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Abstract. In this work we study a special minimax problem where there are linear constraints
that couple both the minimization and maximization decision variables. The problem is a general-
ization of the traditional saddle point problem (which does not have the coupling constraint), and it
finds applications in wireless communication, game theory, transportation, just to name a few. We
show that the considered problem is challenging, in the sense that it violates the classical max-min
inequality, and that it is NP-hard even under very strong assumptions (e.g., when the objective is
strongly-convex--strongly-concave). We then develop a duality theory for it, and analyze conditions
under which the duality gap becomes zero. Finally, we study a class of stationary solutions defined
based on the dual problem, and evaluate their practical performance in an application on adversarial
attacks on network flow problems.
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1. Introduction. The minimax optimization problem, given below,

min
x\in \scrX 

max
y\in \scrY 

f(x,y),(1.1)

finds applications in areas such as machine learning, game theory, signal processing,
and it has been extensively studied in recent years [37, 30, 26, 27, 51]. Its specific
applications include adversarial learning [32], reinforcement learning [41], resource
allocation in wireless communication [30], and generative adversarial networks [19],
among others.

In this work1 we consider a class of more general minimax problems, where the
constraint set of the inner problem linearly depends on both optimization variables:

min
x\in \scrX 

\biggl( 
max

y\in \scrY ,Ax+By\leq c
f(x,y)

\biggr) 
.(mM-I)

In the above expression, f(x,y) : Rn \times Rm \rightarrow R, \scrX \subseteq Rn,\scrY \subseteq Rm, A \in Rk\times n,B \in 
Rk\times m, c \in Rk. Let us use [Ax + By]i \leq ci to denote the ith constraint, and define
\scrK := \{ 1, . . . , k\} as the index set of the constraints. As a naming convention, in
this work we will use ``M"" and ``m"" to denote the maximization and minimization
problems, respectively. Therefore, we refer to the above problem as a minimax with
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2676 IOANNIS TSAKNAKIS, MINGYI HONG, AND SHUZHONG ZHANG

inner-level coupling (mM-I) problem. Further, the maximization variable is always
y, while the minimization variable is always x.

Problems (1.1) and (mM-I) appear to be closely related, so one might think
that they have similar properties. For example, the original problem (1.1) is easily
solvable when f(x,y) is convex in x and concave in y, so this may lead to the belief
that the linearly constrained version is still relatively easy. However, we will show
that problem (mM-I) is NP-hard in general, even when f(x,y) is strongly convex
and strongly concave. Further, the classical max-min inequality [35, Theorem 1.3.1]
does not hold for such a class of problems. Finally, existing algorithms developed
for minimax problems cannot be applied directly because they can get stuck at some
uninteresting solution points. On the other hand, compared with (1.1), these problems
can be used to model a wider class of applications, a few of which are presented below.

1.1. Representative applications.

1.1.1. Adversarial attacks in resource allocation problems. Consider a
setting where a player (the ``user"") aims to optimally allocate a resource of fixed total
amount c0 \in R, across n different tasks. The goal is to maximize a certain utility which
is a function of the allocation. Also, there is an adversary that tries to reduce the util-
ity of the user, by designing an allocation strategy across the n tasks that ``forces"" the
user (who utilizes the remaining resource) to select an allocation that lowers its util-
ity. As a concrete example, let us consider a transmission rate maximization problem
under the presence of a jammer, which arises in wireless communications.

Specifically, we consider a problem where a single user (i.e., a transmitter-receiver
pair) transmits messages over n channels. The goal of this user is to allocate power
(the ``resource"") across the n channels (the ``tasks"") such that its transmission rate
(the ``utility"") is maximized. Suppose that there is a jammer (the ``adversary"") in
the system, whose goal is to minimize the user's rate (e.g., [17]). In this problem
we assume that the channel is Gaussian, and denote with x,y the power allocations
of the user and the jammer, respectively. Then, the user's system rate is given by
[17, 30]

R(x,y) =

n\sum 
i=1

log

\Biggl( 
1 +

gui xi

\sigma 2 + gji yi

\Biggr) 
,

where gui , gji are the gains of the user and the jammer on channel i, respectively,
and \sigma 2 is the noise power. Note that both players' power allocations are subject to
constraints \scrX = \{ x \in Rn | x\geq 0,

\sum n
i=1 xi \leq \=x\} and \scrY = \{ y \in Rn | y\geq 0,

\sum n
i=1 yi \leq \=y\} ,

where \=x, \=y are the total power budgets for the user and the adversary, respectively.
Moreover, in certain communication systems such as a cognitive radio network [52],
it is required that the total transmission power on each channel is upper bounded
by the so-called interference temperature (denoted by a constant c > 0), in order to
limit the total interference caused to other (perhaps more important) cochannel users
in the system. Consequently, the problem of how to optimally attack the user in such
a multichannel wireless system can be formulated as the following linearly constrained
minimax problem, which is a special case of (mM-I):

min
y\in \scrY 

\biggl( 
max

x\in \scrX ,x+y\leq c
R(x,y)

\biggr) 
.

1.1.2. Adversarial attacks in network flow problems. Consider a flow net-
work represented by a directed graph G= (V,E), where V is the set of vertices and E
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MINIMAX PROBLEMS WITH COUPLED LINEAR CONSTRAINTS 2677

is the set of edges. Let xe and pe denote the flow and capacity on each edge e\in E, re-
spectively; let x := \{ xe\} e\in E \in R| E| and p := \{ pe\} e\in E \in R| E| denote the vectors of edge
flows and the edge capacities, respectively. Let qe(xe) denote the cost of moving one
unit of flow across edge e, and s and t the source and sink nodes, respectively. Suppose
F is a set that collects all the edges used by x to deliver a total of rt units of flow
from s to t. Then the total transportation cost is defined as qtot(x) =

\sum 
e\in F qe(xe)xe.

A minimum cost network flow problem can be defined as finding the paths with
the minimum cost from source to sink, so that we can successfully transport a certain
amount of flow [8]. Let us consider an extension to such a problem, where in addition
to the regular network user, there is an adversary who will inject flows onto the
network to force the regular user to use more expensive paths. Let y := \{ ye\} e\in E

denote the set of flows controlled by the adversary, and b > 0 be its total budget.
Then, the problem of an adversary can be formulated as follows,

max
\bfzero \leq \bfy \leq \bfp \sum 

(i,j)\in E

yij=b

min
\bfzero \leq \bfx \leq \bfp \sum 

(i,t)\in E

xit=rt

\sum 
(i,j)\in E

qij(xij , yij)xij(1.2)

s.t. x + y\leq p,\sum 
(i,j)\in E

xij  - 
\sum 

(j,k)\in E

xjk = 0 \forall j \in V \setminus \{ s, t\} ,

where qij(xij , yij) is related to the cost of routing both xij and yij onto the network;
a simple choice is qij(xij , yij) = qij(xij +yij). We note that such a kind of attack falls
under the scope of network interdiction problems [45] and there are several works in
literature that study variants of this application [15, 43, 44]. We note that problem
(1.2) can be used to model attacks for real systems such as communication networks
[15] or power networks [43], in which the adversary aims to maximize the cost of the
network owner by injecting spurious traffic or disabling network components.

1.2. Contributions. In this work, we study the minimax problem with coupled
linear constraints (mM-I). Our main contributions are listed below:

\bullet We first identify relationships between (mM-I) and a number of its variants,
and show that even when f(x,y) is strongly convex in x and strongly concave
in y, the well-known max-min inequality does not hold true. Additionally,
we show that (mM-I) and its variants are NP-hard in general.

\bullet We develop a duality theory under the assumption that the objective f is
strongly concave w.r.t y. Specifically, we define three different dual problems,
identify the conditions under which strong duality holds, and establish the
equivalence of their solutions to that of the original primal problem.

\bullet Based on our developed dual problems, we identify a new stationary solu-
tion concept, and develop a first-order algorithm to evaluate the practical
performance of such a solution concept on an adversarial attack problem for
network flows.

We emphasize that in order to evaluate the quality of the proposed stationary
solution concept, we need to develop an efficient numerical algorithm. The algorithm
itself is new (to our knowledge), but its analysis is relatively standard, and we do not
have the space to include the details here; the algorithmic development is indeed not
the focus of this paper.

1.3. Related works. The class of problems (mM-I) is closely related to prob-
lems in optimization and game theory. Below, we review the related literature.

Minimax problems. These problems have been extensively studied un-
der different assumptions for the objective f . For instance, there are works for
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2678 IOANNIS TSAKNAKIS, MINGYI HONG, AND SHUZHONG ZHANG

(strongly-)convex (strongly-)concave [33, 34, 50], nonconvex (strongly-)concave
[26, 27, 30, 37], and nonconvex nonconcave [28, 37, 51] problems. We refer the in-
terested readers to a recent survey about detailed developments [42]. Specifically, in
[26] the ``classical"" gradient descent-ascent (GDA) algorithm is analyzed, and conver-
gence is established to stationary solutions, under the assumption that the objective
is nonconvex (strongly-) concave. Moreover, in [34] two extensions of GDA are stud-
ied, namely, the optimistic GDA (OGDA), and the extragradient algorithm, albeit
in a convex-concave setting. In another extension, the inner-level problem is solved
using multiple steps of a first-order algorithm; the convergence of this scheme is an-
alyzed in [37] assuming that the objective is nonconvex in x, and satisfies either the
Polyak--\Lojasiewicz condition or is concave in y.

The above works focus on problems without any constraints that couple the inner
and outer variables. In these problems, the optimality conditions that are typically
used are (a) the stationarity conditions of objective f w.r.t x and y, and (b) the sta-
tionarity condition of the upper-level objective \rho (x) = maxy\in \scrY f(x,y), i.e., 0\in \partial \rho (x).
However, these conditions were defined for problems with no coupled constraints, and
thus they cannot be applied in our case. Therefore, it is no longer clear how algo-
rithms such as OGDA can be used. Consequently, the analysis of (mM-I) requires
different approaches.

There are a couple of very recent works that study min-max problems with coupled
constraints similar to (mM-I). In [9] the authors extend the notion of local minimax
points (e.g., [23]) for min-max problems with coupled constraints, and derive the re-
spective necessary and sufficient optimality conditions. However, no duality theory
or algorithms are developed. Moreover, in [18] the authors study a min-max prob-
lem where the objective is convex-concave, the coupled constraints are of the form
g(x,y) \geq 0, for some function g(x,y) that is concave in y, and the solution concept
they consider is the same as in this work. Most importantly they also assume that
the inner function \phi (x) = maxy\in \scrY ,g(x,y)\geq 0 f(x,y) is convex, which makes the problem
tractable. On the contrary, we make no such assumption, and develop our theory and
algorithm for the case where the problem is still difficult (i.e., NP-hard).

Generalized Nash equilibrium games. Our problem formulation is also re-
lated to the generalized Nash equilibrium (GNE) game [12, 11, 14], which is an exten-
sion of Nash games where the action space of each player depends on the actions of
the other players. Specifically, a two player GNE game can be formulated as follows
[12]:

min
x\in \scrX (y)

f1(x,y), min
y\in \scrY (x)

f2(x,y),(1.3)

where f1, f2 are the utilities of two players. Problem (mM-I) is related to GNE games
in the zero-sum case where f1 = - f2. However, in GNE games the goal is to attain a
Nash equilibrium, and not a minimax/maximin point. In other words, unlike problem
(mM-I) the two problems do not have an order. In addition, note that for GNE games,
the equilibirum solutions do not always exist, and certain (strong) assumptions are
required; for instance, the utilities f1, f2 need to be quasi-convex [22].

