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ABSTRACT. Let Y be a complete intersection in an affine variety X, with action by a
complex reductive group G. Let T' C G be a maximal torus. A character 6 of G defines
GIT quotients Y /,G and X /,T. We prove formulas relating the small quasimap I-
function of Y /G to that of X /,T. When X is a vector space, this provides a completely
explicit formula for the small I-function of Y /,G.
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1. INTRODUCTION

Let X be a smooth proper Deligne-Mumford stack. An I-function for X is generating
series with coefficients in the cohomology of the inertia stack of X that is known to lie
on the Lagrangian cone of X. This means that it is related in a precise sense to certain
Gromov-Witten invariants of X. The papers [CCK15; Coa+15] provide an explicit formula
for an I-function of X when X = V//,T is an orbifold GIT quotient of a vector space
V by a torus 7. This formula has found numerous applications, including the crepant
transformation conjecture [CLJ18], Fano classification [Coa+20], and mirror symmetry for
orbifold del Pezzo surfaces [Akh+16].

The main goal of the current paper is to extend the explicit formula of [CCK15; Coa+15]
as far as possible. We accomplish this via the small I-function recipe in [CCK15] (proven
to lie on the Lagrangian cone in [Zho20]), which is given in terms of virtual localization
residues on certain moduli spaces. Our task is to compute these residues in terms of Chern
classes of line bundles on X. Our main result is a nonabelian quantum Lefschetz theorem
(Theorem 1.1.6) without any convexity assumptions, which simultaneously strengthens the

abelianization result of [Web20b] to include orbifold targets and relates the I-function of
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a complete intersection to that of its ambient space. As part of this result we analyze the
behavior of the inertia orbifold of a GIT quotient under abelianization (Section 2).

In the spirit of [Coa+19], a joint work with Nawaz Sultani [SW] will explain how to
use the formulas in this paper to compute small I-functions of specific targets. A key

application will be verify and extend conjectural results in [OP18].

1.1. Setup and main theorems. Let X be an l.c.i. affine variety over C (not necessarily
irreducible) and let G be a connected complex reductive algebraic group acting on X. Let
X(G) denote the character group and choose 6 € x(G). We define sets X*(G) and X**(QG)
as in [Kin94, Def 2.1] of stable and semi-stable points of X with respect to G and 6 (we

omit @ from the notation). We will always assume
X°(G) = X*°(@G).

For any scheme Y with a given locus of G-stable points, and any subgroup H C G, we

define Deligne-Mumford stacks
X)G:=[X*(G)/G] X/ H = [X*(G)/H].

with associated cyclotomic inertia stacks I,,(X /G) (resp. (X )/ H) and rigidified cyclo-
tomic inertia stacks I,(X /G) (vesp. 1,,(X//oH). The (rigidified) cyclotomic inertia stack
is defined in [AGV0S].

The small I-function of X /G (see Definition 3.4.4) is a formal series of the form

(1) I =1x+Y 1) 1C0%) € AdLL(X)G) ©Qlz, 271,
B#0

TX//G(Z) which has the same form as in (1) but takes values

There is a closely related series
in the Chow group of I,(X/G). The series T is notated 1(0, ¢, z) in [CCK15], and the
series 1X/%(2) is the pullback of TX//G(Z) along the rigidification map—see Remark 3.4.5.

To state our formulas for I,(X /G) and I,(X/G), we define some notation for line
bundles on global quotients. Let Y be any variety with a G-action. There is an inclusion

x(G) — Pic®(Y) sending a character £ to
(2) ,,gg =Y x (Cg.
The bundle .Z; descends to a line bundle on [Y/G] which we also denote Z.

Example 1.1.1. Let G = T be a torus. We will see in Section 2.1 that I,(X JT) has a
decomposition into open and closed substacks that are global quotients by T. Hence any
character & of T defines a line bundle % on I,,(X))T). Likewise, I,(X/T) has a decom-
position into open and closed substacks (I,,(X /T)): that are global quotients by groups of
the form T/(t), where (t) is the subgroup of T generated by some element t € T of finite

order r. In this case r€ is a character of T/(t), and we adopt the notational convention

c1(Ze) = %Cl(frg) € A((u(X/)T))t)q-

We continue to work with a G-variety Y but we now assume [Y/G] is a Deligne-Mumford
stack. For £ € x(G) and 8 € Hom(Pic®(Y),Q) we define an operational Chow class on
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[Y/G] by

[Tr<o k—,@(f)ez(cl (Ze) + k=)
C(B,¢) = ==
(8.4) [e<pee), k-pee)ez(cr(Le) + kz)

s <k<0, k—p(eyezlc1(Ze) + kz) BE) <0
—1
[o<kespie), kpreyen(cr(Ze) + kz)} (&) > 0.

Here the empty product (when S(£) = 0) is defined to be 1, and for an operational Chow

class a and rational number k # 0 we use the convention

1 & —a)
kz)™li= — —
(3) (a4 k2) kz?_%(kz) ,
noting that this infinite sum is a well-defined operator on A.([Y/G]) by [Kre99, Cor 5.3.2].

Remark 1.1.2. The convention (3) also allows us to define C(3,€)™% when B(€) € Z<o.
Nevertheless, in our formulas we will sometimes write C(3,£€) ™1 without regard for the value
of B(§). Each time we do so, we will explain how to make sense of the formula. In examples
where everything can be written as a product of chern classes of line bundles, it always means
that the noninvertible part of C(B,€)™ cancels with some numerator appearing elsewhere

in the expression, though it may be nontrivial to see this cancellation directly.

1.1.1. Abelianization. We adopt the notation of Section 1.1. Let T C G be a maximal

torus; by restriction, 6 defines a character of T. We assume:

(1) X*°(G) = X**(G) and X*°(T) = X**(T), and these are both smooth and nonempty
(2) If g € G has a nontrivial fixed locus in X*(G), then
(a) g is semi-simple (meaning it is contained in a maximal torus), and
(b) the centrilizer Zg(g) is connected.!
The first assumption ensures that quasimap theory is defined for the pairs (X,G) and
(X, T), while the second is necessary to relate the inertia stacks of X /T and X //G.

Remark 1.1.3. The condition (2b) follows from (2a) if G is simply connected or a direct

product of general linear groups.

The abelianization theorem uses the following morphisms:
X)oT —1s X )T
(4) l@o
X/)G
These induce morphisms, which we denote with the same letters, of the corresponding

(rigidified) inertia stacks. Let p1,..., pm € x(T') denote the roots of G with respect to T

Theorem 1.1.4. The I-functions of X /G and X JT satisfy

(5) NANOEDY (H c@ml) i),

fop \i=1

1 0 0 0
IExample: If G = PGL3(C) and g = then Za(g) = [ @ U € ), so neither
0 -1 0 b d 0

Z(g) nor Z(g)/{g) is connected.
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where the sum is over all B mapping to B under the natural map Hom(Pic” (X),Z) —
Hom(Pic®(X),Z). This formula also holds with IX/G and IX!T replaced by 7 and

T and these formulas uniquely determine IX/S and T*/€.

See Example 1.1.1 for the definition of ¢1(.Z},,). The injectivity of ¢* and the denomi-

i

nators appearing on the right hand side of (5) are explained in Remark 2.2.4.

Remark 1.1.5. Theorem 1.1.4 is closely related to the main result of [GW16]. However,
in [GW16] the authors only consider the untwisted sector, whereas our equality (5) applies

in all sectors.

1.1.2. Quantum Lefschetz. We extend the situation studied in Section 1.1.1 by adding the
additional data of a vector bundle and section. That is, let F be a G-representation, and
let s be a G-equivariant section of the vector bundle £ x X — X with Y C X its zero

locus. In addition to (1) and (2) in Section 1.1.1 we assume:

(3) The section s is regular, meaning that it is locally given by a regular sequence, and
X*(G)NY is smooth.

Assumption (1) implies that Y*(G) = Y**(G) (see Lemma 5.1.1) and (3) implies that Y is
l.c.i. with smooth stable locus, so quasimap theory is defined for (Y, G). Observe that if G
is a torus then assumption (2) is automatic. We extend (4) to include a fiber square over
a closed embedding i:

YT — X oT —— X)T

X |

V)G —— X/)G
The morphism i induces closed embeddings of (rigidified) inertia stacks, which we also
denote i. All these embeddings are regular local immersions in the sense of [Kre99, Sec 3.1]
(see Lemma 5.1.2) and hence have associated Gysin maps i'. In particular we have the

Gysin map i' : A, (I*/cT)g — A, (IV/cT)q appearing in the theorem below.

Theorem 1.1.6. Denote the weights of E with respect to T by €;, for j =1,...,r. For
6 € Hom(Pic%(X),Q), the I-functions of Y /G and X |G satisfy

(6) S =3 (H (s, pi)1> [Tc@. e | i (2).
j=1

B—6 s \i=1

This formula also holds with IY 1S and I*X!T replaced by TY//G and TX//T, and it uniquely

determines » s 5 I;;//G (2).

See Example 1.1.1 for the definition of ¢;(%),) and ¢,(Z;) and Notation 5.0.1 for the
definitions of the index sets 8 — § and 6 — 8. The denominators appearing in the right
hand side of (6) always cancel with numerators appearing elsewhere in the formula; see
Remark 5.2.1.

When G = T is abelian, Theorem 1.1.6 is proved in [Wan]. The following remark explains

why we need to prove the theorem for nonabelian G even in light of Theorem 1.1.4.

Remark 1.1.7. To compute the I-function of (Y,G) with G nonabelian, one might hope
to first compute the I-function of (Y,T) using the abelian version of Theorem 1.1.6 and
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then apply Theorem 1.1.4 to (Y, T C G). Unfortunately it is possible that Y*°(G) is smooth
but Y**(T) is not smooth, so that quasimap theory for the intermediate target Y JT is not
defined (see the examples studied in [SW]).

Corollary 1.1.8. Let X and E be G-representations, T' C G a mazximal torus, 8 a character
of G. Let &y, ...,&, and e, ..., €. denote the weights of X and E with respect to T, and let
P1,- -, Pm be the roots of G. Let s be a G-equivariant section of E x X — X with zero locus
Y. Assume this data satisfies assumptions (1)-(3) above. Then the I-function of Y |G is

uniquely determined by the formula

ZSD*];///G :Z<HC5/)Z ) chse] <H05&>

B8 56

where 1, is the fundamental class of the component (1,(Y JT))y; of the inertia stack, see
Section 2 1. The same formula holds for Iﬂ //T.

1.1.3. Equivariant formulations and bigger I-functions. Let R be a torus with an action
on X that commutes with the action of G. The R-equivariant small I-function of X |G
is a formal series IX/G%(z) of the same shape as (1) (see Remark 3.4.6). Suppose E is
a representation of G x R, and s is a (G x R)-equivariant section of E x X — X with
zero locus Y C X. We assume that conditions (1)—(3) of Sections 1.1.1 and 1.1.2 hold. By
allowing regular sequences of length zero, we include the non complete intersection case in
our discussion (i.e., set £ = 0). Note that if £ is a character of G x R, then the line bundle
Z¢ defined in (2) is descends to an R-linearized line bundle on [Y/G].

Theorem 1.1.9. Let p1,. .., pm denote the weights of the Lie algebra of G as a (T x R)-
representation, where T acts by the adjoint representation and R acts trivially. Leteq, ..., €,
denote the weights of E as a (T x R)-representation. Then for § € Hom(Pic®(X),Q), the
equality (6) holds after replacing I;///G(z) by I;///G’R(z), replacing ISX//G(Z) by Igg//G’R(z),
and replacing the Chern classes c1(Zz) in the definition of C(5,€) with their R-equivariant
counterparts cf(Z;). Also, the analogous result holds for rigidified I-functions.

The proof of Theorem 1.1.9 is essentially the same as the proof of Theorem 1.1.6. For
simplicity, this paper is written with the assumption that R is trivial. Throughout the text,
remarks explain what changes when R is not trivial.

Using the equivariant small I-function we can also compute “bigger” I-functions. Let N
be a subset of x(G), and for each n € N let z,, be a formal variable. Let {p;(x)}%; be a
set of polynomials in the variables z,,, and let {¢;}X, be corresponding formal variables.

Define the bigger I-function

(7) X/GR Zq exp< S tipi(er (L) + B(n)= )) IO (z)

i€l
where p;(ci1(%,) + B(n)z) is the polynomial p;(x) with x, replaced by c¢1(%,) + 8(n)z,
for each n € N. As usual, the sum is over all I-effective classes 3, and the rigidification
ﬁx//G’R(z) is defined analogously with T?//G’R in place of Ig(//G’R.
By [CCK15, Thm 4.2], the image of the function EX//G’R(Z) in equivariant Chen-Ruan

cohomology lies on the Lagrangian cone when the action of R on the coarse moduli space
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of X /G has isolated fixed points and isolated 1-dimensional orbits It is conjectured to lie

on the cone without these assumptions.

Remark 1.1.10. One can take N to be a set of W-invariant characters of T, unioned
with the identity character. If we set the p;(x) to be equal x,, one for each n € N, then
the exponential term in (7) is exp(z~* >onen tn(c1(Z) + B(n)z)). Together with Corollary
1.1.8, this produces a formula for the series o*IX/GE(2) when X is a complete intersection

in a vector space.

1.2. Conventions and notation. All stacks (and schemes) are defined over the base field
C. Because the definition of the I-function has denominators, we will always use Chow
groups tensored with Q. From now on, if X is a stack, we will write A,(X) := A.(X)g =
A, (X) ®z Q, where on the right hand side A, (X) is the Chow group of [Kre99]. Also, if X
is a stack and S is a scheme we will write Xg := X x S.

If g € G then (g) denotes the conjugacy class of g and Zs(g) denotes the centrilizer.
When there is no danger of confusion we write Z(g) for Zg(g). If T is a maximal torus of
G then we write Ng(T') for the normalizer and W = Ng(T')/T for the Weyl group.

1.3. Acknowledgements. This project started when Elana Kalashnikov pointed out the
open conjecture in [OP18]. Thanks are especially due to Nawaz Sultani for many helpful
discussions, and for pointing out errors in my initial attempts at a quantum Lefschetz
formula. T am also grateful to Martin Olsson and Yang Zhou for useful discussions and the
proofs of Lemmas 4.1.4 and 5.1.1, respectively. The author was partially supported by an
NSF Postdoctoral Research Fellowship, award number 200213.

2. ABELIANIZATION AND INERTIA STACKS

We analyze the behavior of the inertia stack under abelianization.

