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ABSTRACT

Automatic Speech Recognition (ASR) systems take audio signals as
inputs and output the corresponding text transcriptions. The text
is then used to execute commands and perform searches in several
application domains, including security-critical applications such
as smartphone assistants, smart home assistants, and self-driving
car assistants. Signal processing attacks are one of the most recent
types of attacks designed to fool ASR models. Signal processing
attacks exploit the feature extraction stage of the ASR pipeline
and add perturbations to the audio. These attacks are capable of
generating wrong transcriptions of the audio signals even though
the attacked audio sounds similar to the original audio. Existing
defences for adversarial attacks are neural networks that act as a
filter to remove attacks from audio waveforms. The heuristic-based
training objective function used in training these filter networks
has a negative impact on the performance. Also, there is a discon-
nect between the training objective function and the application
objective function. We address these problems and propose a novel
self-supervised fine-tuning algorithm to make existing ASR models
robust to adversarial attacks. We do extensive experimentation on
our method against signal processing attacks across four different
scenarios, and in three out of four scenarios, our method exhibits
the best results.
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1 INTRODUCTION

ASR systems are widely used as a new form of accessibility and
new products are starting to incorporate them into their devices.
An application of ASR — speech-to-text (STT) models is essential
in enabling voice assistants (e.g., Siri, Google Assistant, Alexa) and
real-time captioning services. STT models struggled in robustness,
but most of the robustness challenges have been addressed recently
due to the availability of large datasets and improved hardware. A
prominent example of this is OpenAI's Whisper STT model [26].
However, the security of STT models is still being debated. Even the
commercially available, state-of-the-art STT models are vulnerable
to attacks. If voice commands are to be used in security-critical
applications such as smart home assistants, smartphones, electric
vehicles, etc., ASR systems must be resilient to adversarial attacks.
Adversarial attacks are attacks that perturb the original audio with
the intention of misdirecting the STT model to produce an incorrect
output.

Signal processing attacks are a class of adversarial attacks that
exploit the feature extraction stage of the ASR pipeline [3, 6]. Even
though the signal processing attack does not directly target the
inference component, it forces the output to be malicious. It can be
an addition or subtraction of a frequency component, a clipping
of intensities of audio samples which are higher than a threshold,
or an addition of Gaussian noise. Although these perturbations
could mislead the STT models, they are imperceptible to the human
ear. Figure 1 shows an illustrative example of a signal processing
attack. In the illustrative example, the voice command given by the
user - “Call my barber” is intentionally perturbed by an attacker.
Therefore the STT model gets the adversarial audio sample as input,
which outputs a completely different text - “Close my bank account”.
However, when a human listens to the adversarial audio sample,
the human perceives it as “Call my barber”. Therefore, the attack is
deemed to be imperceptible to the human ear.

In contrast to signal processing attacks, there are two other main
types of attacks — (i) optimization attacks [2, 10, 13, 15, 20, 25,
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Figure 1: Illustrative example of a signal processing attack
on an ASR system.

27, 34, 35], and (ii) gradient-free attacks [10, 14, 30] explored in
previous work. We focus on signal processing attacks due to their
high transferability and near real-time performance in real-world
ASR systems [6]. The behaviour of signal processing attacks makes
them faster, less model-dependent, and more query efficient. Signal
processing attacks are one of the most recent types of attacks. To
our surprise, most of the state-of-the-art commercial ASR systems
are vulnerable to these attacks, even after several defences have
been proposed.

The goal of a defence against such attacks must either be to
detect attacked audio samples and discard them before feeding into
the STT model or to change the attacked audio sample such that
the changes made during the attack are removed or minimized. In
security-critical applications, it is best to discard any audio samples
that are being flagged as attacked. However, some applications
can tolerate transcriptions with small errors. Some examples are
video auto-captioning, telephony surveillance and flagging and
audio journals. The main focus of this paper is the latter type of
applications. Therefore, we propose a defence to reduce the Word
Error Rate (WER) caused by attacked audio samples.

In this work, we critically analyze existing defences for signal
processing attacks and outline what factors affect the robustness of
defences. We show how the disjoint nature between the training
objective and the application objective impacts the performance
of the existing methods. Previous work approached this problem
based on heuristics [11]. The existing methods train a model that
acts as a filter to remove attacks from audio. During the training, an
objective function based on heuristics is used. The objective func-
tions try to minimize the distance between the original waveform
and the adversarial waveform instead of considering the applica-
tion objective of minimizing the WER [11]. In fact, it is difficult to
connect these two objectives since reconstructing the audio should
be done in a continuous space and minimizing the WER should be
done in a discrete space. Connecting these two objectives will, in
most cases, lead to a non-differentiable loss function.

Inspired by the work of Zhao et al. [37], we propose to do the
reconstruction in a latent space that is between the continuous and
discrete spaces. While Zhao et al’s work showed that using a latent
space works well in generating natural adversarial examples in both
image and text domains, we use a latent space to come up with an
improved defence against signal processing attacks. We introduce a
novel self-supervised fine-tuning algorithm which incorporates the
latent space of the STT model to make STT models resilient against
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signal processing attacks. Our defence only requires fine-tuning the
encoder of STT models. This saves both time and cost compared to
fine-tuning an entire STT model end-to-end. We demonstrate our
algorithm by fine-tuning the Whisper STT model [26]. We call the
improved Whisper, the “Robust Whisper”.

It is important to be mindful of what happens to benign audio
samples (audio samples that are not attacked) while we try to defend
against attacked audio samples. We specifically design the loss
function of the fine-tuning algorithm to reduce the damage on
benign samples as much as possible because, ideally, benign audio
samples must be fed into the STT model unchanged. However, to
further improve performance on benign samples, we propose to
complement our approach with an attack detection model that
detects whether a given audio sample is attacked or not.

By combining the fine-tuning algorithm and the detection model,
we come up with an end-to-end solution as the defence against
signal processing attacks. The audio samples that are flagged as
attacked from the attack detection model are fed into Robust Whis-
per and the benign samples are sent to the original Whisper model
(Vanilla Whisper). We call the combination of Robust Whisper and
the detector, “Regularized Robust Whisper”. Our defence, Regular-
ized Robust Whisper, is illustrated in Figure 2.

Vanilla Whisper

Benign

Audio

T ————
Attacked '"I'I' J

Robust Whisper

Figure 2: Regularized Robust Whisper. The figure illustrates
the pipeline of the end-to-end defence mechanism. The au-
dio waveforms are first classified as benign or attacked using
the attack detection model. Only the waveforms flagged as
attacked are sent through the fine-tuned Robust Whisper.
The waveforms flagged as benign are sent through the origi-
nal Whisper model (Vanilla Whisper).

The major contributions of this paper are as follows.

o We develop a self-supervised fine-tuning algorithm to make
existing ASR systems robust. This method only requires
fine-tuning the encoder of the STT model. Furthermore, our
approach does not require any human annotations (i.e. tran-
scriptions) for training.

e We present a new signal processing attack and evaluate our
defence against the new attack and other state-of-the-art
attacks [5, 6]. The new attack was developed to test our de-
fence in more attack scenarios in addition to the two existing
attacks [5, 6].

e We develop a signal processing attack detection model to
handle benign audio samples so that the benign samples are
not put through the defence mechanism.
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e We experimentally evaluate the performance of the end-to-
end defence, which is the combination of fine-tuning algo-
rithm and the detection model.