One technique that was developed for GNEs [47] utilizes the Nikaid\^o--Isoda func-
tion [36] to reformulate the GNE-finding problem to a constraint optimization task.
However, the main results in this case have been obtained under the assumption that
the utilities are convex. Also, a number of penalty approaches [39, 13] have been
proposed; nonetheless, these are considered difficult to solve in practice. Another ap-
proach reduces the problem of finding the KKT points of a GNE game to a variational
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MINIMAX PROBLEMS WITH COUPLED LINEAR CONSTRAINTS 2679

inequality problem [2]. Overall, the above approaches cannot be applied in problem
(mM-I) because they were developed for problems of the form (1.3), where each player
has its own utility function, and the order of play does not matter.

Stackelberg games. Another class of game-theoretic problems that are closely
related to problem (mM-I) are Stackelberg games [48, 38, 49], in which there are two
players, the leader and the follower. The leader can anticipate the follower's actions.
In this case, the order in which the two players act matters. Then a (general-sum)
Stackelberg game can be formulated as the following bilevel program:

min
x\in \scrX 

F (x,y) s.t. y \in arg min
y\in \scrY 

f(x,y).

Therefore, these games are in some sense more general than problem (mM-I), which
can only model zero-sum Stackelberg games. On the other hand, typically in Stack-
elberg games the action space of the follower (resp., the leader) is independent of
the action of the leader (resp., the follower); see, e.g., [54, section 2.6.1]. As a result,
problem (mM-I) extends the zero-sum Stackelberg games by taking into consideration
the interactions between the players' actions.

Bilevel optimization. Finally, we would like to discuss the relationship between
problem (mM-I) and bilevel optimization problems of the following form:

min
x\in \scrX 

F (x,y) s.t. y \in arg min
y\in \scrY (x)

f(x,y).

Bilevel optimization was formally introduced in [5], and it is also related to the broader
class of problems of mathematical programming with equilibrium constraints [31]. A
generic instance of bi-level problems includes all minimax problems as special cases,
with or without coupled constraint; see [7, 10, 29] for a number of survey papers.
However, bilevel optimization problems are in general very challenging to solve. More
precisely [29] (1) even linear bilevel problems are NP-hard, (2) the lower-level prob-
lem might have multiple solutions, (3) the feasible region defined by the lower-level
problem can be a nonconvex set, and (4) they are nonsmooth in general.

Several techniques have been developed in the literature for solving these prob-
lems. One such technique uses the value function V (x) = maxy\in \scrY (x) f(x,y) to express
the lower-level problem as an inequality constraint, and transforms the bilevel problem
into a single-level optimization task [53, 25]. However, not only does this reformulated
problem not satisfy any of the known constraint qualifications (CQ), but also the non-
smoothness of V (x) makes the problem difficult. Alternative CQs such as calmness
conditions have been proposed, which are trivially satisfied in minimax problems [53].
Based on the calmness condition, a penalty method has been developed in [25], but it
only applies to bilevel problems in which the constraints set of the lower-level problem
is independent of the variable of the upper one. Overall, this generic theory does not
provide much understanding about the structure of our problem.

There is a recent line of work in (stochastic) single and two-time scale gradient
descent methods [16, 21, 24, 6]. Under the assumption that the lower-level problem is
strongly convex (and thus admits a unique solution) and unconstrained, the authors
attempt to minimize the objective \phi (x) = F (x,y\ast (x)). In this case the implicit
function theorem provides access to the gradient\nabla \phi (x). Unfortunately, in our case the
constraints on the lower-level problem prevent us from using these type of methods.

All the above approaches were developed for general bilevel problems. As a result,
they were designed to be suitable for a wide range of problems. Moreover, these
approaches are either not applicable to our problem, or even if they are, they are not
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2680 IOANNIS TSAKNAKIS, MINGYI HONG, AND SHUZHONG ZHANG

very attractive (e.g., not very efficient, do not have iteration complexity guarantees,
difficult to analyze due to nonsmoothness). On the other hand, problem (mM-I) has
a special minimax structure, that is the lower-level objective f is the negative of the
upper level one F , and the coupling constraints are linear in the decision variables.
Therefore, in contrast to the general methods presented here, our goal is to leverage
the special structure of problem (mM-I) to design methods tailored for it.

2. Minimax problems with coupled linear constraints. In this section, we
derive a few unique properties about problem (mM-I), and outline the challenges in
designing efficient algorithms for it. To begin with our analysis, let us first introduce
a number of variants of problem (mM-I), and understand their relations.

Definition 2.1. We define the following problems:
A. Inner-level coupling (I)

1. miniMax with inner-level coupling (mM-I):

(mM-I) min
x\in \scrX 

\biggl( 
max

y\in \scrY ,Ax+By\leq c
f(x,y)

\biggr) 
.

2. Maximin with inner-level coupling (Mm-I):

(Mm-I) max
y\in \scrY 

\biggl( 
min

x\in \scrX ,Ax+By\leq c
f(x,y)

\biggr) 
.

B. Outer-level coupling (O)
1. miniMax with outer-level coupling (mM-O):

(mM-O) min
x\in \scrX ,Ax+By\ast (x)\leq c

\biggl( 
max
y\in \scrY 

f(x,y)

\biggr) 
, y\ast (x)\in arg max

y\in \scrY 
f(x,y).

2. Maximin with outer-level coupling (Mm-O):

(Mm-O) max
y\in \scrY ,Ax\ast (y)+By\leq c

\biggl( 
min
x\in \scrX 

f(x,y)

\biggr) 
, x\ast (y)\in arg min

x\in \scrX 
f(x,y).

We note that for the two outer-level coupled problems, the constraint set of the
outer problem depends on the solutions y\ast (x) of the inner one. Since y\ast (x) is typi-
cally a nonlinear function, technically such a constraint is not a linear one any more.
Further, at this point these problems are underspecified, as it is not clear which of
the solutions of y\ast (x) and x\ast (y) (e.g., one, some, or all) are expected to satisfy the
constraints Ax + By\ast (x) \leq c and Ax\ast (y) + By \leq c, respectively. Note that these
two outer-level coupling problems are mainly introduced to better understand the
two inner-level coupling problems. They have their own special structures, therefore
require a separate treatment (which is beyond the scope of the current paper).

To proceed, let us define the global minimax (or maxmin) solutions for these
problems. For problem (mM-I), a point (x\ast ,y\ast ) is the solution, if the following holds:

x\ast \in arg min
x\in \scrX 

\phi (x), where \phi (x) := max
y\in \scrY ,Ax+By\leq c

f(x,y),(2.1a)

y\ast \in arg max
y\in \scrY ,Ax\ast +By\leq c

f(x\ast ,y).(2.1b)

For problem (Mm-I), the global maxmin solution can be defined similarly. Moreover,
a solution (x\ast ,y\ast ) of (mM-O) is defined as
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MINIMAX PROBLEMS WITH COUPLED LINEAR CONSTRAINTS 2681

y\ast \in arg max
y\in \scrY 

f(x\ast ,y),(2.2a)

x\ast \in arg min
x\in \scrX ,Ax+By\ast \leq c

\~\phi (x), where \~\phi (x) := max
y\in \scrY 

f(x,y).(2.2b)

The solution of problem (Mm-O) can be defined similarly. Next, we provide necessary
conditions for the existence of those solutions.

Assumption 2.2. Suppose the following conditions hold true.
a. The function f(x,y) : Rn \times Rm\rightarrow R is continuous w.r.t. both x and y.
b. The sets \scrX , \scrY are convex and compact, with \| x\| \leq D \forall x\in \scrX , \| y\| \leq D \forall y \in 
\scrY , for some constant D> 0.

c. (feasibility) The following feasibility conditions hold:
\bullet In problem (mM-I), \forall x\in \scrX ,\exists y \in \scrY , such that Ax +By - c\leq 0.
\bullet In problem (Mm-I), \forall y \in \scrY ,\exists x\in \scrX , such that Ax +By - c\leq 0.
\bullet In problem (mM-O), \exists x \in \scrX such that Ax +By\ast (x) - c \leq 0 holds for at

least one solution y\ast (x).
\bullet In problem (Mm-O), \exists y \in \scrY such that Ax\ast (y) +By - c \leq 0 holds for at

least one solution x\ast (y).

Remark 2.3. Under Assumption 2.2, the inner-level tasks introduced in Definition
2.1 are well-defined. Specifically, \forall x \in \scrX in problems (mM-I), (mM-O), the optimal
solution of the inner problem exists, (or \forall y \in \scrY in problems (Mm-I), (Mm-O), the
same holds). This is a result of Assumption 2.2.c, which ensure the feasibility of
the inner problem, and Assumptions 2.2.a, 2.2.b, which guarantee the existence of a
global solution, through Weierstrass' theorem. In addition, Berge's theorem of the
maximum [1, Theorem 17.31] implies that \phi (x) and \~\phi (x) are continuous functions.
This continuity property combined the compactness of the constraint sets, and ensured
the existence of global solutions in problems (2.1b) and (2.2b), through Weierstrass'
theorem.

Under Assumption 2.2, it is easy to argue that f is lower/upper bounded over
\scrX \times \scrY . That is, there exist finite constants f, f such that

f \leq f(x,y)\leq f \forall x\in X, y \in Y.(2.3)

Next, we characterize the relationships between the four problems in Definition 2.1.
As a convention, we will denote the optimal objective value of a problem P as v (P ).

Proposition 2.4 (relations between problems). For the values of the problems
(mM-I), (Mm-I), (mM-O), and (Mm-O), the following relationships hold:

\bullet v(mM-I) \leq v(mM-O);
\bullet v(Mm-I) \geq v(Mm-O);
\bullet v(mM-O) \geq v(Mm-O).

Moreover, there is no definitive relation between the rest of the pairs, namely, the
pairs \{ v(mM-I), v(Mm-I)\} , \{ v(mM-I), v(Mm-O)\} , \{ v(mM-O), v(Mm-I)\} . That is,
any relation of <, =, or > can hold between them.

Proof. See Appendix A.1.

The most remarkable fact concerns the relation between (mM-I) and (Mm-O)
[or between (mM-O) and (Mm-I)]. Note that after exchanging the min and max
operators, (Mm-O) becomes (mM-I). Proposition 2.4 shows that that there is no
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2682 IOANNIS TSAKNAKIS, MINGYI HONG, AND SHUZHONG ZHANG

definite relation between (mM-I) and (Mm-O). On the contrary, in standard mini-
max problems (1.1), the max-min inequality [35, Theorem 1.3.1] holds, that is,

max
y\in \scrY 

\biggl( 
min
x\in \scrX 

f(x,y)

\biggr) 
\leq min

x\in \scrX 

\biggl( 
max
y\in \scrY 

f(x,y)

\biggr) 
(2.4)

for any function f and nonempty, closed sets \scrX ,\scrY . In addition, if f is convex in x
and concave in y, and \scrX ,\scrY are compact, then the values of these problems are equal.

