THE MODULI OF SECTIONS HAS A CANONICAL OBSTRUCTION
THEORY

RACHEL WEBB

ABSTRACT. We give a detailed proof that locally Noetherian moduli stacks of sections
carry canonical obstruction theories. As part of the argument we construct a dualizing
sheaf and trace map, in the lisse-étale topology, for families of tame twisted curves, when
the base stack is locally Noetherian.
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1. INTRODUCTION

1.1. Overview. Let M be a locally Noetherian algebraic stack and let C — M be a family
of twisted curves as in Def 2.1]. Let £ — C be a morphism of algebraic stacks such
that Z — M is locally of finite presentation, quasi-separated, and has affine stabilizers. By
Thm 1.3] there is an algebraic stack Secy((Z/C) over M whose fiber over a scheme
T — Mis
Secpm (Z/C)(T) := Home(C xm T, Z)

where the right hand side is the groupoid of morphisms of stacks over C. Recall that an
obstruction theory for Seca((Z/C) is a morphism of complexes ¢ : E — Lgec/aq in the
derived category of Sec := Seca(Z/C) whose mapping cone has vanishing cohomology
sheaves in degrees [—1,00) (see Section [£.3). An implication of our main theorem is the
following.

Theorem 1.1.1. The stack Secp(Z/C) carries a canonical obstruction theory.

We define the canonical obstruction theory in Section [4.4] Theorem [[.1.1]is generalized
and stated more precisely as Theorem below. An important feature of the canonical
obstruction theory is its functoriality, as explained in Appendix A].

When the obstruction theory in Theorem is perfect and Sec := Secp(Z/C) is
Deligne-Mumford, quasi-separated, and locally finite type over a field, the machinery in
[BF97] and [Kre99, Sec 5.2] defines a virtual fundamental class on Sec. This is a key
part of the construction of Gromov-Witten theory and related enumerative theories: see
for example [Beh97; JAGV0S8; (CCK15; (CL12]. On the other hand, Theorem is used
with a non-Deligne-Mumford instance of Sec to functorially compare different obstruction
theories on quasimap moduli spaces in Lem A.2.5]. This comparison is crucial for
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the application of [CJW21| to quasimap theory and also for the computations of quasimap
I-functions in [Web18; [Web21].

1.2. Discussion of Theorem The usual argument supporting Theorem [I.1.1] when
Sec is Deligne-Mumford is as follows (this is used, for example, in [BF97, Prop 6.2]). First
reduce to showing that for each affine f : T — Sec and square-zero quasi-coherent ideal
sheaf I on T, the induced map

(1) Ext’(Lf*Lec/a, 1) — Ext'(Lf*E, I)
has the following properties (see [BF97, Thm 4.5]):
(2) e When i = 1, (1)) is injective on obstructions.
e When ¢ = 0 and there exists a deformation of f by I, is an isomorphism.

Second, use standard deformation theory to relate the groups Exti(L J*Lsec/m, I) (resp.
Ext(Lf*E,I)) to deformations of the morphism f : T — Sec (resp. C X T — Z). Since
morphisms T' — Sec are equivalent to morphisms C X, T" — Z by definition of Sec, one
concludes that is an injection (on obstructions) when ¢ = 1 and that the groups in
are isomorphic (if the obstruction vanishes) when ¢ = 0. We note that this falls just shy
of the second requirement in , since it is not clear that the morphism in is itself an
isomorphism.

In this paper, we copy the first step above in Lemma [4.3.2] However, in the second step,
we analyze the functoriality of the isomorphism of Picard categories

(3) Exal, (X, 1) ~ Ext® ! (L y, I[1]))

due to Illusie and Olsson (11171} |Ols06]), for X — ) a representable morphism of algebraic
stacks. (See Section [4.1] for the notation and Theorem for the precise statement). Our
proof shows that when ¢ = 0, not only are the groups in isomorphic (in the case of
vanishing obstruction), but in fact the morphism in 18 an 1somorphism, completing the
proof of the second requirement in . Our proof also covers the case when Sec — M is
not representable or even relatively Deligne-Mumford.

The correct approach to Theorem is likely through derived algebraic geometry, as in
[STV15, Sec 2.2]. The functoriality properties of the obstruction theory proved in [CJW21]
Appendix A] would be natural consequences of such a construction. Unfortunately this
author is not equipped to produce the argument. Though the statement of Theorem [1.1.1
is certainly familiar, we note that there does not seem to be a reference in the literature for
the generality in which we have stated it here.

1.3. Duality for twisted curves. A key ingredient for the construction of the obstruction
theory in Theorem is the following (stated more precisely as Proposition below).

Theorem 1.3.1. For every family p : C — M of tame twisted curves on a locally Noetherian
algebraic stack M, there is a functorial pair (wa, trap) with wag a quasi-coherent sheaf on
C and tryg : Rmuwpay — Opq[—1]. When M is a quasi-separated Noetherian algebraic space,
the pair (waq,traq) agrees with the right adjoint to Rp..

We restate the last sentence of the theorem more precisely: if p : C — M is a family of
twisted curves, a right adjoint p' to Rp, exists by [HR17, Thm 4.14(1)] (see also Lemma
below). The last sentence of Theorem says that if M is a quasi-separated Noe-
therian algebraic space, we have that wa[1] = p'@Orq and trp4 is the counit of the (Rp.,p')
adjunction.

The reason we do not have this agreement for arbitrary locally Noetherian M is that
it seems difficult to show that p' is compatible with arbitrary base change. Following the
exposition of |[Lip09| for schemes, we prove base change for the right adjoint to pushforward
for certain morphisms of algebraic stacks in Lemma below (see also [Neel7| for a
complementary result). However, in applications, one would like to have base change for p'
for families of curves over arbitrary morphisms of algebraic stacks.
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The base change problem arises for non-twisted prestable curves as well, and [Stacks],
Tag 0E5W] addresses the issue by “gluing” the pairs (waq,traq) to get a functorial con-
struction of a dualizing complex and trace map. We adopt the same strategy to prove
Theorem [I.33] Again, while the statement of Theorem [T.3.1]is well-known, we do not know
a reference for twisted curves, even over the complex numbers.

1.4. Contents of the paper. The main goal of Section [2]is to derive a certain commuting
diagram (Lemma which will be used in our proof of Theorem [[.1.1] Because the
notation is simpler and because we can reuse various parts of the argument in other parts
of the paper, we work in the setting of abstract closed symmetric monoidal categories.

In Section [3] we prove Theorem[1.3.1] The proof requires us to construct a special kind of
hypercover of an algebraic stack and an associated lisse-étale topos. This is an application
of the general results proved in [Stacks| and we explain the details in Appendix

We explain and prove Theorem in Section The proof itself is fairly short,
granting the existence of the dualizing complex and the functoriality of . We reserve our
proof of the functoriality of for Appendix Since the functoriality is critical to our
argument we include the details, but said details are unsurprising.

1.5. The locally Noetherian hypothesis. We expect that the locally Noetherian as-
sumption on M can be relaxed. It is used only in the proof of Lemma to show that
pushing forward to the coarse moduli space of a twisted curve preserves pseudo-coherent

objects. See Remark

1.6. Conventions and notation. We collect some conventions and recurring notation.
Our list of notation here is not exhaustive.

Algebraic stacks. We follow the conventions in [Stacks, Tag 0260]; in particular, an algebraic
stack need not be quasicompact or quasi-separated.

Twisted curves. A morphism p : C — M of algebraic stacks is a family of twisted curves if
smooth-locally on M it is a twisted curve in the sense of [AOV11] Def 2.1].

Notation for closed categories and internal hom

Notation Category Internal hom

category of A-modules for a sheaf of rings A on

Mod(A) a site .7 Hom g
D(A) unbounded derived category of Mod(A) RHom 4
derived global hom functor (valued in the de- notated
rived category of (7, A)-modules). RHom 4
Py category of sheaves on the lisse-étale (rep.
(resltl)ls_i{’ ) étale) site of an algebraic (resp. Deligne- not needed
. et

Mumford) stack X

category of quasi-coherent sheaves on the lisse-
étale (rep. étale) site of an algebraic (resp. not needed
Deligne-Mumford) stack X

QCOh(Xlis-et)
(resp. QCoh(Xet))

D(Xis-et) unbounded derived category of &x-modules in

RH
(resp. D(Xe)) | Ao (resp. ) o
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derived global hom functor (valued in the de- notated
rived category of I'(X, Ox)-modules). RHomg,,
Dee(Xisoet) full subcategory of D(Xjset) (resp. D(Xet))
(ros qths&t{ ) on objects with quasi-coherent cohomology R’Hom‘gx
P+ Pael et sheaves

Operations on sheaves on topoi and algebraic stacks

Notation Meaning

H(F) The i** cohomology sheaf of a complex F

The derived global sections functor applied to a complex F, com-

RT(F) monly notated RI'(X, F) where X is a topos

(f~L f) Adjoint functors defined by a morphism of topoi f: % — 2

For f : (¥¢,0%) — (2,0%) a morphism of ringed topoi set

o PO =) 80, O

L For f : X — )Y a morphism of algebraic stacks, we denote by Lf* :
Dge(Viis-et) =+ Dqc(Xiiset) the functor Lfy. in [HR17, Sec 1.3].

R For f : (¢,0%) — (2,0%) a morphism of ringed topoi, this is

the usual direct image functor D(0¢) — D(0g).

For f : X — Y a concentrated morphism of algebraic stacks,
this is the functor R(fyc)+ : Dgc(Mis-et) — Dge(Mis-et) of [HR1T,
Rf.« Sec 1.3] that is right adjoint to Lf*. By |[HR17, Thm 2.6(2)]
it agrees with the restriction of the usual direct image functor
R(flis-et)* : D(Xlis-et) — D(ylis-et)~

1.7. Acknowledgements. I am grateful to Bhargav Bhatt for explaining the characteriza-
tion of an obstruction theory in Lemma [£:3.2] T am also thankful for many helpful conver-
sations with Martin Olsson. This project was partially supported by an NSF Postdoctoral
Research Fellowship, award number 200213.

2. A FORMAL FRAMEWORK FOR DUALIZING OBJECTS AND TRACE MAPS

2.1. Closed symmetric monoidal categories. Because notation is simpler in an abstract
setting, we work for a moment with closed symmetric monoidal categories. If ¥ is such a
category, we will write O for the unit, ® for the product, and Hom for internal hom, using
€ (X,Y) to denote the set of morphisms between two objects X,Y € ¢ and 1x to denote
the identity morphism on X. We will suppress mention of the associativity, commutativity,
and identity isomorphisms that are part of the definition of . If ¥ and & are any two
categories and R : € — 2 is a functor with a left adjoint L, then for X € 2 and Y € € we
will denote the unit and counit of the adjunction by

nk : X — RL(X) e LRY)—Y
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omitting the decorations on 7 and € when there is no risk of confusion.
We will use many specific instances of the following abstract situation.

Situation 2.1.1. We are given €, 2 be closed symmetric monoidal categories with f* :
9 — € strong monoidal and f, a right adjointﬂ This means we have natural isomorphisms

(4) fFXyefry)—-rxey)
(5) O¢ — [*0g.

When we are in Situation we have the following three morphisms at our disposal.
The first we recall from [FHMO03, (3.4)]: given ¥ € ¥ and X € 2 there is a functorial
isomorphism

(6) Hom(X, £.Y) = f.(Hom(f*(X),Y)).

The second is the composition

(7) f« Hom(X,Y) — f. Hom(f* f.X,Y) @ Hom(f. X, f.Y)

where the first morphism is induced by the counit of the adjunction. The third is

(8) Hom(X,Y) — Hom(X, f.£*Y) @5 1. Hom(f* X, f*Y)
where the first morphism is induced by the unit of the adjunction; it is an isomorphism if
f* is fully faithful. One can check that is functorial in X, Y, and in the adjoint pair
(f*, fx) (see |Lip09, Exercise 3.7.1.1]).

We present Example as the first instance of Situation [2.1.1} more instances can be

found in Examples [3.0.1] [B:2.2] [B:2.3] and [B.3.1}

Example 2.1.2. The following is an example of Situation Let B' — B be a homo-
morphism of rings, and set ¥ = Mod(B’) and 2 = Mod(B). Define f* to be the extension
of scalars functor — ® g» B and define f. to be restriction of scalars (—)ps. The functor
—®p B is strong symmetric monoidal. One can check from the definition in [FHMO03, (3.4)]
that (6) sends X — (Y)p to its adjoint arrow X ®p B — Y, that (7) sends a B-module
homomorphism g : X — Y to (9)p : (X)p — (Y)p/, and that (8) sends a B’-module
homomorphism h: X - Y toh®p B: X®p B—Y Qp B.

We recall a formal framework for basechange. We do not need monoidal structures here.

Situation 2.1.3. We have a diagram of categories and functors

7 Mg
9) lg* lf*
T 59

where the functors fi, g, m«, m’, have left adjoints f*,g*, m*, m’™, and we are given a nat-
ural transformation m’™* f* ~ g*m*.

In this situation we get get a unique natural transformation m.,g, ~ f,m/ such that the
adjunctions for (m'* f*, fum.) and (m.g«,g*m*) are compatible (see [Lip09, Sec 3.6]). We
define the basechange map

(10) m*f. X — g.m”™ X for X € .
as in [Lip09, Prop 3.7.2(i)]. It may not be an isomorphism in general.

1 Moreover, f is lax monoidal by [FHMO03, (3.2)] and so our setup is consistent with that used in [Lip09}
Sec 3.5].
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Lemma 2.1.4. ForY € 9 and X € € there are commuting diagrams

m* X e e x m* Y —" L Y
] L

Proof. We show that the first diagram commutes; the second one may be checked similarly.
Commutativity of the first follows from the following commuting diagram.

*m* " *em,*
g*m*f*X 9 f«m g*m*f*m;m/*X . g*m*m*g*ml*X 9 g*g*m/*X

7n/*f*f* .
(12) e e X LI e f ol m/* X 9
J{m/*é J{m/*é
1% Ix
m'*n m
m*X ——————— m*m,m™*X < m™*X

The perimeter of the diagram from m’* f* f, X to m/*X along the bottom is equal to m'*e
using a triangle identity, while the composition along the top is equal to the composition of
the other three arrows in the desired square. The commutativity of the big cell in is
compatibility of the (m* f*, fom’) and (m.g., g*m*) adjunctions—see [Lip09, (3.6.2)]. O

2.2. An ideal setup. We recall the formal framework of [FHMO03, Rmk 5.10].

Situation 2.2.1. We are given closed symmetric monoidal categories €, 2 and functors
far i : € — P and f*, f' : @ — € such that (f*, f.) and (f1, f') are adjoint pairs. Moreover,
these functors satisfy

e f* is strong symmetric monoidal

L4 f*:f'

e The canonical projection formula morphism
(13) Y @ fX) > LY @ X)

defined in (Hal, Appendix A] is an isomorphism
The object C := f'Oq is invertible, and
The canonical morphism

(14) o fY®fOy— [Y
defined in [FHMOS, (5.5)] is an isomorphism.

Example 2.2.2. Let p : C — T be a family of prestable curves on a quasi-separated
Noetherian scheme T, in the sense of [Stacks, Tag 0E6T]. Let €’ = Dgc(Cet); Z = Dge(Tet),
f« = Rp,, and f* = Lp*. Then f, has a right adjoint f' and f'@r is equal to the relative
dualizing sheaf we,7[1]. These data are an example of Situation We will extend this
example to families C — T of twisted curves in Example

Lemma 2.2.3. For every X € €, the (®,Hom)-unit
(15) nx : X — Hom(C, X ® C)
is an isomorphism.