The rest of the paper is organized as follows. Section 2 surveys
previous related efforts. Section 3 introduces a new signal pro-
cessing attack. Section 4 describes our self-supervised fine-tuning
algorithm and the architecture of the attack detection network.
Sections 5 and 6 present the experimental setup and results, respec-
tively, followed by the conclusion in Section 7. The appendix of the
paper includes survey results (Appendix A.1) and experiments in
noisy environments (Appendix A.2).

The code used to train and evaluate Robust Whisper and benign
sample detector is available at GitHub. The datasets are available
at Hugging Face.

2 BACKGROUND AND RELATED WORK
2.1 ASR Systems

ASR systems comprise of three main steps: preprocessing, feature
extraction, and decoding. Preprocessing engages in removing the
background noises, interference, and other disturbing components
of the audio file. Feature Extraction retains only the important
information using various signal processing techniques such as
Discrete Fourier Transforms (DFT), Mel Frequency Cepstral Co-
efficients (MFCC), Linear Predictive Coding, and the Perceptual
Linear Prediction method. In addition to that, machine learning
extraction layers are trained to learn which features are to be ex-
tracted. During the decoding phase, the extracted features are fed
to the decoding model and this returns the corresponding tran-
scription. Models such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), Hidden Markov Models, and
Gaussian Mixture Models have been used in ASR systems. Radford
et al. [26] introduced a method to use encoder-decoder transformer
architecture introduced by Vaswani et al. [31] to come up with
a robust ASR system. This model is trained on a large corpus of
speech-text data in a multi-task setting. They use weak supervision
which incorporates a text standardisation step before calculating
the loss function during training. On a high-level interpretation,
the transformer encoder compresses the audio waveform into a
latent space. The decoder then uses this encoding to generate the
text auto-regressively.

2.2 Adversarial Attacks in Audio Domain

2.2.1 Optimization-based attacks. Recent research has proven that
ASR systems are vulnerable to adversarial attacks. L, clipping has
been widely used in magnitude controlling of attack perturbations
and has shown to be successful in the image domain [21, 22]. How-
ever, it is a poor technique for controlling the imperceptibility of a
perturbation in the audio domain as it introduces undesirable audio
effects. Going beyond L, clipping method, researchers have identi-
fied various methods to generate adversarial examples. Carlini et
al. proposed a white-box iterative optimization-based attack that
could produce targeted adversarial audio waveforms [13]. Given
the original waveform x, they produced x + §, which is 99.9% simi-
lar to the original (x) but transcribed to any phrase of choice. The
perturbation § is nearly inaudible. In [25], Qin et al. construct im-
perceptible audio adversarial examples using the psychoacoustic
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principle of auditory masking. Their attack occurs in two optimiza-
tion stages. In the first stage, they focus on finding a comparatively
small perturbation that can mislead the network. This was done
following the method presented in [13]. The second stage focuses
on making the adversarial example imperceptible. In [7], Abdul-
lah et al. proposed an equalization-based psycho-acoustic attack
that can fool traditional as well as fully end-to-end ASRs, unlike
the existing psycho-acoustic attacks, which could only be applied
against traditional models. Moreover, their work showed evidence
that their attack is less noisy than the L, clipping method.

2.2.2 Gradient-free attacks. Alzantot et al. presented a black box
targeted attack crafted using an approach based on gradient-free
genetic algorithms [10]. The algorithm creates a population of po-
tential adversarial examples by adding random noise to a subset of
samples within the given audio clip. Each generated example in the
population is assigned a fitness score based on how well it fools
the target model into predicting the desired transcription. The next
generation of adversarial examples is produced through a process of
selecting examples with higher fitness scores and crossover, which
involves combining pairs of population members to create new "chil-
dren" examples for potential improvements and mutation. Mutation
introduces occasional tiny random noises to the children, further
diversifying the population. This iterative process continues for a
predetermined number of epochs or until the attack successfully
deceives the target model. This genetic algorithm-based method
does not need any knowledge of the target model architecture or pa-
rameters. Taori et al. proposed a black box adversarial perturbation
method that combines the approaches of both genetic algorithm
and gradient estimation [30]. The initial phase of the attack em-
ploys genetic algorithms to generate a suitable sample. To mitigate
excessive mutations and noise, a novel momentum mutation update
is integrated into the standard genetic algorithm. In the subsequent
phase, gradient estimation is used. This involves estimating gra-
dients for individual audio points and enhancing the precision of
noise insertion as the adversarial example approaches its target.

2.2.3  Signal Processing attacks. These attacks are unique to the
audio domain. Abdullah et al. proposed an efficient and transferable
black-box attack named Kenansville attack that can fool any state-
of-the-art speech recognition and voice identification system in
near real-time with fewer queries [6]. The attack does not degrade
the quality of the audio and the introduced changes are impercepti-
ble to humans. They identified that their attack is robust to existing
adversarial attack detection and defence mechanisms. After eval-
uating many latest attacks on ASRs, Abdulla et al. identified the
Kenansville attack as the best attack to generate CAPTCHAs due to
its high transferability [5]. They also identified that adding white
noise defends a STT model against the Kenansville attack. As a
solution, the same authors proposed the Yeehaw Junction attack,
an improved version of the Kenansville attack to design robust
audio CAPTCHAs [5]. There they added some extra features in
addition to the decimation done in the initial attack. The additions
are, adding Gaussian noise to the perturbed sample and clipping the
large amplitudes of dominant frequencies preserving the location
of the frequency peaks so that the audio remains highly intelligi-
ble to the human ear. In the next section (Section 2.3), we go into
detail about the underlying mechanisms of the Kenansville and
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Yeehaw Junction attacks since our defence is tested against these
two state-of-the-art attacks.

2.3 Details of Two State-of-the-Art Attacks

2.3.1 Kenansville attack. Abdullah et al. have noted that existing
attacks on ASR systems fall short of being truly effective [6]. To ad-
dress this, they propose a novel attack named “Kenansville", which
operates by augmenting frequency components in the signal fol-
lowing its frequency domain representation. However, this method
shows limited efficacy against temporal dependency-based tech-
niques employed for adversarial detection and defence [36]. Their
approach is primarily based on the hypothesis that ASR and Au-
tomatic Voice Identification systems rely on speech components
that are non-essential for human comprehension. The process in-
volves taking the DFT of the audio signal, subsequently eliminat-
ing frequency components with intensities below a predetermined
threshold value from the spectrum. By applying the Inverse Fourier
Transformation, the original time-domain audio signal is recon-
structed.

The most crucial aspect lies in selecting an appropriate threshold
value, as maintaining imperceptibility after removing frequency
components is paramount. If the threshold value is set too high,
the audio quality degrades significantly, making it difficult for both
the model and human listeners to interpret the reconstructed au-
dio correctly. Conversely, if the threshold value is too low, both
human listeners and the STT model can readily comprehend the
reconstructed audio. To identify the optimal threshold value, a bi-
nary search is conducted between the maximum and minimum
intensities of the DFT-transformed signal. During the execution of
the attack, if the model output matches the original transcription,
the method increases the threshold value and feeds it back to the
model. Conversely, if the transcriptions differ, the method reduces
the threshold value and provides the updated value to the model.
It is important to mention the exit condition of the binary search
algorithm. As we mentioned earlier, one possible exit condition is
checking if the transcription differs. Change in a single word will
stop the binary search, but if you need a much stronger attack, you
can set the exit condition to check until a certain number of words
change. At the same time, you should be mindful of the amount of
distortion it adds since there is always a trade-off.