2.1. Inertia stacks as global quotients. Let X be any variety with an actiona : GXx X —
X by a complex reductive group G. For any subscheme H C G, define Sx(H) to be the
fiber product

Sx(H) —— Hx X
(8) | [t
X

A L XxX

where A is the diagonal. Informally, we have Sx (H) consists of pairs of elements (h,z) in
H x X such that h fixes z. If H is a subgroup, then Sy (H) is the stabilizer group algebraic
space in [Stacks, Tag 0448]. Observe that G acts on H x X by the rule g-(h,x) = (ghg™!, gx)
for g € G,h € H, and x € X. This action makes (a, pra) G-equivariant and hence the same
rule defines an action of G on Sx(H). These observations let us realize the (rigidified)

cyclotomic inertia stacks (defined in [AGV08, Sec 3]) as global quotients.
Remark 2.1.1. By [Stacks, Tag 06PB], we have
L(X)G) = [Sxs)(G)/G].

Likewise, if T' is a mazimal torus of G, we have I,,(X [ 5T) = [Sxs(c)(T)/T].
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It follows from Remark 2.1.1 that I,(X /G) has a stratification indexed by conjugacy

classes (g) of G (resp. elements of T'), which we write as

(9) Lx/&= || @GX/O)n (L. (X G))ny = Sx((h) ] G.
(h)€Conj(G)

When G is abelian, conjugacy classes of G are of course simply group elements, so in the

case when T' C G is a maximal torus we have formulae

L(X)T) = | |(Lu(X)T))e = | | (X*)T)

teT teT
LX) eT) = | |T(XJeD)e = | |(X*)cT)-
teT teT

where X C X is the fixed locus of the group element ¢. Since conjugacy classes of semisim-
ple elements are closed [Hum75, Sec 18.2], assumption (2) in Section 1.1.1 implies that each
stratum above is closed. By Lemma 2.1.2 below, there are finitely many strata, so in fact
these are decompositions into open and closed substacks of the inertia stacks. There are

analogous decompositions of the rigidifications, also into open and closed substacks.

Lemma 2.1.2. There are finitely many t € T (resp. conjugacy classes (h) € Conj(G))
such that the stratum (I,(X ) ;T))¢ (resp. (1,(X)G))(n)) is nonempty.

Proof. By Remark 2.1.1 we have I,,(X/sT) = [Sxsc)(T)/T] with Sxs(c)(T) a closed
subscheme of T' x X*(G). We claim there is a finite subset 7" C T such that Sxsq)(T) C
T x X*(G). This implies the Lemma for I,,(X /,T). By our assumptions in Section 1.1.1,
if (h) is a conjugacy class such that I,,(X /G)y is not empty, then there is some ¢ € (h)
with ¢t € T, so the Lemma holds for I,,(X /G) as well.

To prove the claim we show there exists N € Z such that if X* # () then the order
of t is less than or equal to N. Granting this, we can choose 7 C T to be the set of
elements of order at most N. To find N we use two facts: first, X*(G) is quasicompact,
being an open subscheme of the Noetherian scheme X, so Sx:()(T) C T x X*(G) is also
quasicompact. Second, by (8) and [Stacks, Tag 02XE] and the identification T' x X*(G) =
X*(G) xxy .1 X°(G) there is a fiber diagram

SXS(G)(T) — T x XS(G) —_— X//GT

| ! |

X3(G) —— X5(G) x X3(G) —— X)JoT x X /T

The diagonal morphism X /T — X J.T x X J/ ;T is quasicompact and unramified, hence
quasifinite (see [Stacks, Tag 02VF]), so Sx:)(T) — X°(G) is also quasifinite. Now by
[Stacks, Tag 03JA] the map 7 : Sxs ) (T) — X*(G) is universally bounded, meaning that
there exists N € Z such that every fiber of 7 has size at most N. If Xt # (), then there is
a closed point € X such that tx = x; i.e., ¢ is in the fiber of m at z, which we have seen

is a group of order at most N. Hence the order of ¢ is at most N. O

Remark 2.1.3. When the torus R is not trivial, we get an action of R on the diagram
(8): indeed, R acts on H x X wia the action on the second factor. The maps A and (a, prs)
in (8) are equivariant, and hence Sx(H) has a G X R action. This means that R acts on

1,(X))G) and preserves the decomposition into components in (9).
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2.2. Weyl action. The stacks I,(X /T) and I,(X /T) both have an action by the Weyl
group W making the rigidification @ : I,(X JT) — I,(X /T) equivariant. For a scheme 9,
an object of 1,,(X//T) is a gerbe G — S with a representable map G — X /T, so we can
define w € Ng(T') to act on the map G — X JT = [X°(T)/T] as in [Web20b, Sec 2.2.1].
Objects of 1,,(X JT) are the same except that G is required to be trivial, so we can define
the action in the same way.

The morphism ¢ : X /T — X //G induces maps I,,(X /oT) — 1,(X JG) and I ,(X J| ;T)
1,(X//G), which we also call p. These maps are W-invariant. For every h € T with X"

nonempty, we have a commuting diagram where the right square is fibered.

XM eT —— Usenynr Lun(X ) cT))e —— T.(X ) cT)

(10) l@h | J

X" o Za(h) —F— (LX) G) gy —— L(X[G)

The map 77 is an open and closed embedding while 74 is an isomorphism. Note that ¢y,
is flat. Since (I,(X/G)) is an open and closed substack of I,(X /G), and X" T =
(1. (X ) &T))n is an open and closed substack of 1,,(X /T, and for every nonempty com-
ponent (I,(X /G))ny of 1,(X /G) there is a semisimple representative h € (h), we see that

@ is flat. Hence we may consider the induced pullback morphism ¢* on Chow groups.

Lemma 2.2.1. The pullback p* induces isomorphisms
AL(X)G)) = (Au(L(X ) o T))Y ATUX)G) = (AT (X ) TN

Proof. We first prove the statement for unrigidified inertia.

The left square in (10) induces a commuting diagram of pullbacks

(Au(X ) GT)Wz0 L (@ g Ac (X THW

(11) ol * -

Ad(XM ) 2 (h)) 2 AL(X G n))

where W (resp. W) is the Weyl group of G (resp. Zg(h)) with respect to 7. In the
top row, B¢ )t A (X" T) is a direct sum of vector spaces with an action by the finite
group W, and Wy, is the stabilizer of the summand A, (X" /,T). The map nj} is induced
by projection to this summand. By [Bri98, Thm 10] the map ¢}, is an isomorphism. We
will show that n7 is also an isomorphism. The lemma statement follows.

To show that 7} is an isomorphism we claim that
(12) )= Y (W
wEW/Wz(n)

is an inverse, where the sum is over a set of coset representatives and w1 : X IeT —

X" ) T is induced by the G-action. Indeed suppose we have an element
(dt)temynt € ( @ A (X TN
te(h)NT

If t € (h) NT, then there is some w € W such that ¢t = w - h, so W-invariance determines
each §; from §j, by the rule §; = (w™1)*d,. This shows that (n%)~! o nk is the identity. To
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see that n% o (n5) ™1 is the identity, note that Wy is the subgroup of W that sends the
component X" /T of ||, pynr X'/ ¢T to itself.

Now we prove the statement for rigidified inertia. A diagram analogous to (10) holds
for rigidified inertia stacks, where the left column is replaced by B, : X"/ o(T/(h)) —
XA )(Za(h)/(Rh)). We must check that T//(h) C Zg(h)/(h) is a maximal torus with Weyl
group isomorphic to Wyz(;). Granting this, the rest of the proof follows as before.

Let k be the rank of T'. To see that T'/(h) is a torus and maximal in Zg(h)/(h) we use the
theory of diagonalizable groups in [Mil, Sec 9.1]. Namely, the quotient 7'/(h) corresponds
to the kernel K of a map Z* — (h), which is a free abelian group of rank k, so T/(h)
is a torus. If Zg(h) has rank m > k then there is a torus 77 C Zg(h) of rank m with a
surjection 77 — T'/(h). In the category of finitely generated abelian groups this corresponds
to an inclusion K < Z™, and the subgroup of Zg(h) with quotient 7" corresponds to the
pushout of the diagram

which is a free abelian group of rank m. In particular Zg(h) has rank m > k, a contradic-
tion. It is straightforward to check that Ng(T)/(h) = Ng;mn)(T/(h)) and hence the Weyl

groups are isomorphic. O

Remark 2.2.2. When the torus R is not trivial, we define AR(X )G) := A.([(X)G)/R]),

observing that
AXX)G) = A([(X)G)/R)) = Ad([X*(G)/(G x R)]) = AT (X*(Q)).

Now Lemma 2.2.1 holds R-equivariantly, and we may use the same proof after replacing G
with G X R and T with T x R. Observe that this replacement does not change the Weyl

group (up to isomorphism).

The discussion in the remainder of this section is not critical to the paper, but it enables
us to interpret the right hand side of (5) as an element of A, (X //,T)[z, 2] directly (i.e.,
without going through the proof of Theorem 1.1.4). This is analogous to [Web20b, Sec 5.4].

Let {h;}jes C T be a set of elements such that I,(X/G) = ||;c; [.(X/G)n,) (in
particular, the h; belong to distinct conjugacy classes in G). We recall (see e.g. [ES89,
Sec 1]) the sign function sgn : W — {+£1}, and that an element « of some W-module is said
to be W-anti-invariant if w - o = (—1)%"(")q for every w € W. For each j, the pullback

nir: @ A XY GT) — A, (XM /T)
te(h;)NT
sends W-anti-invariant classes to Wz, )-anti-invariant classes. This map of anti-invariant
classes has an inverse given by
r)a )= > sen(w)(w')*s
wEW /W,
where the sum is over a set of coset representatives (one can check that (n;,T)gl does not

depend on the choice of representatives).
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Let R be the set of roots of G with respect to T' and fix RT a system of positive roots.
Since h; € T, the roots of Z(h;) are naturally a subset of R, and we denote these by
Rz ;) and the positive roots by RJZr(hj). Recall the fundamental Wz ,)-anti-invariant
class A; € A*(Xhi ) ,T) defined by A; := HPGR;(;LJ.) c1(-Z,). Now define

A=) ()l (D) € A(I(X ) GT))

jedJ

and observe that by construction, A is W-anti-invariant.

Lemma 2.2.3. If o € A, (I,(X/);T)) is W-anti-invariant, then there exists a unique
B e A (I (X);T)) such that AN B = a. Moreover, 3 is W-invariant.

Proof. Since nj pa is Wyz(n,)-anti-invariant, by [Web20b, Lem 5.4.1)% there exists B; such
that 77 pa = AN B;. Applying (n;f)T)gl to both sides, we get that the projection of « to
the components of A, (X /,T) indexed by elements of (h;) N T is equal to

Y sen(w)(w ) (AN 8.

weW/WZ(hj)
Hence we may take 8 =, _; ZweW/quLj) (w=)*B;. 0

Remark 2.2.4. Symbolically, one may show as in [Web20b, Lem 5.4.2] that A capped with
the right hand side of (5) is a W-anti-invariant class. Hence, using Lemma 2.2.3, we can
define the right hand side of (5) to be the unique (W -invariant) class that, when capped
with A, is equal to 3 5,5 Bs(2). Since ¢* is injective (by Lemma 2.2.1), the formula
(5) completely determines I,(X JG). An analogous discussion (including the statement of
Lemma 2.2.3) holds for I,(X |G).

3. THE QUASIMAP [-FUNCTION

We recall the definition of the quasimap [-function in [CCK15] and explain how the

construction can be made more explicit in our situation.

3.1. Preliminaries. We call a representable morphism 7 : & — C of algebraic stacks a
principal G-bundle if 7 is faithfully flat and locally finitely presented and we are given an

action p: G x & — & leaving 7 invariant such that the map
Gx P M P xc P

is an isomorphism. If Z is an affine variety with left G-action, then the product & x Z also
has a left G-action defined by ¢ - (p, z) = (gp, gz), and we define the mizing space to be the
quotient

P xecZ=(Px27Z)G.

If T'C G is any subgroup and .7 — C' is a principal T-bundle, we define the associated
G-bundle to be

(13) Gxr 9 =(GxT)/T where t - (g,5) = (gt ™', ts) fort € T, (g,5) € G x T.

2The reference only applies when X /G is a scheme, but the same proof works using equivariant co-
homology when X /G is an orbifold. For example, compare the proofs of [Bri98, Thm 10] and [Web20b,
Prop 2.4.1].
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The quotient G x1 7 is a (left) principal G-bundle with the same transition function as

.

3.2. Quasimaps. Let a > 1 be an integer. Define

C? 0
I FIVC R
' (u,v) ~ (tou, tv)
with fixed projective coordinates [u : v], and let x = [1 : 0] denote the orbifold point. For

this paper we make the following definition, setting (P} ;)g := P} ; % S for a scheme S.

Definition 3.2.1. A stable graph quasimap to X /G over a base scheme S is a tuple
(P} 1)s, P, 0) where
o ¥ is an algebraic space and & — (]P’}Ll)s is a principal G-bundle

e 0 is a section of P xXg Z

such that, for every geometric point s € S, the inverse image of the unstable locus Xg* is

finite and disjoint from the orbifold point x.

We will simply refer to the objects in Definition 3.2.1 as quasimaps. Isomorphisms of
quasimaps are defined as usual. The following lemma shows that our quasimaps are precisely
the objects parametrized by the moduli stack Qp: (X, 3) defined in [CCK15, Sec 4.2].

Lemma 3.2.2. Let C be a Deligne-Mumford stack. The following categories are equivalent:

(1) The category of representable morphisms C — [X/G]|

(2) The category whose objects are principal G-bundles &2 on C such that & is an
algebraic space, together with a morphism & — X

(8) The category whose objects are principal G-bundles &2 on C such that & is an
algebraic space, together with a section of P xg X — C.

Proof. Morphisms ¢ : C' — [X/G] are in bijection with G-torsors & on C and equivariant
morphisms to X. It follows from [Stacks, Tag 04ZP] that ¢ is representable if and only
if & is an algebraic space. This shows (i) < (). The equivalence (i) < (i) is [Web21,
Ex 4.2]. O

If (P

a

1)s, P, 0) is a quasimap, we will use ¢ : (P} ;)s — [Z/G] to denote the associated

map of stacks and ¢ : & — X to denote the map of principal bundles defined in Lemma

3.2.2. We will also refer to the quasimap object with the letter ¢, writing ¢ = (P}, ;)s, £, 0).
We will often work with a certain class of quasimaps which we now describe. Let

(u,8)—([u:1],s) v,8)—([1:v],8)

Us:=A' x S P}l,lxs VS::Ale( ng,lxs

QS = US X(Pfll,l)s VS~

Observe that the left map is an open embedding while the right is an étale map of degree
a. The right map is also invariant under the standard action of a*® roots of unity on Al
which we denote p,. The image of Vs is an open substack of (]P)}m) s which we will denote
[V/1q] % S; likewise we denote the image of Qg by [©2/p,] X S. Note that Qg ~ Cg. We fix
projection morphisms

(w,s)—(w”,s) (w,s)n—)(w_l,s)

HU:QS US KRy 2QSO_°—>V5.
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A transition function 7 : Qg — G determines a principal bundle on IE”}L1 by gluing the

pullbacks of the trivial bundles on Ug and Vg via the morphism
(w,9) = (w,g77H(w))  weQs ged.