The results shown in proposition (2.4) indicate that the four problems we studied
above should be harder than the standard minimax problems. Indeed, as we show
below, problems (mM-I)--(mM-O) are all NP-hard in general, even when the objective
function f is strongly-convex--strongly-concave, and the sets \scrX and \scrY are compact.

Proposition 2.5. Consider the (mM-I) problem with a strongly-convex--strongly-
concave objective f(x,y). This problem is NP-hard.

Proof. Consider the problem

min
0\leq x\leq 1

\left(  max
 - \bfone \leq \bfy \leq \bfone 

x - 2y=0

\| x\| 2 +
1

2
xTQy - 4\| y\| 2 + dTx

\right)  ,(2.5)

where Q \in Rn\times n is a symmetric matrix with Q \preceq 0, d \in Rn, and 1 is a vector of
ones. We can easily verify that problem (2.5) is of the form (mM-I), and satisfies
Assumption 2.2. Then, using the coupled equality constraint x - 2y = 0 (which can
be also expressed with two inequality constraints, i.e., x - 2y\leq 0 and  - x + 2y\leq 0),
problem (2.5) can be written as

min
0\leq x\leq 1

1

4
xTQx + dTx.

Since Q\preceq 0 the above is a difficult constrained concave minimization problem. To be
more precise, it is established in [40] that this box-constrained nonconvex quadratic
problem is NP-hard. The proof is now completed.

Proposition 2.6. Consider the (mM-O) problem with a strongly convex concave
objective f(x,y). This problem is NP-hard.

Proof. Consider the problem

min
\| x\| \leq 1,x - y\ast (x)=0

\left(  max
\| y\| \leq 1

\left\{   MxTx +
n\sum 
i,j

cijx
2
ix

2
j + xTy

\right\}   
\right)  ,(2.6)

where ci,j are constants, and M > 0 is selected such that the function g(x) =MxTx+\sum n
i,j cijx

2
ix

2
j is strongly convex in a compact domain (which is a superset of the set

\| x\| \leq 1). Therefore, the objective of problem (2.6) is strongly convex in x, and
concave (linear) in y. Then, (2.6) can be equivalently written as

min
\| x\| \leq 1,x - \bfx 

\| \bfx \| =0

\left\{   MxTx +

n\sum 
i,j

cijx
2
ix

2
j + \| x\| 

\right\}   \leftrightarrow min
\| x\| =1

\left\{   
n\sum 
i,j

cijx
2
ix

2
j

\right\}   +M + 1.

(2.7)
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MINIMAX PROBLEMS WITH COUPLED LINEAR CONSTRAINTS 2683

It is a known fact that the problem in the right-hand side (RHS) of (2.7) is in general
NP-hard, which establishes the NP-hardness of problem (2.6). The proof is now
completed.

We would like to stress here that the classical min-max problem of the form (1.1),
where the objective f(x,y) is differentiable, strongly convex in x, and strongly concave
in y, is not NP-hard. To see this, one needs only to observe that for any (x,y)\in \scrX \times \scrY ,
the direction (\nabla xf(x,y)T , - \nabla yf(x,y)T )T defines a separating hyperplane regarding
any stationary solution. In particular, for any given stationary solution (x\ast ,y\ast ) \in 
\scrX \times \scrY we have

(\nabla xf(x,y), - \nabla yf(x,y))
T

(x - x\ast ,y - y\ast )

=
\bigl( 
\nabla xf(x,y)T (x - x\ast ) - (\nabla yf(x,y)

\bigr) T
(y - y\ast )

\leq f(x\ast ,y) - f(x,y) - [f(x,y\ast ) - f(x,y)]

= f(x\ast ,y) - f(x,y\ast )

\leq 0,

where the first inequality in the above derivation is due to the gradient inequality
of the convex-concave property, and the second inequality is due to the stationary
property,

f(x\ast ,y)\leq f(x\ast ,y\ast )\leq f(x,y\ast )

for all (x,y) \in \scrX \times \scrY . Using the ellipsoid method (see, e.g., [20]), this implies that
finding a stationary solution can be done in polynomial time. In terms of finding
stationary solutions effectively in practice without resorting to the ellipsoid method,
there are several works in the literature in which convergence is shown for the above
problem to approximate global solutions (i.e., saddle points) in a finite number of
iterations for any given precision; see, for instance, [34, 50]. Therefore, it is the
introduction of the linear coupling between the inner and the outer variables in the
constraints (of one of the two problems) that renders the problem intractable, even
under strong assumptions. To illustrate this point more clearly consider the following
example.

Example 2.7. Consider the following simple linearly constrained min-max problem

min
x\in [0,1]

\left(  max
y\in [ - 1,1]

x - 2y=0

f(x, y) := x2  - 1

2
xy - 4y2

\right)  .

Notice that the objective f(x, y) is strongly convex in x and strongly concave in y.
Then, it is easy to see that inner function takes the form

\phi (x) = max
y\in [ - 1,1]:x - 2y=0

x2  - 1

2
xy - 4y2 = x2  - 1

2
x

1

2
x - 4

1

4
x2 = - 1

4
x2.

Clearly, \phi (x) is nonconvex; in fact it is strongly concave. Therefore we see that
while the objective f(x, y) is a simple strongly-convex--strongly-concave function, the
resulting value function \phi (x) = maxy\in \scrY ,Ax+By\leq c f(x,y) is nonconvex.

Despite the fact that the above results show that the linearly constrained minimax
problems are NP-hard in general, it is still desirable to design efficient algorithms for
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2684 IOANNIS TSAKNAKIS, MINGYI HONG, AND SHUZHONG ZHANG

them (for computing certain stationary solutions). As we have noted in section 1.3,
standard algorithms for minimax problems do not apply, and generic methods for
bilevel optimization can be inefficient. Our idea is to explore the structure of these
problems from their dual perspective, and identify equivalent problems that are much
easier to optimize. Since our focus is mainly given to the inner-level coupled problems,
in the next section we develop a duality theory for problem (mM-I).

3. Duality theory for (mM-I). To begin with, let us define the dual problems.

Definition 3.1 (dual problems). Consider the Lagrangian of problem (mM-I),

L(x,y,\bfitlambda ) = f(x,y) - \bfitlambda T (Ax +By - c),(3.1)

where \bfitlambda \geq 0 is the vector of Lagrangian multipliers. Then, define the following three
dual problems:

min
x\in \scrX 

\biggl( 
min
\bfitlambda \geq 0

max
y\in \scrY 

L(x,y,\bfitlambda )

\biggr) 
,(D1)

min
\bfitlambda \geq 0

\biggl( 
min
x\in \scrX 

max
y\in \scrY 

L(x,y,\bfitlambda )

\biggr) 
,(D2)

min
\bfitlambda \geq 0,x\in \scrX 

\biggl( 
max
y\in \scrY 

L(x,y,\bfitlambda )

\biggr) 
.(D3)

Note that due to the special structure of our problem, we can potentially have
a few more possible ``dual"" problems. However, our analysis will focus on three of
them listed above, since they will be instrumental in our subsequent analysis and
development of stationary solution concept. Below, we provide the weak duality
theorem of problem (mM-I).

Theorem 3.2 (weak duality). Under Assumption 2.2, we have:

v (mM-I)\leq v (D1) = v (D2) = v (D3) .

Proof. First, notice that we can exchange the order of the min operators:

min
x\in \scrX 

\biggl( 
min
\bfitlambda \geq 0

max
y\in \scrY 

L(x,y,\bfitlambda )

\biggr) 
= min

\bfitlambda \geq 0

\biggl( 
min
x\in \scrX 

max
y\in \scrY 

L(x,y,\bfitlambda )

\biggr) 
= min

\bfitlambda \geq 0,x\in \scrX 

\biggl( 
max
y\in \scrY 

L(x,y,\bfitlambda )

\biggr) 
.

So v(D1) = v(D2) = v(D3). Moreover, using the max-min inequality we have that

max
y\in \scrY 

min
\bfitlambda \geq 0

L(x,y,\bfitlambda )\leq min
\bfitlambda \geq 0

max
y\in \scrY 

L(x,y,\bfitlambda ) \forall x\in \scrX .

Minimizing the problems on both sides over the set \scrX , we can obtain

min
x\in \scrX 

\biggl( 
max
y\in \scrY 

min
\bfitlambda \geq 0

L(x,y,\bfitlambda )

\biggr) 
\leq min

x\in \scrX 

\biggl( 
min
\bfitlambda \geq 0

max
y\in \scrY 

L(x,y,\bfitlambda )

\biggr) 
.(3.2)

Moreover, consider an arbitrary x \in \scrX , and observe that if there exists an index i
such that [Ax +By - c]i > 0, then we have

min
\bfitlambda \geq 0

L(x,y,\bfitlambda ) = f(x,y) + min
\bfitlambda \geq 0

\Bigl\{ 
 - \bfitlambda T (Ax +By - c)

\Bigr\} 
= - \infty .(3.3)

On the other hand, if it holds that Ax +By\leq c, then

min
\bfitlambda \geq 0

L(x,y,\bfitlambda ) = f(x,y)> f \forall x\in \scrX ,y \in \scrY .(3.4)
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MINIMAX PROBLEMS WITH COUPLED LINEAR CONSTRAINTS 2685

As a result, (3.3) and (3.4) imply that

max
y\in \scrY 

\biggl( 
min
\bfitlambda \geq 0

L(x,y,\bfitlambda )

\biggr) 
= max

y\in \scrY ,Ax+By\leq c

\biggl( 
min
\bfitlambda \geq 0

L(x,y,\bfitlambda )

\biggr) 
= max

y\in \scrY ,Ax+By\leq c
f(x,y).

Minimizing both sides of the above equality over \scrX we get

min
x\in \scrX 

\biggl( 
max

y\in \scrY ,Ax+By\leq c
f(x,y)

\biggr) 
= min

x\in \scrX 

\biggl( 
max
y\in \scrY 

min
\bfitlambda \geq 0

L(x,y,\bfitlambda )

\biggr) 
.(3.5)

Finally, combining (3.2) and (3.5), we conclude that

min
x\in \scrX 

\biggl( 
max

y\in \scrY ,Ax+By\leq c
f(x,y)

\biggr) 
\leq min

x\in \scrX 

\biggl( 
min
\bfitlambda \geq 0

max
y\in \scrY 

L(x,y,\bfitlambda )

\biggr) 
.

The proof is now completed.

Next, we develop the strong duality of problem (mM-I). That is, we identify the
conditions under which strong duality holds, and establish the equivalence of the
solutions of the primal problem with those of the dual problems. To begin with, we
impose the following assumptions.

Assumption 3.3. Assume that the following hold:
1. f(x,y) is strongly concave in y for every x\in \scrX with modulus \mu y.
2. For every x\in \scrX there exists y \in relint(\scrY ) such that (Ax +By - c)\leq 0.

Based on the above assumptions, we have the following duality theorem.

Theorem 3.4 (duality theorem). Under Assumptions 2.2 and 3.3, strong duality
holds, that is, we have the following relations:

v (mM-I) = v (D1) = v (D2) = v (D3) .