2.3.2  Yeehaw Junction attack. The Yeehaw Junction attack repre-
sents a significant extension of the Kenansville attack [5]. Abdullah
et al. discovered that by adding power to the empty frequency
bins, which were removed in the priorly proposed Kenansville
process [6], they could effectively counteract the effects of the at-
tack. This addition of white gaussian noise increases the power
evenly across all frequency bins, rendering the audio CAPTCHAs
intelligible to humans while forcing STT models to output empty
transcriptions. To evaluate the success of Kenansville attack against
optimization attacks, the authors employed the Levenshtein dis-
tance score between the phonetic representation of the original and
attacked audio samples as a metric for phonetic similarity. Notably,
the Kenansville attack produced the highest distance between the
original and attacked audio samples.

Since the Kenansville attack failed to generate intelligible audio
CAPTCHAs against an adaptive adversary, Abdullah et al. devised
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the Yeehaw Junction attack, which involves a process of decimation,
clipping, and noising [5]. The decimation step follows the same
process as discussed in the Kenansville approach. The “spectral
clipping” method exploits the fact that the human ear relies on
specific dominant frequency bands, known as formants, to identify
individual phonemes. By clipping these dominant frequencies in
the spectrogram, the method creates phonetic structures that do not
occur naturally. This clever technique effectively tricks STT models
while remaining imperceptible to human listeners, as the location of
the frequency bands in the spectrum remains unchanged. Further-
more, the clipping approach proves to be robust against Gaussian
noise-based adaptive adversaries. Clipping evens out the peak struc-
ture, which is crucial for the ASR system to transcribe accurately.
The addition of random noise fails to recreate the clipped-out peak
structure, preventing the adversary from obtaining the correct orig-
inal transcript.

Similar to the Kenansville attack, the Yeehaw Junction attack
also employs the binary search algorithm to select the optimal
clipping threshold. During the execution of the attack, if the model
output matches the original transcription, the method decreases the
clipping threshold value and feeds it back to the model. Conversely,
if the transcriptions differ, the method increases the threshold value
and provides the updated value to the model. In response to the
adaptive adversary during audio CAPTCHA generation, the defence
pipeline involves adding noise to every audio sample before passing
it to the STT model.

2.4 Transferability of Adversarial Attacks in
ASR Systems

Transferability of adversarial attacks enables attackers to deploy
attacks on ASR systems under a black-box setting which is the most
practical scenario in the real world. Abdullah et al. experimentally
demonstrated that transferability of optimization attacks against
STT models is highly unlikely even under situations where both
shadow and target models share the same architecture, hyperpa-
rameters, random seed and training data [8]. Input type, MFCC,
RNN, output type, vocabulary and sequence size were identified
as the factors that affect the targeted transferability of optimiza-
tion attacks [4]. As optimization attacks do not provide targeted
transferability, the community began to focus on signal process-
ing attacks which provide targeted transferability. But still, clean,
targeted signal processing attacks do not exist. Unlike ASR sys-
tems, speaker recognition systems are not robust to transferability.
Abdullah et al. proposed using an ASR for text verification in the
speaker recognition pipeline as a measure to ensure the robustness
of the overall speaker recognition pipeline [4].

2.5 Defences against Adversarial Attacks on
ASR Systems

In this section, we discuss the existing defences under two main
categories: i) detection and ii) filtering.

2.5.1 Detection. Hussain et al. proposed a framework called Wave-
Guard to detect adversarial inputs from benign inputs using audio
transformation functions (e.g. down-sampling and up-sampling,
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quantization and dequantization, filtering, Mel spectrogram extrac-
tion and inversion) and by analyzing the ASR transcriptions of
the original and transformed audio [19]. The proposed framework
demonstrated reliable detection of adversarial examples and robust-
ness even towards adaptive adversaries who have complete knowl-
edge of their defence. In [36], Yang et al. proposed an adversarial
audio detection mechanism based on temporal dependencies. Given
an input audio sample, the audio sample is partitioned into two.
Then the first partition and the entire audio sample are fed to the
STT model to get the transcriptions. If the corresponding parts of
the transcriptions are similar, the audio is detected as benign. If not,
the audio is adversarial. The detection is done based on the premise
that adversarial attacks distort the temporal dependence within
the audio. The authors claim that the temporal dependency-based
approach is lightweight, simple and highly effective at detecting
traditional adversarial attacks [36].

The above methods need pre-processing of the audio sample and
need to consider the transcription of the audio sample to arrive
at the decision. This is a time-consuming process and is the main
limitation of the existing classical detection methods.

2.5.2  Filtering. Defence mechanisms such as adversarial training
and convex relaxations [33] are harder to be used in speech recogni-
tion. Olivier et al. proposed a defence based on randomized smooth-
ing for speech recognition systems which is robust to all the attacks
that use inaudible noise [23]. Eisenhofer et al. proposed a method to
tame audio adversarial attacks on ASRs by applying psychoacoustic
principles [17]. They proposed to modify the existing ASR systems
by (i) adding psychoacoustic filtering to remove the inaudible parts
of the input audio and (ii) applying a band-pass filter after the fea-
ture extraction layer to remove the lower and higher frequencies
of the audio signal and training the STT models with augmented
data. Through this mechanism, they showed that ASR systems learn
a better approximation of human perception and adversaries are
forced to bring any adversarial perturbation into audible ranges.
At present, the most prevalent defence mechanism in audio
processing is denoising which removes/reduces perturbations in
audio. One commonly used technique for denoising is autoencoders.
Wau et al. proposed Mockingjay, which utilizes bidirectional trans-
former encoders [29]. The model learns to reconstruct or predict
the original frames given masked frames during training. In [28],
Wau et al. proposed Transformer Encoder Representations from Al-
teration (TERA), a more advanced self-supervised model compared
to Mockingjay which utilises alteration along three orthogonal axes
(time, frequency and magnitude) to pre-train transformer encoders.
Sreeram et al. propose a denoiser based on the DEMUCS archi-
tecture that is independent of the downstream ASR pipeline [11].
They found that training the denoiser with a perceptually moti-
vated loss increases the adversarial robustness without affecting
the benign audio samples. The authors adopted the pre-trained
DEMUCS-based denoising model, presented by Defossez et al. in [9].
DEMUCS architecture is an encoder-decoder-based deep neural
network with U-Net skip connections and a sequence modelling
network which is developed for music-source separation in the
waveform domain [16]. Defossez et al. have shown that it could
successfully be converted into a casual speech enhancer, processing
speech waveforms in real-time on consumer-level CPU [9].
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3 A NEW SIGNAL PROCESSING ATTACK

A variety of attacks is required to evaluate the robustness of our
defence mechanism. However, previous work includes only two
state-of-the-art signal processing attacks. Therefore, we propose a
new signal processing attack by combining frequency decimation
and imaginary component clipping methods. The decimation steps
are the same as what is outlined in the Yeehaw Junction attack [5].
Through several experiments, we identified that the optimal deci-
mation threshold exhibits a parabolic pattern. When the decimation
threshold is set too high, substantial noise arises due to decima-
tion before entering the clipping process, resulting in identifiable
perturbations to the audio. On the other hand, if the decimation
threshold is set too low, there are no significant frequency bins re-
moved. We also observed that the clipping effect greatly influences
the audio quality. Hence, the new attack focuses on determining
an optimized decimation threshold based on experimental values
following a parabolic pattern.

The decision to clip only the imaginary components of the audio
sample stems from the understanding that the imaginary compo-
nent of a complex value captures the contribution of sine waves
of different frequencies to the audio. In a manner similar to the
Yeehaw Junction clipping process, we selectively clip the imaginary
components after obtaining the DFT of the audio, which provides
both the real and imaginary components.

