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• We experimentally evaluate the performance of the end-to-

end defence, which is the combination of fine-tuning algo-

rithm and the detection model.

The rest of the paper is organized as follows. Section 2 surveys

previous related efforts. Section 3 introduces a new signal pro-

cessing attack. Section 4 describes our self-supervised fine-tuning

algorithm and the architecture of the attack detection network.

Sections 5 and 6 present the experimental setup and results, respec-

tively, followed by the conclusion in Section 7. The appendix of the

paper includes survey results (Appendix A.1) and experiments in

noisy environments (Appendix A.2).

The code used to train and evaluate Robust Whisper and benign

sample detector is available at GitHub. The datasets are available

at Hugging Face.

2 BACKGROUND AND RELATEDWORK

2.1 ASR Systems

ASR systems comprise of three main steps: preprocessing, feature

extraction, and decoding. Preprocessing engages in removing the

background noises, interference, and other disturbing components

of the audio file. Feature Extraction retains only the important

information using various signal processing techniques such as

Discrete Fourier Transforms (DFT), Mel Frequency Cepstral Co-

efficients (MFCC), Linear Predictive Coding, and the Perceptual

Linear Prediction method. In addition to that, machine learning

extraction layers are trained to learn which features are to be ex-

tracted. During the decoding phase, the extracted features are fed

to the decoding model and this returns the corresponding tran-

scription. Models such as Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), Hidden Markov Models, and

Gaussian Mixture Models have been used in ASR systems. Radford

et al. [26] introduced a method to use encoder-decoder transformer

architecture introduced by Vaswani et al. [31] to come up with

a robust ASR system. This model is trained on a large corpus of

speech-text data in a multi-task setting. They use weak supervision

which incorporates a text standardisation step before calculating

the loss function during training. On a high-level interpretation,

the transformer encoder compresses the audio waveform into a

latent space. The decoder then uses this encoding to generate the

text auto-regressively.

2.2 Adversarial Attacks in Audio Domain

2.2.1 Optimization-based a�acks. Recent research has proven that

ASR systems are vulnerable to adversarial attacks. !? clipping has

been widely used in magnitude controlling of attack perturbations

and has shown to be successful in the image domain [21, 22]. How-

ever, it is a poor technique for controlling the imperceptibility of a

perturbation in the audio domain as it introduces undesirable audio

effects. Going beyond !? clipping method, researchers have identi-

fied various methods to generate adversarial examples. Carlini et

al. proposed a white-box iterative optimization-based attack that

could produce targeted adversarial audio waveforms [13]. Given

the original waveform G , they produced G + X , which is 99.9% simi-

lar to the original (G) but transcribed to any phrase of choice. The

perturbation X is nearly inaudible. In [25], Qin et al. construct im-

perceptible audio adversarial examples using the psychoacoustic

principle of auditory masking. Their attack occurs in two optimiza-

tion stages. In the first stage, they focus on finding a comparatively

small perturbation that can mislead the network. This was done

following the method presented in [13]. The second stage focuses

on making the adversarial example imperceptible. In [7], Abdul-

lah et al. proposed an equalization-based psycho-acoustic attack

that can fool traditional as well as fully end-to-end ASRs, unlike

the existing psycho-acoustic attacks, which could only be applied

against traditional models. Moreover, their work showed evidence

that their attack is less noisy than the !? clipping method.