We denote the resulting bundle by &.. The principal bundle &2 and the associated fiber
bundle & X ¢ X may be written as a global quotients, and we have the following equivalent

descriptions of the latter:

(CE\{0h) x G x X (C5\{0}) x X

- t,7) e C*x G
(00:9,2) ~ (P to, 2970 72) (@ ora) ~ (Euto, e ) ) x
(14) (Uavag,l‘,tﬁ) = (U,U,g_lx,t)
(’U,, v, 171‘71"’7-71(7)) A (U7U7$,t)

A quasimap ((]P’(ll,l)s, P, 0) defines two functions oy : Us — X and oy : Vg — X, where

oy is the composition

Us 28 (2, 6 X)|us = Us x X 25 X
and oy is defined similarly. Hence we have
(15) T-(ov oky) =0y oKy on {2g,

and conversely a pair of morphisms oy : Us — X and oy : Vg — X satisfying (15) define a
section of 2. xg X. Two quasimaps ((P},)s, Zr,0) and ((P} 1)s, P., p) are isomorphic
if and only if there are functions ¢y : Us — G and ¢y : Vg — G such that

(pv o ky )T = w(dy o k) as maps Qg — G
(16) oU - oU = pu as maps Us — Z
Qv - ov = py as maps Vg — Z.

If (Py1)s, #-,0) is a quasimap and ¢ is an automorphism, the local morphisms oy and
¢y defined above are twisted-equivariant for the action of p, on V', in the following sense:

for v € V and p € p,, we have relationships

(17) ov(p) = () lov(v)  and v (u) =T(0)" oy (v)7(R).

These equations follow from (15) and (16), respectively.

Remark 3.2.3. If k is an algebraically closed field, then since every principal G-bundle is
trivial on Uy, = Vi = AL (see e.g. [RR84]) we see that any k-quasimap is isomorphic to

one of the form ((P} 1)k, Pr,0) for some transition function .

Example 3.2.4. For future reference, we record the cohomology of line bundles on IP}IJ n
terms of the above coordinates on IF’}Ll. For an integer d we define

ooy (@) = —(C O xC

= teC.
a, (u,v, ) ~ (t%u, tv, t4x)

Our computation is analogous to that outlined in [Vak17, Sec 18.3] when a = 1. Specifically,
we identify

L([2/pal, Opr  (d)) = span{u™v" | m,n € Z,am + n = d}
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by viewing u™v™ in the above set as C*-equivariant maps (C*)2 — C. With this identifica-
tion, with the convention span(f) = 0, we have
H°(P, 1, Op1  (d)) = span{u™v" | m,n > 0} C ([Q/pal, Gp1  (d))

H' (P, 4, ﬁp{l}wl(d)) = span{u™v" | m,n <0} C I'([Q/pa], Op1  (d)).

Let k be an algebraically closed field. Consider the degree-a cover of IP’}LI by P!, given

in homogeneous coordinates by

v: (P = (Po1)k
(18)

a

[u:v] — [u®:v].
We define the class of a quasimap ¢ = ((Pi71)k,<@,o) to be the homomorphism 8 €

Hom(Pic®(X), Q) given by
BL) = deggy (4" ) =~ dogn (00" %) £ € Pie([X/C).

A family of quasimaps ((P}, ;)s, #,0) has class f if each of its geometric fibers over S has
class B. We define the I-effective classes Eff;(X,G,60) ¢ Hom(Pic®(X),Z) to be those

morphisms that are equal to the class of some stable quasimap.

Remark 3.2.5. The set Eff (X, G, 0) is in general a proper subset of the effective classes
as defined in [CCK15, Def 2.2].

Let QG, 5(X//G) denote the groupoid of stable class-3 quasimaps to Z /G with source

1
curve P, ;.

Remark 3.2.6. By [CCK15, Lem 4.6], given a class B, there is a unique integer a for
which QGq (X J/G) is nonempty.

We will always assume that a is the integer determined by g as in Remark 3.2.6 and omit
it from the notation. Furthermore, we will omit the target X /G when it is understood.
The space QG4 denoted Qp, , (X, 3) in [CCK15, Sec 4.2]. In particular it has a map to
Spec(C[X]9).

Theorem 3.2.7 ([CCK15, Prop 4.5]). The moduli space QG(X JG) is a Deligne-Mumford

stack of finite type, proper over Spec(C[X]%).

Let T C G be a maximal torus. From the morphisms x(G) — x(T) and Pic%(X) —
Pic” (X) and the morphism (2), we have the following diagram:

Hom(PicT (X),Q) -2 Hom(Pic%(X), Q)

(19) lTT lrc

Hom(x(T), Q) —>— Hom(x(G),Q))

Remark 3.2.8. When rp;. is restricted to I-effective classes in both the source and target,
it has finite fibers. Indeed, if § € Hom(Pic®(X),Z) is I-effective, one may argue as in
[Web20b, Lem 3.1.10] that r;)ii(ﬁ) contains finitely many I-effective classes (in particular,
[CKM14, Thm 3.2.5] only requires the representation G — GL(V) to have finite kernel).
For general I-effective 8 € Hom(PicG(X)7 Q), one uses the fact that aff € Hom(PicG(X), Z)
is also I-effective, as can be shown by precomposing a quasimap of class B with the cover
(18).
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3.3. Perfect obstruction theory. Let 7 : P}, x QGs(X/G) = QGs(X/G) be the
universal curve and ¢ : P} ; x QG3(X /G) — [Z/G] be the universal map. Then the virtual
cycle constructed in [CCK15, Prop 4.5] is induced by an absolute perfect obstruction theory
(20) o : EQGB = R?T*(q*L[X/G] & w') — LQGB

where w® is the relative dualizing complex for 7, L|x/¢) is the cotangent complex, and ¢ is
defined as in [CJW21, (18)] for the tower of morphisms

(21) [(X/G] x IP’}M — }P’}Ll — .

(By Remark 3.2.6, a is determined by .) For a proof of these statements, see [Web20b,
Sec 3.2].

Remark 3.3.1. If R is not trivial, then (21) is R-equivariant (we define the R-action on
PL 1 to be trivial). By [CJW21, Sec A.3] this induces an R-action on QGs(X JG) and an

R-equivariant structure on the perfect obstruction theory (20).

3.4. I-function. We define each of the ingredients needed to write down the quasimap

I-function.
3.4.1. Cj action. Let C} act on P} ; by
(22) A fuv] = [Au o], AeCr.

This action is chosen so that the coarse moduli map ]P’}L,1 — P! is equivariant for the
C*-action on P! given by [Web20b, (28)]. This action induces an action on QGj via

(23) A (]P)é,l X S,«@,O’) = (Pclz,l X S7 ()\71)*‘@700)‘71)'

3.4.2. C}-fired locus. For any integer d > 1, let C},,, denote the torus with coordinate

AV We let C3,,

coordinates, we have

. act on P} | via the d*" power map C3,,, — C} and the action (22). In

AV o] = (WY 9) - o) AV e ¢,

We define the Cj-fized locus to be a closed substack of QGp as in [CKL17, Sec 3]—it
follows from [AHR20, Prop 5.20] that this definition is equivalent to [AHR20, Def 5.25].
That is, a quasimap ¢ = ((P})s, %, 0) is fixed if there is some d > 1 such that Cj,,,
fixes ¢; i.e., q : (IP’;I)S — [Z/G] factors through [(IP’;J)S/(C;d]. This factorization implies
that the basepoints of a fixed quasimap, if any, are concentrated at [0 : 1] and [1 : 0]. Let
F3(X /G) be the component of the fixed locus with all its basepoints at [0 : 1]. When the
target is clear we will write Fig for Fg(X /G).

3.4.3. Localization residue. We now define the localization residue ecy (NI‘;iﬁr/QGB)—l N[Fs]T
as an element of A.([F3/Cy]). This class is derived from the morphism Eqg,|r, — Lr,
obtained by restricting (20) to Fjz and composing with the canonical map Lqg,|r; — L.
We will use an alternative description of this morphism: by the proof of [CJW21, Lem A.3.5]

it is quasi-isomorphic to the morphism
(24) ¢F[-} : EF[, — LF[,

defined directly via [CJTW21, (55)] with By, = il equal to a point, Kyy = W =C := ]P’é,l,
Z :P;l X [X/G], BZ = FB’ and KZ = Fg X Pclz,J'
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We explain how (24) is C}-equivariant. Since C} acts on the tower of morphisms [X/G] x
P}, — P}, — e, we see from [CJW21, Sec A.3] that there is an induced action on QGg and
that its perfect obstruction theory (20) is C¥-equivariant (meaning that it is the pullback of
a morphism in the derived category of [QGg/C}]). By [CJW21, Lem A.3.3] the morphism
(24) is also equivariant, equal to the pullback of a morphism in the derived category of
[Fs/C3] that we will notate @i, c1)/Bcs * Eir,/cx) — Lir, /cz1/Bcs-

To define the localization residue, the following remark is helpful.

Remark 3.4.1. The complex E[F,;/(C;] on [Fg/C3] has a global resolution by vector bundles.
One way to see this uses Lemmas 4.3.1 and 4.4.2, which together imply that F3, and hence
[F/C3%], is the quotient of a variety with an equivariant family of ample line bundles. By
[Tot14, Prop 2.1] the stack [Fg/C%] has the resolution property. Now observe that Er,/cy)
is perfect because its pullback is the restriction of a perfect complex Er, ~ Eqg,|r,, and
being perfect is a flat-local property by [HR17, Lem 4.1]. Moreover it may be represented by
a complex of quasi-coherent sheaves on [Fg/C3}| by [HNR19, Thm 1.2] and [HR17, Thm BJ.
Replacing this complex by its truncation we may assume it is bounded below. Finally, to
represent E[Fg/«:;] by a complex of vector bundles one may argue as in [Stacks, Tag OFSE],
replacing tags 08CQ and 08DN with tags 08G8 and 08FX, respectively.

The above remark allows us to decompose the complex E(p,)/c;) and the morphism
O(F, /c3)/BCy into fixed and moving parts such that these decompositions are compatible
with pullbacks to Fp. In general, if E is a vector bundle on [F3/C%] and E is its pullback
to Fj, we may write E = E¥* @ E™°Y such that the pullback of this decomposition to Fj
is equal to the decomposition E = EF* @ EF™°V given in [CKL17, p.979].

The fixed part gi)%x is a perfect obstruction theory for Fjzg by [CJW21, Lem A.3.5] and
[CKL17, Lem 3.3], and hence it defines a virtual fundamental class [F]V'" € A.(Fj). It
follows from the constructions that (;S[FI}; /C1]/BC: is a relative perfect obstruction theory (it
pulls back to JFVIBX) and the associated virtual class in A, ([F3/C}]) pulls back to [Fp]. Hence
we write [F3]V'" € A, ([F5/C3)).

Finally, the virtual normal bundle
NiSx e = (ERY)Y

is the pullback of a complex of vector bundles on [F3/C}] by Remark 3.4.1. We define
the invertible operational Chow class ecy (N};r(x//g)) : A([F3/C%]) — AL([F/C3]) as in
[Web20b, (57)], using the definition in [Kre99, Def 2.4.2] for the Euler class of a vector

bundle on [Fj/C3].

Remark 3.4.2. If R is not trivial, then the R-action on (21) commutes with the C}-action,
which means that R acts on Fg and (24) is C§ x R-equivariant. Hence the localization
residue defined in this section descends to a class in A, ([Fg/(Ck x R)]) simply by replacing

Cy with C} x R in the preceeding discussion.

3.4.4. FEvaluation map. Let x denote the gerbe By, C P(lz,r Recall that 5 determines the
integer a (Remark 3.2.6). We define ev, : Fg — I,(X /G) to send a quasimap ¢ : P}, ; xS —
[Z/G] to its restriction Bp, x S — X /G, an object over S in the unrigidified cyclotomic
inertia stack I,(X/G) (see [AGV08, Prop 3.2.3]).
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To define the I-function, we need to define a map (ev, ), : A.([F3/C3]) = Ax(I,(X)G))[z,271].
Since the action of C} on Fj is only trivial after reparametrization, the morphism ev, :
Fz — I,(X JG) might not be C}-equivariant, and it is not immediately clear how to define
(eve)s on A, ([F/C}]). Our solution is to apply Lemma A.1.2 to write o € A.([F;3/C}])
as an element of A.(Fp)[z,27'], where z is the Euler class of the line bundle on [Fj/C}]

induced by the identity character of C5, and then we apply ev, to the coeflicients of this

series.?

Remark 3.4.3. If R is not trivial, then we need to define a map

(25) (evi)s : Ar([Fp/(CX x R))) = Ap([L.(X ) G)/R)[z, 27"].
Since ev, is R-equivariant by definition, we have

(26) (eve)e + A (Fg) = AF(1(X ) G))

where the groups AR are defined in Section A.1. If U is an open subset of a representation
of V where R acts freely, such that the complement of U in V has codimension greater than
dim(X) — k, then by Lemmas A.1.1 and A.1.2 we have

27)  Aw([Fs/(C5 x R)]) =~ A7 (Fp) ~ AZ i v —aim r(Fs X2 U)
~ (A ([Fs xr U))lz, Zﬁl])k+dim V—dim R

where the subscript on the rightmost term indicates the corresponding summand of the
graded Q-vector space. We define (25) by first applying the isomorphism (27) and then
applying (26) to the coefficients of z°.

3.4.5. I-function definition. Let ¢ be the involution of I,,(X /G) induced by the inversion
automorphism of Bp, (see [AGV08, Sec 3.5]). Finally let @ : I,(X/G) — I,.(X/G) be
the rigidification and define

@*:FBAT#(X//G) €Uy = QO T OLOev,

where a as a function is multiplication by the integer a. Now we can define the I-function
of X //G as a formal power series in the g-adic completion of the semigroup ring generated

by the effective classes.

Definition 3.4.4. The (unrigidified) small I-function of (X, G,0) is

(28)
F vir
P19z =1x + 3139 ) where @W@—uww« Bﬂr>'
B#£0 ecs Vi qa,)

The coefficient I?//G(z) is an element of A.(I,(X)Q))[z, 2" . The rigidified small I-

function TX//G(Z) 1s defined analogously with év, in place of v o ev,.