Proof. Since C is invertible, it follows from [May01, Lem 2.9] that C is dualizable and that
the coevaluation map defined there is an isomorphism. It follows from the definition of the
coevaluation map that the unit is an isomorphism when X = 4. For general X, there
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is a commuting square

Noe®lx
Og X Hom(C, 0% @ C) ® X —— Hom(C,C) ® X
X i Hom(C, X ® ) =——— Hom(C,C @ X)

where the map labeled v (defined in [Lew+86), p. 120]) is an isomorphism since C is dualizable
(see [Lew—+86), Prop IT1.1.3(ii)]). This implies that nx is an isomorphism. The commutativity
of the square follows immediately from the definition of v and the functoriality of 7. O

Following [FHMO3, Def 5.6], we define twisted functors f¢(X) := Hom(C, f'(X)) and
fE(X) = fi(X ® C). We have an isomorphism f*Y — fL(Y) for Y € € equal to the
composition

(16) ) Hom(e, 1Y © €) % Hom(C, £'Y)

where is an isomorphism by Lemma and @ is an isomorphism by assumption.
Since (£, f&) is an adjoint pair, we've realized fC as a left adjoint to pullback. Moreover,
there is a projection isomorphism

me Y @ fO(X) = [ (Y) @ X)

defined by replacing X with X ® C' in 7.
In this setting, we prove commutativity of some diagrams which will be useful to us.

Lemma 2.2.4. There is a commuting diagram
X ® fEFH(Y) X®fOfa(Y) —— Xav
(17) e gl
FEG X @ (V) e fOF (X ay) B (X aY)
where the arrows labeled € are counits for the (fC, f'c) adjunction.
Proof. For any Z € 2, the composition

52 B e i2) 25 2

is equal to
fi

I (2) = 1(f(2) 2 C) <= Z @ f.(C) REN

To see this, expand the (fC, fC)-counit in terms of the (®, Hom)-counit and the (fi, f')-
counit; commute the morphism ¢ in the definition of with the (®, Hom)-counit; and
finally use the triangle identity 1«zgc = 6?*2@0 o (nfiz ® 1¢), where 1 and € here denote
the unit and counit of the (®, Hom) adjunction. Now is equivalent to the diagram

X@fH(ffY)®C) +——— XQY® fi(C) —— XQVY
LX) e (V)0 0) == f(f"(XeoY)o )
whose commutativity is proved in |[Lip09, Lem 3.4.7(iv)]. O

Lemma 2.2.5. Suppose we are in Situation [2.2.1, Then there is an isomorphism vy :
fe Hom(f* X, f&(Y)) = Hom(fC (f*X),Y) making the following diagram commute.

Hom(flcf’C(X),Y) m Hom(X,Y)

" T e

f« Hom(f* X, f*Y)
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Here, € is the counit for the (fC, f5)-adjunction.

Proof. The definition of v will come out in the course of the proof: it will be “conjugate”
to 7 via various adjoints (see also [FHMO3, (4.1)] and [Stacks, Tag 0A9Q)]). For future
reference, we summarize it in the final paragraph of the proof. To simplify notation, when
there is no risk of confusion, if F' is a functor between categories and « is a morphism of
the source category, we will notate F'(«) by a. For example, we may use € as the label for
the horizontal arrow in .

To show the commutativity of we use the Yoneda embedding: for an arbitrary
T € 2, it suffices to show the commutativity of

C

19(T, Hom(fC fia(X),Y) +— 1 9(T, Hom(X,Y))

T, e

2Y(T, f. Hom(f*X, f*Y)).

We do this by demonstrating that it is equivalent to the commutativity of

AT FO1H(X),Y) —L 1T e X,Y)

T

([T (T ® X),Y).

where 7 is defined to equal the isomorphisms in . This second diagram commutes by
Lemma 2.2.4]

There are isomorphisms | = 4 and 3 = 6 given by (®, Hom) adjunction, and an isomor-
phism 2 =5 given by

‘(T f. Hom(f*X, f*Y)) = €(f*T,Hom(f* X, f*Y)) =€(f*'T @ f* X, f*Y)
="C(f(T@X), [Y)=C(f6(T® X), f6Y) ="2(f (f&(T ® X)),Y)

where the equahtles are (f*, f*) adjunction, (®, Hom)-adjunction, the isomorphism . the
isomorphism ([T6]), and (f°, fc) adjunction. The square with corners 1, 3,4, and 6 commutes
by functoriality of the (®,Hom) adjunction. We take the commutativity of the square with
corners 2,3,5, and 6 as the definition of . The final square commutes as follows. By the
definition of the vertical map in and adjunction, the composition 1 — 2 — 7 is equal
to

2(T, Hom(X,Y)) L € (f*T, f* Hom(X,Y))

(19)

X e T f*X frHom(X,Y) ® f*X)

C( (T X), f*(Hom(X,Y) & X)) L5 ¢ (£(T @ X), 1Y)

By functoriality of , this composition is equivalent to

(T, Hom(X,Y)) 2% 2(TeX, Hom(X,Y)oX) > ‘9(TeX,Y) L5 "¢(f*(TeX), f*Y).

The first two arrows are precisely the (®, Hom) adjunction | = 4. Finally, the composition
LN
‘T X,Y) L (0o X), 1Y) EL e (T e X), 5Y) = " D(A(FLT 0 X)),

where the arrow comes from the previous formula and the two equalities come from ., is

induced by the counit ef * as desired.
To conclude, we summarize the definition of v as promised. After cancelling assorted
isomorphisms with their inverses, we see that it is given under the Yoneda embedding by

P(T,f. Hom(f* X, f*Y)) = €(f*T,Hom(f* X, f*Y)) =€ (f*"T ® f*X, fY)
=C(f'Te X, [6Y)=2(C(fTeX),Y) > 2T fCfXY)
= (T, Hom(fC f*X,Y)) = 2(T, Hom(fC f& X,Y)).
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Where the equalities are (f*, f.) adjunction, (®, Hom) adjunction, the isomorphism ,
(f€, f&) adjunction, the projection formula, (®, Hom) adjunction, and finally the isomor-
phism again. In particular, if we follow « with the inverse of the last equality, we have
defined a natural isomorphism

(20) f«Hom(Z, f*Y) = Hom(fCZ,Y)
that is functorial in both arguments. (The content of this statement is that to define
it is not necessary for Z to be of the form f*X.) |

2.3. A modification of the ideal situation. When C — X is a family of twisted curves on
an algebraic stack X', we would like to apply Situation by setting = Dgc(Niis-et) and
% = Dqc(Ciis-et). Unfortunately we do not know a proof that the right adjoint f "in Situation
2.2.1]exists in the generality we would like (see Lemma[3.2.1]and the discussion following it).
Instead, we work in the following weaker situation, replacing f' with a dualizing complex
and trace map.

Situation 2.3.1. We are given closed symmetric monoidal categories €, 2, a functor
fe 1 € = D with a right adjoint f*, and an invertible object C' € € with a trace map
tr: fxC — Og. These data satisfy

o f* is strong symmetric monoidal
e The canonical morphism w:Y ® f.(X) — fu(f*Y ® X) is an isomorphism

In this situation we define an adjunction-like map a : €(X, f*Y) — 2(f.(X ® C),Y)
as follows (see also [CJW21| Sec A.2.1DE| Given ¢ € (X, f*Y), define a(¢’') to be the

composition

(21) fX @le) ZYED p (Y 0 0) LY @ f.0 20y,

Observe that a is functorial in both arguments, by which we mean the following;:
(1) Given X' € € and ¢ € €(X', X), we have a(¢’ o) = a(¢’) o f. (v @ 1¢).
(2) Given Y’ € Z and ¢ € 2(Y,Y"), we have a(f*po¢’') =1 oa(¢’).

The next example explains why we call a “adjunction-like.”

Example 2.3.2. Suppose we are in Situation with an adjoint pair (f*, f.) and object
C = f'Oy € €. Then we have the data of Situation we can define tr¢ : f,C — Oy
to be the counit of the (fi, f') adjunction. Under the isomorphism , the adjunction-like
map a : €(X, f*Y) - P(f.(X ® C),Y) is identified with the adjunction € (X, f5Y) =~
2(f€X,Y). To see this, let ¢' € €(X, f*Y). The (fC, f&)-adjoint of o ¢ is equal to
the (fi, f)-adjoint of
Xo0 2% ry ooy
Since fi. = fi, said adjoint is equal to the composition

(X @C) 980 vy g0y Sy,

where ¢ is the (fi, f')-adjoint of ¢. By the definition of ¢ in [FHMO3, (5.5)], this last
composition is equal to a(¢’).

2.4. Basechange. We introduce a setting where the adjunction-like morphism a is com-
patible with pullback.

Situation 2.4.1. We have a diagram of closed symmetric monoidal categories as in @D
such that the left adjoints f*,g*,m*, m’* are strong symmetric monoidal. We are given
objects S € ./, C € € and morphisms trs : g.S — Oz, trc : foC — Oy such that the data
for each column of @ are in Situation and these data are compatible as follows.

o The basechange map is an isomorphism.

2Informally we think of a as realizing f!c = f«(-® C) as a left adjoint to f* = f'c
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o We are given an isomorphism o : m'*C — S making this diagram commute:

m*tr

m*f,.C =5 O
(22) l trsT

gm*C L% ¢, 8

In this situation, Lemma explains a precise sense in which m*a(¢’) = a(m'*¢’).

Lemma 2.4.2. Suppose we are in Situation |2.4.1l Let ¢ : X — f*(Y) be an arrow in €.
Then we have m'™* ¢’ : m*X — m* f*Y = g*m*Y, and the following diagram commutes:

m* fo(X ® C) ™29 ey

am*J/N a(m/*¢/)
g.(m*X ® 5)

The isomorphism a is equal to followed by and finally o, and in particular it is
functorial in X. Moreover, suppose we have a diagram

%1(*%2(7%3

miy My
(23) lfl* lfﬁ lfa*

D «—— Do D
myo Mag

together with distinguished objects C; € 6; and trace maps tr; : fi.C; — Og, for each i,
and isomorphisms oy : mng’j — C; for i < j. Suppose that with these data both squares
and the outer rectangle of are in Sttuation and that a3 = a1o omiy(ass). Then

_ 1%
Ami,oms, = Omj, © m12(“m§a)'

Proof. The proof of [CJW21, Lem A.2.1] works in this more general situation. O

Lemma 2.4.3. Suppose we are in Situation but that the left column of @ is actually
in Situation [2.2.1: this means we are given a right adjoint ¢' for g, =: g1 with ¢/C5 = S
and trs : g.S — Oz equal to the counit for the (g1, g') adjunction. Let ¢' : X — f*(Y) be
an arrow in € and set ¢ := a(¢'). Let I be an object of . Then the following diagram
commautes.

Hom(m*f (X ® C),I) — Hom(m*Y, I)
e | |

g+ Hom(m™* X, g*I) g U Hom(m"™ f*Y, g*I)

In this diagram, the equality is comprised of , a, and . The right vertical arrow is
followed by ,

Proof. The desired commuting diagram is derived from the composition of two. On the left,
we have
S /% S /% Lx S x *
Hom(gy” (m™ X), I) «—— Hom(gy’(m"f*Y), I) === Hom(gyg"(m"Y),I)

(25) 1» T T
g« Hom(m* X, g*I) +—— g, Hom(m'* f*Y, g*I) Lo g« Hom(g*m*Y, g*I)
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Here, the arrows pointing left are induced by m/*¢’. On the right, we have
Hom (g g*(m*Y),I) —=— Hom(m*Y ® g7 (07),1) s Hom(m*Y, I)
o
(26) Hom(gfgs(m*Y), 1)
gl
g« Hom(g*m*Y, g*I)

The commutativity of the top triangle is Lemma with X = m*Y and Y = 04, and
the commutativity of the bottom triangle is Lemma We note that definition is
equal to v followed by the equality induced by . Finally, by Lemma the top row
of followed by the top row of agrees with the top row of (after inserting a

copy of ) a

3. DUALITY FOR TWISTED CURVES

We explain how which the formal discussion of Section [2[ will generally be used in
the remainder of this article. In this section and the remainder of the paper, we define
pseudo-coherent and perfect objects of lisse-étale sites as in [Stacks, Tag 08FT] and [Stacksl,
Tag 08G5], respectively. Note that if X is an algebraic stack, pseudo-coherent and perfect
objects of D(Xis.et) are always in Dge(Xis et )-

Example 3.0.1. If f : X — ) is a morphism of algebraic stacks, we have closed symmetric
monoidal categories € = Dgc(Xis-et) and Z = Dgc(Qis-et) and a strong monoidal functor
Lf*: 2 — €. If f is concentrated we also have Rf, : ¥ — 2 that is a right adjoint to
Lf*. In this context, the functor notated Hom in Section [2] translates to internal hom for
Dyc(Xis-et). However, we note that by [HR17, Lem 4.3(2)], for any algebraic stack X, we
have equality

RHomy (P, F) ~ RHome, (P, F)

for any F € Dqc(Alis-et) and any perfect complex P € Dge(Xis-et)-

3.1. Background on twisted curves. Recall from Section[I.6that a morphism p : C — M
of algebraic stacks is a family of twisted curves if smooth-locally on M it is a twisted curve
in the sense of [AOV11] Def 2.1]. In particular, p is flat and proper and the diagonal
C — C x\mC is quasi-finite. If r : C — C' is the coarse moduli map, and ¢ — C'is a geometric
point, the fiber product Spec(@¢ z) X ¢ C is moreover required to have a certain description
(see the full definition in [AOV 11} Def 2.1]). We recall some properties of families of twisted
curves.

Our first lemma “spreads out” the local quotient description of a twisted curve at a
geometric point to an étale neighborhood of that point.

Lemma 3.1.1. Let C — T be a family of twisted curves over an affine scheme T and let
q: C — T be the coarse moduli space. Let ¢ — C be a geometric point. Then there is an
integer n > 1 and an affine scheme V = Spec(A) with an action of ., such that, if R = Ak
is the ring of invariants and U := Spec(R), there is a commuting diagram

V —"= [V/u,] —— U

C

Cc———C
where the square is fibered and the vertical maps are étale. Moreover, one of the following
holds:
(1) A= Rx]/(z™ —1t) for somet € R and p,, acts by ¢ - p(x) = p((x).
(2) A= Rlx,y]/(xy —t,a" —u,y" —v) for some t,u,v € R and py, acts by ¢ -p(z,y) =
p(Cz, ¢ 1y).



12 RACHEL WEBB

Proof. We prove the lemma when ¢ maps to a node of C'; the case when ¢ maps to a smooth
point is similar. By definition [AOV11} Def 2.1(v)], there is a fiber square

[(Spec(Or g7, yl/(zy — 1)) /1] —— C
(28) l

Spec(Ocz) — > C

for some t € O 4.z, where ¢ € p, acts by z — (- x and y ¢~ y. Since C is tame,
formation of the coarse space commutes with arbitrary base change [AOV08, Cor 3.3], and
we have

ﬁC,E =~ (ﬁT,q(E) [.’E, y]/(l’y - t))/l«n = ﬁT,q(E) [xn’ yn]/(xnyn - tn)
If we set u := 2™ and v := y" in O¢ ¢, then we may write the top left corner of as the
stack

(29) [(Spec(Occl[z, yl/(a" —u,y"™ = v, 2y = 1))/ pn].