Clipping the imaginary components alters the Power Spectral
Density of the audio, resulting in indirect changes to the audio
phase. By focusing on the imaginary components, we manipulate
the audio in a way that effectively deceives ASR systems while
maintaining imperceptibility to human listeners.

Suppose the DFT of the audio sample is denoted as x + jy, where
Jj denotes the imaginary component. Then clipping only the imagi-
nary component changes the DFT as follows:

X+jy—>X+jyk—l (1
ka
k1 and ky are constants. k; is the absolute threshold value for clip-
ping and ky is the absolute value of the imaginary component
(k2 = |yl|). Imaginary component clipping changes the phase of
each frequency component as shown in the equation below:

¢ =tan(¥) > ¢ = tan(L L) ?)
x ko - x
Hence, the main stages in crafting the new attack can be identified
as (i) decomposing the original audio waveform to its frequency
components, (ii) decimating the low-intensity frequencies, (iii) sepa-
rating the real and imaginary components of frequency components
(iv) clipping only the imaginary component based on a thresh-
old value, (v) reconstructing a raw audio waveform concatenating
real imaginary components, (iv) evaluating it by sending through
an ASR System. This process is repetitively done, alternating the
clipping threshold at each iteration until the attack is successful.
Figure 3 provides a detailed overview of the process of creating
the new attack. Figure 4 elaborates its architecture, which is the
separation of real and imaginary components of the DFT decompo-
sition and clipping only the imaginary part using a threshold before
constructing the final waveform. These visual representations help
demonstrate the intricate steps involved in our approach. Since we
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Figure 3: Overview of the new attack. First, the audio sample is decomposed into its frequency components and decimated by
discarding low-intensity frequencies. Then, the real and imaginary components are separated. Next, the imaginary component
is clipped based on a threshold. Afterwards, the real and imaginary components are concatenated back and reconstructed the
modified spectrum into a raw audio sample. Then, pass it to the ASR and check for success. If it is not successful, then lower

the clipping threshold and re-run.
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Figure 4: Architecture of new attack. The DFT decomposition
gives both the real and imaginary components. We separate
them and clip only the imaginary component using the opti-
mal threshold. To find the optimal threshold, a similar ap-
proach as in the Yeehaw Junction attack is followed. Finally,
the real and imaginary components are concatenated back
to construct the final waveform.

are clipping only the imaginary component, hereinafter, the new
attack will be referred to as the “Imaginary Clipping Attack”.

We investigate the imperceptibility of the Imaginary Clipping
Attack and compare it with state-of-the-art attacks through a survey.
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Additional information about the survey and the analysis of its
results are presented in Appendix A.1.

4 METHODOLOGY
4.1 Whisper Architecture

In [26], Radford et al. introduced a method to use encoder-decoder
transformer architecture introduced by Vaswani et al. to come up
with a robust STT model [31]. This model is trained on a large
corpus of speech-text data in a multi-task setting. They use weak
supervision, which incorporates a text standardization step be-
fore calculating the loss function during training. On a high-level
interpretation, the transformer encoder compresses the audio wave-
form into a latent space. The decoder uses this encoding to auto-
regressively generate the text. We hypothesize that errors happen-
ing in the encoder propagate into the decoder, resulting in errors
in the transcription. This is illustrated in Figure 5. In the figure,
we have plotted original-attacked pairs in the latent space. We
can observe that transcription errors are represented in the latent
space. We hypothesize that by making the encoder robust, we can
reduce errors in the transcription. This saves the cost of fine-tuning
the entire end-to-end ASR pipeline to make it robust to new attacks.

4.2 Our Approach - Robust Whisper

Inspired by the work of Zhao et al., we explore the idea of using a la-
tent space [37]. Training two additional neural networks is required
to incorporate this idea — (i) an encoder that can map the continu-
ous waveform to a latent vector and (ii) a decoder that can map a
latent vector to the discrete space (text). Once we train this encoder-
decoder network, we can get rid of the decoder and use the encoder
output as the representation of both continuous and discrete spaces.
In order to train the audio-to-audio reconstruction network, we
can create a pipeline consisting of the audio-to-audio reconstruc-
tion network followed by an audio-to-latent encoder we trained
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Figure 5: Whisper encoder latent space. The figure shows
nine pairs of attacked-benign audios in the Whisper encoder
latent space. We projected the high-dimensional latent space
into a two-dimensional space using the t-SNE algorithm. We
color-mapped the L, distances between each pair. The dis-
tances illustrated in the figure do not align with the actual
distance due to the t-SNE algorithm.

previously. Now, the objective function is transformed to be “mini-
mizing the distance between the latent representation of the original
waveform and the adversarial waveform”. Since this latent represen-
tation contains information about the text, the objective function
will reduce the WER. However, this method requires training an
encoder-decoder network in addition to the reconstruction network.
But the latest ASR systems based on encoder-decoder transformer
models already have an information-rich latent space [26]. The
output embedding of the transformer encoder carries enough in-
formation such that the decoder can auto-regressively generate
the text using it. Thus, we can use the encoder output space as the
latent space.

Given this latent space, there are two possible approaches to
building a defence. The first approach is to use this latent space to
train a reconstruction network as described earlier. This approach
has a drawback. Adding an additional reconstruction network to the
ASR pipeline adds extra latency, disabling or hampering real-time
applications. The second approach is making the latent space robust
such that an adversarial waveform has the same latent representa-
tion as its original counterpart. This does not add any additional
latency to the pipeline, and therefore, we explore the latter as our
solution.

According to our hypothesis in Section 4.1, our approach only
requires fine-tuning the transformer encoder. The fine-tuning ap-
proach is illustrated in Figure 6. For each sample x we generate
an adversarial counterpart x”. Then we apply log mel spectrogram
transformation to both x and x” and the resulting outputs are named
as X, and x;nel respectively.

In order to fine-tune the encoder, we need two copies of the exist-
ing encoder from the STT model we are going to apply the defence.
From the two copies, we freeze the weights of one (fp) and keep
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Figure 6: Fine-tuning approach.

the other as trainable (fp-). Then we generate three embeddings as
follows;

ha = for (X01)

hg = for (Xmel)

hy = fo(omer)

We need to bring the latent vector of an attacked speech audio
generated by the fine-tuned encoder (i.e. hy) closer to its counter-

parts’ (ie. benign audio) latent vector generated by the original
encoder (hy ). We define our first loss for this task.

©)

L= ”ha - hy”Lz (4)

But this loss alone cannot achieve the expected behaviour. This

will make the encoder robust to attacked audios. But there is no

guarantee about what will happen to the latent vectors of benign

audios. We need to make the latent vector of the benign sample
stationary. We use the second loss to achieve this.

Lz = \hg = hyliL, (5)

We use the sum of two losses to upgrade the weights of the
trainable encoder (fy ). The fine-tuning algorithm is given in the
algorithm 1.

In the training process, we keep a copy of the original encoder
as a reference (fp). As a result, the minimum WER that can be
achieved by the fined-tuned encoder (fy-) on adversarial samples
(D’) is greater than or equal to the WER achieved by the original
encoder (fp) on benign samples (D);

WER(&,D’) > WER(0, D)
Where WER(8, D) is the upper bound for the performance.

(6)
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We determined the number of layers to fine-tune experimentally.
We achieved the best results by only fine-tuning the two convolu-
tional layers of the Whisper [26] encoder. During the fine-tuning,
we froze all the multi-headed attention layers of the encoder and
only kept the convolutional layers as trainable.