Also, for the solutions of the dual problems we have that the following:
1. There exists a \bfitlambda \ast \geq 0 such that (x\ast ,y\ast ,\bfitlambda \ast ) is a solution of (D2) if and only

if (x\ast ,y\ast ) is a solution of (mM-I).
That is, the tuple (x\ast ,y\ast ,\bfitlambda \ast ) satisfies the following conditions: (1) (x\ast ,y\ast )
is a solution (i.e., a minimax point) of the inner min-max problem with
\bfitlambda = \bfitlambda \ast , i.e., (x\ast ,y\ast ) \in arg minx\in \scrX arg maxy\in \scrY L(x,y,\bfitlambda \ast ); (2) \bfitlambda \ast is a
global minimizer of the function G(\bfitlambda ) := minx\in \scrX maxy\in \scrY L(x,y,\bfitlambda ), \bfitlambda \ast \in 
arg min\bfitlambda \geq 0G(\bfitlambda ).

2. There exists a \bfitlambda \ast \geq 0 such that (x\ast ,y\ast ,\bfitlambda \ast ) is a solution of (D3) if
and only if (x\ast ,y\ast ) is a solution of (mM-I). That is ((x\ast ,\bfitlambda \ast ),y\ast ) \in 
arg min\bfitlambda \geq 0,x\in \scrX arg maxy\in \scrY L(x,y,\bfitlambda ).

Proof. We divide the proof into two parts.
Objective equivalence. We already established in Theorem 3.2 that v(D1) = v(D2)

= v(D3). Note that strong duality holds for problem maxy\in \scrY ,Ax+By\leq c f(x,y) for any
fixed x, as a consequence of Assumption 3.3 (see, e.g., [4, Proposition 5.3.1]). Then,

max
y\in \scrY ,Ax+By\leq c

f(x,y) = max
y\in \scrY 

min
\bfitlambda \geq 0

L(x,y,\bfitlambda ) = min
\bfitlambda \geq 0

max
y\in \scrY 

L(x,y,\bfitlambda ) \forall x\in \scrX ,

min
x\in \scrX 

\biggl( 
max

y\in \scrY ,Ax+By\leq c
f(x,y)

\biggr) 
= min

x\in \scrX 

\biggl( 
max
y\in \scrY 

min
\bfitlambda \geq 0

L(x,y,\bfitlambda )

\biggr) 
= min

x\in \scrX 

\biggl( 
min
\bfitlambda \geq 0

max
y\in \scrY 

L(x,y,\bfitlambda )

\biggr) 
.

That is, we have v(mM-I) = v(D1) = v(D2) = v(D3).
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Solution equivalence. Next we show the second part of the claim.
First, we show that the solutions of (mM-I) and (D1) are equivalent. Consider

an arbitrary x\in \scrX , and let us define the following problems:

(A) : gA(x) := max
y\in \scrY 

min
\bfitlambda \geq 0

L(x,y,\bfitlambda ),

(B) : gB(x) := min
\bfitlambda \geq 0

max
y\in \scrY 

L(x,y,\bfitlambda ),

(C) : gC(x) := max
y\in \scrY ,Ax+By\leq c

f(x,y).

Let us denote (y\ast 
A,\bfitlambda 

\ast 
A) as a solution of (A) and (y\ast 

B ,\bfitlambda 
\ast 
B) a solution of (B). We

will show below that if (y\ast 
B ,\bfitlambda 

\ast 
B) is a solution of (B), then y\ast 

B is a solution of (C).
Conversely, we will show that if y\ast is a solution of (C), then there exists a \bfitlambda \ast such
that (y\ast ,\bfitlambda \ast ) is a solution of (B).

To begin with, using [4, Proposition 5.3.1], we see that Assumption 3.3 implies
that strong duality holds for problem (C). From [4, Proposition 5.3.2] we know that
when strong duality holds, (y\ast 

A,\bfitlambda 
\ast 
B) satisfies the following conditions: \bfitlambda \ast 

B \geq 0, y\ast 
A \in \scrY ,

and Ax +By\ast 
A  - c\leq 0, and

y\ast 
A = arg max

y\in \scrY 
L(x,y,\bfitlambda \ast 

B).(3.6)

Moreover, observe that (y\ast 
B ,\bfitlambda 

\ast 
B) is a solution of (B), and thus

y\ast 
B = arg max

y\in \scrY 
L(x,y,\bfitlambda \ast 

B) = arg max
y\in \scrY 

\bigl\{ 
f(x,y) - (\bfitlambda \ast 

B)T (Ax +By - c)
\bigr\} 
.(3.7)

Then, combining (3.6) and (3.7), and considering the strong concavity of L(x,y,\bfitlambda \ast 
B)

w.r.t y, we can infer that y\ast 
A = y\ast 

B . Therefore, y\ast 
B is a solution of problem (A), and

as a result a solution of (C).
Conversely, we will show that if y\ast is a solution of (C) then there exists a \bfitlambda \ast such

that (y\ast ,\bfitlambda \ast ) is a solution of (B). Indeed, under strong duality, for the unique (due to
strong concavity) solution y\ast of (C) there exist Lagrange multipliers \bfitlambda \ast \geq 0 such that
(y\ast ,\bfitlambda \ast ) is a saddle point of the Lagrangian L(x,y,\bfitlambda ) [4, Proposition 5.3.2]. We know
that the set of saddle points of L(x,y,\bfitlambda ) is the intersection of the set of minimax
points (y\ast 

A,\bfitlambda 
\ast 
A) with the set of maximin points (y\ast 

B ,\bfitlambda 
\ast 
B), and thus it is implied that

(\bfitlambda \ast ,y\ast ) is a solution of (B).
We have shown for some arbitrary x\in \scrX that y\ast 

x is a solution of (C) if and only if
(y\ast 

x,\bfitlambda 
\ast 
x) is a solution of (B) for some \bfitlambda \ast 

x \geq 0; here we used the notation y\ast 
x,\bfitlambda 

\ast 
x to make

the dependence to that arbitrary x clear. Finally, note that the strong duality holds
for problem (C) for any fixed x \in \scrX . This implies that the values of the problems
(A), (B), and (C) are the same at every x\in \scrX , that is

gC(x) = gA(x) = gB(x) \forall x\in \scrX .

Therefore, gC , gA, gB have the same set of global minima \scrX \ast . Then, at any given
x\ast \in \scrX \ast , y\ast 

x\ast is a solution of (C) if and only if (y\ast 
x\ast ,\bfitlambda \ast 

x\ast ) is a solution of (B) for
some \bfitlambda \ast 

x\ast \geq 0. In conclusion, a point (x\ast ,y\ast 
x\ast ) is a solution of (mM-I) if and only if

(x\ast ,y\ast 
x\ast ,\bfitlambda \ast 

x\ast ) is a solution of (D1). The claim is proved.
Next, we show that the solutions of (mM-I) and (D2)/(D3) are equivalent. Note

that the solution sets of the problems (D1), (D2), and (D3) are equivalent, since the
order of the min operators can be exchanged. That is, a solution (x\ast ,y\ast ,\bfitlambda \ast ) of (D2)
is also a solution of (D1), and vice versa; a similar result holds true between (D3)
and (D1). In addition, using the (solution) equivalence between problems (mM-I) and
(D1) established above, we can conclude that a point (x\ast ,y\ast ,\bfitlambda \ast ) is a solution of (D2)
if and only if (x\ast ,y\ast ) is a solution of (mM-I). The same result also holds for (D3).

The proof is now completed.
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In the above proof, note that despite Assumption 3.3, which ensures strong dual-
ity, the solution sets of the problems (A) and (B) (denoted with SA, SB , respectively)
are not the same. Nonetheless, the original problem (mM-I) and the dual one (D2)
are equivalent (in the sense mentioned in Theorem 3.4). This is due to the fact that
SB \subseteq SA, which implies that every solution of B is a saddle point (i.e., the points in
the set Ssaddle = SB \cap SA) of the Lagrangian L and vice versa. Below we provide a
relevant example.

Example 3.5. Consider a problem of the form (mM-I), where the inner task takes
the form maxy\in [0,2],y\leq 1 - y2 +2y; the exact form of the outer task is irrelevant for the
context of this example. Then, the primal (A) and dual (B) problems (of the inner
task) are

p\ast = max
y\in [0,2]

min
\lambda \geq 0

\bigl\{ 
 - y2 + 2y - \lambda (y - 1)

\bigr\} 
d\ast = min

\lambda \geq 0
max
y\in [0,2]

\bigl\{ 
 - y2 + 2y - \lambda (y - 1)

\bigr\} 
.

Note that Assumption 3.3 is satisfied in this example, and thus p\ast = d\ast (i.e., strong
duality). However, it can be easily shown that the solutions set of the primal problem
is SA = \{ (1, \lambda ) : \lambda \geq 0\} , while the respective set of the dual problem is different and
consists only of one point, namely, SB = \{ (1,0)\} \subseteq SA. As a result, there is a unique
saddle point, i.e., Ssaddle = SB \cap SA = SB = \{ (1,0)\} .

4. First-order stationarity conditions. In section 2 we established that find-
ing the globally optimal solutions of problem (mM-I) is NP-hard in general. It is then
useful to identify some high-quality solution concepts that can be computed efficiently.
In this section, we propose to leverage the duality theory developed in the previous
section to identify such a class of first-order stationary solutions. More specifically,
we will define first-order stationary solutions based on the dual problem (D2). Note
that one can directly work with the problem \phi (x) = maxy\in \scrY ,Ax+By\leq c f(x,y), but
this is challenging since \phi (x) is neither smooth nor convex.

Before we proceed let us make a few additional assumptions.

Assumption 4.1. We impose the following assumptions:
1. The function f(x,y) : Rn \times Rm\rightarrow R is differentiable w.r.t. both x and y.
2. The function f(x,y) is strongly convex in x for every y \in \scrY with modulus
\mu x.

3. The function f has Lipschitz continuous gradients, i.e.,

\| \nabla xf(x1,y1) - \nabla xf(x2,y2)\| \leq Lx

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ x1

y1

\biggr] 
 - 
\biggl[ 
x2

y2

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \forall x1,x2 \in \scrX ,y1,y2 \in \scrY .

\| \nabla yf(x1,y1) - \nabla yf(x2,y2)\| \leq Ly

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ x1

y1

\biggr] 
 - 
\biggl[ 
x2

y2

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \forall x1,x2 \in \scrX ,y1,y2 \in \scrY .

