #

� Es0~ρ[Vθ(s0)]

� EτE~πE

X∞

t�0
γtlnπθ(at |st)

" #

:

Therefore, we obtain the duality between the maximum 
likelihood estimation problem (4) and the maximum 
entropy estimation problem ((22a), (23), (22c), (22d)). w

Endnotes
1 In Section 6, we show that if the reward is linearly parametrized, the 
maximum entropy formulation in Ziebart et al. (2008) is the dual of the 
maximum likelihood formulation of the estimation problem.
2 See https://github.com/twni2016/f-IRL.
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