Algorithm 1: Encoder fine-tuning

1 Requires: An encoder fy from an STT model, adversarial
attack 7, speech samples dataset D.

2 Hyper-parameters: Number of epochs N. Gradient step
size (learning rate) A

3 for < fos

4 fori=0,1,2,..,N do

5 for x € D do

6 x — 1(x);

7 Xmel — mel(x);
8 x;nel — mel(x’);
o || e

10 hﬂ — fé(xmel)§
hy — fo(Xmel);
Ly = |lha = hyllL,:

11

12

13 Ly = |lhg = hyllL,;
14 L =11+ Ly;

15 0 — 0 —AVy L
16 end

17 end

4.3 Benign Sample Detection

Even though we designed our self-supervised fine-tuning loss to re-
duce the damages that happen to transcriptions of benign samples,
there could still be small errors. We must ensure that the proposed
Robust Whisper approach would not cause errors with the benign
samples. Ideally, we expect only the attacked samples to be recon-
structed using Robust Whisper. To achieve this, we developed a
benign sample detector to detect whether a given audio sample is
attacked or benign. Only the samples that are classified as “attacked”
are fed into Robust Whisper. The benign samples are fed into the
default Vanilla Whisper model, which is not fine-tuned with our
proposed defence mechanism.

The detector is a binary classifier. The architecture is given in
Figure 7. First, the log-mel spectrogram of the audio is taken. For
that, the Short-Time Fourier Transform (STFT) of the audio sig-
nal is generated, and then a mel filterbank is applied to the STFT
magnitudes. Here, the mel scale is non-linear and approximates
how the pitch variations are perceived by humans. After that, the
magnitudes are transformed into a logarithmic scale. The reason
for this is that the way that people perceive loudness is logarithmic.

We considered the log-mel spectrogram because it offers a means
of representing the frequency content of an audio signal in a man-
ner that is similar to how people perceive sound. This makes it
simpler to process and analyse audio data. Then the generated
log-mel spectrogram is sent through three 1-D convolution layers
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Linear(1)

T

Linear(128)
+ RelLU

T

MaxPool

T

Conv1d(512, kernel_size=(3,), stride=(2,), padding=(1,))
+ RelLU

0

Conv1d(512, kernel_size=(3,), stride=(2,), padding=(1,))
+ RelLU

T

Conv1d(512, kernel_size=(3,), stride=(1,), padding=(1,))
+ RelLU

Log-mel spectrogram

Figure 7: Detector architecture.

with Rectified Linear Unit (ReLU) activation. Convolution layers
are selected to detect temporal dependencies of the input. Next,
the output is sent through a max pool layer, followed by a linear
layer with ReLU activation, and finally through a linear layer again.
We considered small kernel sizes and shallow architecture to pre-
vent the model from overfitting to underlying words and to learn
more global features of the audio. We also randomly added Additive
White Gaussian Noise (AWGN) to benign samples to avoid overfit-
ting and make the model more robust. We did not add AWGN to
attacked samples since they already have enough distortions and
Yeehaw Junction attack adds AWGN. We introduced randomness by
randomly selecting the SNR from a uniform distribution. We also
randomly left half of the benign samples without adding any noise.
The target of learning as much as global features is the reason for
the higher number of filters of the convolutional layers.

5 EXPERIMENTAL SETUP
5.1 Datasets

For training and testing, we created our own signal processing
attack datasets. To create these datasets we used two publicly avail-
able datasets used in the literature for training and testing STT
models. Panayotov et al. [24] created the Librishpeech dataset us-
ing a large corpus of public-domain audiobooks that are part of the
LibriVox project. We used non-overlapping portions of the train-
clean-100 subset of Librispeech for our datasets. Ardila et al. [12]
created the Common Voice dataset, which is a large multilingual
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speech corpus by crowd-sourcing. We used multiple subsets (multi-
ple versions of Delta Segments) of the Common Voice dataset to
create our datasets. We randomly picked samples for these subsets
in a way there are no duplicates and no overlaps between subsets.
We ran the three attack algorithms Kenansville, Yeehaw Junction,
and Imaginary clipping, on the previously mentioned datasets to
create the adversarial audios. As explained in the sections 2.3 and
3, the attack algorithms require an ASR system to query. We use
Whisper [26] and AssemblyAl [1] for this purpose. A summary
of the datasets is given in Table 1. The dataset names have the
following format

{task}_{attacked_model}_{source_dataset}

Table 1: Dataset summary.

Dataset Name Number of Samples
cl_whisper_librispeech 18000
cl_assembly_librispeech 300
cl_whisper_commonvoice 300
cl_assembly_commonvoice | 300
ae_whisper_librispeech 9000
ae_assembly_librispeech 150
ae_whisper_commonvoice 150
ae_assembly_commonvoice | 150

cl (classification) and ae (auto-encorder) denote the tasks. cl
datasets are used for training and testing the detector, while ae
datasets are used for training and testing the encoder. attacked_model
refers to the STT model that was queried to create the adversarial
samples.

For the training, validation, and testing of the encoder, we use
60%, 20%, and 20% of the ae_whisper_librispeech, respectively. Addi-
tionally, we use ae_assembly_librispeech, ae_whisper_commonvoice,
and ae_assembly_commonvoice for testing the encoder. Similarly,
for the training, validation, and testing of the detector, we use 60%,
20%, and 20% of the cl_whisper_librispeech, respectively. Addition-
ally, we use ae_assembly_librispeech, ae_whisper_commonvoice, and
ae_assembly_commonvoice for testing the detector.

5.2 Experiments

Our experiments can be mainly categorized into two sections, exper-
iments conducted to compare between the attacks and experiments
conducted to evaluate the defence mechanism.

5.2.1 Experiments to compare between attacks. We initially con-
ducted a separate experiment to compare the attacks; Kenansville,
Yeehaw Junction, and the new attack we developed, which is the
Imaginary Clipping attack. The dataset we used was the publicly
available common voice dataset, and we selected 50 random data
samples from the dataset. Data samples were sent through an attack
algorithm querying an STT model until it generates the best possi-
ble perturbed audio which is the least perceptible to the human ear.
For each data sample, we obtained results using the three attack
methods and three ASR query engines. The attack procedure is as
mentioned in Section 3. For the query purpose, the three ASRs —
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AssemblyAl, OpenAl Whisper, and Google Cloud Speech API were
utilized. The results of the experiments are described in Section 6.1.

5.2.2  Experiments to evaluate the defence mechanism. We conduct
experiments for the encoder, detector, and end-to-end defence under
four scenarios. These four scenarios are designed in increasing order
of difficulty of the transferability for the defence. All the adversarial
data used for training was generated by querying Whisper [26]
STT model using audio files from the source dataset librispeech
(i-e. {task]_whisper_librispeech). In each scenario, we change either
attacked_model, source_dataset, or both.

e Scenario 1: This is the least challenging scenario for our
defence. In this scenario, we evaluate our models on test data
coming from the same distribution as training data. We use
20% of {task]_whisper_librispeech dataset.

Scenario 2: In this scenario we only change the attacked_model
to AssemblyAl [1] (i.e {task]_assembly_librispeech). This is
comparatively a difficult task compared to Scenario 1 as the
targeted model is different. At the same time, we observed
AssemblyAl is a much more robust model than Whisper. This
causes attacks to add higher perturbations to audio, making
it harder to be reconstructed.