Next, let us define the following quantities:

H(x,\bfitlambda ) := max
y\in \scrY 

L(x,y,\bfitlambda ),(4.1a)

G(\bfitlambda ) := min
x\in \scrX 

max
y\in \scrY 

L(x,y,\bfitlambda ),(4.1b)

y(x,\bfitlambda ) := arg max
y\in \scrY 

L(x,y,\bfitlambda ), x(\bfitlambda ) := arg min
x\in \scrX 

H(x,\bfitlambda ).(4.1c)
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2688 IOANNIS TSAKNAKIS, MINGYI HONG, AND SHUZHONG ZHANG

Using these new notations, problem (D2) can be decomposed into the following two
problems:

min
x\in \scrX 

H(x,\bfitlambda ) := min
x\in \scrX 

\biggl( 
max
y\in \scrY 

L(x,y,\bfitlambda )

\biggr) 
(inner-level problem),(4.2)

min
\bfitlambda \geq 0

G(\bfitlambda ) := min
\bfitlambda \geq 0

\biggl( 
min
x\in \scrX 

H(x,\bfitlambda )

\biggr) 
(outer-level problem).(4.3)

Note that the assumption that f is strongly convex in x provides us with a number
of useful properties which facilitate algorithm design. Specifically, it implies that the
function G(\bfitlambda ) defined above, which is the objective of the dual problem (D2), is
differentiable. However, notice that G(\bfitlambda ) is not necessarily convex and therefore any
reasonable notion of stationary conditions for (D2) will involve the gradient and the
stationary points of G(\bfitlambda ). Therefore, below we derive the formula of the gradient of
G(\bfitlambda ).

Lemma 4.2. Suppose that Assumptions 2.2, 3.3, and 4.1 hold. Then G(\bfitlambda ) is
differentiable, and its gradient is given by

\nabla G(\bfitlambda ) = - Ax (\bfitlambda ) - By (x (\bfitlambda ) ,\bfitlambda ) + c,

where x (\bfitlambda ) ,y (x,\bfitlambda ) are defined in (4.1c).

Proof. See Appendix A.2.

Now we are ready to provide definitions of (exact and approximate) stationary
solutions, based on the dual problem (D2).

Definition 4.3 (stationary solutions). A solution
\bigl( 
x,y,\bfitlambda 

\bigr) 
is an exact stationary

solution of (D2) if the following hold:
\bullet (x,y) =

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,y
\bigl( 
x,\bfitlambda 

\bigr) \bigr) 
;

\bullet \bfitlambda is a stationary point of G(\bfitlambda ), that is,
\bigl\langle 
\nabla G

\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda  - \bfitlambda 

\bigr\rangle 
\geq 0 \forall \bfitlambda \geq 0.

We will later show that the stationarity conditions for G(\bfitlambda ) imply the comple-

mentarity condition \bfitlambda 
T\nabla G

\bigl( 
\bfitlambda 
\bigr) 

= 0 with \bfitlambda \geq 0. Next, we provide the definition of the
approximate stationary solutions.

Definition 4.4 ((\epsilon , \delta )-approximate stationary solution). Let us define the fol-
lowing quantities:

Q(\bfitlambda ) :=
1

\alpha 

\Bigl( 
\bfitlambda  - projRk

+
(\bfitlambda  - \alpha \nabla G(\bfitlambda ))

\Bigr) 
,

d(x,y,\bfitlambda ) := \| x(\bfitlambda ) - x\| 2 + \| y(x(\bfitlambda ),\bfitlambda ) - y\| 2,

where \alpha > 0 is a constant independent of \epsilon and \delta . Then, a point
\Bigl( \widetilde x, \widetilde y, \widetilde \bfitlambda \Bigr) \in \scrX \times \scrY \times Rk

+

is called an (\epsilon , \delta )-approximate stationary solution if it holds that\bigm\| \bigm\| \bigm\| Q\Bigl( \widetilde \bfitlambda \Bigr) \bigm\| \bigm\| \bigm\| \leq \epsilon , d\Bigl( \widetilde x, \widetilde y, \widetilde \bfitlambda \Bigr) \leq \delta 2.
In words, at an exact stationary solution of (D2), the inner-level minimax problem

is solved to global optimality, while the outer-level one reaches an exact stationary
solution. However, finding such points in practice is unrealistic. The notion of ap-
proximate stationary solutions is then introduced as a relaxation. At an approximate
stationary solution (\widetilde x, \widetilde y, \widetilde \bfitlambda ) the inner-level problem is solved inexactly, in the sense
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MINIMAX PROBLEMS WITH COUPLED LINEAR CONSTRAINTS 2689

that the distance of (\widetilde x, \widetilde y) from the exact solution (of the inner-level problem (4.2)
with \bfitlambda = \widetilde \bfitlambda ) is small. In addition, the function Q(\widetilde \bfitlambda ) is the stationarity gap of the
outer-level problem at \bfitlambda = \widetilde \bfitlambda .

Next, we analyze the implications of a point being an (exact or approximate)
stationary solution. In particular, we will show that at an exact stationary solution,
the coupled linear constraints as well as the complementary slackness condition will
be satisfied. Further, at an approximate stationary solution, the choice of \widetilde \bfitlambda ensures
that the constraint violation is small.

Proposition 4.5. Suppose that Assumptions 2.2, 3.3, 4.1 hold, and let
\bigl( 
x,y,\bfitlambda 

\bigr) 
be a stationary solution of (D2). Then the following hold:

y = arg max
y\in \scrY 

L(x,y,\bfitlambda ), Ax +By - c\leq 0, x = arg min
x\in \scrX 

\bigl\{ 
H
\bigl( 
x,\bfitlambda 

\bigr) \bigr\} 
,(4.4a)

0 = \bfitlambda 
T \bigl(  - Ax \bigl( \bfitlambda \bigr)  - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c
\bigr) 
, \bfitlambda \geq 0.(4.4b)

Proof. See Appendix A.2.

Proposition 4.6. Suppose that Assumptions 2.2, 3.3, 4.1 hold, and let us denote
with (\widetilde x, \widetilde y, \widetilde \bfitlambda ) \in \scrX \times \scrY \times Rk

+ an (\epsilon , \delta )-approximate stationary solution. Then, \forall i \in \scrK 
it holds that

max\{ 0, [A\widetilde x +B\widetilde y - c]i\} \leq 2\sigma max \cdot \delta + \epsilon ,

\| y - \widetilde y\| \leq \delta , \| x - \widetilde x\| \leq \delta ,
where (x,y) = (x(\widetilde \bfitlambda ),y(x, \widetilde \bfitlambda )), and the two functions x(\cdot ),y(\cdot ) are defined in (4.1c);
\sigma max := max\{ \| A\| ,\| B\| \} .

Proof. See Appendix A.2.

So far, we have defined a suitable (dual) reformulation of the original problem
(mM-I), and introduced a set of first-order stationarity conditions for it. To evaluate
the quality of these solutions, we introduce an algorithm named multiplier gradi-
ent descent (MGD) that can efficiently compute such solutions. Next, we provide a
description of the proposed algorithm.

First, we obtain an approximate solution of the inner-level problem (4.2) by using
any reasonable iterative subroutine that can solve a strongly-convex--strongly-concave
minimax problem. In Algorithm 4.1, such a subroutine is referred to as ``Alg(\cdot ),""
which takes the current iterates xr,yr,\bfitlambda r as well as the desired number of inner
iterations as input. Such an algorithm can be, for instance, the gradient descent-
(multistep) ascent [37] or the extragradient method [34]. Afterwards, one iteration of
gradient descent is performed on the outer problem (4.3). In the subsequent discus-
sion, we refer to r as the outer-iteration index.

We should note here that the MGD algorithm resembles the classical dual-ascent
algorithm (for constrained minimization problems), and its analysis also follows simi-
lar ideas. The interested readers are referred to the online version of this paper for the
formal convergence claims and the proof [46]. We emphasize that algorithm design
and analysis are not the central focus of this work. The MGD algorithm just gives us
a way to evaluate the quality of the proposed stationary solution. One may certainly
be able to design more efficient algorithms (for example, based on extra-gradient, or
momentum acceleration techniques), but this is beyond the scope of this work.

Below we briefly comment on the convergence properties of MGD.
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2690 IOANNIS TSAKNAKIS, MINGYI HONG, AND SHUZHONG ZHANG

Algorithm 4.1. MGD.

Input: x0,y0,\bfitlambda 0, T,K,\alpha ,A,B,c
for r= 0 to T  - 1 do

\# Solve inner minimax problem by running Alg using K iterations;
\# e.g., Alg: gradient descent-(multistep) ascent;\bigl( 
xr+1,yr+1

\bigr) 
\leftarrow Alg (xr,yr,\bfitlambda r;K)

\# Solve outer min problem

\bfitlambda r+1 = projRk
+

\bigl[ 
\bfitlambda r  - \alpha 

\bigl( 
 - Axr+1  - Byr+1 + c

\bigr) \bigr] 
end for

Remark 4.7. First of all, under the Assumptions 2.2, 3.3, and 4.1 we can show
that the outer-level objective G(\bfitlambda ) has Lipschitz continuous gradients. Based on this
result, we can show (under the same assumptions as above) that the MGD algorithm
can asymptotically compute an exact stationary solution, i.e.,

lim
r\rightarrow \infty 

\| Q(\bfitlambda r)\| = 0, lim
r\rightarrow \infty 

d(xr,yr,\bfitlambda r) = 0.

This result implies that the properties of Proposition 4.5 are also satisfied asymptot-
ically, in particular, the complementary slackness condition holds, i.e.,

lim
r\rightarrow \infty 

\langle \bfitlambda r,Ax (\bfitlambda r) +By (x (\bfitlambda r) ,\bfitlambda r) - c\rangle = 0.

Moreover, we can prove that MGD can reach an (\epsilon , \delta )-approximate stationary
solution using at most \scrO ( 1

\epsilon 2 + 1\surd 
\delta 
) outer iterations. However, in this case in order

to ensure that the complementary slackness violation also goes to zero (as a function
of \epsilon and \delta ), we need to impose the following regularity assumption: for every x \in \scrX ,
0 is in the interior of the set \{ Ax + By  - c | y \in \scrY \} ; note that this assumption is
only slightly more restrictive than the one made in Assumption 3.3.2. Then, we can
show that at an (\epsilon , \delta )-approximate stationary solution (\widetilde x, \widetilde y, \widetilde \bfitlambda ) obtained by the MGD
algorithm, the complementary slackness violation \langle \~\bfitlambda ,A\widetilde x+B\widetilde y - c\rangle is upper and lower
bounded by functions of \epsilon and \delta , and these functions converge to zero as \epsilon \rightarrow 0, \delta \rightarrow 0.

5. Experiments. In this section we perform a number of experiments that de-
velop attacks for a minimum cost network flow problem, using the proposed formula-
tion (1.2). Note that our main goal is to evaluate the quality of the formulation and
the proposed stationary solutions. To begin with, in our experiments we adopt the
setting described in section 1.1.2, and generate networks of n nodes at random using
the Erd\"os--Renyi model with parameter p (i.e., the probability that an edge appears
on the graph is p). Moreover, the capacity pij and the cost coefficients wij of the edges
are generated uniformly at random in the interval [1, 2], while we set the demand (on
the sink) as d\% of the sum of capacities of the edges exiting the source, and d is a
parameter to be chosen.

The adversary will generate the attack by solving problem (1.2). We choose
qe(xe) = wexe, that is, the cost per unit flow is a function of the amount of flow.
Further, we add a small regularizer to the adversarial's problem to make it strongly
concave. The specific problem to be solved is listed below (\eta > 0 is a small constant):
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MINIMAX PROBLEMS WITH COUPLED LINEAR CONSTRAINTS 2691

max
\bfzero \leq \bfy \leq \bfp \sum 

(i,j)\in E

yij=b

min
\bfzero \leq \bfx \leq \bfp \sum 

(i,t)\in E

xit=rt

\sum 
(i,j)\in E

wij \cdot (xij + yij) \cdot xij  - 
\eta 

2
\| y\| 2(5.1)

s.t. x + y\leq p,\sum 
(i,j)\in E

xij  - 
\sum 

(j,k)\in E

xjk = 0 \forall j \in V \setminus \{ s, t\} .