2.2.2 Gradient-free a�acks. Alzantot et al. presented a black box

targeted attack crafted using an approach based on gradient-free

genetic algorithms [10]. The algorithm creates a population of po-

tential adversarial examples by adding random noise to a subset of

samples within the given audio clip. Each generated example in the

population is assigned a fitness score based on how well it fools

the target model into predicting the desired transcription. The next

generation of adversarial examples is produced through a process of

selecting examples with higher fitness scores and crossover, which

involves combining pairs of populationmembers to create new "chil-

dren" examples for potential improvements and mutation. Mutation

introduces occasional tiny random noises to the children, further

diversifying the population. This iterative process continues for a

predetermined number of epochs or until the attack successfully

deceives the target model. This genetic algorithm-based method

does not need any knowledge of the target model architecture or pa-

rameters. Taori et al. proposed a black box adversarial perturbation

method that combines the approaches of both genetic algorithm

and gradient estimation [30]. The initial phase of the attack em-

ploys genetic algorithms to generate a suitable sample. To mitigate

excessive mutations and noise, a novel momentummutation update

is integrated into the standard genetic algorithm. In the subsequent

phase, gradient estimation is used. This involves estimating gra-

dients for individual audio points and enhancing the precision of

noise insertion as the adversarial example approaches its target.

2.2.3 Signal Processing a�acks. These attacks are unique to the

audio domain. Abdullah et al. proposed an efficient and transferable

black-box attack named Kenansville attack that can fool any state-

of-the-art speech recognition and voice identification system in

near real-time with fewer queries [6]. The attack does not degrade

the quality of the audio and the introduced changes are impercepti-

ble to humans. They identified that their attack is robust to existing

adversarial attack detection and defence mechanisms. After eval-

uating many latest attacks on ASRs, Abdulla et al. identified the

Kenansville attack as the best attack to generate CAPTCHAs due to

its high transferability [5]. They also identified that adding white

noise defends a STT model against the Kenansville attack. As a

solution, the same authors proposed the Yeehaw Junction attack,

an improved version of the Kenansville attack to design robust

audio CAPTCHAs [5]. There they added some extra features in

addition to the decimation done in the initial attack. The additions

are, adding Gaussian noise to the perturbed sample and clipping the

large amplitudes of dominant frequencies preserving the location

of the frequency peaks so that the audio remains highly intelligi-

ble to the human ear. In the next section (Section 2.3), we go into

detail about the underlying mechanisms of the Kenansville and
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Yeehaw Junction attacks since our defence is tested against these

two state-of-the-art attacks.

2.3 Details of Two State-of-the-Art Attacks

2.3.1 Kenansville a�ack. Abdullah et al. have noted that existing

attacks on ASR systems fall short of being truly effective [6]. To ad-

dress this, they propose a novel attack named “Kenansville", which

operates by augmenting frequency components in the signal fol-

lowing its frequency domain representation. However, this method

shows limited efficacy against temporal dependency-based tech-

niques employed for adversarial detection and defence [36]. Their

approach is primarily based on the hypothesis that ASR and Au-

tomatic Voice Identification systems rely on speech components

that are non-essential for human comprehension. The process in-

volves taking the DFT of the audio signal, subsequently eliminat-

ing frequency components with intensities below a predetermined

threshold value from the spectrum. By applying the Inverse Fourier

Transformation, the original time-domain audio signal is recon-

structed.

The most crucial aspect lies in selecting an appropriate threshold

value, as maintaining imperceptibility after removing frequency

components is paramount. If the threshold value is set too high,

the audio quality degrades significantly, making it difficult for both

the model and human listeners to interpret the reconstructed au-

dio correctly. Conversely, if the threshold value is too low, both

human listeners and the STT model can readily comprehend the

reconstructed audio. To identify the optimal threshold value, a bi-

nary search is conducted between the maximum and minimum

intensities of the DFT-transformed signal. During the execution of

the attack, if the model output matches the original transcription,

the method increases the threshold value and feeds it back to the

model. Conversely, if the transcriptions differ, the method reduces

the threshold value and provides the updated value to the model.

It is important to mention the exit condition of the binary search

algorithm. As we mentioned earlier, one possible exit condition is

checking if the transcription differs. Change in a single word will

stop the binary search, but if you need a much stronger attack, you

can set the exit condition to check until a certain number of words

change. At the same time, you should be mindful of the amount of

distortion it adds since there is always a trade-off.