Now write ¢z as the inverse limit of affine schemes Spec(R;) with étale maps to C. Since
Spec(Oc sz, y]/(x™ —u, y™ —v,xy —t)) — Spec(Oc ;) is finitely presented, there is an index
ip and elements u,v,t € R;, such that Spec(R;, [z, y]/(z™ — u,y™ — v, zy — t)) pulls back to
the affine scheme in (29)). Define p,, to act on Spec(R;, [z, y]/(z™ — u,y™ — v, zy —t)) by the
same rule z — ¢ -z and y — ("1 - y.

Let Cg, denote the pullback of C to Spec(R;). Observe that for i > ig, we have two
stacks [(Spec(R;[x,y]/(z™ — u,y™ — v,y — t))/un] and Cg, defined over Spec(R;) and an
isomorphism between their pullbacks to Spec(@¢z). By [LMO00, Prop 4.18(i)] there is an
index j > ip and an isomorphism [(Spec(R;[z,y]/(z" — u,y™ — v, 2y —1t))/pn] ~ Cr,. We
may set IR := R;. ]

We refer the reader to Section for definitions of the direct and inverse image functors
in the next lemma.

Lemma 3.1.2. Let p:C — M be a family of twisted curves on an algebraic stack M.

(1) The morphism p has cohomological dimension < 1 (in the sense of ([HR17, Def 2.1]).
(2) The morphism p is concentrated (in the sense of [HR17, Def 2.4]).

(3) For F € Dyc(Ciis-et) and G € Dyc(Miis-et), the projection morphism GQRp. (F)
Rp.«(p*G ® F) is an isomorphism.
(4) Given a fiber square of algebraic stacks
c—"
O
M =5 M
* / s : ;
and F € Dgyc(Ciis-et), the basechange map Lm*Rp, F —> Rp,Lm/"F is an isomor-
phism.
(5) If M is locally Noetherian, then the functor Rp, sends perfect complezes to perfect
complezes.

Proof. For part (1), by flat base change [HR17, Lem 1.2(4)] we may assume M is an affine
scheme, but this is [AOV11} Prop 2.6]. Now (1) implies part (2) by definition, part (3) by
[HR17, Cor 4.12], and part (4) by |[HR17, Cor 4.13]. For part (5), we recall that perfection is
a flat-local property of complexes in the sense of [HR17, Lem 4.1], so we may use basechange
[HR17, Cor 4.13] to reduce to the case when M is a Noetherian affine scheme. Now the
result follows from Lemma [B.1.3] below. O

Lemma 3.1.3. Letp: C — T be a family of twisted curves over a Noetherian affine scheme
T and let r : C — C be the map to the coarse moduli space.
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(1) The ezact functor r. sends pseudo-coherent objects in Dyc(Cis-et) to pseudo-coherent
objects in Dye(Clis-et ) -
(2) The functor Rp, sends perfect objects in Dqc(Ciis-et) to perfect objects in Dyc(Tiis-et)-

Remark 3.1.4. We expect that the locally Noetherian hypothesis can be removed using
absolute Noetherian approximation for algebraic stacks as in [Stacks, Tag 0CN4] (see the
proof of [Stacks, Tag 01AH]). We do not, however, know a reference that allows us to
assume the approximating morphism has properties (1) and (2) of Lemma Since we
are not aware of an application of the non-Noetherian setting we omit this investigation.

Proof of Lemma[3.1.3 We will repeatedly use the fact that if X is a scheme, there are
equivalences of categories QCoh(Xjis-et) =~ QCoh(X,ar) and Dgc(Xiis-et) = Dgc(Xyar), where
X,ar is the category of sheaves on the small Zariski site of X, and that these equivalences
preserve coherence, pseudo-coherence, and perfection.

To prove (1), let F € Dqc(Ciis-et) be pseudo-coherent. Let f : U — C be a smooth cover
by a scheme. Since f defines a morphism of lisse-étale sites and f* is exact, f*F is pseudo-
coherent by [Stacks, Tag 08H4]. By [Stacks, Tag 08ES], the sheaves H'(f*F) are coherent
and vanish for i > 0. It follows from [Ols07, Rmk 6.10, Prop 6.12] that the sheaves H®(F)
are coherent and vanish for i > 0. By |Alp13, Thm 4.16(x)] the sheaves r.H!(F) have
these same properties, but since 7, is exact we know r, H*(F) = H'(r,.F). Hence by |Stacks,
Tag 08ES8| again, the object r.F is pseudo-coherent.

To prove (2), let F € Dye(Ciis-et) be perfect—by [Stacks, Tag 08G8] this is equivalent to
pseudo-coherent and locally of finite tor dimension. By part (1) of this lemma and [Stacksl,
Tag 0CTL], the pushforward Rp.F is pseudo-coherent. To see that Rp,F locally has finite
tor dimension, by [Stacks, Tag 08EA] it suffices to show that for G € QCoh(T') the sheaves

. L
H'(Rp.F ® G) vanish for i outside a finite range. By the projection formula [HR17, p. 4.12]

. L
and flatness of p these are equal to H*(Rp.(F ® p*G)). Since F is a perfect complex on a
quasi-compact space, it has finite tor amplitude, so the spectral sequence

R™p, H'(F) = R™ ", F
of |Stacks, Tag 015J] and the fact that p is concentrated finish the proof. O

3.2. Background on right adjoint to pushforward. We recall some statements about
right adjoint to pushforward that hold for purely formal reasons.

Lemma 3.2.1. Let f : X — Y be a concentrated morphism of algebraic stacks. Then a
right adjoint f' to Rf, Dyc(Xis-et) = Dgc(Niis-et) ezists, and for dualizable G € Dye(Wis-et)
the canonical morphism f*G ® f'Cy — f'G defined in is an isomorphism. Moreover,
for F € Dgc(NAis-et) and G € Dgc(Wiis-et) there is a functorial isomorphism

(30) Rf.RHom$ (F, f'G) = RHom% (Rf.F,G).

Proof. Existence of f' is [HR17, Thm 4.14(1)] and that is an isomorphism follows
from [FHMO3|, Prop 5.4]. The isomorphism is [FHMO03, Prop 4.3] (see also [Stacks,
Tag 0A9Q)). O

We now explain what it means for f' to be compatible with basechange. While lemma
applies to arbitrary families of twisted curves C — M, we will see that we need
additional assumptions for the basechange property to hold.

Suppose we have a fiber square of algebraic stacks as below with m and f tor-indpendent
(see |[HR17, Sec 4.5]) and f concentrated.

m

X x

(31) lg lf
Yy

y / m



14 RACHEL WEBB

Then f' and ¢' exist as recalled in Lemma m By |[HR17, Cor 4.13], the base change
map (10]) is an isomorphism (we take the closed symmetric monoidal categories in @ to be
Dye(Xiiset), etc). This lets us define the functorial base change map Lm/* f' — g'Lm* to be
the composition

(32) L' f' = ¢'Rg.Lm’" f* ¢ Lm*Rf. f — g'Lm*.

We are interested in when (32) is an isomorphism.

Lemma 3.2.2. Suppose we have a tor-independent fiber square of quasi-compact al-
gebraic stacks with quasi-finite and separated diagonals, and suppose that )Y’ and ) are
concentrated with quasi-affine diagonals. If f is concentrated and Rf, sends perfect com-
plexes to perfect complezes, then 18 an 1somorphism.

Remark 3.2.3. The hypotheses of the lemma are satisfied if all the stacks in are
quasi-compact tame Deligne-Mumford with separated diagonals, with additional conditions
on f as above.

conditions. Compared with [Neel7], our Lemma [3.2.2] imposes stricter conditions on the
stacks X, X', )V, )’, and on the morphism f, but we allow m to be arbitrary, whereas
[Neel7| requires m to be flat.

Remark 3.2.4. The preprint [Neel7| proves that (32) is an isomorphism under very general
3.2

Remark 3.2.5. The proof of Lemma|3.2.2| relies on our ability to find a compact generator
for the algebraic stack X. By |[HR17, Thm A], our assumptions that X is quasi-compact
with quasi-finite and separated diagonal imply that Dgyc(Mis-et) is compactly generated by
a single perfect complex P. This means that for any F € Dyc(Xiiset), we have F = 0 if
and only if Homp__(x,,.,)(P[n], F) = 0 for every n € Z (here, Homp__(x,,..,) denotes the
hom-set in the (additive) category Dgc(Mis-et)). Since Dgo(Xiis-et) is a full subcategory of
D(Xis-et), we may compute the hom set in the larger category. But these hom sets are
computed by the cohomology of the derived global hom functor. We conclude that for any
morphism f : F — G, we have that f is an isomorphism if and only if RHomg,, (P, f) is an
isomorphism.

Proof of Lemma[3.2.3 We explain why the proof of [Lip09, Cor 4.4.3] also works in this
setting.

The first step is to reduce to the case where m is quasi-affine. Indeed, by [Lip09,
Prop 4.6.8] the morphism satisfies a cocycle condition for squares stacked horizon-
tally. This implies that it is enough to prove the Lemma when )’ is an affine scheme and
m is smooth, or when )’ and ) are both affine (see |Lip09, pp. 182—4] for more details). By
assumption ) has quasi-affine diagonal, so in either case the morphism m is quasi-affine.

Now we assume m is quasi-affine. Let F € Dge(Mis-et) and let P be a perfect, compact
generator for Dqc(Xiset) (see Remark . Since )’ and ) are concentrated by assump-
tion, the morphisms m and m’ are also concentrated [HR17, Lem 2.5] and we have functors
Rm. and Rm/,. To show that is an isomorphism, we claim that it suffices to show the
induced map

(33) Rf:Rm RHomy  (Lm™P, Lm’™* f'F) — Rf.Rm/, RHomy ,(Lm"P, g'Lm*F)

is an isomorphism. First, Lm'*P is perfect ﬁ so we may replace the functors R’Hom%‘fxl with
RHome,, (see Example |3.0.1). Next, if (33| is an isomorphism we get an isomorphism
of global derived homs by applying the global sections functor. But Lm/*P is a perfect
generator for Dyc(X o) by [HR17, Cor 2.8]—this is where we use that m (hence m') is
quasi-affine. We conclude that is an isomorphism (see Remark [3.2.5)).

3To see this, note that the equivalence in Proposition sends perfect objects to perfect objects—one
reason is because this is an equivalence of symmetric monoidal categories and the perfect objects are the
dualizables [Stacks, Tag OFPP]. Now apply [Stacks, Tag 08H6] to the morphism of strictly simplicial étale
topoi.
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To show that is an isomorphism, we cite the bottom two cells of the commuting
diagram on [Lip09, p. 182] to reduce to proving a certain morphism

R (4.4.1)%,

Rm.Rg. R’Hom(gxl (Lm"™*P, Lm'*fl]-") Rm, R”Hom?ﬁcy (Rg.Lm"*P,Lm* F)

is an isomorphismﬂ (In the cited diagram, the map notated u*4 is, in our notation, equal
to Lm* applied to the isomorphism ) We will not bother to write the definition of
Rm. (4.4.1)%. because [Lip09, Lem 4.6.4] gives a commuting diagram

(4.4.1)7

Rf! R’Hom[gxl (Lm"™* P, Lm™ f'cF) —3° R?—lom‘gyl (RfILm/*P Lm*F)
pT T
(34) Rf.Lm*RHom (P, f'F) RHom  (Lm*Rf.P,Lm"F)

o] q

Lm"*Rf.RHomy (P, f'F) Lm*RHomy (Rf. P, F)
The arrows labeled are isomorphisms by [HR17, Cor 4.13]. The arrows labeled p are
defined in [FHMO3, (3.3)], and by [FHMO3, Prop 3.2] all instances in this diagram are
isomorphisms since P and Rf,P are perfect complexes by assumption. We note that our
definition of p agrees with the definition in |Lip09, (3.5.4.5)] by [Lip09, Exercise 3.5.6(a)].
Finally, in diagram , we know that is an isomorphism; this concludes the proof.

|

3.3. Example of Situation [2.2.1] We realize Situation as duality for families of
twisted curves on Noetherian algebraic spaces.

Example 3.3.1. Let p : C — T be a family of twisted curves on a quasi-separated Noe-
therian algebraic space T'. Let € = Dqo(Cot); Z = Dqc(Tet), f+ = Rps, and f* = Lp*. We
will write p* for Lp* since p is flat (this is justified by [HR17, (1.9)]). The projection map
(13) is an isomorphism by Lemma

The right adjoint p' exists by Lemma Moreover, by [HR17, Thm A], the category
Dyc(Ciis-et) is compactly detected by a single perfect complex. Since Rp, preserves perfect
complexes (by Lemma and perfect objects in Dqc(Ty) are also compact, it follows
from [FHMO3, Thm 8.4] and [FHMO03, Lem 7.4] that is an isomorphism for all Y.

It remains to show that p'@r is invertible. This follows from Lemma and Lemma
below.

Lemma 3.3.2. Letp:C — T be a family of twisted curves on a Noetherian affine scheme
T. Then p'Or is represented by a rank one locally free sheaf in degree -1.

Proof. Let q : C — T be the coarse moduli space of C and let r : C — C be the coarse
moduli map. By [Stacks, Tag 0E6P, 0E6R] we know ¢'Or is invertible and supported in
degree -1. In particular it is dualizable, so we have

p!ﬁT = r!qIﬁT = r*q!ﬁT @r'os

where the second equality uses [FHMO03, Thm 8.4] and the fact that ¢'Or is dualizable.
Hence to prove the lemma it suffices to show that 7' @¢ is invertible and supported in degree
0.

Let ¢ — C be a geometric point. By Lemma |3.1.1] we have a local description of C — C'
near ¢ given by the diagram . Note that a right adjoint to pushforward exists for every
horizontal map in (27)). It follows from [Neel7, Lem 0.1] that the pullback of r'Gc to [V/ ]
is equal to 7' O (note that [Neel7, Lem 0.1] applies since U — C is étale and r, preserves

4One may check that Lipman’s discussion of the relevant commuting diagram here and in (34) uses only
formal properties of adjoint symmetric functors as discussed in [Lip09, Sec 3.5]. The setup in |Lip09} Sec 3.5]
is compatible with our Situation by footnote
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pseudo-coherent objects by Lemma [3.1.3). Since [V/u,] — C is flat, the complex r'0¢
is represented by a quasi-coherent sheaf if and only if '@y is, and by [Stacks, Tag05B2]
(applied on strictly simplicial étale sites as in Proposition r'Oc is invertible if and
only if 7' Oy is.

To compute 7' Oy, set p = 7 o 0 and we observe that we have an equality

p!ﬁU = U*T!ﬁU ®O'!ﬁ[v/un]

so it suffices to show that p'@p and U!ﬁ[v/lun] are both invertible and supported in degree
0. In Lemma below, we prove the statement about p'@y, as well as the statement that
pr' Oy is a line bundle in degree 0, where pr : 1, x V' — V is the projection. The statement
about pr' 0y is equivalent to the statement about U!ﬁ[v/#n] by an arument identical to the
one used in the previous paragraph.

|

Lemma 3.3.3. The complexes p' Oy and pr'Oy are represented by line bundles supported
in degree 0.

Proof. We use the statement of finite duality in [Stacks, Tag 0AX2], which we translate to
a statement about rings using [Stacks, Tag 06Z0]. These results imply that for a morphism
of affine schemes Spec(B) — Spec(A), the image of Ogpec(a) under the right adjoint to
pushforward is induced by the complex of B-modules

(35) RHom (B, A).

For pr, the relevant ring map is the diagonal A — ngG A, and B = ngGA is a
free A-module so is supported in degree 0. One checks that there is an isomorphism
B — RHom (B, A) given by sending 1p to the projection to the identity factor.