Scenario 3: In this scenario we only change the source_dataset
to Common Voice while keeping the attacked_model simi-
lar to that of training data (i.e {task]_whisper_commonvoice).
This task is comparatively more difficult than Scenario 1 as
the audio distribution is drastically different from what the
model is trained on.

Scenario 4: In this scenario we change both attacked_model
and source_dataset resulting in the most difficult scenario.(i.e
{task]_assembly_commonvoice). Since this is the combination
of Scenarios 2 and 3, it is more difficult than all previous
scenarios.

The {task} parameter of each scenario changes accordingly whether
we are evaluating the encoder, detector, or the end-to-end defence.
The results of the experiments are analyzed in Section 6.

6 RESULTS

In this section, we first outline a comparison between different
attacks including the new attack - Imaginary Clipping (Section 6.1)
and then discuss results of Robust Whisper (Section 6.2).

6.1 Comparison Between Attacks

As described in Section 5.2.1, the results obtained by comparing
attacks using three different ASRs are tabulated in Table 2. The
metrics we used for the comparison are Mean Squared Error (MSE)
and the WER. The MSE is the L2 distance between the frequency
components of the original and the perturbed audio. A lower MSE
indicates less imperceptibility of the perturbation to the human
ear. WER represents the percentage of words that the ASR incor-
rectly predicted for the perturbed audio referenced to the original
transcription. For the computation of WER, we used the pytorch
WordErrorRate Module. For a successful attack, the WER should be
higher. We recorded the median value for the MSE and the WER to
avoid the effect of outliers. Additionally, we recorded the success
rate of each attack. The success rate indicates how many samples
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out of the 50 were actually attacked. We did this analysis because
some attacks may end up not changing the transcriptions at all,
resulting in an unsuccessful attack. The cause for this is the upper
bound we set for the distortion the attack algorithm is allowed to
add while querying the model.

Table 2: Attack success rate with 50 audio samples. Median
MSE and MSR are also outlined.

Attacks Succes;\ssemblyAI Sccess Whisper SucceGscgogIe Cloud
WER MSE WER MSE WER MSE
Rate Rate Rate
Kenansville 50/50 0.106  18.039 50/50 0.134  0.646 46/50 0.183  0.001
Yeehaw Junction 39/50 0.111 56.147  49/50 0.4 9.215  50/50 0.833 8.863
Imaginary Clipping  32/50 0.101  38.85 47/50 0.417 104 49/50 0.833 8.976

Kenansville shows the highest success rate across all three ASRs.
It shows the least MSE, but also it has the least WER as well. Yeehaw
Junction attack has a high MSE. The new attack also has a high
MSE but comparatively, it is lesser than the Yeehaw. Observing the
WERs of the Yeehaw attack and the new attack, it can be stated
that the new attack shows competitive results to the Yeehaw attack
with a relatively high WER.

Although the purpose for developing a new attack was to evalu-
ate the robustness of our defence mechanism, the Imaginary Clip-
ping attack is competitive compared to existing attacks. So it may be
of interest to explore the attack as future work beyond the current

paper.

6.2 Robust Whisper

Robust Whisper is compared with three baselines. (i) With the
undefended Whisper model. (ii) In [11], Sreeram et al. introduced
DEMUCS-Denoiser, a fine-tuned version of DEMUCS speech en-
hancement model [9], against adversarial attacks. The fine-tuning
was done using a perceptual loss. When evaluating this method,
we create a pipeline. First, the audio is sent through the filtering
model (DEMUCS-denoiser) and then the filtered audio is sent to
the undefended Whisper model. (iii) MetricGan+ [18] is the most
downloaded speech enhancement model available on Hugging Face.
MetricGan+ is not fine-tuned against adversarial attacks. We use
it as a baseline for speech enhancement models to show that an
off-the-shelf speech enhancement model is not able to filter out the
adversarial perturbations. We use the same pipeline used for the
DEMUCS-denoiser to evaluate MetricGan+. Table 3 summarizes the
results according to the four scenarios explained in Section 5.2. In
three out of the four scenarios, our approach gave the best results.
DEMUCS-denoiser, which is fine-tuned using a perceptual task,
underperforms our method in three scenarios. This supports the
hypothesis of how the disjoint nature of tasks while training can af-
fect performance. The results also show how even a state-of-the-art
speech enhancement model not only underperforms but also makes
the transcriptions much worse. Qualitative results are shown in
Table 4.

It is important to note that we consider the transcription of the
benign audio taken from the original Whisper ASR as the ground
truth. This is applicable to both quantitative and qualitative results
in the paper. All the WERs are calculated based on this. The main
reason for this is the objective of the defence. The objective of the
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Table 3: Results of text reconstruction. Robust Whisper is
compared with the undefended Whisper model, a state-of-
the-art speech enhancement model, and an audio source sep-
aration model fine-tuned with a perceptual loss (DEMUCS-
denoiser) on the task of text reconstruction. We evaluated
results under four scenarios explained in Section 5.2.2. The
recorded WERs are averaged values across each test dataset.

Dataset Whisper_ Whisper_ AssemblyAl AssemblyAl
LibriSpeech CommonVoice Librispeech ~ CommonVoice
bS] Undefended 0.10419 0.4370 0.3535 0.8281
=  speechbrain-MetricGan+ 0.1539 0.5471 0.4105 1.1617
g DEMUCS-denoiser 0.1099 0.4127 0.2901 1.4431
< RobustWhisper 0.0730 0.3630 0.3002 0.5937
§ speechbrain-MetricGan+ 0.0573 0.1957 0.0516 0.2460
AE DEMUCS-denoiser 0.0252 0.1584 0.0214 0.0995
A RobustWhisper 0.0167 0.1453 0.0273 0.0783

defence is to make the model robust, in other words reducing the
variance of the output against perturbations added by the attacks.
That is why the lower bound of the WER is WERy as explained in
Section 4.2.

Another important point to note is the WER for benign samples
in our method. Even though we used the second loss L, given in
Equation 5, we can still observe a small WER for the benign samples
when using Robust Whisper. This can be reduced by using more
training data. However, our focus is to find a method to adapt STT
models to new attacks quickly and with a minimum amount of data.
So, as we discussed in the section 4.3, we build an attack detection
model to handle benign audio samples so that the benign samples
are not put through Robust Whisper. The results of the accuracy of
the detector is analyzed in the next section.

6.3 Benign Sample Detection

Since signal processing attacks are a new domain, and due to
the limitations of publicly available datasets, there are no fixed
machine learning-based detectors for signal processing attacks.
So, we checked the results for non-parametric classical methods,
which were discussed in Section 2.5.1. This includes temporal de-
pendency [36] and three types of audio transformations named
down-sampling and up-sampling, quantization and dequantization,
and filtering [19]. We compared our method with these existing
methods under the four scenarios discussed in Section 5.2.2. We
used the AUC score and average time per sample as the comparing
metrics. The results are shown in Table 5. Our detector gives the
best performance for all four scenarios.

Further, for our classifier, the accuracy, precision, recall, and F1
score metrics were calculated for the four different test scenarios in
Section 5.2.2. Table 6 shows the calculated results. As we explained
in the section 5.2.2, the increasing difficulty has affected the per-
formance of the detector. The detector has the best performance in
the first scenario and the worst performance in the fourth scenario,
which are the most difficult and least difficult scenarios, respec-
tively. The results show that the detector finds scenario 3 more
difficult than scenario 2. This is mainly caused by the high distor-
tions added to the audio by the attacks due to the high robustness
of the AssemblyAl STT model. The high distortion makes it easier
for the detector to detect the attack. Overall, the results prove that
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Table 4: Comparison of Transcriptions. In the first column, we show the transcriptions of benign audio taken from the
undefended Whisper. In the second column, we show the changes that happen to the transcriptions when the attacked version
of audio is given to the undefended Whisper model. In the last column, we show the transcriptions of the attacked audios

taken from the Robust Whisper.