* which acts via C* EandaN C5. The formula described here for com-

INVZE \1/a
puting (ev«)«« is equivalent to first lifting « to a class in A« ([F/C

3Suppose Fg is fixed by C

*,.]) using the canonical isomorphism

\1/a
[F5/C3, /0] = [Fs/C3). then applying (ev.) : Aw([Fs/CL, 1) — Aw([u(XJG)/CL, ), next applying
the canonical isomorphism [IH(X//G)/(C;UQ} ~ [I,(X/G)/C%], and finally applying Lemma A.1.2. This

follows from the proof of Lemma A.1.2.
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Remark 3.4.5. Directly from the definitions, we have aw,IX/%(z) = T¥/¢

TX//G(Z) agrees with the series notated I(0,q, z) in [CCK15] and a denotes the locally con-

(z), where

stant function equal to multiplication by a on Tﬂa (X G). Since w, is an isomorphism, it
is equivalent to write IX/%(z) = w*TX//G(z). Hence, the series [Zho20, (1.6)] is equal to
alX/G(z). Multiplying both sides of the equality in [Zho20, Thm 1.12.2] by a shows that

IX1G (%) lies on the Lagrangian cone of X J|G.

Remark 3.4.6. When R is not trivial, we define the equivariant small I-function I*/GFz
via the same formula as (28), replacing ec; with ecy xr and replacing (Loevy) . with the equi-
variant pushforward. Since the equality in [Zho20, Thm 1.12.2] also holds R-equivariantly
by essentially the same proof [Zho], we see as in Remark 3.4.5 that IX//G’R(Z) is on the
R-equivariant Lagrangian cone of X J/G.

4. ABELIANIZATION FOR I-FUNCTIONS

Our first goal is to prove the following.

Proposition 4.0.1. Let 8 € Hom(Pic%(X),Q) be I-effective. For every 8 € rpi(B),

setting & = rr(B3), there is

e an open substack Fg(X//T) of Fz(X/T)

e a group element g5 € G and a parabolic subgroup Ps of Zg(gé), and

® a morphism ¢ : Fg(X//T) — Fg(X//G) whose image we denote Fz(X |G),
fitting into the following commutative diagram with fibered squares:

F3(X)G) 22— FO(XT) ——s Fy(x)T)

& [k

(29) X9 [ Py +—5— X% [T —— X% T

~L_ |

X% ¢Zc(g5)

where the map Pg; was defined in (10). Moreover, the vertical arrows in the top row are

all closed embeddings, and the composition ng o f o i is the evaluation map ev,.

Note that the stacks X 92 //GZg(g'é)7 X% )| T, and X9 /T are (isomorphic to) open and
closed substacks of the inertia stacks I,(Z/G), I,(Z);T), and I,,(Z)/T), respectively (see
Section 2.1).

Remark 4.0.2. If R is not trivial, the diagram (29) is R-equivariant. For most of the
diagram this follows from the definitions in the preceeding section. The map )y is also
clearly equivariant from its definition in (36).

4.1. Preliminaries. Let (P ;)s — [X/T] be a family of quasimaps of class 3, and let
a = rT(B). By [CCK15, Lem 4.6] the subscript a is the minimal postive integer such that
ad, a priori a morphism to Q, is in Hom(x(T"),Z). Let & = ad& and define 74 to be the

cocharacter of T associated to & via the rule

(30) E(ra(t) =t72©  forany € e x(T).
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We write T := 7, and Ps := P, for the associated principal bundles on (P} ;)s. We
define

gB = - (627”'/(1)71.

Remark 4.1.1. Let k be an algebraically closed field. It follows from [MT, Thms 2.4, 2.7]
and Remark 3.2.3 that every k-point of QG g can be represented by a quasimap of the form
((P}L,l)k,@g, o), where & € Hom(x(T'),Z) has the property that ry(&/a) = rg(B). The

class & is unique up to the action of W.

The parabolic subgroup P; of ZG(QB) and its canonical Levi subgroup Lg are defined
using the dynamic method as in [Web20b, Sec 4.1]. For any C-scheme S’, we have

Ps(S") = {9 € Za(93)(S") | Tg_lgTQ : Qs — Zg(g5) extends to a morphism Ay, — Za(93)}

and L C P4 is the centrilizer of the image of 75. The extensions mentioned in the definition

of Pj are unique if they exist.

Lemma 4.1.2. Let S be a C-scheme. The group Ps has a natural inclusion into Aut(G X
Ta), where Ta is a principal bundle on (P} ,)s. The embedding sends g € Ps to the
automorphism defined as in (16) by setting ¢y (v) = g.

Proof. By definition, the morphism Tg_l(t)grg(t) : Qs — Zc(g5) has a unique extension to
A}L. Call this extension ¢},. Since g € Z(;(g[;), the morphism ¢}, is invariant under the
action of p, on Aé” hence factors through a morphism ¢y : Ug — Zg(gg). (]

The remainder of this subsection is dedicated to the proof of the following lemma.

Lemma 4.1.3. If a quasimap ((IP’}IJ)S, P, o) is in Fg, then it is fived by the a'™ power of
the action (22).

Proof. We first show that if ¢ : P} | x S — [X/G] is fixed by an n'™ power of the action
(22), then a|n. It suffices to show this for S = Spec(k) where k is an algebraically closed
field. We use (-,-) to denote the ged of two integers; let d = (a,n). Furthermore write
d = dyd,, with dg,d,, € N such that

(31) (dy,dpn) = (dg,n/d) = (dp,a/d) =1
(such a factorization is not unique).

If ¢ is invariant under the n*"-power of the action (22), then it factors through the

quotient 7 : P} ; — X, where

Pan =€\ {0}/, )C] and X, =[(C*\{0})/(a 6)(C*)2]

and the subscripts indicate the weights (charge matrix) for each quotient. The group C* x pg
embeds into the isotropy group of [1: 0] in X,, via the map

(32) C* x pg ~C* X pg, X pg, — C* x C*
(33) (5551752) = (625n/d7§157a/d)_
The image of this embedding contains the subgroup g, x 1 (the image under = of the isotropy

group at [1: 0] in P} ;). To see this, write piq ™ g, X fiq/a, using (31). If pu € p, equals

(p1, pt2) under this factorization, then (u, 1) is equal to the image of ( »/¢/fiz, ( /&) %, 1)
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under the embedding (32). Here »/¥J denotes the unique element of p, /4, whose n/ dt
power is fio.

We investigate the map induced by ¢ on the isotropy group p, at [1: 0] in P} ;. Since ¢ is
representable and sends [1 : 0] to the Deligne-Mumford locus of [X/G], this is an embedding
o — H for some finite group H C G. But the factorization through = implies that p, — H
factors through C* x pg, so we must have an embedding p, — pg. This implies a|d, so
d = a and a|n as desired.

For the second (last) part of the proof, we let S be arbitrary and we assume that ¢ is
fixed by the fa*" power of the action (22). By assumption ¢ factors through a morphism
q : Xpo x S — [X/G]; we will show that ¢’ factors through the rigidification

Xpg XS = Xg xS

along the subgroupscheme 1x gy, C (C*)%. Let X = Xy, xS. We use [ACV03, Thm 5.1.5(2)]:
for a test scheme R, we say that £ € X(R) has property P if the map Autr(§) — Autgr(¢'(€))
induced by ¢’ contains 1 X gy in its kernel. This defines a presheaf on X which we must
show is represented by X itself.

First we show that the sheaf of objects with property P is represented by a closed
substack of X. Let I([X/G]) be the inertia stack of [X/G] and define ) to be the fiber
product of the diagram

Y — ¢ (U([X/G)])

JA
(q'.e)

(e)x — ¢"(I([X/G])) xx ¢ (I([X/G)))

where A is the diagonal and e is the projection to X followed by the identity section
of ¢*(I([X/G))). Since I([X/G]) — [X/G] is separated and representable, A and hence
Y — (pe)x are closed embeddings. But (u¢)x = pe x X is a disjoint union of ¢ copies of X,
so this embedding defines ¢ closed substacks of X. The intersection of these ¢ substacks is
a closed substack that represents our presheaf.

Next we check that the substack of X of objects with property P is supported on every
connected component of X. For this, let * € X(k) be a geometric point whose image in
(X¢a)(k) is [1 : 0]. If n := fa then we can set d, = 1 and d,, = d = a in (31), and (32)

becomes an embedding
C* X pg - C*xC*
(5,6) = (&s',571)

into the isotropy group of x. Observe that the image of this embedding contains (1, u) for
L € pg by setting s = p ! and € = 1—in other words, 1 x p is a subgroup of C* x1 C C*x g
in Autz(z). Since ¢’ maps z to the Deligne-Mumford locus, the subgroup C* x 1 must be
in the kernel of Autj(z) — Autj(¢'(x)), hence 1 X py is in the kernel.
By Lemma 4.1.4 below and a standard Noetherian induction argument, the substack of
objects with property P is open. This completes the proof.
O

The proof of the following lemma was explained to me by Martin Olsson.
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Lemma 4.1.4. Let f : X — Y be a morphism of group schemes over a Noetherian scheme
R with X = R x G for a finite group G. If r € R is a closed point such that the fiber
fr + X = Y, is the trivial group homomorphism, then there is a Zariski-open subset U C R

such that fly is also trivial.

Proof. We claim that the restriction of f to the completed local ring Spec(ﬁA Rr,r) 1s trivial.
Granting this, since O, embeds in its completion by [Stacks, Tag 00IP], we see that the
restriction of f to Spec(€Og,,) is also trivial, and hence f is trivial in a neighborhood of r
as claimed.

To prove the claim, let m be the maximal ideal of g ,. Since ﬁAR,r = liénﬁRm/mi it
suffices to show that the restriction of f to each Spec(Og,./m’) is trivial, and since X — R
is a product it suffices to check global sections. By assumption this is true when ¢ = 1. In
general there is a commuting diagram of groups

X (Spec(Op.,/mi)) —L— ¥ (Spec(Og., /mi))

| [

X (Spec(@p,/mi—1)) L5 ¥ (Spec(Op,, /mi—1))
where f; and f;_; are restrictions of f. If by induction we assume f;_; is the trivial
homomorphism, then f; factors through the kernel of w. This kernel is naturally a module
for the vector space Og,/m, and hence as a group it has no nontrivial elements of finite

order. Since X — R is finite, f; must also be trivial. O

4.2. The abelian case. The goal of this section is to describe the moduli spaces F5(X /T
and their universal families; however, we begin with two results that are not special to the

abelian setting.

Lemma 4.2.1. Let X and Y be algebraic stacks over a scheme B such that Y — B has finite
diagonal. Any two morphisms f,g: X x Al — Y over B that agree on X x (AL \{0}) (via a
given 2-morphism) agree on all of X x A{. Moreover, if f and g are representable then the

2-morphism between the morphisms f,g : X x AL — Y restricts to the given 2-morphism
between the restrictions f,g: X x (AL\ {0}) — V.

Proof. Let f,g : X x Al — Y be the given morphisms. The assumptions imply that we

have a commuting diagram as below with the square fibered.

Eq —— Y

1 [

X x (AL\{0}) —— X x AL L2y y
Let Z C Eq be the scheme-theoretic image of X x (AL\{0}) — Eq, andlet h: Z — X x A}
be the projection (observe that A is finite). To find a 2-morphism between f and g, it is
enough to show that h is an isomorphism.
Since formation of Z commutes with flat pullback (using [Stacks, Tags 0CMK, 050Y]),

we may assume X is an affine scheme Spec(A). In this case (since h is finite) we know
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Z = Spec(B) for B a finite A[t]-module. We have a commuting diagram

B
e
Alt,t71] «—— A[t]
where B — Alt,t™!] is injective because it corresponds to a scheme-theoretic closure. Hence
the ring map h# determined by h is also injective. To see that it is surjectve, suppose for
contradiction that B contains an element of A[t,t~!] of negative degree. Then (taking
powers of this Laurent polynomial) B has elements of arbitrarily negative degrees. These
cannot be generated over A[t] by any finite subset of A[t,#~1]. This completes the proof
that h is an isomorphism.

To see that the 2-morphism extends, observe that the 2-morphism between f and g (or

their restrictions to Al \ {0}) is part of the data of the induced map to Eq. So our problem

/T’”

X x (AL\{0}) —— X x AL

amounts to showing that the diagram

strictly commutes. This is true when f and g are representable because the diagonal (f, g)
is also representable, so both Z and X x (AL \ {0}) are representable over J x ), and the
category Homy«y (X x (AL \ {0}, Z) is equivalent to a set. O

The following lemma lets us determine quasimaps from just some of their data. To
unpack the statement, it is helpful to note that for a principal G-bundle & on a Deligne-
Mumford stack B, the category of sections of the representable morphism & xg X — B is

equivalent to a set. That is, if an 2-morphism exists between two sections, it is unique.

Lemma 4.2.2. Let g = ((P} )5, #,0) be a quasimap to [X/G].

(1) The section o : (IE”}ZJ)S — P xag X is completely determined by its restriction to
[V/pa] x S. In particular, if & = P, for some T, then q is completely determined
by the data (T,0v).

(2) If moreover q is fixed, then o is completely determined by its restriction to Bpg X S.
In fact, the restriction qljy/u,1xs — [X/G] factors through the restriction ev.(q) :
Bpg, x S — [X/G].

Proof. To prove (1), let [Q/p,] C P}, denote the complement of [0 : 1] and [1 : 0] and
note that [Q/p,] ~ AL \ {0}. Now apply Lemma 4.2.1 with X = B =S and Y = (£ x¢
X)|j/paxs ¢ if two sections of & x GX agree on AL\ {0} ~ [Q/pa] C [V/pa], then they
agree on Al ~ U.

To prove (2), note that by Lemma 4.1.3, the quasimap ¢ defines a C%,, -equivariant

A\l/a
morphism [V/pg] X S 1, (Pi1)s 2, [X/G] which we will call gy. Define maps prag, m
C*

Yia X [V/a] X S = [V/ma] x S where pras is given by projection and m is the C}

Al/a”
action. The fact that gy is equivariant means that there is a natural transformation between
the two maps qy o prag,qv om : C},,, x [V/pa] x S — [X/G]. The map m extends to a
[V/pa] given on V by the rule A/ - v = (A/%)~1y (it may help to

morphism m : A)\l/a
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observe that [(AY/®)%u : v] = [u : (AY/*)~10] in PL,). So we again have two morphisms
qy © Pro3,qy o m : Ail/a x [V/pa] x S — [X/G], and moreover these factor through the
separated substack X /G C [X/G]. By Lemma 4.2.1 we have gy o prog = gy o m on the
larger domain. Restricting to the fiber A = 0 we get ¢y = gy (0) as desired.

(Il

We can now begin to analyze F3(X /T).

Lemma 4.2.3. The map ev, : F5(X JT) — 1,(X//T) is a closed embedding, and it factors
through the component (1,(X [T)),.