For p, let R = A®, the ring of G-invariants. Lemma lists two possibilities for
A. In case (1) the computation of is similar to that for pr since in this case, A is a
free R-module with basis 1,x,...,2"~1 and RHomp (A, R) is generated as an A-module by
projection to the " ~!-factor.

The computation in case (2) is more involved since we have to take a free resolution of
A. One may use the resolution

oy, go2r-2 By poar-2 4, pez-1 Dy 4 g
with maps given as follows. If {f;,g;}/_{ denotes a free basis for R®?"~2 and e is the
additional basis element of R®?"~! then d; is defined by

do: e—1 di, iodd:  fi = vf; —thge_; di, i >0even: fi+— uf; +tig._;
fi s ot gr—i +>ugr—i — "7 f; gr—i = 7 fi Fvgr—i
9i =y’
For details, see [Web20|, pp. 25-28]. |

3.4. Example of Situation We realize Situation [2.4.1] for families of twisted curves
on algebraic stacks. We use the dualizing sheaf and trace map (as in Situation as
a substitute for the full duality in Example because we are unable to show that the
basechange morphism is an isomorphism in general.

Proposition 3.4.1. For every family C — M of twisted curves on a locally Noetherian
algebraic stack M, there is a pair (W, tra) with wl, = wam[l] where wp € QCoh(Ciis-et)
is locally free and traq : Rmuw$ — On, such that the following hold:

(1) The pair is functorial in the following sense. Given a fiber square

Cnv — Caq

o | 1

N L M
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there is a canonical isomorphism
(37) mwh, = Wi

such that the following square commutes:

Lm*Rp.wi, 4>Lm frm On
(38) Nl trNT

* 7

Rp.Lm" wl, —— Rp.wi,

Moreover, if n : K — N is a morphism of algebraic stacks and Cxc = Cpar X0 K is the
s P g N XN

pullback andn' : Cx — Cnr the projection, then the isomorphism (m’on’)*wl, — wx
is equal to the composition n'*m"*w}, — n"*wi, = wy.

2) If M is a quasi-separated Noetherian algebraic space, then wS, = p'Ong and traq is

M

the counit of the (Rp.,p') adjunction.

For a general base M we do not know if our construction of (wf,tra() agrees with the
right adjoint to pushforward.

Remark 3.4.2. To see that Proposition gives an example of Situation [2.4.1|compatible
with Example [3.3.1) we use the fact that Lm* : Dge(Miis.et) — Dge(Mis-et) has a right
adjoint even when m is not concentrated; see [HR17), Sec 1.3].

Proof of Proposition[3.4.1] The idea as follows. We will define the pair (w$,, tra() when M
is an algebraic space as required by part (2) of the proposition. When M is an algebraic
stack, we will take this as the smooth-local definition of (w$,,tra(), and using the notion
of a very smooth hypercover explained in Appendix [A] we will show that these local pairs
“glue” to a global one with the correct properties.

We now proceed with the proof. When M is a quasi-separated Noetherian algebraic
space, we define w}, and t7 ¢ as required in part (2) of the proposition (see Example|3.3.1)).
When both A/ and M are both quasi-separated Noetherian algebraic spaces, we define (37))
to be the base change map (it is an isomorphism by Lemma . The commuting
diagram follows from the definition of (32)), see [Lip09, Rmk 4.4(d)]. The cocycle
condition on is [Lip09, Prop 4.6.8].

Let M be a locally Noetherian algebraic stack. In this paragraph we define waq. Let
M, — M be a very smooth hypercover (see Definition and let Cps o be its pull-
back to Caq (see Remark . We have associated categories of quasi-coherent sheaves
QCoh(M, lis-et) and QCoh(Cps,e lis-et) as inn Section By Remarkwe may assume
that each M; is a disjoint union of affine schemes (each Noetherian by [Stacks, Tag 06R6]). In
particular, each M; is a disjoint union of qcqs Noetherian schemes. For each n € Z>( we have
families of twisted curves Cps,, — M, and hence the system of locally free sheaves wyy, (de-
fined by applying the construction in the previous paragraph to the Noetherian components
of M,,) together with the isomorphisms defines an object war,e 0f QCOL(Chrs,e tis-et)-
By Proposition @ the sheaf wjs,e corresponds to a unique quasi-coherent sheaf wa in
QCoh(Cat,lis-et) Whose restriction to Cpy, is war,. Let wly = waq[1].

In this paragraph we define trr(. By Remark[A.3.14]the complex Rp.w$} is represented by
the element of Dgc(Ma jis-ct) Whose n'" component is Rp,w$; (see also [Stacks, Tag 0D9P]).
We have trace maps tryy, : Rp.wjy, — O, for each n, and these are compatible with the
transition maps of M, by . Now from Proposition combined with the argument
in [Stacks, Tag 0DL9] we obtain tra : Rp.why — O (the requlred Ext groups vanish since
Rp.w, is a complex in degrees [-1,0] by Lemma .

Now we check that the pair (waq,traq) has the properties required in part (1) of the
proposition. Suppose we have a fiber square where A and M are algebraic stacks.
Let Ny — N and M, — M be very smooth hypercovers with M; and N; disjoint unions
of affine schemes, with a morphism N, — M, commuting with the augmentations and
m : N — M (see Remark . Let Ca,e and Cy e be the pullbacks of M, and N, to
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Cm and Cy, respectively. For each n € Z>q, the twisted curve Cy , — IV, is the pullback

of Cprn — M, and we have isomorphisms m, wys, wy, . Under the identifications
(a*m™ wa)|n, =~ miFwar, of Remark these isomorphisms are compatible with the
transition maps for the sheaves a*m/“waq and a*wys in QCoh(Cy e jis-ct) because satisfies
the cocycle condition. By descent we get an isomorphism m/*w$, — w},. To check that this
definition makes commute, apply the equivalences a* and use Remark to get a
collection of commuting diagrams indexed by n € Zx.

O

4. OBSTRUCTION THEORIES VIA THE FUNDAMENTAL THEOREM

4.1. Some Picard categories. Let . be a site. We recall the notion of Picard stacks
from |73 Sec XVIII.1.4.5], and observe that a Picard category is just a Picard stack on the
punctual site (see also |73, Def XVIII.1.4.2]). If f : P — Q is a morphism of Picard stacks
on ., we define the kernel to be the fiber product X = e X, o ¢ P where o is the trivial
Picard stack (a constant sheaf with all its fibers equal to a single point), and ¢ : ¢ — Q is
the identity.

Example 4.1.1. Let D(.¥) be the unbounded derived category of abelian sheaves on .7.
As in |73, Sec XVIII.1.4.11] we have a functor ch from the subcategory DI-1.0] () to the
category of Picard stacks on . (in the latter category, arrows are isomorphism classes of
morphisms of stacks). Suppose A is a sheaf of rings on . and D(A) is the unbounded derived
category of sheaves of A-modules. For two complexes F € D79 (A4) and G € DI*~ 1>l (4),
we define

(39) Ext” 7' (F,G) := ch(r<oRHom (F, G)) = ch(r<oRTRHom A(F, G))

where RHom 4 is derived global hom for D(A) and we have omitted the pushforward from
the derived category of I'(.#, A)-modules to the category of abelian groups. Observe that ch
is applied here over the site with one object and one morphism, so Ext% 71(F , () is actually
a Picard category (and the prestack pch(7<oRTRHoma(F,G) of |73 Sec XVIIL.1.4.11] is
actually a stack). If the ring A is clear we will omit it from the notation. It follows
from [73, (XVIII.1.4.11.1)] that isomorphism classes of objects of Ext?q/_l(F7 G) are equal
to Ext (F,G) and from |73, (XVIIL.1.4.11.2)] that automorphisms of the identity element
are Ext ;' (F,G).

Example 4.1.2. Let X — )Y be a representable morphism of algebraic stacks and let I
be a quasi-coherent sheaf on X'. We recall from [Ols06| Sec 2.2, 2.12] the Picard category
Exaly, (X, I) on Xyt objects are square-zero extensions X' — &” of stacks over ), together
with an isomorphism I — ker(Ox: — Ox) (see |Ols06} Sec 2.2] for details, e.g. arrows).

Now suppose we have the following commuting diagram of algebraic stacks where ¢ :
X < X’ is a square-zero extension by a quasi-coherent sheaf I, the maps f and g are
representable, and we have fixed 2-morphism v :ro f — gogq.

x .y

(40) ql l

X —2- z
The morphism r induces a morphism R : Exaly,(X,I) — Exalz(X,I), and the perimeter
of defines an element of Exal (X, I) (i.e. a functor ¢ — Exal (X, I), where o is the

groupoid with one object and one arrow). We define the Picard category Def(f) to be the
fiber product

Def(f) — Exaly, (X, 1)

(41) J lﬂ

o — Exal(X,])
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where the bottom arrow e — Exal (X, ) is the section induced by ([40). We use Def(f)
to denote the set of isomorphism classes of Def(f). Explicitly, objects of Def(f) are triples
(k,€e,0) such that k : X — Y is a l-morphism, and € : f — kogand § : rok — g are
2-morphisms satisfying ¢*(d) o r(¢) = 7. A morphism from (ki,€e1,01) to (ka,€2,02) is a
natural transformation 7 : k; — kg such that ¢*(7) o €1 = €3 and 01 = d2 o r(7) (for details
see [Web20|, Lem 2.4.3]).

Example 4.1.3. As an example of the diagram , let X L Y 5 Z be morphisms of
algebraic stacks with X an algebraic space, and let I € QCoh(X,). Define ¢ : X — X’ to be
the trivial extension by I, so we have ¢’ : X' — X such that ¢ og=1x. Now g:=7r0 foq
is representable, and k = f o ¢’ defines an element of Def(f).

4.2. The Fundamental Theorem. The fundamental property of the cotangent complex
is that it provides a description of the Picard category in Example in terms of the
construction in Example

Theorem 4.2.1 (|O1s06]). Let X — Y be a representable morphism of algebraic stacks.
Then there is an isomorphism of Picard categories:

(42) Exaly, (¥, 1) = Ext) ' (Ly/y. I[1])

The definition of is technical and we defer it to Section[B.3] For us, the key property
of is that it is functorial under pullback and basechange as stated in the next two
lemmas.

Lemma 4.2.2. Suppose we have maps Z ERSVVEN Y with f and g o f representable. Then
given I € QCoh(Zyis.ct), there is a commuting diagram of Picard categories:

Ext” ~Y(Lz,w, I[1]) —2— Ext” " (Lz/y, I[1])
(43) 1» <>
Exal,,(2,1) ——2—— Exaly,(2,1)
Here A is induced by the canonical map Lz,y — Lz, and B is induced by composition
with g.

Lemma is a special case of [Ols06l (2.33.3)], but that result is stated only for
isomorphism classes of objects. We will prove Lemma in Appendix [B] For the second
functoriality lemma, suppose we have a fiber square of algebraic stacks

z- o x

(44) l l

wW—-Yy

where the map W — ) is flat and X — ) is representable. Then given a quasi-coherent
sheaf I € QCoh(Xjiset), there is a morphism of Picard categories

(45) Exaly, (X, I) — Exalyy,(Z,p*I)

sending X’ — Y to the pullback Z’' := X" xy, W — W (observe that, since is fibered,
we have an induced map Z < Z’ with the desired kernel).

Lemma 4.2.3. Given the fiber square (44) and I € QCoh(Xiset), there is a commuting
diagram of Picard categories:

Ext® " (L /y, I[1]) —— Ext” " (p* Ly, p*I[1]) +2— Ext” " (Lz )y, p*I[1])

(46) 1» T
Exaly, (X, 1) E Exaly, (Z,p*I)
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Here C' is induced by in the context of Example|B.2.%), the arrow D is induced by the
canonical map of cotangent complexes (an isomorphism in this case), and E is (45)).

We will prove Lemma in Appendix [B] We conclude this section with a corollary to
Theorem [£.2.1] that may be read as a relative version of the same theorem.

Corollary 4.2.4. Consider a diagram of algebraic stacks where X — X' is a square-
zero extension with ideal sheaf I, and f and g are representable.

(1) There is an obstruction o(f) € Ext'(Lf*Ly,z,I) whose vanishing is necessary and
sufficient for the set Def(f) to be nonempty.
(2) If o(f) = 0, then there is an isomorphism Def(f) ~ Exto/fl(Lf*ILy/Z,I).

Remark 4.2.5. It follows from the Corollary that if o(f) = 0, we get an isomorphism of
groups between Ext_l(L [*Ly,z) and the automorphism group of any element of Def(f).
One can extract from the proof of the Corollary that Def(f) is a torsor for ExtO(Lf*Ly/Z, I).

Proof. Applying Lemma to the maps X — )Y 5 Z we get a commuting diagram

Ext” ~Y(Ly/y, I[1]) — Ext” *(Ly,z,I[1])

(47) lw lN
Exaly(X, 1) ———— Exal; (¥, 1)

where R is the same as the map B in the Lemma. When we restrict to isomorphism
classes of objects, we get the commuting square in the diagram below.

Ext'(Ly/y, ) — Ext'(Ly,z, 1) =2 Ext’(Lf*Ly,z,1)

(48) lN alN
Exaly (X, 1) —2— Exalz(X,1)
The top row of the diagram comes from applying Extl(—, I) to the distinguished triangle
The set Def(f) is nonempty if and only if, in (48)), the fiber of R over the element [g] €
Exalz(X,I) defined by is nonempty. From the long exact sequence for Ext’(—,I)
I)

applied to (49)), we see that this happens if and only if the image of [g] in Extl(Lf*]Ly/Z,
(under the maps given in (48)) is 0. We define

(50) o(f) = ob(a”([g]))-
If Def(f) is not empty, then by Lemma below Def(f) is isomorphic to the kernel of
the morphism of Picard categories

R : Exaly (X, 1) — Exal (X, I).
It follows from and [Ols06] Lem 2.29] applied to the distinguished triangle

RHom(Ly, z, I[1]) LN RHom(LLy y, I[1]) = RHom(Lf* Ly, z, I[1]) —
induced from that this kernel is canonically isomorphic to ch((7<—1Cone(r<03))[—1]),
where C'one denotes the mapping cone of a morphism. But we compute

(r<-1Cone(r<o))[~1] = (< 1Cone(8))[~1] = 7<oCone(B[~1)

so we get that this kernel is isomorphic to Exto/_l(Lf*]Ly/Z, I). O
Lemma 4.2.6. Let f : P — Q be a morphism of Picard stacks on a stack X, and let K

denote the kernel. Let g : X — Q be a section and F =P xg 4 X the fiber product. If the
set of global objects of F is not empty, then F is non-canonically isomorphic to K.

5Example differs from Example because it uses general sheaves of 0-modules and hence the
RHom functor instead of RHomd°.
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Proof. A global object of F defines a section ¢ : X — F. One can check that the composition
Kxx F—PxxyPL P, where u is the group operation, factors through F. We obtain a
morphism

(51) K v F s F

On the other hand, we have the composition

(52) Fontd o puarhpdo

where pry : F — P is the canonical morphism and —o is o followed by the inverse morphism.
The composition factors through the identity e : X — 9, so we get an induced map
F — K. One may check that this is inverse to . O

4.3. Equivalent definitions of an obstruction theory. Let )V — Z be a morphism of
algebraic stacks. If ¢ : E — F is a morphism in Dge(Viseet), let H(¢) : H(E) — H'(F)
denote the induced morphism on cohomology sheaves. The following definition generalizes
[BF97), Def 4.4].