Original Transcription

Transcription from undefended Whisper

Transcription from Robust Whisper

and also try drawing for engraving.

I mean, also try drawing for a reading

Men also try drawing for engraving.

She was educated in Alfred University. )
beauty of life.

She loves and gives me the ultimate

She was in Britain in Alfred, University.

But he never lost his love of motorcycle

racing. thought racing

But he never lost his love of notice, I

But he never lost his love of motorcycling racing.

He was married but had separated

from his wife. from his wife.

He was married but had subraised him

He was married but had separated from his wife.

Table 5: Detection results. The performance of our detector is compared with four existing classical detector methods under
four scenarios in terms of AUC score and average time per sample.

Whisper_LibriSpeech

AssemblyAl LibriSpeech  Whisper_CommonVoice

AssemblyAl_CommonVoice

Detector Method AUC score Avg. Time AUCscore Avg. Time  AUCscore Avg. Time AUC score Avg. Time
Temporal 0.5859 3.9500 0.4968 31.7900 0.5450 3.4800 0.5447 33.3800
Dependency

Down-sampling & =, .., 40500 0.7800 39.1000 0.6679 3.2900 0.6328 36.0000
Up-sampling

Quantization & = ) 40960 0.6483 38.0400 0.6477 3.3400 0.5991 33.7100
Dequantization

Filtering 0.6102 4.2800 0.7067 32.0600 0.6308 3.4200 0.6476 32.2000
Our detector 0.9966 0.1250 0.9536 0.0120 0.9255 0.0190 0.8530 0.0150

our detection mechanism is transferable across different datasets
and STT models.

Table 6: Detection results II. AUC score, accuracy, precision,
recall, and F1 score results of our detector under four differ-
ent test scenarios.

Attacked Model Dataset AUC Score  Accuracy Precision Recall F1 Score
whisper librispeech 0.9966 0.9781 0.9899 0.9665  0.9780
assembly librispeech 0.9536 0.9233 0.9379 0.9067  0.9220
whisper commonvoice  0.9255 0.7667 0.7083 0.9067  0.7953
assembly commonvoice 0.8289 0.7300 0.6994 0.8067 0.7492

The performance of our proposed detector for the four different
scenarios is shown in Table 7. In those results, most of the points
fall under correctly detecting clean or attacked audio samples. This
suggests that our classifier is successful in identifying attacked
audio samples. Moreover, we conducted more experiments on the
detector in noisy environments, and the results are analyzed in
Appendix A.2.1.

6.4 Regularized Robust Whisper

Figure 2 illustrates the finalized approach of our end-to-end defence,
Regularized Robust Whisper. First, the detector classifies the input
audio signal as attacked or benign. Only the attacked audio samples
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Table 7: Confusion Matrix results of four scenarios.

True label clean attacked clean attacked
Predicted label attacked attacked clean clean
Whisper_Librispeech 18 1757 1764 61
Assembly_Librispeech 9 136 141 14
Whisper_Commonvoice 56 136 94 14
Assembly_Commonvoice 55 123 95 27

are fed to Robust Whisper. If not attacked, we can use the already
available Vanilla Whisper model for transcription.

Results of the Regularized Robust Whisper are shown in Ta-
ble 8. We see that WERs of benign audio samples are reduced in
the Regularized Robust Whisper in comparison to the standalone
Robust Whisper in all four scenarios. We need to be mindful of the
adversarial audio samples that mistakenly get detected as benign.
These incorrectly identified attacked samples will be sent through
the undefended Whisper, causing a higher WER. This is reflected in
our results. When evaluated on attacked samples, you can observe
a slight increase in the WERs in three out of four scenarios. But
this increase is negligible compared to the improvement we achieve
with the benign samples. Thus, the Regularized Robust Whisper
performs better than the standalone Robust Whisper. We want to
note that the zero WER achieved by the Defended Regularized solu-
tion for the benign samples in the LibriSpeech-AssemblyAl scenario
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Table 8: Results of the Regularized Robust Whisper. The
Attacked Undefended shows the WERs resulting from the un-
defended whisper model against attacked audios. It is used
as a baseline to get an idea of the worst-case WER of each sce-
nario. The analysis of the defended system is again divided
into two sub-scenarios, (i) the performance with attacked
samples (Attacked Defended) (ii) the performance with be-
nign samples (Benign Defended). In each sub-scenario, we
compare the results of the standalone Robust whisper and
the Regularized Robust Whisper.

LibriSpeect
Whisper
0.1042

C
Whisper
0.4370

Voice LibriSpeech C Voice
AssemblyAl AssemblyAl

0.3535

Dataset

Attacked Undefended

Attacked Defended Standalone
Attacked Defended Regularized

0.8282

0.0730
0.0729

0.3630
0.3638

0.3002
0.3009

0.5937
0.5903

0.0167
0.0058

0.1453
0.0589

0.0273
0.0000

0.0790
0.0422

Benign Defended Standalone
Benign Defended Regularized

is caused by the number of test samples we used. We tested 150
benign audio samples to calculate it. All 150 were correctly identi-
fied by our detector, resulting in a zero WER. Further, we conduct
more experiments in noisy environments and discuss the results in
Appendix A.2.2.

6.5 Adaptive Attacks

In this paper, our goal is to design a defence against signal pro-
cessing attacks. To the best of our knowledge, this is the first such
defence. So it remains a future research problem to design and
analyse possible adaptive attacks against these kinds of defences.
To maximize the chance that this defence is robust, we proposed a
new signal processing attack (Imaginary Clipping) and show our
defence is robust to it. We leave for future work a full investigation
of adaptive attacks. That said, it is worth discussing the limita-
tions and advantages of our method concerning potential (future)
adaptive attacks. As we have shown experimentally, our method
is robust to noise, thus adaptive attacks that seek to add noise to
evade detection are not expected to be successful. However, since
our defence uses an underlying STT model, an attacker could target
this model with an optimization-based attack, but our main focus in
this paper is on signal processing attacks. Ultimately our argument
is empirical in nature, but our methodology is in line with existing
prior research, which often evaluates robustness against adaptive
attacks [32] through a series of experiments. For example, Wang
et al. [32] proposed a dynamic inference-time defence robust to
adaptive attacks that optimize the model by minimizing the model
output entropy. They validate the robustness of the defence through
extensive experimentation on multiple models, datasets, and exper-
imental settings. We followed a similar approach in our experiment
to ensure the robustness of our defence by experimenting on an
out-of-distribution dataset, multiple models and different levels of
noisy environments.
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7 CONCLUSION

In this paper, we propose a self-supervised fine-tuning algorithm
— Robust Whisper, to make existing ASR systems robust to new
adversarial attacks by filtering adversarial audio. Our approach
has the advantage that it only requires the fine-tuning of the en-
coder of the STT model and does not require any human-annotated
samples. We perform experiments across four scenarios, compare
them with other state-of-the-art defence mechanisms and show
that our approach performs better than existing methods. Robust
Whisper used on both attacked and benign samples can result in
transcription errors on benign samples. We elaborate on how com-
bining Robust Whisper with a signal processing attack detection
model, which detects attacked audio, can increase the accuracy of
the overall approach. However, we believe that this problem can be
handled by enough training data. We leave this as an open research
problem for the future.
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A APPENDIX

A.1 Human-Evaluation of Imperceptibility
Survey

Model WER = Human WER-A = Human WER-B = Human WER-C  « Human WER-D

B
AI
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Figure 8: Model WER and human WER analysis of Ke-
nansville, Yeehaw, and Imaginary Clipping (new attack) on
four scenarios: A, B, C, and D. The conducted survey was to
evaluate the imperceptibility and efficacy of signal process-
ing attacks. The WER analysis was conducted based on the
model and human-generated transcriptions. Results depict
the complexity of achieving the imperceptibility level and
show the competitiveness of the Imaginary Clipping attack.