Proof. First we show that ev, factors through (I,(X/T))s,. This may be checked at
geometric points of F7 (X/T). Let k be an algebraically closed field. By Remark 4.1.1, a
k-quasimap ¢ : (P, ;)x — [X/T] of degree 3 is given by data (PL 1, Ta.0). Now ev.(q) is a
k-point of [X/T], and since T is abelian, there is a canonical identification of Auty (&) with
a subgroup of T. It follows from (14) that the composition Autg(x) — Autg(evi(q)) — T
is precisely equal to the restriction of 75 1 40 prq, so it follows from the definitions that this
quasimap lands in the gz-component OEI W(X)T).

To show that ev, is a closed embedding, the argument of [Web20b, Lem 4.2.1] works
with the following adjustments.

The proof of [Web20b, Lem 4.2.2] shows that its statement holds when S and S’ are
Deligne-Mumford stacks and the principal bundles are algebraic spaces (so that the corre-
sponding maps to [e/G] are representable). Moreover, the analog of [Web20b, Lem 4.2.3]
holds when X, Y are Deligne-Mumford stacks if one also assumes that 7 induces surjections
of automorphism groups at C-points (see [Web20a, Lem 3.6.2]).

We use Lemma 4.2.2 in place of [Web20b, Lem 4.2.4].

We replace [Web20b, Lem 4.2.5] with the following. Note that, in conjunction with
Remark 4.1.1, this lemma implies that ev, induces bijections of automorphism groups at

geometric points.

Lemma 4.2.4. If ¢; = (P} 1)s, 7, 0:) are fized quasimaps and f is an arrow in 1,(X JT)(S)
from evy(q1) to evi(qa), then there is a unique isomorphism of ¢1 and qo that maps to f

under evy.

Proof. Recall that an automorphism of a principal T-bundle on a scheme B is given by a
morphism B — T. Hence, the identification f is given by an automorphism of .7 |(gu,)s,
or equivalently a morphism ¢ : (Bp,)s — T. The latter morphism must factor through
the coarse moduli space, and hence is equal to the pullback of some morphism S — T
This induces a morphism & : (P}m)s — T by pullback, and hence an automorphism of
7 that restricts to the automorphism of .7|(p,,); determined by f. Now & defines an
automorphism of 7 xp X, which we also denote ®, and by construction the sections oo
and ® o 0y agree on Bu, x S. By Lemma 4.2.2 they agree everywhere.

To see that ® is the unique morphism extending ¢, note that ®|fy/,, 1« s factors through
the finite subscheme of T' consisting of group elements with nontrivial isotropy on X*(7T')
(see Lemma 2.1.2). Since [V/p,] is connected, ®|[y/,,jxs is determined by ¢. Now & is
determined by ®|[(y/,,1xs by Lemma 4.2.1. O
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It follows from [Stacks, Tag 04YY] and Lemma 4.2.4 that ev, is representable. The proof
of [Web20b, Lem 4.2.1] now applies to show that ev, is a closed embedding.
d

By Lemma 4.2.3 we have a closed embedding ev, : F5(X/T) — 1,,(X/T). Define
X5 = Sxo(r)(T) %r1,x 1) F3(X/T),

where the cover Sx.(r)(T) — [,(X/T) was defined in (8) (see also Remark 2.1.1). By

Lemma 4.2.3, the composition
XB — SXS(T)(T) — T x X‘}(T) — XQ(T)

is a closed embedding into X 96 N X*(T"). From the definitions, 74(p,) acts trivially on X95;
hence, there is an action of T'/75(p,) on X9 (the rigidification). We restrict the action of
T/75(t,) to the quotient of the subgroup of T defined by the cocharacter 75. That is, we
define an action -, : C* x X9% — X9 by identifying the group C* with C*/p, C T'/75(ta)
via 75. This action is characterized by the fact that the following diagram commutes, where

we have labeled the arrows with the images of (w, z) € C* x X9.
C x X9 29 | o
(34) (w“,z)J{
C* x X9

W rigZ

Proposition 4.2.5. The universal family on Fz(X [T) has fiber bundle Z on P;, X
F5(XT) and section S defined as follows:

XBX(CQXX

35 Z =
(35) (@, 0,9) ~ (t2, 50, 50, 7 () 11y)

S(z,u,v) = (amu,v,u*l ‘rig T)

where (t,s) € T x C*, and the formula for S holds on the open locus where u # 0.

Remark 4.2.6. Proposition 4.2.5 only gives a formula for S on [V/pa] x F5(XT), but
by Lemma 4.2.1 this formula uniquely determines S. We do not know a formula for S on

all of its domain.

We define the tautological family on X 5 to be the pullback of the universal family along
the map X5 — F5(X//T).

Remark 4.2.7. Proposition 4.2.5 is equivalent to the statement that the tautological family
is given by the formulae (35) after setting t = 1 (i.e., before dividing by the T-action).
In other words, by Lemma 4.2.2.(1), to prove Proposition 4.2.5 it is equivalent to prove
that the tautological family is given by the principal bundle T5 (constant across fibers of
(IP’}M)XB) and a section S with Sy (v,z) = v for (v,z) € Vx,. One can check directly using
commutativity of (34) that the formula for S given in (35) is the unique section of Z with
the required Sy .

Proof of Proposition 4.2.5. The proof of [Web20b, Prop 4.2.6] works with minor modifi-
cations as follows. Let ((]P’Cll,l)xg, 7,8) be the tautological family. Let * x Xj; be the
subscheme of VXB equal to the inverse image of Bp, X XB = x X XB IS (IE”1 )XB' Then

a,l
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f|;xxﬁ is isomorphic to X/;, X Fy Xﬁ with the structure map to XB equal to the first pro-
jection. So T |z« X, is trivial (it has the diagonal section), and it follows from Lemma 4.2.2
that 9|Vxx5 is trivial.

Recall the map ry : 2 x X5 — (U\0) x X given by taking the at? power. We claim that
K{; is injective on Picard groups; in fact, we claim that if 7 € Pic(C* x XB)’ then canonical
morphism F — (ky,«kf;F)*e is an isomorphism. This may be checked on an affine scheme
Spec(R) — C* x X5 where F is trivial as follows. The morphism x restricts to a p,-torsor
Spec(S) — Spec(R); let a: S — S x p, denote the ring map inducing the action. Consider
the following diagram:

R—— S —=<S®gS

(id,cx)
Faithfully flat descent implies that the top row is an equalizer diagram, while the torsor
property implies that the right vertical arrow is an isomorphism. Since the equalizer of the
bottom maps S = S X u, can be explicitly computed to equal the ring of invariants SHe,
the canonical map of equalizers R — S*« must be an isomorphism.

Since f; is injective and F

crxx, 18 trivial, it follows that 9|(U\{0})XXB is trivial.
Now the argument in [Web20b, Prop 4.2.6] shows that & ~ J; and Sy (v,z) = z for
(v,z) € V x X5. We conclude using Remark 4.2.7. O
4.3. Proof of Proposition 4.0.1. Define
FY(X)T) = F5(XJT)NX% T in X% T,
X5 = X5 % ryxym) F§(X)T).

Also let 8 = TPiC(,B) and define
56) PR Fg(X//T) — F3(X)G)

((P;,l)Sa ‘7’U> = ((]P)(ll,l)S7G XT 970‘).

The proof of Proposition 4.0.1 is completed by the following lemma.

Lemma 4.3.1. The substack Xg C X9 s invariant under the action of P; and the

composition

w~
(37) X§ = FY(X)T) == F3(X /@)
descends to a closed embedding

(38) XY/ Ps] = Fa(XG).

The image of (38), which is equal to the image of Y3, is the closed substack of Fj (X/)G)
that we denote Fj5(X /G).

Proof. The argument of [Web20b, Sec 4.3] works with minor modifications, as follows.
First, the proof of [Web20b, Lem 4.3.1] shows that Xg is a Ps-invariant subscheme of
X% N X*(G).

To show that (37) is invariant under the action of Pz, we need an explicit description of
the element of p € Aut(Z) determined by p € P5 as in Lemma 4.1.2, where Z is the fiber
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bundle for the tautological family on Xg,. By definition we have ¢y (v) = p, and from (16)

we have
du(u®) = 75 H(u)pra(u) for u € Q x Xg.

Hence, in the homogeneous coordinates of (35), we have that p is given by

(x,u,v,y) = (SL’,U,’U,’LL_l ‘rig (p : (u ‘rig y)))

With this formula, the argument in [Web20b, Lem 4.3.2] shows that (37) is invariant as
claimed.

Finally, we follow the argument of [Web20b, Lem 4.3.3] to show that (38) is a closed
embedding. It suffices to show that (38) is a proper monomorphism. Since (38) is induced
by the tautological family, it commutes with projections to Spec(C[X]%). But [Xg /Ps] is
proper over Spec(C[X]%), so (38) is proper. To check that (38) is a monomorphism, it is
enough to check that the map from the prestack [Xg /Ps]PT¢ defined in [Rom05, Prop 2.6] is
a monomorphism, i.e., fully faithful (see also [Rom05, Thm 4.1]). This prestack has objects
equal to the objects of Xg and arrows coming from the action of P5. Let a; : S — Xg be
two objects of [Xg/Pd]pre(S). As in [Web20b, Lem 4.3.3], an arrow between the images of
these objects under (38) implies the existence of morphisms ¢y : Vo — G and ¢y : Us = G
satisfying

ov - (a1 0pra) = ag o pro as maps Vg — Z

39
) (pv o ky)Ta = Ta(dU © KU) as maps Qg — G.

pr2

The first equation shows that ¢y factors as V x S 22 § £ G for some p € G(S) sending
a1 to as. Restricting the second equation to the closed subscheme 1g C Qg defined by
the identity shows that ¢y|1, = p, and then restricting the same equation to (f,)s shows
that p € ZG(QB)‘ Finally, the second equation also shows that p € P, since the desired
extension of 75 Y(u)pr5(u) to a morphism A — G is ¢y o k. The equations (39) uniquely

determine p. O

4.4. Computing the nonabelian /-function.

4.4.1. Weyl group action. Define

PO)T) = || PO
B—p
and let ¢ : F§(X JT) — F3(X //G) be defined to equal 15 on Fg(X//T).
Lemma 4.4.1. The map ¢ : F§(X |T) — Fs(X | G) is surjective.

Proof. We modify the proof of [Web20b, Lem 5.1.1] as follows. The image of v is equal to
the union of FB(X JG) C F(X JG) over all 3 mapping to 8. In particular it is closed, so
by [Stacks, Tag 06G2] it suffices to show that v is surjective on C-points. We claim first
that if (P} ), Ja,0) has oy equal to a constant function, then it is fixed by C%,,,. Indeed,
such a quasimap is given in homogeneous coordinates by

(u,v) — u”t ‘rig OV
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Kl/a‘
((P}1), Pa,0) is in Fg(X JG), it is isomorphic to a quasimap ((P} ), Pa,p) with py a

constant function.

which one may directly check is invariant under C So it suffices to show that if ¢ =

Since ¢ is C3,,,-fixed, from (23) and (16) we have an isomorphism of quasimap families

on C*

Y1/a determined by morphisms ¥y : C},,, xV — G and ¥y : C3, ,, xU — G satisfying

*

the following (note that we write y := A/ for the parameter on C}i/):

(40) Uy (p, w7 (w) = 72 (0™ w) Py (w?) 1€ Clija,we
Uy (u)oy(u) = op(p™u) peCl,ucl
Uy (v)oy(v) = oy () peCl,veV.
On the other hand, restricting the quasimap to [V/u,] C P}l,l, we get a CY,,,-equivariant

family of maps [V/p,] — X/G. By Lemma 4.2.1 (using that ¢ is representable) the

1

morphism ¥y extends to @y : Ay, ,

X V — G satisfying
(41) Dy (p,v)oy (v) = oy () for all 4t € Ayyyu, v € V.

Here, Af\l/a contains C7,/,

contain Q as the complement of the origin, and we define ®, : (A},,, x 2)\ {(0,0)} = G
by

as the complement of the origin. Now we define Q ~ A! to

;o 7o (W)U (p, w) p€Cly, we (9}
7o (w) 1y (,w ) ra(w) g€ Ay, w e

The pieces of P, agree on their common domain of definition by (40). By Hartog’s theorem

1

Ni/a X Q — G. Next we compute that ®f, and hence @ is

xU — G.

we can extend O, to P : A

invariant under the action of p, on € and hence descends to a function ® : Ail Ja

When A # 0 this is a direct computation, and when w # 0 it follows from (17).
We have constructed &y : Al,,, x U — G and ®y : Al . x V — G such that (by

\l/a \l/a
definition)
(42) Wy (1, w™ )18 (w) = 75 (w) Vo (w?) pE AN . wED

We set ¢, = &¢(0,u) and ¢, = &y (0,v). The restriction of (42) says that this defines an
automorphism of Z5. Let p := ¢° o o; by (41) we have py = o (0 - v) = o/(0) a constant
function, as desired.

]

Define ev, : Fg(X//T) — 1,(X/5T) to equal ev, on each component. Since Fg(X//T)
is a stack of maps to [X/T] it has a natural action by the Weyl group W leaving ¢ invariant
and making ev, equivariant (see [Web20b, (12)]). For & € Hom(x(T), Q) we set W5 :=
Ny, (T)/T, the Weyl group of T' C Lg (the group Ls was defined in Section 4.1).

Lemma 4.4.2. Let §3; € Hom(Pic? (Z),Q) be a full set of representatives of distinct W -

orbits on rgilc(ﬁ). Then the following is a decomposition into open and closed substacks:
(43) Fy(X)G) =| |F5,(X)G)  where F5 (X )G) = W(F) (X/T)).

Moreover, if &; = rT(Bi), the stabilizer of B; is Wa,.
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Proof. The statement and proof of [Web20b, Lem 5.1.2] carry over verbatim. For [Web20b,
Lem 5.1.2(3)], it may help to note that Ls, a priori the centrilizer of 75 in Zg(g[;), is
also the centrilizer of 75 in G, since any element of G' that commutes with 75 necessarily
commutes with 95 = Té(efz’”/“). The cited lemma, together with Lemma 4.4.1, shows that
the decomposition (43) holds and that the stabilizers are as described. The components
F5 (X//G) are all closed by Lemma 4.3.1; there are finitely many of them by Remark
3.2.8. O

4.4.2. Proof of Theorem 1.1.4. Recall that we have defined F3(X /G) = wB(Fg(X//T)), a
closed substack of Fg(X /G).

Lemma 4.4.3. We have the following relationships on [FE(X//T)/(CX]:

WSIF(X Q) = [FO(X )T

[Liss. B(pi)<0 Hk—B(pi)EZ 5(pi)+1§k<0(61 (L) + k2)

Yrecs (NET ) =ecx (NYS .
BN B(X/)G) MUFS His.t.B(pi)>O Hk*B(pi)GZ, 0<k§B(pi)(Cl(gﬂi)+kZ)

Here, z is the Euler class of the line bundle on [Fg(X//T)/(Cj} determined by the identity

character of C.