Definition 4.3.1. A morphism ¢ : E — Ly,z in Dqc(Wis-et) 95 an obstruction theory if
H=Y(¢) is a surjection and H°(¢), H'(¢) are isomorphisms.

Given a morphism ¢ : E — Ly, z in Dge(Miset), for every diagram we have induced
homomorphisms of groups (computed a priori in the lisse-étale topology)

(53) ®; : Ext’(Lf*Ly,z,I) — Ext'(Lf*E,I).

We now present a well-known local criterion for a morphism ¢ to be an obstruction theory.
Similar criteria have appeared in [BF97, Thm 4.5], [AP19] Cor 8.5] and |[Pom15, Thm 3.5].
However, we found the wording in these criteria to be vague in that they do not explicitly
require compatibility between various morphisms. Since proving said compatibility is a
major part of the paper (it comprises the functoriality computations in Appendix , we
give the precise statement of the local criterion and a fully detailed proof.

Lemma 4.3.2. The following conditions are equivalent.

(1) The morphism ¢ is an obstruction theory.
(2) For every diagram with X a scheme, the following hold:
(a) the element ®1(o(f)) € Ext*(Lf*E, I) vanishes if and only if Def(f) is nonempty
(b) if ®1(o(f)) =0 then ®¢ and ®_1 are isomorphisms
(8) For every affine scheme X, and smooth map X — Z, the following hold:
(a) for every ambient diagram using X, the element ®1(o(f)) € Ext'(Lf*E, I)
vanishes if and only if Def(f) is nonempty
(b) for every I € QCoh(Xiiset), the maps ®o and ®_1 are isomorphisms

Remark 4.3.3. In Lemma conditions (2) and (3) may be computed in Xe—so0 in
(3b), one checks every I € QCoh(Xe) (see e.g. |Olsl6, Prop 9.2.16]).

Proof of Lemmal[{.3.3. The proof of this lemma seems to be well-known; many parts were
explained to me by Bhargav Bhatt. Let C' be the mapping cone of ¢ : E — LLy,z. Then
condition (1) is equivalent to

(1)) HY(C)=0fori>—1.

Assume (1°). Then H'(Lf*C) also vanish for i > —1, so a spectral sequence [Stacks,
Tag 07AA] for Ext'(—,T) implies Ext’'(Lf*C,I) = 0 for ¢ < 1 and any I. Now the long
exact sequence of Ext groups arising from the distinguished triangle
(54) Lf*E — Lf*'Ly,z — Lf*C —

implies that ®; is injective and ®7 and ®_; are isomorphisms. Combined with Corollary
this proves (2) (with X an arbitrary scheme). Now (2) implies (3) using Example
@13
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Assume (3). Condition (1’) may be checked smooth-locally on ), so let f: X — ) be
a smooth morphism from an affine scheme and let I € QCoh(Xjisct) be arbitrary. We will
show that if i > —1 then Ext’(H*(Lf*C),I) = 0, which implies f*H*(C) = H*(Lf*C) =0
(the first equality is [HR17} (1.9)] and uses flatness of f).

By assumption (3b), the morphisms ®y and ®_; are isomorphisms. We show that ®;
is injective. It follows from Corollary and assumption (3a) that if ®;(o(f)) = 0 then
o(f) = 0, so it suffices to show that every element of Ext'(Lf*Ly,z, ) is equal to o(f) for
some diagram , or equivalently that the map ob in is surjective. This follows from
the long exact sequence

— Ext!(Ly,z, ) 2 Ext!(Lf*Ly,z, ) — Ext*(Ly,y, ) —

since Ly /y = Qk/y[()] is a locally free sheaf in degree 0.

Since @, is injective and ¢y and ®_; are isomorphisms, the long exact sequence of Ext
groups for shows that Ext’(Lf*C,I) = 0 for every i < 1. By |Stacks, Tag 07AA] there
is a spectral sequence whose second page is

Ext!(H 7/ (Lf*C),I) = Ext"™(Lf*(C),I).

A priori we know H!(Lf*C) = 0 for i > 2. By the above spectral sequence, the group
Ext’(HY(Lf*C),I) is equal to Ext™*(Lf*C,I) which vanishes for every I. This forces
H'(Lf*C) to vanish. Inductively applying the same argument to Ext(Lf*C,I) and then
Ext!(Lf*C, I) shows that H°(Lf*C) and H~'(Lf*C) vanish as well.

O

4.4. Moduli of sections. Consider a tower of algebraic stacks
zZsCcBH M

as in Section [I] There we defined the moduli of sections Secp((Z/C). By [HR19, Thm 1.3]
and our assumption that M is locally Noetherian, the stack Secaq(Z/C) is also locally
Noetherian. The stack Secaq(Z/C) has a universal curve Csec ,,(z/¢) and a universal section
fsecr(z/c) € Home (Csec(z), Z2) (we will omit the subscript on f when possible).

Now suppose we have a tower of algebraic stacks

ZsW—=CSB M

where Z,C, and M are as before and W — M is locally finitely presented, quasi-separated,
and has affine stabilizers. To simplify the notation, let §(Z) := Secp(Z/C) and (W) :=
Secpm(W/C). We have an induced map &(Z) — &(W), and over this map we have a
canonical relative obstruction theory defined as follows. We have a morphism in Dy (Cs(z))
consisting of canonical morphisms of cotangent complexes:

(55) Lf*Lzyw = Lea s, /Camm — P Le(z)/sm)-

Using the pair (wé( z) tres( z)) defined in Proposition we may apply the adjunction-like
morphism a defined in Section [2.3] to (55, obtaining

(56) ds(z)/6w)  Es(z)/6w) = Lez)/ew):  Es(z)/emw) == Rpu(Lf Lz/w ® wgz))-

For example, when W = C we have &(WW) = M and we obtain an obstruction theory
on 6(Z2) relative to M. We refer the reader to |[CJW21, Appendix A] for functoriality
properties of Sec((Z/C) and the obstruction theories (56)).

The main theorem of this article is the following.

Theorem 4.4.1. The morphism is an obstruction theory.
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4.4.1. Proof of Theorem m We prove condition (3) of Lemmam To begin, fix a solid
commuting diagram

T —/"— &(2)
(57) J |

T —— 6(W)

with m a smooth morphism and T — T a square-zero extension of affine schemes with
ideal sheaf I € QCoh(Tiis.et). Let Cr (resp. Cpr) denote the pullback of the universal curve
to T (resp. T'). We first observe that from the definition of the moduli stacks we have a
commuting diagram of algebraic stacks

cr 1T z W
QM’C [reom
Cr Cr —— Ce(z) Cew)

o

Cr T "5 &(2) S(W)
L~
T

Claim 4.4.2 (Step 1). The diagram leads to a commuting diagram of Picard categories

Def(fr) — Exal;(Cr,p*I) —2— Exaly, (Cr,p*I)

(59) \IIT BOET BOET

Def(m) —— Exalg z)(T,1) —2— Exalg (T, 1)

where the arrows B and E are as in Lemmas and the terms in the leftmost
column are fibers of the top and bottom horizontal maps and V¥ is an isomorphism.

Proof. The right square in the diagram follows from the bottom two (fibered) squares of
and the definitions of B and E. Moreover, the element of Exalg (1) (T, I) defined by
m and its horizontal square in maps under B o E to the element of Exaly,,(Cr, p*I)
defined by fr and its horizontal square. By the definition of Def we get the left square
of .

To prove that ¥ is an isomorphism suffices to check étale-locally on T’; i.e., it suffices to
show that ¥ induces an equivalence of categories Def(m) — Def(fr). For this we construct
an inverse functor. Let (k,€,d) be an element of Def(fr). We get an arrow ks : T/ — S(2)
determined by k and §, making the resulting triangle over G(W) strictly commutative.
The 2-morphism e determines a 2-morphism (also denoted €) from m to the composition
T 1 &(Z). Hence our functor sends the object (k,€,d) to the object (ks,¢,id). We
leave it to the reader to check that this is inverse to W. |

Claim 4.4.3 (Step 2). The diagram leads to a morphism of distinguished triangles
(60)
Rp.RHom(Lf7 Lz w,p*I) — Rp.,RHom(L¢,  z,p*I[1]) — Rp.RHom(LL¢, v, p*I[1])

RHom(Lm*Lg(g)/G(W), I) — R'HOM(LT/G(Z)7 I[l]) E— R’Hom(]LT/e(W), I[l])

where the leftmost vertical arrow has the property that there exists a composition
(61)

* * k EI * e
RHom(Lm™Le(z)/ew), 1) = Rp«RHom(Lf7Lz /. p*I) — RHom(Lm (Rp:Lz/wowg z)), 1)
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equal to the map induced by ¢ (z)/ew) : Rp«Lz/w ® wé(Z) — Le(z)/e(w)- Applying the
functor ch o 7<g o RT" to yields a commuting diagram of Picard categories
(62)

Ext” “NLf7 Lz w, pT) — Ext” " (Ley 2, p*I[1]) 5 Ext” ' (Le, . p*I[1])

@T AoD*locT AoD*loCT

Ext” ' (Lm*Le(z),6m), 1) — Ext” " (Lyje(z), I[1]) 2 Ext” = (Lr/e o), I[1])

where the arrows A, D, and C are defined as in Lemmas and the terms in the
leftmost column are the kernels of the top and bottom horizontal maps, and if ® is an
isomorphism then ®¢ and ®_; (defined in ) are isomorphisms.

Proof. There is a morphism of distinguished triangles (see [Web20, Lem 2.2.12])

Leppw —— Lepjz ——— Lfplzw[l] ———

! J l

pLrjsow)y — p'Lrjsz) —— p'lm*Le(z)eon)[l] —

(note that the vertical arrows are only defined in the derived category). Applying

Rp.RHom®(—, p*I[1]) to this diagram and composing with the morphism yields (60),
but with RHomA in place of RHom. Now Lemma (applied in the context of Example
produces the composition that is isomorphic to the map induced by ¢ (z)/s W),
but still with RHom9° in place of RHom. To replace RHom%® with RHom, we observe
that all stacks in are locally Noetherian and all morphisms are locally of finite type, so
by [Stacks, Tag 08PZ] all cotangent complexes are pseudo-coherent (in fact, in the derived
category D, of the appropriate topos), and we may make the replacement by [Stacks,
Tag 0AGH] (recall that we are working on an affine scheme T'). Now is produced by
applying cho7<ooRT" and using [Stacks, Tag 08J6], and arguing as at the end of the proof of
Corollary The map ® being an isomorphism implies ®q (resp. ®_1) is an isomorphism
by restricting ® to isomorphism classes of objects (resp. automorphisms of the identity). O

Claim 4.4.4 (Step 3). Condition (3) in Lemma holds.

Proof. We study the commuting cube formed by mapping the right square of (on the
top floor) to the right square of (on the ground) via (vertical maps):
(63)

Ext” ! (Le, /2, p*I[1]) Ext”/ ! (L, w, p*I[1])
s | —
EXtO/_l(LT/G(W)v I7]) J

EXtO/_l(]LT/G(Z)v I71])

J Exal z (Cp,p*I) J Exalyy,(Cr,p*I)
/‘7 /
Exalg z)(T,]) Exalg ) (T 1)

This cube commutes by Lemmas and We note that Theorem applies
because the maps Cr — Z and Cr — W are representable: for example, representability of
Cr — Z follows from the fact that m’ is representable and [Stacks, Tag 04Y5].

To prove (3a), restrict the diagram to isomorphism classes of objects. As in (48]) we
extend this diagram by the obstruction maps, obtaining a commutative diagram

Exalyy (Cr, p*1) Bxt! (Ley o p*T) —2— Bxt! (LffLz . p1)

BoET 1 #(]

(42 o *
Exale ) (T, 1) % Ext! (Lr/sw), I) —2— Ext!(Lm*Le(z)/em), 1)
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where the left square is a side of our cube and the right square is obtained by applying
the derived global sections functor RI" to and then taking cohomology. By defintion
of B o E and commutativity of the diagram, the map labeled ®) sends o(m) to o(fr). By
the map ®} is quasi-isomorphic to ®;, where ®; is defined as in Lemma m By
Corollary [£.2.4] the element o( fr) (resp o(m)) vanishes if and only if Def(fr) (resp Def(m))
is nonempty. Since the map ¥ : Def(m) — Def(fr) from is an isomorphism we see
that (3a) holds.

To prove (3b), we may assume the diagram was formed from the trivial example
of (see Example . In this case the terms in the left column of are kernels
(not just fibers) of the horizontal maps, so induces the following commuting square of
kernels:

Ext” "N (Lf#Lzw,p*I) —=— Def(fr)

CI’T \I/T
Ext®/ ™ (Lm*Le(z)/sw), I) —=— Def(m)

The horizontal maps are induced by the instances of in the diagram and they
are isomorphisms because (42) is an isomorphism. Since ¥ is an isomorphism, ® is an
isomorphism as well. O

APPENDIX A. DESCENT THEOREMS FOR LISSE-ETALE SHEAVES ON ALGEBRAIC STACKS

In this section, we recall the unbounded cohomological descent theorem in [LO08| Ex 2.2.5]
for quasi-coherent sheaves in the lisse-étale site of an algebraic stack (Proposition ,
and then we use it to prove a new descent theorem (Propositions that is needed in
this paper. In this section, if X’ is an algebraic stack we use Le(X) to denote the lisse-étale
site, and if U is an algebraic space we use Et(U) to denote its small étale site (|Stacks
Tag 03ED]).

A.1. Morphisms from étale to lisse-étale sites. If U is an algebraic space and m : U —
X is a smooth morphism, there is an induced functor of sites Et(U) — Le(X) (also denoted
m) that sends a scheme V' with an étale map V' — U to the composition V — U — X.

Remark A.1.1. We make the following observations about the functor m:

(1) The functor m : Et(U) — Le(X) is cocontinuous and hence induces a morphism of
topoi m : Usy — Xiis-et by [Stacks, Tag 00XI]. The functor m=! : Xjjset — Uey is
just restriction.

(2) Since m~! is restriction, we have m~10y = Oy and m™'F = m*F when F is a
sheaf of & y-modules.

(3) The functor m : Et(U) — Le(X) is also continuous, and hence m ™" has a left adjoint
by [Stacks, Tag 04BG]. Since m commutes with fiber products and equalizers, the
left adjoint is exact by [Stacks, Tag 04BH]. In particular m~! preserves injectives.

Suppose we have the following commuting diagram of algebraic stacks where V and U are
algebraic spaces and m is smooth.

(4) If f is representable and V = U xy X, then for F € Xjjsot we have a canonical
identification fim/~'F = m~1f,F, where f. : Vot — Ust (resp. fr 1 Xiiscot — Xig-ct)
is the usual pushforward of étale (resp. lisse-étale) sheaves induced by a continuous
functor of sites. (Note that f. may not have an exact left adjoint.) Indeed, if W is
a scheme and W — U is étale, then we have

(fim = F)(W) = F(W xy V) (m™ L F)W) = F(W xx X)
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but there is a natural identification of algebraic spaces W xy V ~ W x y X.

(5) If f is smooth, then f, has an exact left adjoint and we let f* : Mod(Ox,,_.,) —
Mod(Cx,,....) be the induced pullback of &-modules. In this case, f*m*F =
m* f*F for F € QCoh(Xjset). Indeed, by part above (since f is representable)
the functors m* and m'* f* are just restriction, but f’* is the pullback functor from
QCoh(Uet) to QCoh(Uxet). Hence the desired equality holds by the Cartesian
property of F.

A.2. The first descent theorem. In this section, we recall Lazslow-Olsson’s theorem for
unbounded cohomological descent for lisse-étale sheaves on an algebraic stack (Proposition
1A.2.3). To begin we recall the following general construction (which will be used multiple
times in this appendix).