The above problem is then solved using the following two different approaches,
while the algorithm parameters are chosen so that the performances are optimized:

1. Apply the MGD algorithm (Algorithm 4.1) to solve problem (D2). Choose
T = 100, and use K = 5 steps of the gradient descent-ascent method [26] to
solve the inner-problem. The step sizes for all variables are set to 0.5.

2. Apply the gradient descent-ascent algorithm (with multiple descent steps)
[37] to solve problem (D3). Choose T = 100, and run 5 iterations for the
inner minimization problem. The step sizes for all variables are set to 0.5.
We refer to this approach as GDA.

To evaluate the performance of the proposed attack we test the following baselines:
\bullet Random attack: An attack flow vector x is generated at random, under the

given budget constraints b.
\bullet Max capacity attack: The attack removes the edge with the largest capacity.
\bullet Greedy attack: The edges are sorted in an ascending order w.r.t. the cost co-

efficients, and they are removed following this order until the capacity budget
b is met. If the remaining budget does not suffice to remove an edge (i.e.,
zero its capacity), then the capacity of the edge is reduced by this amount.

\bullet NI attack: We generate an attack following a method that is used in (gen-
eralized) Nash equilibria games. Specifically, we minimize a Nikaido--Isoda
(NI)-based reformulation [12, 47] of our problem, that is

V (x,y) = - V1(y) - V2(x),(5.2a)

where V1(y) := min
x\in \scrX 

f(x,y), V2(x) := max
y\in \scrY 

f(x,y).(5.2b)

We approximately solve the (strongly-convex or strongly-concave) problems
in (5.2b) using 25 steps of gradient descent and gradient ascent, respectively.
Then, the objective V is minimized by using 100 steps of gradient descent.

The performance of the experiments are evaluated according to the following
procedure. First, an attack is generated, and the corresponding link capacities are
reduced according to the attack pattern. Then, the minimum cost flow is computed
based on the available link capacities. Let xatt,xcl denote the minimum cost flow
assignment after and before the attack, respectively. We define the following relative
increase of the cost as a performance measure: \rho := q\mathrm{t}\mathrm{o}\mathrm{t}(x\mathrm{a}\mathrm{t}\mathrm{t}) - q\mathrm{t}\mathrm{o}\mathrm{t}(x\mathrm{c}\mathrm{l})

q\mathrm{t}\mathrm{o}\mathrm{t}(x\mathrm{c}\mathrm{l})
. The higher the

increase the more successful/powerful the attack. Furthermore, in our experiments
we compute the above measure as a function of the adversary's budget, and for each
budget level we perform the experiment 15 times (each time a new graph is created,
with different capacity and cost vectors) and average the results.

The results are illustrated in Figure 1. Observe that the proposed minimax based
attack is more powerful compared to the three baselines, as it leads to the largest
minimum cost flow after the attack in both networks (regardless of which algorithm
we use). This also implies that the stationary solutions defined in the previous section
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Fig. 1. The evolution of the relative increase (due to the attack) of the total cost as a function
of the budget of the adversary, for different settings. The range of the results (between minimum
and maximum values across all runs) is also depicted using a shaded region around the average cost
curve.

correspond to relatively ``strong"" attacks. We also notice that MGD is slightly more
advantageous compared to the GDA. It is worth mentioning that the network we
generated makes the attack problem nontrivial, in the sense that a random attack
does not work (the relative cost increase is imperceptible). Further, we would like
to point out that the relatively high variance exhibited in the experiments is not
unexpected since at every run we generate a different graph. In particular, in the
experiments with p = 0.75, every new graph differs significantly from the previous
one, leading to higher variance in this case.
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Fig. 2. The evolution of the relative increase (due to the attack) of the total cost as a function
of the budget of the adversary, for different values of the regularization parameter \eta . The range
of the results (between the minimum and maximum values across all runs) is also depicted using a
shaded region around the average cost curve.

5.1. Effect of the regularization parameter. We perform an additional set
of experiments, in which we study the effect of the regularization parameter \eta on the
problem solution by examining the performance of the MGD algorithm. We would
like to stress here that we select relatively small values of \eta , because the regularizer
was introduced to impose the strong concavity assumption in y without significantly
altering the original problem. In Figure 2, we plot the evolution of the relative increase
of the total cost as a function of the adversary's budget for \eta = 10 - 8,10 - 4,10 - 2. We
consider two different settings by changing the parameter p, while we only consider
graphs with n = 15 nodes; we also use the same step size and the same number of
inner iterations as in the previous experiments.

In Figure 2 we see that it is not clear which value of \eta leads to the best perfor-
mance. Therefore, we cannot reach a clear conclusion about the effect of the size of
the regularization parameter. However, we also notice that the performance (such
as the relative total cost increase) attained does not differ significantly among the
different values of \eta , as long as the regularization parameter \eta is small enough (such
as the ones we test in our experiments, i.e., \eta \leq 10 - 2). This behavior is desirable,
since our goal is only to make the objective strongly concave in y in a way that the
original problem (and thus its solutions) is not altered significantly.

6. Concluding remarks. In this paper we study a minimax problem, where
the constraints of the inner maximization problem depends linearly on the variable
of the outer one. This special structure makes the problem NP-hard, even when the
objective is strongly-convex--strongly-concave. We then develop the duality theory
of the problem, and establish conditions under which strong duality holds. These
results allow us to introduce duality-based reformulations of the original problem, and
propose a set of first-order stationarity conditions. Moreover, we demonstrate that
the proposed formulation can model adversarial attacks on network flow problems.
In the future, we plan to study more applications of this formulation, as well as to
related problems where the linear constraints are in the outer problem.

It is possible to extend the main results (e.g., the duality theory, the definition
and properties of stationary points) to problems with general, not necessarily linear,
constraints of the form g(x,y) \leq 0, where g : Rn \times Rm \rightarrow Rk. This is possible with
addition of the following assumptions (below we provide only the key assumptions):
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1. gi(\cdot ,y) is concave \forall y \in \scrY and gi(x, \cdot ) is convex \forall x\in \scrX \forall i\in \{ 1, . . . , k\} .
2. For every x\in \scrX there exists y \in relint(\scrY ) such that g(x,y)< 0.
3. | gi(x1,y1) - gi(x2,y2)| \leq L [\| x1  - x2\| + \| y1  - y2\| ] \forall x1,x2 \in \scrX , y1,y2 \in \scrY 

for some L> 0 \forall i\in \{ 1, . . . , k\} .
Then, the duality theory developed in Theorems 3.2 and 3.4 will hold. Also, the
definition of the (exact and approximate) stationary points in Definitions 4.3 and 4.4,
as well as their respective properties in Propositions 4.5, 4.6, will apply; we just need
to substitute the linear constraints Ax + By + c \leq 0 with the more general ones
g(x,y) \leq 0. Finally, let us note that the NP-hardness results (Propositions 2.5 and
2.6) and the relations between the coupled constrained problems (Proposition (2.4))
automatically apply in the case of the general constraints g(x,y) \leq 0. Note that
despite the ability to generalize our results, in this work we focus on linear constraints,
since the changes required for this generalization are mainly technical and do not lead
to new insights to the problem itself.

Appendix A. Proofs.

A.1. Minimax problems with coupled linear constraints.

Proof of Proposition 2.4. Below we provide the proof for the relations described
in Proposition 2.4.

v(mM-I) \leq v(mM-O):
For the function \phi (x) := max

y\in \scrY ,Ax+By\leq c
f(x,y) defined in (2.1b), it holds that

\phi (x)\leq max
y\in \scrY 

f(x,y) \forall x\in \scrX .

This is because the RHS has a larger constraints set. Then, minimizing both sides of
the above inequality, we obtain

min
x\in \scrX ,Ax+By\ast (x)\leq c

\phi (x)\leq min
x\in \scrX ,Ax+By\ast (x)\leq c

\biggl( 
max
y\in \scrY 

f(x,y)

\biggr) 
,(A.1)

where y\ast (x) is defined in (mM-O).
Similarly, observe that the following holds:

min
x\in \scrX 

\phi (x)\leq min
x\in \scrX ,Ax+By\ast (x)\leq c

\phi (x).(A.2)

Combining (A.1) and (A.2) implies that:

min
x\in \scrX 

\phi (x)\leq min
x\in \scrX ,Ax+By\ast (x)\leq c

\biggl( 
max
y\in \scrY 

f(x,y)

\biggr) 
(2.1b)\Rightarrow min

x\in \scrX 

\biggl( 
max

y\in \scrY ,Ax+By\leq c
f(x,y)

\biggr) 
\leq min

x\in \scrX ,Ax+By\ast (x)\leq c

\biggl( 
max
y\in \scrY 

f(x,y)

\biggr) 
.

That is, v(mM-I) \leq v(mM-O).
To show that the strict inequality can also hold, consider the following problems,

in which it is shown that v(mM-I) = - 1 and v(mM-O) = 1:

min
x\in [0,1]

\biggl( 
max

y\in [0,1],x+y=1
x2  - y2

\biggr) 
= min

x\in [0,1]
x2  - (1 - x)2 = min

x\in [0,1]
2x - 1 = - 1,

min
x\in [0,1],x+y\ast (x)=1

\biggl( 
max
y\in [0,1]

x2  - y2
\biggr) 

= min
x\in [0,1],x=1

x2 = 1.
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MINIMAX PROBLEMS WITH COUPLED LINEAR CONSTRAINTS 2695

Therefore, in the above example it holds that v(mM-I) < v(mM-O). This allows us
to exclude the possibility that equality holds between (mM-I) and (mM-O) for all
possible problem instances.

v(Mm-I) \geq v(Mm-O):
Let us define \psi (y) := min

x\in \scrX ,Ax+By\leq c
f(x,y); then it holds that

\psi (y)\geq min
x\in \scrX 

f(x,y) \forall y \in \scrY ,

since the RHS has a larger constraints set. Then, we can maximize both sides of the
above inequality, and obtain:

max
y\in \scrY ,Ax\ast (y)+By\leq c

\psi (y)\geq max
y\in \scrY ,Ax\ast (y)+By\leq c

\biggl( 
min
x\in \scrX 

f(x,y)

\biggr) 
,(A.3)

where x\ast (y) is defined in (Mm-O). In addition, we can easily see that

max
y\in \scrY 

\psi (y)\geq max
y\in \scrY ,Ax\ast (y)+By\leq c

\psi (y).(A.4)

Combining (A.3) and (A.4) we obtain

max
y\in \scrY 

\psi (y)\geq max
y\in \scrY ,Ax\ast (y)+By\leq c

\biggl( 
min
x\in \scrX 

f(x,y)

\biggr) 
\Rightarrow max

y\in \scrY 

\biggl( 
min

x\in \scrX ,Ax+By\leq c
f(x,y)

\biggr) 
\geq max

y\in \scrY ,Ax\ast (y)+By\leq c

\biggl( 
min
x\in \scrX 

f(x,y)

\biggr) 
.