Proof. Apply [CJW21, Lem A.2.3] with By = 4 = pt, V. = C = P, ,, W = [X/T],
Z = [X/G], Bw = F3(X//G), Bz = FE(X//T), and pp = 5. We get a morphism of

(equivariant) distinguished triangles
ViR, (xja) — Erocxyry —— Bru(q" Txymyixye)” ——
(44) \V’FB(X//G) J/¢FE(X//T) l

ViLlesxpe) — Lrooxyry — Lyxpoypocx gy ——

where the vertical arrows are as defined in (24). Here, ¢ : P} | x Fg(X//T) — [Z/T] is the
universal quasimap and T(x,7)/(x/q] is the relative tangent bundle.

We compute U’E&C; (Nl\;‘;r(X//G)) using the top row of (44) as in the proof of [Web20b,
Cor 5.2.3]. A priori the tags [Stacks, Tag 0F8G, 0F9F] cited in that argument only apply
to schemes; however the same arguments can be made to work in our context as in Remark

3.4.1. To compute the weights of the virtual normal bundle we use the following fact.

Lemma 4.4.4. Let f : X — Y be a morphism of schemes and ¢ : H — G a morphism
of algebraic groups with H acting on X and G acting on Y, such that for h € H and
x € X we have f(hx) = ¢(h)f(x). If V is a G-representation, then the fiber product of
(f,0) : [X/H] = [Y/G] and p2 : [(Y x V)/G] — [Y/G] is [(X x V)/H| where V is an

H -representation via ¢.

Proof. Tt is straightforward to check that there is a fiber product of the prestacks defined
in [Rom05, Prop 2.6]. O

From the description of the universal family in (35), the universal map ¢ : ]P’}L1 X

Fg(X JT) — [X/T] is given as a C3, ,,-equivariant morphism by a morphism as in Lemma

4.4.4 where the group homomorphism is

(t,s,p)>t7a(s)  Tra(p)

T.

(45) T xC*xCli.
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Hence the C*

\1/a-€quivariant vector bundle ¢*Tx,7)/(x/c) is given by subspace of the Lie

*

\1/a-Tepresentation via the homo-

algebra g of G with nontrivial weights, as a T'x C* x C
morphism (45) and the adjoint representation of T on g.

As in [Web20b, Cor 5.2.3] we get the following equality of CJ,,,-equivariant bundles:
R (q" Tix/m/1x/6) = D Lo ® H (B 1, 051 (aB(pi)) @ C i
i=1

Here we've used g := A/@ for the parameter on Cli/ay and (Cuag(pi) is the one-dimensional

*

N1/« wWhere p acts by the character /ﬂg(pi). Now we use Example 3.2.4:

representation of C
for i = 0,1 the vector space H (P} ;, ﬁpi)l(aﬁ(pi))) has a basis of monomials u™v"™ with
m,n € Z and m+n/a = B(p;). If i = 0 then we require m,n > 0 and if ¢ = 1 then we require
m,n < 0. The weight of the monomial v v", with respect to C3, is B(pl) —m = n/a, which

satisfies n/a — B(p;) = m € Z. This (plus the additivity of ecy ) completes the computation
of Yecs (N};r(X//G)).

To compute z/% [F5(X /] Q)] we apply Fix to (44) (it affects only the top triangle). Then
[CIJW21, Lem A.3.5] implies that the left and middle vertical arrows of the resulting diagram
are the canonical perfect obstruction theories for (X /G) and Fg(X J/T), respectively.
The right vertical arrow is a quasi-isomorphism: this is because it is already an obstruction
theory and R'm, (¢* Tx,/1)/(x/c))"™ vanishes, as can be seen from the above computation.
Now the desired equality 1/% [F (X )GV = [FIg(X//T)]"ir follows from [Manl2, Cor 4.9]
(see the proof of [Web20b, Cor 5.2.3]). O

Proof of Theorem 1.1.4. We first show that to prove Theorem 1.1.4 it suffices to prove the
following equality in A, (1, (X /.T))[z, 27 1]:

vir m ~ F-(X /)T vir
a0 ot (LB - 5 ([t . (LD,
B—8

ec; Nigix o) =1 ecs (VE o ym)

Recall that év, = aotow oev,, where a denotes multiplication by a. Given (46) we obtain
Theorem 1.1.4 for unrigidified (resp. rigidified) I-functions by applying . (resp. (aowot),)
to both sides. We explain what happens when we apply (a o @ o ¢).. One uses the fibered

squares

L(X)G) +—5— L.(XoT) —— L.(XT)

- - -

T.(X)G) +—5— T(X ) T) —= T,.(XT)

where the rigidification maps tw are proper (and smooth) and ¢ and j are flat. These claims
may be checked on each component I,,, (X /G) of the cyclotomic inertia stack. Now when
we apply a,w.tx we use the equalities a, it = @ awit,e and a,witsj* = J A Wity
(from [Vis89, Lem 3.9]) on the left and right hand sides, respectively. On the right hand
side, we also use the projection formula and the facts that ¢1(.%),,) = *w*c1(Z,,) and
z = 1*w"z, using the rule in Lemma 4.4.4 for pulling back line bundles and the convention

in Example 1.1.1. This proves Theorem 1.1.4 assuming (46) holds.
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To prove (46), we compute as follows. Note that the left hand side equals (p*L*Ig(//G.
Writing Ié(// “ as a sum over the connected components F5 (X//G) of Fg(X//G), we have

(47) ga*L*Ig(//G = Z ©*(evy )« e[ b (X//G)]

Bi—B & ( X// G))
Now we use (11) to compute ¢* with a different formula on each component Fj (X /G).
Namely, from (11) and (12), the formula (47) becomes

(X /G vir
(48) > Yo (i) epnglen). [ﬁ((//)] ,

Bi—B wiEW/Wz(g,) ecs X//G))

where we have written g; for g5 and Z(g;) for Zg(g[;i). But ng(eve)« = n&(na)« fois by
Proposition 4.0.1, so (48) becomes

e e [ FR(XJGIT
(49) Z Z (wl 1) gogi f*l* W
Bi—B wiEW/Wz(g,) X Fg (X&)
The next step is to argue as in [Web20b, Lem 5.3.1]; namely, for any § € A, (X9 /. Ps,),

we have

(50) ©g; [0 = > (T [H ?f Z )]

weWz () /Wa pi€RZ TP
where R is the set of roots of Z(g;) whose inner product with the dual character & is
negative. To prove (50), since the Kresch Chow group of a global quotient is the same
as the Edidin-Graham equivariant Chow group of the cover, it suffices to prove (50) for
G-equivariant Chow groups. This follows from the definitions and the original statement
of [Web20b, Lem 5.3.1].

Formula (49), combined with (50), becomes

P ([F, (X J @)™ ey (N (xjc)) ™)

S Y @y Y @yl ' cn. @1 Z0)

Bi—B wi€W/ Wz, w2EWz () /Wa,

Combining the two Weyl-group summations into one, we have

P (F3, (XSO Mgy (NET () ™)

Z Z (w_ )* HPiGR;i Cl("s’ﬁl)z:) i ’

Bi—p wEW/Ws,
which is the analog of [Web20b, (62)]. The analog of [Web20b, (63)] is a commuting diagram

FD s (X)T) o, F§(X)T) ECTIN F; (X/G)

X IwB; //GT L X9 //GT L I_ngi//GPQi
The square on the right is fibered by Proposition 4.0.1 and the horizontal maps are flat.
We have (w™!)*pk i, = (ev*)*(w_l)*wg = (BU*)*¢;B, by [Vis89, Lem 3.9].
From here we apply Lemma 4.4.2, arguing as in Section [Web20b, Sec 5.3]. As the analog
of [Web20b, (66)] we obtain a formula

(67}*)*¢ (IF, (X//G)]V" Mecy (N}i-r(X//G))_l)
LTI s .
(51) Ny Kgﬁ Moen. a1(Zo)
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Applying Lemma 4.4.3 yields
. . [F5(X )T
= . ()
F ecs Wryx )
where

1 Hl s.t. B(pi)>0 Hk*ﬁ(ﬂi)é% 0<1€SB(P¢)(61 ("gﬁz) + kz)

Ky = .
oier; 1() Il s oo <o i-ponez, oo +12n<o(€1(Z0) + k2)

Recall that R is the set of roots of Z¢(g5) with a(p;) = aB(pi) < 0. To calculate the roots
of Zg(g5), note that Zg(g5) is the tangent space to the fixed locus of the group generated
by g5 acting on G by conjugation. So the tangent space to Zg(gB) at the identity is the
fixed part of the tangent space to G at the identity; in other words, the roots of the Lie
algebra of Zg (gﬁ) are precisely those roots p; of G with p; (gé) = 1. Since

pi(95) = pi(ra(e™/*) 1) = 2mialen),

we see that p; is a root of Z(g;) if and only if a(p;) = B(pi) € Z. So Ry is the set of roots of
G with a(p;) = B(pi) € Z<o. By checking the cases 3(p;) <0, 8(p;) =0, and B(p;) > 0 each
in turn, one may check that this coefficient may also be written as Z5 = Hpi C(B,pi)~ L.
This completes the proof of (46). d

Remark 4.4.5. If R is not trivial, Lemma 4.4.3 still holds as an equality of classes in
A*([FE(X//T)/(R x C3})]) after replacing all virtual and characteristic classes with their
R-equivariant counterparts, and replacing p; by the character of R x T given by the com-
position R x T 22 T 24 C*.  Indeed, by [CIJW21, Lem A.3.3] the diagram (44) holds

R-equivariantly, and in place of (45) we have the homomorphism

(ryt,s,0) = (rt1a(s) e () ™)

RxT.

RxT xC" xCly.

The remainder of the proof of Theorem 1.1.4 is routine.

5. QUANTUM LEFSCHETZ FOR [-FUNCTIONS

Welet Y C X,G,0,F, and s be as in Section 1.1.2. Let T C G be a maximal torus,
and denote the weights of F with respect to T" by ¢; for j = 1,...,r. If Z is a scheme
with a G-action and F' is any G-representation, set Fy := F' x Z (the G-equivariant trivial
bundle), and if W = [Z/G] let Fw := [Fz/G] be the induced vector bundle on W. The

inclusion i : Y — X induces a map i, making the following diagram commute:

Hom(Pic” (Y), Q) —*— Hom(PicT (X), Q)

l l

Hom(PicG(Y)7 Q) SN Hom(PicG(X)7 Q)

Notation 5.0.1. We will hereafter use these maps implicitly, using symbols 3,0, 3, and &
for elements of the top left, top right, bottom left, and bottom right corners, respectively. As
an ezample, given § € Hom(Pic®(X), Q) we will write 8 — & for the preimage of § under

the right vertical map.
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5.1. Preparation. We check that our assumptions (1)-(3) in Sections 1.1.1-1.1.2 imply
that quasimap theory is defined for the complete intersection (Y, G). Recall that X is an
affine variety, G is a reductive group acting on X, and 6 is a character defining stable and

semi-stable loci. The proof of this lemma was explained to me by Yang Zhou.
Lemma 5.1.1. If X*(G) = X*(G) then Y**(G) =Y*(G) = X°*(G)NY.

Proof. Clearly X*(G)NY C Y*(G) C Y**(G). Let y € Y**(G). Then there is a function
f of weight k@ such that f(y) # 0. Since the map of coordinate rings C[X] — C[Y] is
surjective, there is a function g on X that restricts to f. A priori g may not be a function
of weight k6, but by Schur’s lemma it has a summand ¢’ of weight k6 and by ¢’ restricts
to f. Soy € X*°*(@G). Since X*°(G) = X°(G) the orbit Gy is closed in the open subset of
X where ¢’ # 0, and hence it is closed in the open subset of Y where f # 0. O

The inclusion i : ¥ — X induces a closed embedding 1,(Y /G) — I,(X//G) which we
also denote i. A key observation is that since s is a regular section on X*(G), it defines a
canonical G-equivariant isomorphism between the normal bundle Ny )/ x+(g) and ExY*.

We likewise get an explicit description of the normal bundle of inertia stacks as follows.

Lemma 5.1.2. The map i:I,(Y)G) = I,(X/G) is a regular immersion in the sense of
[Vis89, (1.20)]. If for g € T we write (I,(Y J/G))g) = Y/ cZ(g), then the normal bundle
L(Y JG))g) in (I.(X)G))(g) is given by the following sub Z(g)-representation of E:

(52) E= P C,.
€j s.t. €5(g)=1

Proof. Observe that (1,(X/G))) = X9//sZ(g), so the desired normal bundle lifts to the
G-equivariant normal bundle of Y*(G) in X*(G). Since X*°(G) and Y?*(G) are smooth
varieties, for any g € G the fixed loci (X*(G))9 and (Y*(G))9 are also smooth. It follows
from [Stacks, Tag 069M, 069G] that (Y*(G))9 — (X*(G))Y is a regular embedding. Let
(g9) C G be the cyclic subgroup generated by g. To compute its normal bundle when g € T,
we use [Edi92, Prop 3.2] to identify Q(y:(q))s with the (g)-invariant part of Qy(¢), and we
take the (g)-fixed part of this exact sequence (see [Stacks, Tag 06BJ]):

0— E}\ﬁs(G) — i*QXS(G) — QYS(G) — 0.
Here we used the identification Ny x+(a) = Ey:(qg) given by s. ]

Remark 5.1.3. If the torus R is not trivial, then our assumptions in Section 1.1.3 imply
that Y C X is an R-invariant subset. Since the R action commutes with the G action, the

isomorphism (52) holds R-equivariantly.
Let 0 € Hom(Pic®(X),Q) and define

Fs(Y)G) = | | Fp(Y )G).

B4

Similarly, for & € Hom(PicT (X), Q) such that 6 — 4, set

F5(Y)G): |_| F5(Y)G) F(Y)T) = | | F(Y /IT).
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r

of F3(Y /T) defined in Proposition 4.0.1. For B € Hom(Pic” (Y), Q) such that 5+ 8, we
have 95 = 95 We have the following extension of Proposition 4.0.1.

where Fj3(Y /G) is the closed substack of F, 5 (Y /G) and FE(Y//T) is the open substack

Proposition 5.1.4. There is a closed embedding i : F5(Y JG) — F5(X Q) fitting into the

following commuting diagram.

i

T

¥

(U

F5(Y JG) «—— F2(Y JT) F5(X)/G) «+—— FY(XT)
(53) o) L | N » X9 )| T
Y% ) o Zc(95) i X% [ o Zc(95)

In fact, the triangle on the left is the pullback of the triangle on the right along the map i.

(One of the arrows is drawn dashed to clarify the diagram.)

Proof. The commuting triangles come from Proposition 4.0.1 (applied once to X for the
degree § and several times to Y for each 3 mapping to 5) Note that this diagram uses only
G-stable points, so we do not need any smoothness or stable=semistable hypotheses on the
T-stable locus.