Construction A.2.1. Let I be a category and let C be a functor from I to the 2-category
of categories (see [Stacks, Tag 003N]); that is, for each i € I we have a category C;, and
for each morphism ¢ : i — j in I we have a functor ¢} : C; =+ C; and these are compatible
with compositions. We define a category of systems Ciotqr whose objects are tuples F :=
(Fi, F(9)) with F; € C; and F(¢) : o5 F; — Fj, such that the following diagrams commute.

* [k F (o)
Qsc"/]cfé

Fn
¢2Fm A)
beFm

A morpism from (F;, F(¢)) to (Gi,G(¥)) in Ciotar is a collection of morphisms «; : F; — G;
compatible with the F(¢) and G(¢). The category of Cartesian systems C{%h is the full
subcategory of Ciotq; whose objects have the property that every F(¢) is an isomorphism.

Remark A.2.2. Suppose we are given two functors C,D from I to the 2-category of cate-
gories, and suppose we have functors A; : C; — D; such that the squares

Lﬁa yz
A

Cj4j>Dj

2-commute, and the 2-morphisms respect (vertical) compositions of squares. Then we have
a functor A : Crotar — Drotar given by the rule A(F;, F()) = (Ai(Fi), Aj(F(9)))-

Let X be an algebraic stack and let U — X be a smooth cover by an algebraic space. Let
U, be the simplicial algebraic space that is equal to the 0-coskeleton of U — &X. We apply
Construction to the category I := AT, were A™ is the subcategory of the simplicial
category A with the same objects but only the injective morphisms. For i € AT we set
Ci :==U;c and for ¢ : i — j we let ¢* : U; ot — Uj ot be the usual inverse image functor for
this morphism of topoi. The resulting category of systems is called the strictly simplicial
topos in [Ols07, Sec 2.1] and [LOO08, Ex 2.1.5], and we notate it UJ,,. The structure
sheaves Oy, define a distinguished ring object ﬁU:r in U:fet. A quasi-coherent sheaf in
Uy is an Oy +-module (F;, F(¢)) such that each F; is in QCoh(Uje) and the morphism
¢*Fi @0y, Ov; — Fj induced by F(¢*) is an isomorphism. Observe that the category
of quasi-coherent sheaves QCoh(U:f ot) is equal to the category of Cartesian systems with
C; = QCoh(Uj; ¢¢) and ¢* equal to the usual pullback of quasi-coherent sheaves.

There is a functor @w* : Mod(COx,,__,) — Mod(ﬁU:rct) given as follows: for F € Xjis.et set

(w*F)i = m;l}' =10, Oy, where m;l ¢ Aig-et — Uj et is defined using the projection
U; — X and Remark and let F(¢) be the identity for each ¢. Note that w* is exact

and sends quasi-coherent sheaves to quasi-coherent sheaves. The following proposition is
due to Laszo-Olsson.
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Proposition A.2.3 (Laszlo-Olsson). The morphism w* : QCoh(Xjset) — QCoh(U[ ;)
is an exact equivalence of categories. We use w, to denote the quasi-inverse. Moreover,
@* : Dye(Mis-et) — DqC(U:et) 18 an equivalence, and we use Rw, to denote the quasi-inverse.

Remark A.2.4. The equivalence of categories of quasi-coherent sheaves is proved in |Ols16,
Prop 9.2.13]. The equivalence of unbounded derived categories is proved in [LO08, Ex 2.2.5]
(using |Ols07, Thm 6.14]) under the assumption that X is quasi-separated (a standing
assumption for both [Ols07] and |[LOO§|). This assumption is not needed for Proposition
Indeed, [LO08, Thm 2.2.3] appears as [Stacks, Tag 0D7V] without the quasi-separated
hypothesis, and one may check directly that the necessary portions of [Ols07] (namely
Proposition 4.4, Lemma 4.5, and Lemma 4.8) do not use this hypothesis.

Remark A.2.5. The equivalences (w*,w,) are functorial as follows. Let X — X be a
smooth morphism of algebraic stacks (inducing a morphism of lisse-étale topoi), let V' —
X be a smooth surjective morphism from a scheme V', and let V' — U be a morphism
commuting with maps to X. It follows from Remark that there is an identification
fo @™ = @' f* (where fJ . is given by f7 at level ), and since @™ is an equivalence we
also have w&)"f’et ~ f*o,.

A.3. The second descent theorem: hypercovers. In this section we prove an un-
bounded cohomological descent theorem in the lisse-etale topology for very smooth hy-
percovers of algebraic stacks (Proposition [A.3.12]).

A.3.1. Very smooth hypercovers. Recall that if Y — X and V — X are representable mor-
phisms of algebraic stacks, then the category Homy ({4, V) is isomorphic to a set.

Definition A.3.1. The enlarged smooth site Es(X) of X is the category with objects given
by morphisms f : U — X where U is an algebraic stack and f is smooth and representable,
and with arrows from U — X to V — X given by the set Homxy (U, V). A covering is a set
of smooth maps {U; — U}ier that are jointly surjective.

Remark A.3.2. The site Es(X) contains id : X — X as the final object.
Remark A.3.3. The morphisms in Es(X) are all representable.

Definition A.3.4. A smooth hypercover of X is a simplicial object X, in Es(X) such that

(1) Xo — X is surjective (note that it will also be smooth)
(2) Xp+1 — (coskysky,Xe)ni1 is smooth and surjective for n > 0.

Remark A.3.5. A smooth hypercover of X is a hypercover of the final object in Es(X)
in the sense of [Stacks, Tag 01G5]. Moreover, if X' is an algebraic space, then a smooth
hypercover of X is also an fppf hypercover in the sense of [Stacks, Tag 0DH4].

Definition A.3.6. A very smooth hypercover of X is a smooth hypercover X, such that
every degeneracy and face map X; — X; is smooth.

If X, is a smooth hypercover of X and f:) — X is a morphism of algebraic stacks, we
can pullback X, to a simplicial object Y, in Es(})): define YV; = X; xy V.

Remark A.3.7. If Y — X is a morphism of algebraic stacks and X, is a (very) smooth
hypercover of X, then Y, is a (very) smooth hypercover of Y. This follows from [Stacks|
Tag 0DAZ].

Remark A.3.8. From [Stacks, Tag 0DEQ] and the proof of [Stacks, Tag 0DAV] it follows
that if X' is an algebraic stack then a very smooth hypercover of X exists. In fact, we may
take X; to be a disjoint union of affine schemes.

Remark A.3.9. Let X — Y be a morphism of algebraic stacks. Then we can find very
smooth hypercovers X, — X and Y, — Y with X; and Y; disjoint unions of affine schemes,
with a morphism X, — Y, commuting with the augmentations and the given morphism
X — Y. This follows from analyzing the construction of X, and Y, in [Stacks, 0DAV], using
the fact that the functors cosk,, are finite limits and hence commute with pullback (see the
proof of [Stacks, Tag 0DAZ]).
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A.3.2. The lisse-etale topos of a very smooth hypercover. Recall that if X — ) is a smooth
morphism of algebraic stacks then there is a morphism of sites Le X — Le ) (see e.g. [Stacks],
Tag 00X1] and |Ols07, Sec 3.3]), and in fact a morphism of ringed topoi (Xigs.ct, Ox) —
(Wiis-et; Oy). We follow [Stacks, Tag 09WB] by defining the category of sites to be the
category whose objects are sites and whose morphisms are morphsisms of sites. If C, is
a simplicial object in this category, then for each morphism ¢ : [i] — [j] of the simplicial
category A we have a morphism of sites f, : C; = C;.

Definition A.3.10. Let X, be a very smooth hypercover of X. We construct an associated
site Le(X,) as follows: let Cq be the simplicial object in the category of sites with C; := Le(X;)
and f, equal to the given morphism of sites (it is important that all the face and degeneracy
maps are smooth). Define Le(X,) to be the site Ciotar in [Stacks, Tag 09WC], and use
X lis-et, to denote the corresponding topos.

Remark A.3.11. By |Stacks, Tag 09WF], a sheaf on Le(X,) is given by a system (F;, F(¢))
where F; is a sheaf on Le(X;) and F(y) : f; ' F; — F; are compatible morphisms.

Using Remark define a sheaf Ox, . ., on X, et to be the sheaf equal to Oy,
on X; with transition maps induced by the morphisms of ringed topoi already given. This
makes X, jis.et a ringed site. An Ox, ,,__.-module F on X, jiset is quasi-coherent if for each
i the sheaf F; is a quasicoherent Ox,-module and if for each ¢ : [i] — [j] the induced maps

f<;1‘7:i ®f‘1ﬁxi ﬁXj _>~7:j

are isomorphisms.

A.3.3. The descent theorem. For X, a very smooth hypercover of X, let a; : X; — X denote
the given (smooth) morphism of algebraic stacks.

The morphism Xy — X induces an augmentation of Le(X,) towards Le(&X') in the sense
of [Stacks, Tag 0D6Z]. By [Stacks, Tag 0D70] we get a morphism of topoi

(64) a X.Jis—et — Xlis—et

such that a~!F is given by the system with (a='F); := ai_l]-" and the natural transition
maps (they are all isomorphisms), and a.G is given by the equalizer of the two maps ag.Go —
al*g1~

Using the maps ai_lﬁx — Ox,, we get a morphism a0y — Ok,
morphism of ringed topoi. Define a* : Mod(&x) — Mod(COXx, . ..) by

that makes a a

Jlis-et

a*F:=a ' F Ra-160x OX\tioes
It is clear that a* is exact and sends QCoh(Ajiset) t0 QCoh(Xe jis-et)-

Proposition A.3.12. Let X, — X be a very smooth hypercover. Then
(65) a”: QCOh(A/lis—et) — QCOh(Xo7lis—et)

is an equivalence of categories with quasi-inverse a.. Moreover, the functors Ra, and a* are
inverse equivalences of Dqc(Xis-et) and Dgc(Xe tis-et)-

Proof. We first show that a* is an equivalence of categories of quasi-coherent sheaves with
quasi-inverse a,. Let U — X be a smooth map from an algebraic space U, and let U,Jf ot De
the strictly simplicial étale topos defined in Section We apply Construction to
the category I = A x AT, For (i,5) € A x AT we set C; j = QCoh ((X; X x Uj)et) (observe
that the fiber product is an algebraic space) and we let ¢* : (X; X x Uj)et = (X X2 Up)et be
the usual pullback of quasi-coherent sheaves. Let QCoh((Xe X x UJ )et) denote the resulting
category of Cartesian systems.

Let Ux, = X; xx U. By viewing QCoh(X, jiset) and QCoh((Xe xx U )et) both as
categories of systems with I = A, we define functors

QCOh(XO,lis—et) <w.;* QCOh((Xo Xx Uj_)et)
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induced via Remark by the inverse equivalences
QCoh(Xyjiset) 7= QCOh(UY, 4 1)

of Propositionlm The rules wy and w, . are indeed functors of categories of systems by
Remark and one checks that they are inverse equivalences.

Similarly, let X, o be the pullback of the hypercover X, = X to U; as in Remark
By viewing U, and QCoh((Xs xx U )et) as categories of systems with I = AT we define
functors

QCOh(Uy,) = QCoh((Xa xx Ui er)
induced via Remark by the functors
(66) QCOh(Uet) 7= QCOR(X0, 0,ct)

defined in analogy with above. The functors a, and a* in are inverse equivalences
by [Stacks, Tag 0ODHD].
We have constructed a diagram

QCOoh(Xe tiset) == QCoh((Xe X U )er)

a*ﬂa* a{ua.,*

*
w

QCoh(Xig-ct) T——— QCoh(UJ,)

*

where three of the four pairs of morphisms are known to be inverse equivalences. It follows
from Remark [A.1.1}[5 that wja* = ajw™, so a* is an equivalence with inverse w.aq ;.
Using Remark [A.1.1)5| and the fact that w* is exact one can check that ae.ww; = @w*a.,
SO Gy = Wx0e xW,. This shows that a* and a, are inverse equivalences of quasi-coherent
sheaves.

To finish the proof of the Proposition, we use [Stacks, Tag 0D7V]. To do so we must
verify its five hypotheses. The category QCoh(Xo, jis-et) is & weak Serre subcategory of
Mod(0X, ,....) and conditions (1), (4), and (5) of [Stacks, Tag 0D7V] hold as in the proof
of [Stacks, Tag ODHF]. Condition (2) is the inverse equivalence of a* and a, that we just
proved. The final condition, number (3), is the statement that for F € QCoh(Xjis.et), the
unit F — Ra,a*F is an isomorphism. Since we already know F — a,a*F is an isomorphism,
it suffices to show R™a.a*F = 0 for n > 0.

For any smooth map m : U — X from a scheme U, let U, — U be the very smooth
hypercover equal to the pullback of X,. We have a diagram of morphisms of topoi

M, lis-et

Uo,et — Uo,lis—et — Xc,lis—et

Uct — Ulis—ct M Xlis—ct

where the site U, ¢, is constructed with [Stacks, Tag 09WC] and a” and a’ are defined as
in . The top horizontal morphisms come from [Stacks, Tag 0DHO]. It follows from
[73, V.5.1(1)], |Ols07, Lem 3.5], and Lemma that R™a.a*F is the sheafification
of the presheaf that associates to an smooth map m : U — X from a scheme U the group
H"(Us is-et m;llis_cta*f ). Since restriction to the étale site is exact and preserves injectives,
this is equal to H*(Us ot, mia*F) where me : Us ot — Xeo liset i8 defined as in Remark
Finally, by Remark (since F is quasi-coherent) this equals H™ (U, e, a”*m*F).

On the other hand, it follows from [73 V.5.1(1)] and Lemma[A.3.13|that R"a/a”* (m*F)
is the sheafification of the presheaf that associates to an étale map f : V — U from a
scheme V' the group H"(V, e, a”*m*F). This group is equal to H*(Vy e, al (m o f)*F),
where af, : Veey — Vet is the usual morphism . It follows that if m : U — X is
a smooth cover by a scheme, the étale sheaves m*(R"a.a*F) and R"a}a*(m*F) are the
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sheafification of the same presheaf, hence isomorphic. But it follows from [Stacks, Tag 0DHE)]
that R™a/a"*(m*F) = 0. O

Lemma A.3.13. Consider a fiber square of algebraic stacks

UX*>X

such that U is an algebraic space.

(1) If m and b are smooth and representable and U is the sheaf represented by U on
Xis-et, then b1U s represented by Ux .

(2) If Y is representable, m is étale, and b is representable, and zfﬁ is the sheaf repre-
sented by U on X, then the étale sheaf b—1U is represented by Ux .