That is, v(Mm-I) \geq v(Mm-O).
To show that the strict inequality can also hold, consider the following problems,

in which it is shown that v(Mm-I) = 1, and v(Mm-O) = - 1:

max
y\in [0,1]

\biggl( 
min

x\in [0,1],x+y=1
x2  - y2

\biggr) 
= max

y\in [0,1]
(1 - y)2  - y2 = max

y\in [0,1]
 - 2y+ 1 = 1,

max
y\in [0,1],x\ast (y)+y=1

\biggl( 
min

x\in [0,1]
x2  - y2

\biggr) 
= max

y\in [0,1],y=1
 - y2 = - 1.

In the above example it holds that v(Mm-I) > v(Mm-O). This allows us to exclude
the possibility that equality can hold between (Mm-I) and (Mm-O) for all possible
problem instances.

v(mM-O) \geq v(Mm-O):
To begin with, observe that

min
x\in \scrX ,Ax+By\ast (x)\leq c

\biggl( 
max
y\in \scrY 

f(x,y)

\biggr) 
\geq min

x\in \scrX 

\biggl( 
max
y\in \scrY 

f(x,y)

\biggr) 
,(A.5)

since the outer problem in the RHS has a larger constraints set. Further, the max-min
inequality implies that:

min
x\in \scrX 

\biggl( 
max
y\in \scrY 

f(x,y)

\biggr) 
\geq max

y\in \scrY 

\biggl( 
min
x\in \scrX 

f(x,y)

\biggr) 
.(A.6)

Moreover, we have that:

max
y\in \scrY 

\biggl( 
min
x\in \scrX 

f(x,y)

\biggr) 
\geq max

y\in \scrY ,Ax\ast (y)+By\leq c

\biggl( 
min
x\in \scrX 

f(x,y)

\biggr) 
.(A.7)
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2696 IOANNIS TSAKNAKIS, MINGYI HONG, AND SHUZHONG ZHANG

Combining equations (A.5), (A.6), (A.7), we obtain the following relation:

min
x\in \scrX ,Ax+By\ast (x)\leq c

\biggl( 
max
y\in \scrY 

f(x,y)

\biggr) 
\geq max

y\in \scrY ,Ax\ast (y)+By\leq c

\biggl( 
min
x\in \scrX 

f(x,y)

\biggr) 
.(A.8)

That is, v(mM-O) \geq v(Mm-O).
v(Mm-I), v(Mm-O):
To begin with, for A = B = c = 0 problems (mM-I) and (Mm-O) reduce to

classical (without coupled constraints) minimax problems. The max-min inequality
implies that v(mM-I) \geq v(Mm-O).

Moreover, consider the following problems, in which it is shown that v(mM-I)
= - 3 and v(Mm-O) = - 1:

min
x\in [ - 1,1]

\biggl( 
max

y\in [0,2],x+y=1
x2  - y2

\biggr) 
= min

x\in [ - 1,1]
x2  - (1 - x)2 = min

x\in [ - 1,1]
2x - 1 = - 3,

max
y\in [0,2],x\ast (y)+y=1

\biggl( 
min

x\in [ - 1,1]
x2  - y2

\biggr) 
= max

y\in [0,2],y=1
 - y2 = - 1.

The above examples show that there are problem instances where the relationship
v(mM-I) < v(Mm-O) holds between the two problems.

v(Mm-I), v(mM-O):
To begin with, for A = B = c = 0 problems (Mm-I) and (mM-O) reduce to the

classical (without coupled constraints) minimax problems. The max-min inequality
implies that v(Mm-I) \leq v(mM-O).

Moreover, consider the following problems, in which it is shown that v(Mm-I) = 3
and v(mM-O) = 1:

max
y\in [ - 1,0]

\biggl( 
min

x\in [1,2],x+y=1
x2  - y2

\biggr) 
= max

y\in [ - 1,0]
(1 - y)2  - y2 = max

y\in [ - 1,0]
 - 2y+ 1 = 3,

min
x\in [1,2],x+y\ast (x)=1

\biggl( 
max

y\in [ - 1,0]
x2  - y2

\biggr) 
= min

x\in [1,2],x=1
x2 = 1.

The above examples show that there are problem instances where the relationship
v(Mm-I) > v(mM-O) is realized between the two problems.

v(Mm-I), v(Mm-I):
To begin with, for A = B = c = 0 problems (mM-I) and (Mm-I) reduce to the

classical (without coupled constraints) minimax problems. The max-min inequality
holds, that is v(Mm-I) \geq v(Mm-I).

Moreover, consider the following problems, in which it is shown that v(Mm-I)
= - 1 and v(Mm-I) = 1:

min
x\in [0,1]

\biggl( 
max

y\in [0,1],x+y=1
x2  - y2

\biggr) 
= min

x\in [0,1]
x2  - (1 - x)2 = min

x\in [0,1]
 - 1 + 2x= - 1,(A.9)

max
y\in [0,1]

\biggl( 
min

x\in [0,1],x+y=1
x2  - y2

\biggr) 
= max

y\in [0,1]
(1 - y)2  - y2 = max

y\in [0,1]
1 - 2y= 1.(A.10)

The above examples show that there are problem instances where the relationship
v(mM-I) < v(Mm-O) is realized between the two problems.

A.2. First-order stationarity conditions. In the proof of Lemma 4.2 we make
use of Danskin's theorem [3, Corollary, page 1167]. Below we provide its formal
statement.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/0

3/
24

 to
 1

34
.8

4.
0.

1 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



MINIMAX PROBLEMS WITH COUPLED LINEAR CONSTRAINTS 2697

Lemma A.1 (Danskin's theorem). Consider the problem \phi (x) = maxy\in \scrY f(x,y),
where f : Rn \times Y \rightarrow R is differentiable and strongly concave in y, and \scrY \subseteq Rm is a
nonempty compact set. Also, consider the set \scrY \ast (x) = arg maxy\in \scrY f(x,y) which is
a singleton for any x \in Rn. Then, \phi (x) is differentiable and it holds that \nabla \phi (x) =
\nabla xf(x,y\ast (x)), where y\ast (x) = arg maxy\in \scrY f(x,y).

Proof of Lemma 4.2. To begin with, we will compute the gradient of function
H(x,\bfitlambda ) = maxy\in \scrY L(x,y,\bfitlambda ), defined in (4.1a). Indeed, notice that \scrY is a compact
set, L is differentiable and has a unique maximum due to its strong concavity in y.
Then, from Danskin's theorem [3] we can infer that H(x,\bfitlambda ) is differentiable with

\nabla H(x,\bfitlambda ) =\nabla L (x,y (x,\bfitlambda ) ,\bfitlambda ) =

\biggl[ 
\nabla xf(x,y (x,\bfitlambda )) - AT\bfitlambda 
 - Ax - By (x,\bfitlambda ) + c

\biggr] 
,(A.11)

where y(x,\bfitlambda ) := arg maxy\in \scrY L(x,y,\bfitlambda ).
Next we will show that H(x,\bfitlambda ) is strongly convex in x, with modulus \mu x. Indeed

for any x1,x2 \in \scrX , \rho \in [0,1] we have the following series of relations:

H(\rho x1 + (1 - \rho )x2,\bfitlambda ) = max
y\in \scrY 
\{ L(\rho x1 + (1 - \rho )x2,y,\bfitlambda )\} 

(a)
= max

y\in \scrY 

\Bigl\{ 
f(\rho x1 + (1 - \rho )x2,y) - \bfitlambda T (A (\rho x1 + (1 - \rho )x2) +By - c)

\Bigr\} 
(b)

\leq max
y\in \scrY 

\biggl\{ 
\rho f(x1,y) + (1 - \rho )f(x2,y) - \mu x

2
\rho (1 - \rho )\| x1  - x2\| 2

 - \rho \bfitlambda TAx1  - (1 - \rho )\bfitlambda TAx2  - \bfitlambda TBy + \bfitlambda T c

\biggr\} 
(c)

\leq max
y\in \scrY 

\Bigl\{ 
\rho f(x1,y) - \rho \bfitlambda T (Ax1 +By - c)

\Bigr\} 
 - \mu x

2
\rho (1 - \rho )\| x1  - x2\| 2

+ max
y\in \scrY 

\Bigl\{ 
(1 - \rho )f(x2,y) - (1 - \rho )\bfitlambda T (Ax2 +By - c)

\Bigr\} 
\leq \rho H(x1,\bfitlambda ) + (1 - \rho )H(x2,\bfitlambda ) - \mu x

2
\rho (1 - \rho )\| x1  - x2\| 2,

where in (a) we use the definition of the Lagrangian from (3.1), in (b) the inequality
follows from the strong convexity of f w.r.t. x (with modulus \mu x), and in (c) the
triangle inequality of the max operator was used.

Moreover, note that

G(\bfitlambda ) = min
x\in \scrX 

max
y\in \scrY 

L(x,y,\bfitlambda ) = min
x\in \scrX 

H(x,\bfitlambda ) = - max
x\in \scrX 
\{  - H(x,\bfitlambda )\} .(A.12)

Using the fact that \scrX is a compact set,  - H is differentiable and strongly concave in
x, we can apply the Danskin's theorem [3] and obtain

\nabla G(\bfitlambda ) =\nabla \bfitlambda H (x (\bfitlambda ) ,\bfitlambda ) = - Ax(\bfitlambda ) - By (x (\bfitlambda ) ,\bfitlambda ) + c,

where in the last equality we used the gradient of function H(x,\bfitlambda ) from (A.11), and
the definition of x(\bfitlambda ) = arg minx\in \scrX H(x,\bfitlambda ). The proof is now completed.

Proof of Proposition 4.5. Let \bfitlambda \geq 0 be a stationary point of G(\bfitlambda ), that is\bigl\langle 
\nabla G

\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda  - \bfitlambda 

\bigr\rangle 
\geq 0 \forall \bfitlambda \geq 0.

Substituting the formula of the gradient of G(\bfitlambda ) from Lemma 4.2 gives\bigl\langle 
 - Ax

\bigl( 
\bfitlambda 
\bigr) 
 - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c,\bfitlambda  - \bfitlambda 
\bigr\rangle 
\geq 0 \forall \bfitlambda \geq 0.(A.13)
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2698 IOANNIS TSAKNAKIS, MINGYI HONG, AND SHUZHONG ZHANG

We will first show that these conditions imply that Ax
\bigl( 
\bfitlambda 
\bigr) 

+By
\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 
\leq c.

Suppose that there exists index i \in \scrK such that [ - Ax(\bfitlambda )  - By(x(\bfitlambda ),\bfitlambda ) + c]i < 0.
Then, if we select \lambda i = \lambda i + \epsilon for some \epsilon > 0, and \lambda j = \lambda j \forall j \not = i, (A.13) becomes

\bigl\langle 
 - Ax

\bigl( 
\bfitlambda 
\bigr) 
 - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c,\bfitlambda  - \bfitlambda 
\bigr\rangle 

=
\bigl[ 
 - Ax

\bigl( 
\bfitlambda 
\bigr) 
 - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c
\bigr] 
i

\bigl( 
\lambda i + \epsilon  - \lambda i

\bigr) 
=
\bigl[ 
 - Ax

\bigl( 
\bfitlambda 
\bigr) 
 - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c
\bigr] 
i
\epsilon < 0.