We check that the square with i and i is fibered. Observe that the square commutes and
that i and i are closed embeddings, so it suffices to check that the fiber product is contained
in F5(Y /G). Let S be a scheme and let let ¢ = (P ;)s, %, 0) be an S-point of F5(X /G),
so the underlying principal T-bundle of & is determined by 6 and we know that o sends
[V/pa] into X*(G). If evy(q) is an S-point of X9/, Z¢(g5) = (1.(Y | G))(g;) then o sends
Bp,, into Y*(G), and by Lemma 4.2.2 we see that o sends [V/u,] into Y*(G) and ¢ is an
S-point of F5(Y /G).

O

Finally, we have the following analog of Lemma 4.4.3.

Lemma 5.1.5. We have the following relationship in A*([Fg(Y//T)/(Cj{])

VYE[F5(X )G S [F5(Y )G
54 0o = C@,e;) | pr 2
oy ecs (ViU Niplx ja) 11;[1 e P ecs (NVE v ye)

Here, z is the Euler class of the line bundle on [Fg(Y//T)/(C}‘\] determined by the identity
character of C% and i' : A*([F(?(X//T)/(Ci]) — A*([Fg(Y//T)/(C’g]) is the refined Gysin
pullback over the dotted arrow in (53).

Proof. In structure the proof is similar to that of Lemma 4.4.3. Let m: P} | x F5(Y /G) —
F5(Y)G) and ¢ : P} | x F5(Y J/G) — [Y/G] be the universal curve and universal quasimap
on the fixed locus (more precisely, on the disjoint union of fixed loci). To compute (54) we

obtain, as in the proof of Lemma 4.4.3, a (equivariant) distinguished triangle in the derived
category of F3(Y /G)

(55) L{*(EFg(X//G)) E— EFS(Y//G') E— (R?T*q*E[y/G] [—1])\/ —_—
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whose fixed part fits into a morphism of triangles

Li* (B3 x ja)) — Eflly jo) — (Bma Lyyycy/ix/a) @ w?))™ ——

(56) l J las;

Li*(Lpyxyc)) — Lrgovya) L;

where the first two vertical arrows are defined in (24) and the last vertical arrow is the
canonical morphism ¢; := ¢r. (v ya)/r;(xc) of [CJW21, (55)]. We have used that Y — X
is a regular embedding so we have Ly,/a/[x/q) = E[vy/G].

To compute ecy (¢§1*N;%r(x//g)) we take the dual of (55) and then apply ¢%. By the

additivity of Euler classes (see the proof of Lemma 4.4.3) we have

mov )

viecs (Npy yay) = ecy (U3 NEtx jayecs (Vi Rmq” By [—1])

By base change for Rm,., we have wERW*q*E[y/G] = Rm.q" Ey/r), where now ¢ : ]P’}Ll X
Fg(Y//T) — [Y/T] is the universal map. A computation using Example 3.2.4 shows that
ecs (Rm.q* Efy/r[—1])™°) is equal to a product [[; #;, where we set

-1

%j = H (Cl(.,ggj) + ]{/’Z) if S(Ej) >0
0<k<d(e;),k—b(e;)EL
(57) R; = 11 (c1(L,) + kz) if 5(e;) < 0.

5(e5)+1<k<0,k—3(e;)EZ

Since the class [F;5(X /G)]¥'" is nonequivariant (meaning that the class in A, ([F5(X /G)/C3])

is pulled back from A, (F3(X /G)), or that the corresponding polynomial in A, (F5(X /G))|%]
is constant), it suffices to compute i!d)g [F5(X /G)]¥™™ non-equivariantly. To do so, we first
define a virtual pullback i' : A.(F5(X/G)) — A.(F5(Y//G)) using the rightmost column
of (56). This requires us to check that ((Rm.q*Epy q)[—1])¥*)" is perfect of amplitude
[-1,0]. The complex Rm.q* Ejy/¢)[—1] is perfect in [1,2], with the part in degree 2 equal to
le*q*E[y/G]. The fixed part (Rlﬂ*q*E[y/G])Fix vanishes if and only if its pullback under
15 vanishes. Using flat base change [Bro09, Prop A.3.4] we have

(58) PE(R'mq" Ery )™ = (R'mq” Eryry)™

where now ¢ and 7w are the universal maps on F g (Y/T). A now-standard computation
shows that the right hand side of (58) vanishes.

The refined virtual pullback i and the refined Gysin pullback i' are both maps A, (F. g (X)1)) —
A, (F(? (Y)T)). Let E C E be the subrepresentation spanned by weight spaces with
5(€;) € Zeo. We assert that i'a = e(E},g(Y//T)) Ni'a for any o € A*(Fg(X//T)); the
proof of this equality is quite technical and we defer it to Lemma 5.1.6. Granting this, we

have

PP (X JG)™ = e(Bpoy ) DT [F5(X ) G)™
= ¢( ;?(g(y//T)) N w;f{! [FS(X//G)]Vir

= ¢( ;“;(Y//T)) NY3[F5(Y /G
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In order, the equalities use Lemma 5.1.6, [Man12, Thm 4.1] and [Man12, Cor 4.9]. The
factor e(E},S(Y /G, )) combines with the product (57) in such a way that the resulting product
looks the same as (57) but with k allowed to be 0. O

Lemma 5.1.6. Fora € A*(F(g(X//T)), we have

i'a = e ;ﬂg(y//T)) Ni‘a.

Proof. This lengthy argument is divided into sections by subheadings.

Reduction to an excess intersection problem. The strategy is to interpret the refined maps
(59) i ALFY(X)T)) — AL(FJ(Y)T))

as (unrefined) virtual pullbacks for the closed embedding F(Y/T) — (X /T) and apply
Lemma A.2.2. To simplify notation we omit the degree § from the quasimap fixed loci and
write g = g5. The refined map i' in (59) is equivalent to the virtual pullback defined by the

perfect obstruction theory

oi : ev:@ELyg//GZ(gS)/Xg//GZ(g) = ev:]Lyg//GT/xg//GT — ]LFO(Y//T)/FO(X//T)

where both morphisms comprising ¢; are canonical maps of cotangent complexes. On the
other hand, the refined map i' in (59) is equal to the virtual pullback given by the perfect

obstruction theory

V3¢ Vi (Rmaq* Liyayix/c) @ W)™ = Wi Lpy o) p(x )6y,

where ¢; was defined in (56) (it is the fixed part of the canonical map for F(Y /G) —
F(X//G) defined in [CJW21, (55)]). By [CJW21, Lem A.2.4], the fiber squares

Y/T] — [Y/G] FOY JT) —— F(Y//G)
(X/T] — [X/G] FOX)T) — F(X/G)

imply that ¥X¢; is isomorphic to the fixed part of the canonical map [CIW21, (55)] for
FO(Y)T) — F°(X JJT). We see that by Lemma A.2.2 it is enough to construct a commuting
diagram

Loy yry/mo0xpm) — (Bmeq*Liymy/px/m) © w*)™

(60) T, 1

oi \
eUiLYG//GT/XQ//GT

where the horizontal arrow ¢ is the fixed part of the canonical map [CJW21, (55)] for
FO(Y)T) — F°(X)JT), and vertical arrow is a surjective map of locally free sheaves with
kernel isomorphic to (E7. v //T))V. In fact, we will do the opposite: we will construct a

dashed arrow as in (60) that is a split injection making the diagram commute.
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Defining (60) at the level of universal curves. There are canonical morphisms of cotangent

complexes given by the solid arrows in the diagram

T Lpocy yry/pox gy — Lt ypt s ¢"Lpyy1y/1x/7)
(61) \ |

v

W*ev:Lyg//GT/Xg//GT

where we have written PLx (resp. Pp, ) for P} | x FO(X /T) (resp. P} ; x FO(Y JT)). This
is a diagram of complexes on P} | x FO(Y /T).

We claim that after the complexes are pulled back to [Q2/u,] x FO(Y JT), there exists
a dashed arrow in (61) making the diagram commute. This may be defined as follows.

Consider the diagram

alv/ma)

V/pta] X FOY JT) —— Bpg x FO(Y JT) 245 1y
(62) =
FO(YJT)

By the description of ¢ in Proposition 4.2.5, the top cell commutes—in fact, it strictly
commutes. The bottom cell, however, does not commute: the map of groups going along
the top is given by 75 (in particular it is injective) but along the bottom it is trivial.
However we know ¢ factors through Y9 /T. We define ¢; to be the morphism such that the

composition
V/pa] x FO(Y JT) 25 Y97 25 [v/T)

is equal to ¢, and we define @ to be the rigidification Y9)T — Y9/T where T :=
(T'/{Ta(u.)))- These definitions give us a strict equality @ o q;|pu, = @ o ev, o 7. Com-
bined with the top cell of (62), this gives a strict equality w o ¢; = @ o ev, o m of maps
[V/1a] x FOY JT) = Y9 T.

This leads to the following extension of (61), where the gray equality is defined and
makes the diagram commute after restriction to [V/p,] x FO(Y JT).

m Loty yry/rox pry = Lt et <= @ Lpyyry/1x))

~_ |

@G Lyoy r/x0 ) r $—— G Lyay 1/x0),7

W*eviLYH//GT/Xg//GT i ’/T*e’U:w*LYg//G’f/XQ//GT

From this we see how to define the dashed arrow in (61): it is equal to the canoni-
cal projection E[\gl/p,a]xF“(Y//T) — (Eg)fg)/“a]xFo(Y//T) followed by the automorphism of
(Eg)fgz/pa]xFO(Y//T) coming from the 2-isomorphism between wog; and woev, om—but we
have checked that this 2-isomorphism is trivial on the domain [V/p,] x FO(Y JT), so the

stated automorphism is determined by the identity automorphism of (E9 )E/V ] X FO(Y ) T)"
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Taking cohomology of (61). Applying Rm.(— ® w®)F* to the solid part of (61) yields the
right part of the following commuting diagram.

(63)

Lroy yr)/rocx ) = B Loy jry pocx pry @ W)™ = Rm(q Ly my/1x/m) © 00°)

@T T (

eviLyoy r/x0 )7 € Rrdn eviLys ) 1 x0 )7 @ W)™

Fix Fix

The square on the left comes from applying the inverse of the projection isomorphism and
the trace map as in the definition of the adjunction-like morphism in [CJW21, Sec A.2.1].
The composition of the top two arrows is ¢ in (60) and the left vertical arrow is ¢;. A routine
computation (see e.g. below) shows that the fixed part of the trace map R, (w®)F™* —
Opo(y ) is an isomorphism, so the bottom horizontal arrow in (63) is an isomorphism.
Hence, to construct (60), it suffices to construct a dashed injective arrow as in (63) making
the triangle commute. At the moment, it is not clear how this desired arrow relates to the
one in (61).

Because Rm.(q*Lix/r)/1v/m ® w*)F% and R, (ﬂ*evi}Lyg//GT/Xg//GT ® we)Fix

are repre-
sented by locally free sheaves in degree -1, it suffices to consider the diagram of cohomology
sheaves that arises from applying the cohomology functor H~! to (63). Noting the equality
of functors H =1 (Rm,(e®@w*®))F™ = Rlx, (H ! (e)®@w)"™ on complexes supported in degrees
—1 and below, we see by applying the latter functor to (61) that it suffices to construct a

split injective dashed arrow with complement (E’)Y so that this diagram commutes:

R'm ((H™ Y (m* Loy y1y/po(x 1)) @ W) —— (RIW*(Q*E[Vy/T] ®W))Fix
(64)

(Rim.(m*evi(EY, . )V @ w))kix

Now it is clear how the desired dashed arrow (in (64)) can be obtained from the dashed
arrow in (61): since 7 : P} | x FO(Y JT) — FO(Y /T) is a trivial P} ;-bundle, we can com-
pute Rlm, as in Example 3.2.4. In particular, a local section of (le*(q*E[\g,/T] ®w)) is a
local section of q*E[{//T] ®@w) on [Q/u,] x FO(Y JT). So the dashed arrow in (61) defines a

dashed arrow in (64) making the diagram commute.

Ezxplicit description of the dashed arrow in (64). It remains to check that the dashed arrow
is split injective with the desired cokernel. Recall that it is induced by the projection

EY — (E9)Y (and the “identity” on sections written in the coordinate v on [V/u,]). As in

*

the proof of Lemma 4.4.3 we have an isomorphism of C}, ,

-representations

Rlﬂ-*(q*E[\g//T] ®w) = R'm, @(W*ZQZ ® @P}MXFO(Y//T)(—GS(%) —a—1)® (cu—a&ej)—a
J

(65) ~ P (2 0 H'(PL,, 0(=ad(e;) —a=1) 8 C, s )
J

where g := A/ is the coordinate on C* and where we have used the fact that w on

Al/as

PL 1 x FO(YT) is given by the 1-dimensional T' x C* x C%,,,-representation (t,s, y1) —
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sToly=e fort €T, s € C* and pu € C3i/a- Analogously, we have

(66) R'mi(r*cvi(BY,, )Y ow) = (fej ® H'(PL,, 6(—a—1))® c,,a) :
js.t. 8(e;)EZ

This uses the fact that as a T'x C* x C*

A\l/a
respect to the C* x C3,,

Recall from Example 3.2.4 that H! (P}

a,l

-representation, w*evi‘(E')g/g//GT)v is trivial with
-factor, being pulled back from the base.
0(—ab(e) — a — 1)) has a basis of monomials

™™ with am +n = —ad(e) —a — 1 and m,n < 0. The weight with respect to C* of a
—8(e)=1y—1

section u™v™ of (65) is (—d(e) — 1) — m, so fixed sections are of the form u

in particular, H'(P. |, 6(—ad(e) — a — 1) has at most a 1-dimensional subspace fixed by

a,l
C%, and this space is positive dimensional if and only if §(¢) = —m — 1 and hence is a

1

nonnegative integer. Likewise H'(P}, |, 0(—a—1)) is 1-dimensional with basis u~'v~!, and

as a section of (66) this monomial has weight —1 — (—1) = 0 for C}. Hence the vector
space projection H'(P, |, Oad(e) —a—1) = HY(P} |, 0(—a — 1)) sending w29~ 1y~ to

u~tv~! (note that this is the identity after setting u = 1) induces a split injection
(67) (R'mu (0" By ) ® )™ = (R'mu(w"ev} (B, ) _p)" @ w))"™.

The cokernel of this injection is precisely the vector bundle on FO(Y /T) induced by the
dual of the subrepresentation of EY spanned by weight spaces for weights that are NOT

nonnegative integers; i.e., the cokernel is induced by the projection (E9)Y — (E)V.