Proof. We first sketch the proof of (1). The sheaf b=1U is the sheafification of the presheaf
that assigns to a scheme T with a smooth map g : T — X the set colim Homy (W, U), where
the colimit is taken over schemes W fitting into diagrams

T 25 x
(67 [

W smootg y
Composition induces a map
(68) colim Homy (W, U) — Homy (T, U)

which is an isomorphism since T — Y is smooth and hence defines the final object in the
category over which we take the colimit. Finally we note that Homy (T, U) = Homy (T, Ux).
For (2), the map T'— X is now étale and the colimit is over diagrams with W — Y
étale, so T' — ) is not an object of the colimit category. However, the map is still
surjective. It is injective as well because an element of Homy (W, U) must be étale, so if
we have elements of Homy (W1,U) and Homy (W5, U) that yield the same map T'— U, we
may compare them via the étale U-scheme Wy xy Ws. O

Remark A.3.14. Let X, — X and Y, — ) be very smooth hypercovers of algebraic
stacks X and ), and suppose we are given a morphism f, : Xo — Y, of simplicial algebraic
stacks and f : X — ) such that these maps commute with the augmentations. Then for
F € Dge(Viis-et) we have
(a"Lf*F)lx, = Lfa(aF)
and if f is concentrated and G € Dyc(Xiis-et) then
(a"RfG)|y, = Rfns(a*G)ly,.,

where the functor Lf (resp. Rf,«) is the usual pullback functor (resp. direct image)
between Dyc(Y tis-et) and Dye(Xp tis-et)- Indeed, the functor (a*—)|x, is just a)(—), so the
desired equalities are equivalent to

arLf*F=LfrarF and a;Rf«G = Rfn.a)G.
These follow from naturality of derived pullback and [HR17, Cor 4.13], respectivley.

Xno

APPENDIX B. FUNCTORIALITY OF THE FUNDAMENTAL THEOREM

In this section we prove Lemmas [£.2.2] and [1.2.3]

B.1. Categories of algebra extensions. In this section, . is a site with A — B a
morphism of sheaves of rings on ., and I be a sheaf of B-modules.
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B.1.1. Categories. The Picard category Exal,(B,I) was defined in [TlI71, Sec III.1.1.2.3]:
an object is a surjective A-algebra map E — B whose kernel is (1) square-zero as an ideal of
E, and (2) isomorphic to I as a B-module. We write these objects as short exact sequences
of abelian sheaves

(69) 0—-I—=FE—B—=0.

A morphism in Exal , (B, I) is a commuting diagram

0 I E B 0
|
0 I B B 0

where f is a morphism of B-modules and g, h are morphisms of A-algebras.

B.1.2. Functors. If I — I’ is a morphism of B-modules, B’ — B is a morphism of A-
algebras, and A" — A is a morphism of rings, then we have natural functors

(70) Exal 4(B,I) — Exal,(B,I')
(71) Exal 4 (B,I) — Exal,(B',Ip/)
(72) Exal,(B,I) — Exal, (B, I)

defined in [U171, Equ II1.1.1.5.2], |71, Equ II1.1.1.5.3], and [I171, Equ II1.1.1.5.4], re-
spectively. Here, I, denotes the sheaf I considered as a B’-module. Let .’ — . be a
continuous morphism of sites inducing a morphism of topoi (p~!,p.). Then we have an
induced morphism

(73) Exal, (B,I) — Exal, 1 ,(p™'B,p™ ')

1

sending to its image under p~!. We are using that p~! is an exact functor.

Lemma B.1.1. The morphisms , , , and commute pairwise.

Proof. The most involved pair to check is and (71). We work it out in detail and offer
a few words about the remaining pairs at the end of the proof. When we say and
commute, we mean that if B’ — B is a morphism of rings and I — I’ is a morphism of
B-modules, then the diagram

Exal ,(B, ) Exal ,(B', I/)

(74) @ ()
!/ ! !/
Exal 4(B,I') —— Exal,(B’,Iy/)

commutes up to a natural transformation.
Given an element of Exal 4 (B, I), we have a diagram

I <, p

T LET \\\(0717)
pN

(75) 0——T-—9*spg-sB_— 0

\\\ TPE
(a,0) Sy b
F—— B

where P = I’ ®; F and F = E xpg B’: as abelian groups, P and F are the colimit and
limit of the usual diagrams, while the ring structures are described in |[GD67], Ory.18.2.8]
and |GD67) Oryv.18.1.5]. Set @ =I' &1 F and G = P xp B’. Then

0-I'-Q—B =0
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is the image of under the composition ~ | in , and likewise G defines the image
under the composition | _,. An arrow from @ to G in the groupoid Exal ,(B’,I’) is given
by four dashed arrows so that this diagram commutes:

(76) \ \\X/” \
P

(To check commutativity, it suffices to check that the quadrilaterals I'IFP and I'I FB’ and
the perimeter commute.) The required collection of dotted arrows is given by o’ : I’ — P,
0:I' > B,i1gopg:F— P,and b : F — B'.

To show that the resulting arrows in Exal,(B’,I’) define a natural transformation (in
this groupoid), suppose we are given an arrow

I -5 B "B
E,

in Exal ,(B,I). Let fp: P —» P> and fr : F} — F5 be the maps induced by f, where P,

and F; are defined as in . Likewise let Q; and G; be the images of E; in Exal ,(B’,I’)

under the maps in . We must compare two maps from @1 to Go in Exal 4(B’,I'). Such

maps are given by diagrams of the form with F' replaced by Fy and P replaced by Ps.
In the situation at hand, one of the maps from @ to Gs is given by the diagram

0

fpoay

I SIIITTTTTTTTTTTTT T3 Py
G -
j:PoL/Elo ,}”(;‘\ RS
=it B iy > %
bl
and the other is given by the diagram
I Sl S — e 4 P
LE'LO??(Z’i’\’:\(\(:’ T~
2 Iz B
byofr

These are easily seen to consist of the same morphisms.
This completes the proof that and commute. Of the remaining pairs, most of
the checks are trivial (in particular, the analog of is strictly commutative). Only the

pairs ((70), (73)) and ((71)), (73))) are nontrivial. For these, one uses that p~! is exact and

hence preserves finite limits and colimits. O
B.2. Illusie’s theorem.

B.2.1. Statement. In this section, . is a site with A — B a morphism of sheaves of rings
on ., and I be a sheaf of B-modules.

Theorem B.2.1 ([O1s06, Thm A.7], |71} Sec I11.1.2.2]). There is a canonical isomorphism
(77) 8 Exaly (B, T) — Exty ' (Lp/a, I[1]),
where the right hand side was defined in .

Proof. Since the isomophism in [O1s06, Thm A.7] is defined on groupoid fibers, we may use
the same definition for our morphism (written out in the proof of Lemma , and
the argument in |Ols06, Thm A.7] shows that it is an isomorphism. Note that when . has
a final object S, the map is the value on S of the isomorphism in [Ols06, Thm A.7]. O
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B.2.2. Functoriality. We will show that is compatible with the functors defined in
Section We will use the following instances of Situation [2.1.1

Example B.2.2. The following is an example of Situation Let . be a site and B a

sheaf of rings on .. Then D(B) is a closed symmetric monoidal category with product <§L§> B
and internal hom RHomp. If B’ — B is a flat morphism of sheaves of rings, then extension
of scalars — ®g» B : B'—mod — B—mod is strong monoidal and exact with an exact right
adjoint (—)ps given by restriction of scalars.

Let € = D(B’) and let 2 = D(B). By [Stacks, Tag 0DVC] the functors —®p/ and (—)p
extend to an adjoint pair for D(B’) and D(B), and by [Stacks, Tags 07A4, 08I6] the functor
— ®p B :D(B’) = D(B) is still strong monoidal.

In addition, it follows from [Stacks, Tags 08J9, 0A90, 0A5Y] that if M*® is K-flat and N*®

L
is injective, the counit RHomp/ (M, N) ®gr M — N is given in degree n by a product over
p+ g+ r = n of the sheaf maps

HomB/(M_p7Nq) Qg M" — N™,

where this map is equal to the usual evaluation map if ¢ = n and it is zero otherwise. We
will give an explicit description of @ in the proof of Lemma

Example B.2.3. If p : (¢,0%) — (Z,03) is a flat morphism of ringed topoi given by
an adjoint pair (p~!,p.), then p* is exact and hence defines a strong monoidal functor
D(09) — D(0%) with a right adjoint Rp,. We will give an explicit description of in the
proof of Lemma

Lemma B.2.4. The isomorphism is functorial as follows.

(1) Let A — B be a map of sheaves of rings on #. If I — J is a morphism of
B-modules, there is a commuting diagram

Exal, (B, 1) —2— Ext} ™' (Lp,a, I[1])

o !

Exal (B, J) —— Ext% " (Lpa, J[1])

2) If there is a commuting square of rings with B’ — B flat
g sq g

A—— A

|

B —— B
L
then the canonical map Lp ja» ®pr B — L 4 induces a commuting square

B

Exal ,(B, 1) Exty " (Lp/a, I[1])

(78) lo l
Exal (B, Ip/) —2— Ext% (L ar, Ip:[1]) @, ExtY " (Lp ja ©p B, I[1])
where @ is defined in the context of Example .
(3) Let (F,05) — (', C5:) be a continuous morphism of ringed sites inducing a flat

morphism of topoi (p~1,p«). Let A and B = O be sheaves of rings on .. Then
if I is a sheaf of B-modules, there is a commuting diagram

B

Exal , (B, I) ExtY "' (Lp,a, I[1))
(79) J |®
_ _ — _ _ ()] — * *
Bxal, 1, (p7 B,p 1) 5 Ext? ) (0 Ly, p (1) B Bxt) ) (0" L ja,p* 111])
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where the horizontal instance of is defined in the context of E:z:ample and
the vertical instance of is defined in the context of Example and we have
suppressed an isomorphism induced by L,-1p/,-14 =~ p‘lLB/A.

Proof. We summarize the definition of 3; see |[Ols06, Thm A.7] for more details. Let Py be
the simplicial A-algebra given by the standard free resolution of the A-algebra B [Stacks|
Tag 08SR]. The morphism S is defined to be the composition

Exal , (B, 1) 2 Exal 4 (Po, 1) 225 Ext(Qp, /4, 1) 22 Ext(Qp, 4 @ B, 1) 2 Ext® " (L 4, I[1])

Here, Ext(€,, I) denotes the Picard category of simplicial &z-module extensions of (2, by
I (viewed as a simplicial module); see [Ols06, Sec A.1]. The map (; is given by the map
(71) applied to the augmentation P, — B, the morphism s is given by taking differentials,
B3 is given by tensoring with B, and f4 is the functorial isomorphism in [Ols06, Prop A.3].

Proof of (1). The desired functoriality follows from a commuting diagram

Exal , (B, 1) 2 Exal, (Po, T) 23 Ext(Qp, 4, 1) 2% Ext(Qp, /4 ® B, 1) 25 Ext®/~1(Lp 4, I[1])

N | l

Exal , (B, J) 25 BExal, (Pe,J) 23 Ext(Qp, 4,7) 23 Ext(Qp, /4 ® B, J) 25 Ext?/~1(Lp 4, J[1))

The square with §; commutes by Lemma The square with 82 commutes because
differentials commute with colimits [Stacks, Tag 031G]. The square with 83 commutes be-
cause tensor product is a left adjoint and so commutes with colimits, and the square with
B4 commutes by the naturality in |Ols06, Prop A.3].

Proof of (2). The desired functoriality follows from two commuting diagrams. First we
have

Exal ; (B, ) —2— Bxal , (Po, I) —22— Ext(Qp, /4, 1) —22— Ext(Qp, /4 ® B, T)

) | | ! !

Exal 4/ (B, Ip/) 2 Exaly/ (Pl Ipr) — 2 Ext(Qpy jar Ipy) —225 Ext(Qp; ar © B!, I1)

which we claim commutes. Here P, is the simplicial A’-algebra that is the standard reso-
lution of B’. The two left vertical arrows are given by and ; the next two vertical
arrows are given by the analog of for the Ext categories. The first square commutes by
Lemma The commutativity of the squares with 52 and 3 may be checked with the
same type of computation used in Lemma [B.I.1] and we will be brief here.

For the square with s, if 0 - I — E4 — P, — 0 is an object of Exal 4 (P,, I), then the
natural transformation is given on this object by the (iso)morphism

Qryxp, Pr/a = QEy/a Xap, 4 ey ar
induced by the commuting cube
E, —— P,
T A
Ee xp, P! — P! T
[ _a—]=4
/ /(
A/ A/

For the square with B3, if 0 = I — Eq — Qp, /4 — 0 is an object of Extp (2p,/4,1),
then the natural transformation is given on this object by the (iso)morphism of B’-modules
(Ee XQpy/a QP.’/A’) Qp; B'— (X ®@p B) XQpy/a®p, B (Qpi/A’ Qp; B/)

induced by the natural map of P,-modules

Eo Xqp, 4 Qpyjar — (Ee ®p, B) XQp, /A®p, B (pyjar @p; B').
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The second diagram comprising is as follows.

Extp(Qp, /4 @ B, 1) —2— BxtY " (L, 4, 1[1)

lp |@ w

B — _
Extp (Qp, 14 ® B)pr Ip) 28 BxtY ™ (Lo a)pr I [1]) =2= Bxt% " (Lp/a)s ©5 B, I[1])

o | |

MB/(Q(P.)’/A’ ® B/,IB/) &} EXt%/,il(]LB//A/,IB/[l]) ;@L EXt%/il(]LB//A/ ®B’ B,I[l})

The arrow labeled p sends an extension of B-modules to the extension of B’-modules
obtained by restriction of scalars (an exact functor). One may check directly that the com-
position of the left vertical arrows is equal to the right vertical arrow in . The map
labeled is in the context of Example and the triangle commutes by definition,
while the top left square commutes by Lemma [B:2.5] below. The unlabeled vertical maps
are induced by the canonical map (Lp,4)p — Lpr 4/, so the bottom squares commute by
functoriality of 54 and @

Proof of (3). Let A’ = p~tA, let B’ = p~ 1B, and let P, denote the standard resolution of
B’ as an A’-algebra. The desired commuting square comes from two commuting diagrams.
First, we have

Exal ; (B, I) —2— Exal\(Po, ) —2— BExt(Qp, /4, 1) —2— Ext(Qp, 4 ® B, T)

o e b | l

Exaly/ (B',a=11) 25 Exal,, (P}, p~1) 23 Ext(Qpy jar,p 1) 23 Ext(Qpy 00 ® B/, p~'1)

The first square commutes by Lemma [B.1.1l The third vertical map is induced by p~! and
the isomorphism pilﬁp./A ~Q,-1p, /p—14 ([Stacks, Tag 08TQ]), and the fourth is induced
by p~! and the isomorphism p~'(Qp, 14 ® B) ~ Q,-1p, /p-14 @ p~* B ([Stacks, Tag 03EL]),
and the squares commute by functoriality of the same isomorphisms. Second, we have

Ext(Qp, /4 ® B, I) — 5 Ext}/ " (Lgya, I[1])

lpfl @

_ _ — _ — (8) — * *
Ext(p~ ' (Qp, 4 ® B),p~ ") — Ext”/ L (p'Lpya,p " 1[1]) EthiBl(P Lp/a,p™I[1])

p~1B
Ba 1

M(QP‘/A’ & B/vp_ll) E— p*Eth/—:B(LB’/A’7p_11[1])

The composition of the left vertical arrows is equal to the right vertical arrow in . The
middle horizontal arrow is comprised of 84 and an isomorphism (see Lemma, and the
top left square commutes by Lemma The bottom square commutes by functoriality
of B4, and the triangle commutes by functoriality of in the functors. O

Lemma B.2.5. Let (.,0) be a ringed site, let Qo be a simplicial Q. -module, and let
I be an Q.y-module. Let 0'), — O be a flat morphism of rings. There is a commuting
diagram

(82)
Ext, (O, 1) b Exty ' (N(Q), I[1])

Jp H

Extgr (), 1or,) B EXtF)ﬁ/;:l(N((QO)ﬁ'y)?(I)ﬁ’y[l]) = Ethﬁ/Ql((N(QO))ﬁ'yv(I)ﬁ’y[l])

where N(Qo) is the normalization of the Moore complex associated to Qe (see [Stacks,
Tag 0194]), Ba is the isomorphism of [Ols07, Prop A.3], p applies restriction of scalars
to an exact sequence, and @ is in the context of Fxample .
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Proof. By |Stacks, Tag 05NI, 05T7] there is a quasi-isomorphism N — N(£,) from a com-
plex N € DI=%0(0 ) of flat € »-modules. We enlarge (82) on its right side by composing
with the square induced by N — N(,) and show that the perimeter of the new diagram
commutes. From the definition of 84 we may assume [ is injective. To simplify notation let
B=0y and B'=0",.