This is a contradiction. As a result,
\bigl[ 
 - Ax

\bigl( 
\bfitlambda 
\bigr) 
 - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c
\bigr] 
i
\geq 0 \forall i\in \scrK .

Next, we show that the following holds:

\lambda i
\bigl[ 
 - Ax

\bigl( 
\bfitlambda 
\bigr) 
 - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c
\bigr] 
i
= 0 \forall i\in \scrK .(A.14)

If [ - Ax(\bfitlambda ) - By(x(\bfitlambda ),\bfitlambda ) + c]i = 0, then the above equality holds trivially. Suppose
that there exists

\bigl[ 
 - Ax

\bigl( 
\bfitlambda 
\bigr) 
 - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c
\bigr] 
i
> 0 such that \lambda i > 0. Then, notice

that we can select \lambda i = \lambda i  - \epsilon (for some sufficiently small \epsilon > 0) and \lambda j = \lambda j \forall j \not = i,,
substitute them into condition (A.13), and obtain

\bigl\langle 
 - Ax

\bigl( 
\bfitlambda 
\bigr) 
 - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c,\bfitlambda  - \bfitlambda 
\bigr\rangle 

=
\bigl[ 
 - Ax

\bigl( 
\bfitlambda 
\bigr) 
 - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c
\bigr] 
i

\bigl( 
\lambda i  - \epsilon  - \lambda i

\bigr) 
=
\bigl[ 
 - Ax

\bigl( 
\bfitlambda 
\bigr) 
 - By

\bigl( 
x
\bigl( 
\bfitlambda 
\bigr) 
,\bfitlambda 
\bigr) 

+ c
\bigr] 
i
( - \epsilon )< 0,

which is a contradiction to (A.13). This completes the proof of (4.4b).
From Definition 4.3 we know that at a stationary point (x,y,\bfitlambda ) it holds that

(x,y) = (x(\bfitlambda ),y(x,\bfitlambda )). Then, the optimality condition of y follows directly from the
definition of y

\bigl( 
x,\bfitlambda 

\bigr) 
[see (4.1c)], i.e.,

y = y
\bigl( 
x,\bfitlambda 

\bigr) 
= arg max

y\in \scrY 
L(x,y,\bfitlambda ).(A.15)

Similarly, from (4.1c), we have x = x
\bigl( 
\bfitlambda 
\bigr) 

= arg minx\in \scrX 
\bigl\{ 
H
\bigl( 
x,\bfitlambda 

\bigr) \bigr\} 
. This concludes

the proof.

Proof of Proposition 4.6. Let (\widetilde x, \widetilde y, \widetilde \bfitlambda ) be an (\epsilon , \delta )-approximate stationary so-
lution. In order to compute a bound for the (magnitude of the) violation of the
constraint at (\widetilde x, \widetilde y, \widetilde \bfitlambda ), we consider the following quantity, for an arbitrary i\in \scrK :

max\{ 0, [A\widetilde x +B\widetilde y - c]i\} = max

\biggl\{ 
0,
\Bigl[ 
A
\Bigl( \widetilde x - x

\Bigl( \widetilde \bfitlambda \Bigr) \Bigr) +B
\Bigl( \widetilde y - y

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr) \Bigr) \Bigr] 

i

+
\Bigl[ 
Ax
\Bigl( \widetilde \bfitlambda \Bigr) +By

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr)  - c

\Bigr] 
i

\biggr\} 
\leq max

\Bigl\{ 
0,
\Bigl[ 
A
\Bigl( \widetilde x - x

\Bigl( \widetilde \bfitlambda \Bigr) \Bigr) +B
\Bigl( \widetilde y - y

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr) \Bigr) \Bigr] 

i

\Bigr\} 
+ max

\Bigl\{ 
0,
\Bigl[ 
Ax
\Bigl( \widetilde \bfitlambda \Bigr) +By

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr)  - c

\Bigr] 
i

\Bigr\} 
.(A.16)
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MINIMAX PROBLEMS WITH COUPLED LINEAR CONSTRAINTS 2699

We can bound the first term in the above inequality as follows:

max
\Bigl\{ 

0,
\Bigl[ 
A
\Bigl( \widetilde x - x

\Bigl( \widetilde \bfitlambda \Bigr) \Bigr) +B
\Bigl( \widetilde y - y

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr) \Bigr) \Bigr] 

i

\Bigr\} 
\leq 
\bigm| \bigm| \bigm| \bigm| \Bigl[ A\Bigl( \widetilde x - x

\Bigl( \widetilde \bfitlambda \Bigr) \Bigr) +B
\Bigl( \widetilde y - y

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr) \Bigr) \Bigr] 

i

\bigm| \bigm| \bigm| \bigm| 
(a)

\leq 
\bigm\| \bigm\| \bigm\| A\Bigl( \widetilde x - x

\Bigl( \widetilde \bfitlambda \Bigr) \Bigr) +B
\Bigl( \widetilde y - y

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr) \Bigr) \bigm\| \bigm\| \bigm\| 

(b)

\leq \| A\| 
\bigm\| \bigm\| \bigm\| \widetilde x - x

\Bigl( \widetilde \bfitlambda \Bigr) \bigm\| \bigm\| \bigm\| + \| B\| 
\bigm\| \bigm\| \bigm\| \widetilde y - y

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr) \bigm\| \bigm\| \bigm\| 

(c)

\leq \sigma max \cdot 
\Bigl( \bigm\| \bigm\| \bigm\| \widetilde x - x

\Bigl( \widetilde \bfitlambda \Bigr) \bigm\| \bigm\| \bigm\| +
\bigm\| \bigm\| \bigm\| \widetilde y - y

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr) \bigm\| \bigm\| \bigm\| \Bigr) (d)

\leq 2\sigma max \cdot \delta ,(A.17)

where in (a) we used the fact that for a vector x we have | xi| \leq 
\sqrt{} \sum n

i=1 x
2
i = \| x\| ;

in (b) we used the triangle inequality and the following property of norms: \| Ax\| \leq 
\| A\| \| x\| ; in (c) we used the definition \sigma max := max\{ \| A\| ,\| B\| \} ; and in (d) we used the
condition d(\widetilde x, \widetilde y, \widetilde \bfitlambda ) = \| x(\widetilde \bfitlambda ) - \widetilde x\| 2 +\| y(x(\widetilde \bfitlambda ), \widetilde \bfitlambda ) - y\| 2 \leq \delta 2 from Definition 4.4, which
implies that \| x(\widetilde \bfitlambda ) - \widetilde x\| \leq \delta and \| y(x(\widetilde \bfitlambda ), \widetilde \bfitlambda ) - y\| \leq \delta .

To derive a bound for the second term of (A.16), recall that the definition of
approximate stationarity requires that \| Q(\widetilde \bfitlambda )\| \leq \epsilon . This implies that

\epsilon \geq 
\bigm| \bigm| \bigm| \bigm| \biggl[ 1

\alpha 

\Bigl( \widetilde \bfitlambda  - projRk
+

\Bigl( \widetilde \bfitlambda  - \alpha \nabla G\Bigl( \widetilde \bfitlambda \Bigr) \Bigr) \Bigr) \biggr] 
i

\bigm| \bigm| \bigm| \bigm| 
(i)
=

\bigm| \bigm| \bigm| \bigm| 1\alpha \Bigl( \widetilde \lambda i  - max
\Bigl\{ 

0,\widetilde \lambda i  - \alpha \nabla iG
\Bigl( \widetilde \bfitlambda \Bigr) \Bigr\} \Bigr) \bigm| \bigm| \bigm| \bigm| 

(ii)
=

\bigm| \bigm| \bigm| \bigm| 1\alpha \Bigl( \widetilde \lambda i  - max
\Bigl\{ 

0,\widetilde \lambda i  - \alpha \Bigl[  - Ax\Bigl( \widetilde \bfitlambda \Bigr)  - By
\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr) + c

\Bigr] 
i

\Bigr\} \Bigr) \bigm| \bigm| \bigm| \bigm| ,(A.18)

where (i) uses the fact that the projection is performed w.r.t. the set Rk
+, thus it can

applied component-wise; (ii) uses the expression for \nabla G(\widetilde \bfitlambda ) derived in Lemma 4.2.
Suppose that the ith constraint is violated, i.e., [ - Ax(\widetilde \bfitlambda ) - By(x(\widetilde \bfitlambda ), \widetilde \bfitlambda )+c]i < 0.

Then condition (A.18) takes the following form:\bigm| \bigm| \bigm| \bigm| 1\alpha \Bigl( \widetilde \lambda i  - \widetilde \lambda i + \alpha 
\Bigl[ 
 - Ax

\Bigl( \widetilde \bfitlambda \Bigr)  - By
\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr) + c

\Bigr] 
i

\Bigr) \bigm| \bigm| \bigm| \bigm| \leq \epsilon 
\Rightarrow 
\bigm| \bigm| \bigm| \bigm| \Bigl[  - Ax\Bigl( \widetilde \bfitlambda \Bigr)  - By

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr) + c

\Bigr] 
i

\bigm| \bigm| \bigm| \bigm| \leq \epsilon 
\Rightarrow 
\Bigl[ 
Ax
\Bigl( \widetilde \bfitlambda \Bigr) +By

\Bigl( 
x
\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr)  - c

\Bigr] 
i
\leq \epsilon ,(A.19)

where the first relation uses the fact that \~\lambda i \geq 0, so the argument inside the max
function is positive.

Overall, in the case where [ - Ax(\widetilde \bfitlambda )  - By(x(\widetilde \bfitlambda ), \widetilde \bfitlambda ) + c]i \geq 0 holds, then (A.16)
and (A.17) together imply that:

max\{ 0, [A\widetilde x +B\widetilde y - c]i\} \leq 2\sigma max\delta + 0\leq 2\sigma max\delta .

On the other hand, if [ - Ax(\widetilde \bfitlambda ) - By(x(\widetilde \bfitlambda ), \widetilde \bfitlambda ) + c]i < 0, then combining (A.16),
(A.17), and (A.19) yields max\{ 0, [A\widetilde x +B\widetilde y - c]i\} \leq 2\sigma max\delta + \epsilon .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Finally, we know from Definition 4.4 that the following condition holds at the
approximate stationary point (\widetilde x, \widetilde y, \widetilde \bfitlambda ):

d
\Bigl( \widetilde x, \widetilde y, \widetilde \bfitlambda \Bigr) =

\bigm\| \bigm\| \bigm\| x\Bigl( \widetilde \bfitlambda \Bigr)  - \widetilde x\bigm\| \bigm\| \bigm\| 2 +
\bigm\| \bigm\| \bigm\| y\Bigl( x\Bigl( \widetilde \bfitlambda \Bigr) , \widetilde \bfitlambda \Bigr)  - \widetilde y\bigm\| \bigm\| \bigm\| 2 \leq \delta 2.

Therefore, it follows directly that \| y  - \widetilde y\| \leq \delta , \| x  - \widetilde x\| \leq \delta , where (x,y) =
(x(\widetilde \bfitlambda ),y(x, \widetilde \bfitlambda )). This completes the proof.
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