O

5.2. Proofs of Theorem 1.1.6 and Corollary 1.1.8. We now proceed with the proof
of Theorem 1.1.6.

Proof of Theorem 1.1.6. We first observe that to prove Theorem 1.1.6 it suffices to show
that the following equality holds in A, (I, (Y /.T))[z, 2]

(69) ZW(EU*)*L*I;//GZ(HC(S,W)1> [1C6.e) | 52T,
j=1

Brré Jivs \i=1

Indeed, granting (68) we obtain Theorem 1.1.6 as in the proof of Theorem 1.1.4, using the
additional fact that the Gysin map i' commutes with proper pushforward by @ (see [BS,
Prop B.18)]).

We use (51) to compute the left hand side of (68):

(69) IR (o) ([F5 (Y ON™ Nec; NE v ya) ™)
Br>6 ’ Grs z0<0 €1(Z50)

Let i' : A (X9 ) ;T) — A.(Y9% | ;T) be the refined Gysin pullback defined by the diagram
(53). Since ¢, is flat it is equivalent to the Gysin pullback for the dotted arrow Y% /T —
X9 )| oT in that diagram. We will show that

(70)
mo ro ()3 ([F(Y /G Nees (N y ) ™)
.1 -1 ‘*L* f(//T _ € B B .
i <Z‘|_|1 C(Csvpz) > J 5 E | I 0(57 J) Hﬁ(pi)<0 Cl(o%pi)

Brsé =1
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Granting (70), one uses Lemma A.2.1 and the fact that 6(¢) = f(e) for any character
e € x(T) to show that the right hand side of (6) is equal to (69).

To prove (70), use the end of the proof of Theorem 1.1.4 (from (51) onwards) to show
that the left hand side of (70) is equal to

o) U (F(X G 0 ey (VE ) ™)

[T5p.)<0 €1 (Z50)
By [Kre99, Thm 2.1.12, Prop 2.4.6] and Lemma A.2.1, this equals
1 Y5 (X )G
(71) )

- (ev,
500 <0 1)) ecy (Y1 FNE )

where i' : A, (F(X)T)) = A(FQ(YJT)) is now the refined Gysin pullback over the dotted
arrow in (53). By Lemma 5.1.5 and the fact that i*.%,, = .Z,,, this is equal to

1 Y /G vir
HC oyt 09
HS(pi)<o (L) *ecy (NFg(Y//G))
Recall that F5(Y'/G) is equal to the disjoint union | |55 F;5(Y /G), so (ev, ) [F5(Y )T =
255 (ev)«[Fp (Y JG)]'™. Some rearranging, using the projection formula and the fact that
if 3 maps to & then 6(¢) = f(¢), reduces this to the right hand side of (70). O

Remark 5.2.1. The equation (70) explains the factor 1_[5(E yezoo C1(Ze;) that arises in

the denominator of the right hand side of (6). Of course this product is not invertible in

X// X/)a

general. However, (70) shows that i'¢*1, T , and hence <p*] , 18 always divisible by

H@(@ez<0 a1 (Z,)

Remark 5.2.2. If R is not trivial, then Lemma 5.1.5 can be lifted to the analogous
equality in A*([F(?(Y//T)/R x C3]) by replacing all virtual and characteristic classes with
their R-equivariant counterparts, and replacing the €; with the weights of E as a T x R-
representation. For the (non-Cj-equivariant) computation of i!w [F5(X JG)|Hr we use the
description of R-equivariant Chow groups in Lemma A.1.1. The remainder of the proof of

Theorem 1.1.6 is routine.

Proof of Corollary 1.1.8. Let X be a vector space with weights &1,...,&,. As usual we
prove Corollary 1.1.8 for nonrigidified I-functions. To obtain the rigidified statement, we
apply (a o w),, where a denotes multiplication by the integer a determined by 8. Recall
that ev, : Fg — I,(X//G) factors through the component I, (X /G) of I,(X/G). The
degree of w restricted to I, (X) is a~!, and this cancels with the multiplication by a.

To derive Corollary 1.1.8 for nonrigidified I-functions from Theorem 1.1.6 there are two
things to do: we must compute j*I; X/T and the Gysin pullback i' : A, (LX) cT)gs) —
A (I, (Y ) 5T)g;). A formula for the rigidified coefficient T?//T is given in [CCK15, Thm 5.4];

the following formula can be obtained by minor modifications of that argument:

(72) FRE Hc (5,€0)1

In (72), the class 1 - is the fundamental class of 1,,(X /T) 1. Indeed, this stack has pure
5 5

dimension: it is isomorphic to [(ch;1 N X*(T))/T], and the codimension of X% in X is

equal to the number of weights &; with &(ggl) =1.
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Now we compute i'j* applied to (72). Since j is an open embedding, the series j*IéX//T
is given by the same formula (j* notationally does nothing). To apply i' we momentarily
drop the notation 1, and instead write out the fundamental class. For any character &

S5
of T, we have

(73) ¥ (e1(Ze) N (X JT),0]) = o1 20) O (X T) ] = e1(Ze) N LY JT) 1]

The first equality is Lemma A.2.1, and the second is [Ful98, Example 6.2.1] when X /T
is a scheme. When X /T is a Deligne-Mumford stack, it follows immediately from the
construction of i' in [Kre99, Sec 3.1]. The upshot of (73) is that the Gysin pullback i’

notationally does nothing, and we obtain the result. O

APPENDIX A. SOME RESULTS ABOUT CHOW GROUPS

In this section, all stacks are finite type, quasi-separated, and Deligne-Mumford over a
fixed base field. We use the proper pushforward (for morphisms of DM-type) of [Skol9]
and [BS, Appendix B].

A.1. Equivariant Chow groups of Deligne-Mumford stacks. Let X Deligne-Mumford
stack with pure dimension and a group action by an algebraic group G. Given an integer
k (possibly negative), let V' be a representation of G such that G acts freely on an open
subset U C V whose complement has codimension greater than dim(X)—k. Let v = dim V.
Define

AZ(X) == Apyo—g(X xc U).

where the right hand side is (as usual) Kresch’s integral Chow group, tensored with Q. The
following lemma shows that the group Ag (X) is independent of the choices made to define
it.

Lemma A.1.1. There is a canonical isomorphism
AT (X) — A([X/G)).

commuting with equivariant proper Deligne-Mumford pushforward, flat pullback, and Gysin

maps for regular embeddings.

Proof. Let u be the dimension of the complement of U in V. The open embedding X xqU C

X X¢ V has a complement of dimension dim(X) + u — g induces an isomorphism
(74) Fio—g(X xa V) = A7, (X xa U)

since dimX — g +u < k + v — g by assumption on V and U. Here, A° is the naive
Chow group of [Kre99, Def 2.1.4]. Since X Xg U is a Deligne-Mumford stack, we have

Ay (X XgU) > Ajyp—g(X xgU) by [Kre99, Thm 2.1.12(ii)]. Composing the inverse of

(74) with the canonical map A7, (X xg V) — Ar([X/G]) gives a morphism Af (X) —

Ar([X/G]). The inverse may be constructed as in [Kre99, Rmk 2.1.17], using [Kre99,
Rmk 2.1.16, Cor 2.4.9].
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Compatibiliy with proper pushforward and flat pullback follows from formal arguments.

For example, if f:Y — X is flat of relative dimension d, then there is a diagram

Apro—g(X Xg U) == A7, (X xg U) «—=— A}, (X xg V) — Ay([X/G])

Ir lr lr I

Ak+v—g+d(Y Xa U) < Az+vfg+d(y Xa U) < Az+v*9+d(y xa V) - Ak+d([Y/G])

where the top and bottom rows are the isomorphism constructed in this lemma, and the
maps f* are flat pullback. The diagram commutes by definition of f* for the Chow groups
of [Kre99).

Compatibility with Gysin maps is a shade trickier since we do not have a definition of
f' for the naive groups A°. Suppose f : Y — X is a regular local immersion. Choose
an element o of Apiy—g(X X U) represented by a class [W] in Ay, (X xg U). Let
W' =W Xxxqvu (Y xgU). From the description of Gysin pullback in [Kr699, p. 514], the
class f'a is represented by [Cyy/w] € Ap (Y xgU) ® N), where N — Y xg U is the

normal bundle to f and Cyy//w is the normal cone. If W] € Ay, (X xgU) is alift of [W]
and W' =W x xx v (Y xg V) is its pullback, then [IW'] is a lift of [W’], and it follows from
[Man12, Prop 2.18, 2.33] that [Cyy,/ 5] is a lift of [Cyw/w]. But if 8 denotes the image of
under the isomorphism of this lemma, then [Cyy, 3] € Ap L, _ 1 4((Y xg V)@ N) computes

f'B. 0

Lemma A.1.2. Let F be a Deligne-Mumford stack of pure dimension with an action by C*
that is trivial after a reparametrization of C*. Then there is a canonical graded isomorphism

(of groups tensored with Q)
(75) Au(F)[z, 271 = AL ([F/C)

where z has degree —1. The isomorphism (75) identifies multiplication by z with the op-
erational class c1(0(1)), where O(1) is the line bundle on [F/C*| induced by the identity
character of C* This isomorphism commutes with (equivariant) proper representable push-

forward, flat pullback, and Gysin maps for reqular embeddings.

Proof. First assume that the C*-action on F' is trivial (without any reparametrization).
Define (75) in this case as follows. For o € Ay (F') and ¢ € Z>( let £ be an integer satisfying
¢> (dim(F) — k +1i). Let 0 : X x P~ — X be the projection. Define (75) by the rule

azl = e (0(1) No*a € Apyei1(F x P71,

noting that Apy,;_1(F x P~1) ~ Ay ;([F/C*]) by Lemma A.1.1. One may check that
the resulting map A, (F)[z] =~ A.([F/C*]) is independent of ¢ by checking that it is com-
patible with the identifications in the proof of [EG98, Def-Prop 1]. It is an isomorphism on
summands of pure degree by [Kre99, Prop 2.5.6].

Now we prove the general case. Let C} denote the original group acting on F (whose

action is only trivial after reparametrization). For a positive integer a, let Clije 2 C act

on F via the isogeny C3,,, — CJ given by e ()\1/“)“. By assumption, there is a

positive integer a such that the group action of CJ,,, on F' is trivial. The identity X — X
Al/aya

% C3 induce an isomorphism

*

and isogeny C},,

(76) [X/Ca] = [X/CF).
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In fact, this is already an isomorphism of the prestacks defined in [Rom05, Prop 2.6].4
Now define (75) to be the composition

(77) A(F)[] 225 AUF)E] S5 A(F/Chusa)) = A(F/CF)

where the middle arrow is the isomorphism determined at the start of this proof and the
equality is induced by (76). Explicitly, we may take it to be the inverse of flat pullback
along (76), so it sends ClCl(ﬁ[F/(C;l/a](l)) to c1(O[rycx)(1)). This shows that (77) identifies
multiplication by z with ¢1(&[r/c)(1)) as desired. It remains to check that the isomorphism
(77) is independent of a. But we have already seen that the image of z is independent of
a, and the restriction of the first two morphisms to A, (F') is also independent of a.
Finally we check that (75) is compatible with various kinds of morphisms. When the C*-
action on F' is trivial, these compatibilities follow from the compatibility of the isomorphism
in Lemma A.1.1 and the projection formula (for pushforward), [Kre99, Prop 2.4.6(iii)] (for
flat pullback), and Lemma A.2.1 (for Gysin pullback). In the general case, let F' and

G be two C*-stacks with action that becomes trivial after reparametrization. Since the

*

Al/a”
action on both F' and G is trivial. Now the desired compatibilities follow easily from the

composition (77) is independent of a, we may choose a sufficiently large so that the C

compatibilities in the case of trivial actions. ([l

A.2. (Virtual) Gysin pullbacks. Let i : X — Y be a local immersion of Deligne-
Mumford stacks (see [Kre99, Sec 3.1]). Suppose we have a fiber square

Y —— X'

& N

vy —— X
The refined Gysin pullback i' : A,(X') — A.(Y’) was defined in [Kre99, Sec 3.1]. The
following lemma is the analog of [Ful98, Prop 6.3].
Lemma A.2.1. Let E — X be a vector bundle. Then for o € A.(X'), we have
i'(e(E)Na) =ei*E)Ni'a

If (78) is G-equivariant, the same statement holds for G-equivariant Euler classes.
Proof. If (78) is G-equivariant, then the desired result is a statement about Chow groups
for the quotient of (78) by G, so it suffices to consider the non-equivariant case.

We can assume « is a cycle, represented by [V] € A2(U) with U — X, a vector bundle

and Xy — X’ a projective morphism. Let Yy = Xy x x/ Y’ with ip : Yy — X the canonical

map and By, , Ex, the pullbacks of E to Yy and X, respectively. We have a fiber diagram

itU & By, — U & Ex,

sk

B ————
|
Y

s

1
_—

M

4The stacks [X/(C’;\l/a] — [X/C3] are only isomorphic over BC* if the C}-action is trivial.
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where the maps labeled s are inclusions via the zero section. Let W =V xx Y, a priori a
closed substack of ifU. Since s is a closed embedding, the substacks V and W are isomorphic
to their images under s. From the definition of the Euler class [Kre99, Def 2.4.2] and the
concrete description of the refined Gysin map [Kre99, p. 514], we have that both i'(e(E)Na)
and e(i* E)Ni'a) are represented by the class of the normal cone of W over V, pushed forward
to AS(Ny,/x @ igU @ Ey,). O

Suppose X — Y is a closed embedding of Deligne-Mumford stacks. In this case H°(Lx /Y)
0, so any perfect obstruction theory for X — Y is perfect in degree -1; i.e., it is a locally
free sheaf in degree -1. Hence the associated vector bundle stack is actually a vector bundle:
it is representable over Y. A special case of the functoriality of virtual pullback [Manl2,

Thm 4.8] is the following excess intersection formula.

Lemma A.2.2. Leti:Y — X be a closed embedding of Deligne-Mumford stacks and let
¢1 : E1[1] = Ly,x and ¢ : &[1] — Ly, x be relative perfect obstruction theories, where
& is a locally free sheaf on' Y. For j = 1,2, let i!gj be the associated virtual pullbacks of
[Man12]. If there is a surjection & — &1 that commutes with the maps to Ly, x, such that

the kernel of the surjection is & (necessarily locally free), then
i, (@) = e(FY) Nig, ()
for a € A (X).

Proof. First apply [Manl2, Thm 4.8 with F =Y, G=9M=X,g=1idand f:Y — X the
inclusion. Because there is a short exact sequence 0 — % — & — & — 0 with compatible

maps to Ly, x, we have a compatible triple and hence

iy, =i, 0idy =idy oil,,
where the second equality is [Man12, Thm 4.3] and id'; is (refined) virtual pullback for
the identity map on X and the perfect obstruction theory .#[1] — Lx,x. Since the cone

stack associated to .#[1] is h'/h°(FV[~1]), i.e. the total space of the vector bundle .Z#",
it follows from the definitions and [Kre99, Cor 2.4.5] that id'z(a) = e(FV) N a. O
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