Most of the work is to describe explicitly. To this end we first recall the definition of
@: in the notation of Section it is the image of the composition

* * * Ir (Ef?*y) * 6{’*

(83) ffHom(X, f.Y)® f*X = f*(Hom(X, f,Y)® X) —=— f*f.Y — Y
under the (®, Hom) adjunction and then the (f*, f.) adjunction. One sees using the descrip-
tion of €% in Examplethat with M € DI=>°%(B’) a complex of flat B’-modules and I as

L
in the previous paragraph, the morphism (RHompg (M, (I)p/[1])®p B)®p(M®p B) — I[1]
of is given by a product over p + r = 0 of the canonical sheaf maps

(HomB/(M_p,(I)B/) XRpr B) Xp (MT XRpr B) — 1.

We are using the fact that (—)ps preserves injectives (since it has an exact left adjoint)
and hence (I)p is injective. We see that (6): RHomp (M, (I)p/[1]) = (RHomp(M ®p
B, I[1])p) is given in degree n by the canonical sheaf map

HOmB'(M_n_17 (I)B') — (HOmB(M_n_l ®B/ B7I)B')'

To compute , given N as at the beginning of this proof, we note that (N)p/ € Dl
is a complex of flat B’-modules by [Stacks, Tag 00HC], so our previous description of @
applies with M = (N)pg/. From the definition of

(84) @ . (RHOTTLB(N, I[l]))B/ — RHO’I’I’LB/ ((N)B/, (I)B/ [1])
we see that it is given in degree n by the usual sheaf map
HomB(N_"_l,I) — HomB/((N”_l)B/, (I)B/)

We are interested in the cases n = 0 and n = —1. Given U € ¥ and a section f :
N""Yy — I|y of the left hand side, i.e. a morphism of B-modules, this map sends f
to the corresponding morphism of B’-modules. (One may verify this claim by unwinding
the definitions and ultimately appealing to Example ) Now applying RI" to is
straightforward since both complexes are complexes of injectives by [Stacks, Tag 0A96].
This gives a completely explicit description of the morphism labeled in . With
this in hand it is easy to check that commutes.
|

Lemma B.2.6. Let (7, 0x) be a ringed site, let Q4 be a simplicial Q. -module, and let
I be an Qo-module. Let (¥, 0%) — (', 05:) be a continuous morphism of ringed sites
inducing a flat morphism of topoi (p~!,p.) such that p~*€y = Og:1. Then there is a
commuting diagram

(85)

Ba

Ext, (1) Bxty (N (), I[1])

| 8

Bxt,  (p7'(Q0),p (1) 2 Exty ) (N(p~'Qu),p  I[1]) = Exty ! (p~ N (), p~ ' 1[1])

O o1 O i1

where N(Q) is the normalization of the simplical module, B4 is the isomorphism of [Ols07,
Prop A.3], is in the context of E:rample and the left vertical arrow applies p~! to
an exact sequence.

Proof. By |Stacks, Tag 05NI, 05T7] there is a quasi-isomorphism N — N(€,) from a com-
plex N € D[_m’o](ﬁy) of flat 0 s-modules. We enlarge on its right side by composing
with the square induced by N — N(€,) and show that the perimeter of the new diagram
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commutes. From the definition of 84 we may assume [ is injective. To simplify notation let
B=0y and B'=0",.

Most of the work is to describe explicitly. To this end, we first note that (in the
notation of Section is equal to the image of the composition

(86) P Hom(X, V) ® X By pr(Hom(X,v) @ X) - pry

under the (®,Hom) adjunction and the (f*, f.) adjunction. (To see this, use (83 and the
triangle identity e;*yo f *nlf/ = 1p+y.) One sees using the description of €® in Example

L
that with V and I as in the previous paragraph, the morphism (86)): p~'RHomp (N, I[1])® 5
p~ 1N — p~1I[1] is given by the product over r € Z of the usual sheaf maps

p YHomp(N",I) @p p 'N" — p~11.

To compute the (®, Hom) adjunction we must take an injective resolution p~1I[1] — J of
p~tI[1]. Given this, one checks that

(87) : RHomp(N, I[1]) — Rp.RHomp (p~ N, J)
is given in degree n by the composition of the usual sheaf maps
Homp(N™""1 1) — pHomg(p”'N~""1 p™'I) = p.Homp (p~'N~"1 1)

We have used [Stacks, Tag 0A96] to conclude that RHomp: (p~ 1N, J) is a complex of injec-
tives so its pushforward can be computed termwise. We are interested in the cases n = 0, —1.
Given U € . and a section f : N~""!|; — I|y of the left hand side, this map sends f to
plf i p INT" Yy — p~i|y — J 7Yy (it is an exercise to check that the “usual sheaf
map” does this). Now applying RT" to is straightforward since both complexes are
complexes of injectives by [Stacks, Tag 0730, 0A96].
This gives a completely explicit description of in . With this in hand one may
check directly that commutes.
|

B.3. Description of . To define , we use another example of Situation m

Example B.3.1. Let X be an algebraic stack and let X — X be a smooth cover by an
algebraic space X. By Proposition the morphism @* : Dye(Xis-et) — DqC(Uiet) is an
equivalence of categories. In fact, it follows from the construction of w™* that it is a strong
monoidal equivalence of symmetric monoidal categories. A standard argument shows that

the inverse equivalence Rw, is also strong monoidal.

Let f : X — )Y be a representable morphism of algebraic stacks. Let Y — ) be a
smooth cover by a scheme with Y;F — ) the associated strictly simplicial algebraic space
and @ : X — X its pullback to X. We will use @w* and Rw, to denote the functors in
Example We recall that the cotangent complex Ly ,y is defined to be the object in
Dyc(Xiis-et) corresponding, under the equivalence Rw, of Example to the cotangent
complex of the morphism of topoi X, — Y,fet.

et
Definition B.3.2 ([O1s06]). Let I € QCoh(Xs.et). The isomorphism is defined to be
the following composition of morphisms of Picard categories on Xiig-et:

w3

Exaly, (X, ) = Exal ;1 o, (Oxpr = 1) = Ext® (L

< w* I[1]) <= BExt®/ =N (L y, I[1]).

x$/ve
The objects and maps in this composition are defined as follows.
e The Picard category Exalfflﬁyo+ (Ox+,w"I) is defined as in Section on the site
+
e.ct
e The map « is the composition of [Ols06, (2.8.1), (2.20.1)]: it sends an extension
X — X' by I to the exact sequence of f_lﬁy_+ -modules

0= @] = Oyv — Oy+ = 0.
It is an isomorphism by [Ols06, Prop 2.9, Lem 2.21].
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o The map B was defined in .
o The arrow vy is induced by applying ch o <o o RT" to in the context of Example

\B.53.1. It is an isomorphism since w™* is fully faithful (in fact, an equivalence of
categories).

Remark B.3.3. The proof of Lemma shows that is independent of the choice of
cover Y — ).

B.4. Proofs of Lemmas [4.2.2| and [4.2.3 We describe an amalgamation of the
three diagrams in Lemma |B__4| that will be used to prove both functoriality lemmab Let
(#,05) = (', 0%) be a continuous morphism of ringed sites inducing a flat morphism
of topoi (p’l,p*). Let A and B := 0 be sheaves of rings on ., let I be a sheaf of B-
modules, and let A’ be a sheaf of rings on .’ such that there is a commuting diagram as
follows (note that p*B = Oo):

p—lA A/

L

p_lB — p*B

Then we obtain the following commuting diagram.

(88)
Ext ' (Lpya, I[1]) ———— Exti/ ' (p*Lp, 4, 0" [1]) Ext) ! (L gy ar, p*I[1)
@/ (@)
8 Ext L (0 g a,p 1) — Bxt L (07 g a, (07 (1)1 ) 8

i i

Exal 4, (B,I) — ExalpflA(ple,pfll) S ExalpflA(ple7 (p*I)p71B) < Exal 4/ (p*B,p*I)

Here, the left square is Lemma (3) and the right square is Lemma (2). The
middle square is Lemma (1), using the unit p~'I — (p*I),-1p5 of the (®,Hom)
adjunction. The triangle commutes by definition of the maps involved.

Proof of Lemma[{.2.3 Construct a diagram

U———V

]

4 —WxyY — Y

= !

Z w Yy

where U,V,Z, and Y are algebraic spaces with ¥ — Y and V' — W Xy Y smooth and
surjective and all squares are fibered. Let ¢ denote the map Z — Y and let @’ = wo p, and
use the same letters to denote induced morphisms of (simplicial) topoi. Then commutativity
of is equivalent to commutativity of the following diagram.

Ext® =YLz, I[1]) A Ext®/ ~(Lzy, I[1])

| -

Exto/_l(LUj_/Vj.,w’*I[l]) — Exto/—l(p*LZ:r/y:r,w'*l[u) R Exto/—l(LZr/Yj,w*I[u)

S w 1

EX31T71@V+ (ﬁU:r,w'*I) — Exal, 1,1 o4 (pflﬁzf,w’*l) +— Exal, 1 o (ﬁz:r,w*f)
L] . .

| |

Exal,(Z, 1) B Exaly, (2, 1)
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In the triangle, all of the maps are equal to , and the triangle commutes by the functo-
riality of in the adjoint pair. The arrow

Ext” ! (p*Lyze e, @™ I[1]) + Ext” ~}(Lze jyo, @ I[1])

is an equivalence (as claimed in the diagram) because p* : Dqc(Z o) — Dqc(U,",) is fully
faithful. The trapezoid commutes by definition of the canomcal map Lz/y — Lz (one
can produce an explicit description for v by the same argument as was used in the proof of
Lemma . The commutativity of the middle square is , reflected left-to-right, with

=p, A—q 1ﬁy+ A =r 1@’V+ and B = 0.

Tt remains to check that the bottom square commutes. We do this by direct computation.
Let i : Z — Z’ be an element of Exal,,(Z,I). We have the following commuting diagram,
where all squares are fibered:

U—5u 1%
N |

(90) 757 — 5 WxyY — Y
= | |
z ity W Y

The map « sends i : Z < Z’ to the extension
0= @I i 'O — Oy —0
f T_lﬁv.+—modules, and the maps and send this to the extension

(91) 0— w1

_1ﬁU,.+ XﬁU:r P_lﬁzf — p_lﬁz:r — 0
of p‘lq_lﬁY.Jr—modules.
On the other hand, the map B sends ¢ : £ — Z’ to the same extension, now as an

element of Exaly,(Z,I). The image of this under ploais

1 1

0= p @'l —p flﬁz,r X pflﬁzj -0

an extension of p~1¢~!@y+-modules. Here n is part of the data of the morphism of ringed
topoi associated to ¢ : Z — Z'. Finally the map sends this extension to

(0,n)

(92) 0=l =@ [ @pigep i 10, —=p 10, =0

also an extension of p_lq_lﬁ’y.+-modules.
A morphism from to in the groupoid Exalpfqulﬁyo+ (p_lﬁzj,w’*l) is given by

a collection of dotted arrows making the following diagram commute.

plw*l ——— w'*[ - 1 Oyt
(93) \ \\:/V\/\/j \
- st
p_li_lﬁz,:r ***** > p 16}2* E— ﬁUf
We choose arrows as follows (note they are compatible with restriction).
m:w ] — i_lﬁUﬁ n: p_li_lﬁz,:r — p_lﬁzj
0:™*I — p_lﬁzr k: p_li_lﬁz,r — i_lﬁU:+.

where k is equal to i ~! applied to the canonical morphism p~!& Y iadis ﬁUﬁ' Commutativity
of the resulting diagram follows from commutativity of .

We claim that this morphism is natural for arrows coming from Exal,y,(Z,I). If we are
given an arrow f from i; : Z — 27 to is : Z — Z5 inducing maps fy : iflﬁUr. — iglﬁU;.
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and fz : p_liflﬁzr — p_liflﬁz; , then this naturality is equivalent to the fact that the
maps in the following two criss-cross diagrams coincide.

m fuom _

Lol B e > iy Ot Ll B A > iy Ot
.y 2t Yy iy 2t Yy

~0._ — 0. -

kaofz i \\\‘*\\\\\ fuok i \\\*\\\\

- - —1,-1 e
priy Ogy  —mmmmmee- P P p Oz p iy Ogg —mmmmmmo ny TR »pOgy
g

Proof of Lemma[4.2.3. Construct a fiber diagram

J—— XxyxZ2 — X

l’“ l |

W —YxyW —Y

where Y — ) is a smooth cover by a scheme, X =Y xy X, and W — Y xy Wis a
smooth cover by a scheme. Use p to denote the map Z — X. Then commutativity of
is equivalent to commutativity of the diagram below.
(94)

Ext? ~Y(Lz w, I[1]) —S— Ext®/~1(p*Ly,y,p*I[1]) +—2—— Ext® ~1(Lzy,p*I[1])

- I

0/71 * ‘@' 0/*1 * * d 0/*1 *
Ext(]-,x:r (ILX.*/Y,*’W I11]) ! Ext, % 0t (p ]LX:F/Y.Jr,p w*I[1]) & EXtﬁZ:r (]LZ:r/W:r,w p*I[1])
d d
Exalq_lﬁy:r (ﬁx;h‘W*I) ]-Exatlr_l(,j—)w.+ (ﬁzjvw*p*l)
| dl
Exaly, (X, I) E Exaly, (2, p*1)

The vertical instance of is an isomorphism since w* is fully faithful. This implies that
the unnamed arrow in the top right square of is an isomorphism (it is already labeled
as such), since the other three maps in the square are. The commutativity of the top left
square uses functoriality of in the adjoint functors. The top right square commutes by
definition of the canonical map of cotangent complexes. The middle rectangle is with p
the map Z — X, A=q 'Oy, B= Oy, and A’ = 1710y, +. We have suppressed various
squares commuting the maps p and w.

It remains to check that the bottom square of commutes. This we do by direct
computation, using to factor the map

Exaqulﬁy_*_ (ﬁX:raW*I) — EXal,rflﬁW_'_ (ﬁz;{»’w*p*l)

Let i : X < X’ be an element of Exaly, (X, ). Then we have a commuting diagram

Z A w
N | > | ™
l X X’ Y’
{ {
Z J% z JH W J
N ~ N
X X’ y

where the front, bottom, and back squares are fibered (six squares in all). The map p~! o«

sends i : X — X’ to the extension

0—p lw'l — pilflﬁx,:r — ]flﬁX:r —0
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of p‘lq_lﬁy.+-algebras, and the map sends this extension to the extension
(95) 0= p"@* ]l > p" @' [P, 141 p’lflﬁxj — pilﬁxj = 0.

On the other hand, the map E sends i : X — X’ to Z — Z’, which under « corresponds to
the extension

0= w@'p I =i 0y = Oy =0
of r’lﬁwj—algebras. After applying w*p* = p*w™ and the morphisms and , this
becomes the extension

(96) 0= p'w =i 10, Xo_. plOxs = p 1 Oxs =0

of p~tq~' Oy +-algebras. As in the proof of Lemma |4.2.2) one can write down a functorial
(necessarily iso)morphism between and (96), and check that it is compatible with
restrictions.

O
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