Being imperceptible to the human ear is one of the main fea-
tures of signal processing attacks. To validate the assumption, we
conducted a survey involving 100 participants. The survey focused
on evaluating the imperceptibility of signal processing attacks and
their efficacy. To explore various scenarios comprehensively, we
divided the participants into four distinct groups. Initially, they
were randomly assigned to two groups based on their awareness of
signal processing attacks; one group was informed about the nature
of these attacks, while the other remained unaware. Subsequently,
each of these two categories was further subdivided into two ad-
ditional groups based on whether they had access to the original
audio samples or not. One critical question to the user was to listen
to the provided audio files and write what they heard. Using the
resulting human transcriptions, a WER analysis was conducted.
The model WER and the human WER with respect to the origi-
nal transcription for each attack type were determined using the
analysis. Figure 8 shows the obtained results.

The results show that when the audio sample is attacked with
the Kenansville attack, the model’s WER was lower than all the
scenarios in human WER. This suggests that human listeners often
misidentified the transcriptions when exposed to the attacked au-
dio. In an ideal attack scenario, the human WER should be lower
than the model WER while remaining imperceptible to the human
ear, as this indicates that the model can be deceived without being
detectable to the human ear. However, the results indicate that the
Kenansville attack failed to fully maintain this goal, as the human
WER was higher than the model WER. Similarly, the Yeehaw Junc-
tion attack showed that the WER for humans was higher than the
model WER in most cases. Again, this contradicts the conditions for
an ideal attack scenario. In contrast, the new attack demonstrated
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that the human WER was lower than the model WER in every case.
But the human WER of the new attack is higher than the human
WERs of the other two attacks. This indicates that the new attack
has a high probability of being detected compared to the other two
attacks. However, the results in Table 9 support the idea that the
new attack demonstrates competitive performance compared to the
state-of-the-art Yeehaw Junction attack in terms of imperceptibility.

Table 9: Ability of survey participants to identify attacked
audio for each attack.

Attack AUC Score  Accuracy Precision Recall F1 Score
Kenansville 0.6840 0.6164 0.8947 0.4811 0.6258
Yeehaw Junction 0.7945 0.7687 0.9167 0.7021 0.7952
Imaginary Clipping 0.8074 0.7753 0.9381 0.7280 0.8198

In the survey, we prompted the users to rate their confidence
in identifying an attacked audio. Table 9 depicts the results, which
show how well the survey participants are capable of detecting
an attacked audio. The considered metrics are Area Under Curve
(AUC) score, accuracy, precision, recall, and F1 score values for Ke-
nansville, Yeehaw Junction, and Imaginary Clipping attacks. Thus
lesser the metric values, the participants find it difficult to recog-
nise an attacked audio. So, the attack with lesser values is better in
terms of achieving imperceptibility. Using the obtained results, it
is clear that these attacks can achieve the state of imperceptibility
only to a certain level. From the observations, we can arrive at the
conclusion that the Kenansville attack has a better imperceptibility
level than the other two attacks and the new attack demonstrates
performance on par with the Yeehaw Junction attack, showcasing
comparable results.

As a final note, we want to highlight that the proposed new
attack contributes to making our defence more robust. The new
attack helps to generalize the distribution of attack data that we
use for training and evaluation of our models.

A.2 Experiments in Noisy Environments

A.2.1 Detection in Noisy Environments. One important factor to
consider while building a benign sample detector is its behaviour
in a noisy environment. We want to avoid benign samples that are
coming from noisy environments being flagged as attacked samples.
As a responsible security application, the detector should be able to
notify the user about signal processing attacks with high confidence.
To ensure this we tested our detector on benign samples coming
from different noisy environments. For the tests, we used a segment
of the Common Voice [12] dataset and manually added different
levels of Additive White Gaussian Noise (AWGN) by controlling
the SNR to simulate the noisy environment. We named this new
dataset, which has different noise levels, as cl_awgn_commonvoice.
It contains 80 audio samples per SNR level (0, 5, 10, 20, 30, clean).
Table 10 shows the results of our tests. It shows a high accuracy
at high SNR levels and low SNR levels. However, the model gets
confused at mid-SNR levels. The main reason is the similarities in
the spectral domain. AWGN noise adds the same level of amplitudes
across all frequencies, resulting in flat frequency domain patterns.
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As we explained in Section 2.3, the decimation and clipping in signal
processing attacks result in similar flat frequency domain patterns.
Also, the Yeehaw Junction attack [5] adds noise while querying the
STT model. This is also a cause of this ambiguity.

As a summary, we have tested our benign detection model with
three different types of audio samples — (i) clean benign samples, (ii)
noisy benign samples, and (iii) attacked samples. As we discussed in
Section 4.3, we want our detector to only feed attacked samples to
the Robust Whisper to reduce errors introduced by our system. So,
our detector needs to classify both clean benign samples and noisy
benign samples as benign. Results of Section 6.3 and Section A.2.1
show the ability of our detection model to achieve this behaviour.

Table 10: Accuracy of correctly identifying benign samples
under noisy environments

SNR(dB) 0 5
Accuracy 1 1

Clean
0.8

10
0.975

20
0.9375

30
0.6375

A.2.2  Regularized Robust Whisper in Noisy Environments. Our
main goal is accurately identifying signal processing attacks and giv-
ing robust transcriptions for them. As we discussed in Section A.2.1,
our detection model is able to classify benign samples coming from
noisy environments as benign samples. So our end-to-end system,
Regularized Robust Whisper, will direct them to the Vanilla Whis-
per model. So it is important to note that transcription errors the
Vanilla Whisper model causes in noisy environments will appear in
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our end-to-end solution. We did tests to ensure this. Similar to the
experiment in Section A.2.1 we picked 250 benign samples from a
segment of Common Voice [12] dataset and added different levels
of AWGN, Dataset has 50 benign samples per SNR level (0, 5, 10, 20,
30). We named this new dataset, which has different noise levels,
as ae_awgn_commonvoice. Then, we calculated the WERs of the
transcriptions given by the Vanilla Whisper STT model and Regu-
larized Robust Whisper. Table 11 shows the results of our tests. The
WERs made by the two systems are the same. This ensures that our
detector has accurately identified benign samples and directed all
of them to Vanilla Whisper. Even though a robust system should
be robust to any kind of distortion, since our goal in this paper is
building a defence against signal processing attacks, we leave this
problem for future research.

Table 11: Regularized Robust Whisper behaviour against
benign samples in noisy environments. Benign Undefended
shows the WER Vanilla Whisper STT model makes for noisy
benign samples. Benign Defended Regularized row shows the
WER Regularized Robust Whisper makes for noisy benign
samples.

SNR(db) 0 5 10 20 30
Benign Undefended 0.4298 0.9016 0.3717 0.2231 0.1440
Benign Defended Regularized 0.4298 0.9016 0.3717 0.2231  0.1440