2.3.2 Yeehaw Junction a�ack. The Yeehaw Junction attack repre-

sents a significant extension of the Kenansville attack [5]. Abdullah

et al. discovered that by adding power to the empty frequency

bins, which were removed in the priorly proposed Kenansville

process [6], they could effectively counteract the effects of the at-

tack. This addition of white gaussian noise increases the power

evenly across all frequency bins, rendering the audio CAPTCHAs

intelligible to humans while forcing STT models to output empty

transcriptions. To evaluate the success of Kenansville attack against

optimization attacks, the authors employed the Levenshtein dis-

tance score between the phonetic representation of the original and

attacked audio samples as a metric for phonetic similarity. Notably,

the Kenansville attack produced the highest distance between the

original and attacked audio samples.

Since the Kenansville attack failed to generate intelligible audio

CAPTCHAs against an adaptive adversary, Abdullah et al. devised

the Yeehaw Junction attack, which involves a process of decimation,

clipping, and noising [5]. The decimation step follows the same

process as discussed in the Kenansville approach. The “spectral

clipping" method exploits the fact that the human ear relies on

specific dominant frequency bands, known as formants, to identify

individual phonemes. By clipping these dominant frequencies in

the spectrogram, the method creates phonetic structures that do not

occur naturally. This clever technique effectively tricks STT models

while remaining imperceptible to human listeners, as the location of

the frequency bands in the spectrum remains unchanged. Further-

more, the clipping approach proves to be robust against Gaussian

noise-based adaptive adversaries. Clipping evens out the peak struc-

ture, which is crucial for the ASR system to transcribe accurately.

The addition of random noise fails to recreate the clipped-out peak

structure, preventing the adversary from obtaining the correct orig-

inal transcript.

Similar to the Kenansville attack, the Yeehaw Junction attack

also employs the binary search algorithm to select the optimal

clipping threshold. During the execution of the attack, if the model

output matches the original transcription, the method decreases the

clipping threshold value and feeds it back to the model. Conversely,

if the transcriptions differ, the method increases the threshold value

and provides the updated value to the model. In response to the

adaptive adversary during audio CAPTCHA generation, the defence

pipeline involves adding noise to every audio sample before passing

it to the STT model.

2.4 Transferability of Adversarial Attacks in
ASR Systems

Transferability of adversarial attacks enables attackers to deploy

attacks on ASR systems under a black-box setting which is the most

practical scenario in the real world. Abdullah et al. experimentally

demonstrated that transferability of optimization attacks against

STT models is highly unlikely even under situations where both

shadow and target models share the same architecture, hyperpa-

rameters, random seed and training data [8]. Input type, MFCC,

RNN, output type, vocabulary and sequence size were identified

as the factors that affect the targeted transferability of optimiza-

tion attacks [4]. As optimization attacks do not provide targeted

transferability, the community began to focus on signal process-

ing attacks which provide targeted transferability. But still, clean,

targeted signal processing attacks do not exist. Unlike ASR sys-

tems, speaker recognition systems are not robust to transferability.

Abdullah et al. proposed using an ASR for text verification in the

speaker recognition pipeline as a measure to ensure the robustness

of the overall speaker recognition pipeline [4].

2.5 Defences against Adversarial Attacks on
ASR Systems

In this section, we discuss the existing defences under two main

categories: i) detection and ii) filtering.

2.5.1 Detection. Hussain et al. proposed a framework called Wave-

Guard to detect adversarial inputs from benign inputs using audio

transformation functions (e.g. down-sampling and up-sampling,
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quantization and dequantization, filtering, Mel spectrogram extrac-

tion and inversion) and by analyzing the ASR transcriptions of

the original and transformed audio [19]. The proposed framework

demonstrated reliable detection of adversarial examples and robust-

ness even towards adaptive adversaries who have complete knowl-

edge of their defence. In [36], Yang et al. proposed an adversarial

audio detection mechanism based on temporal dependencies. Given

an input audio sample, the audio sample is partitioned into two.

Then the first partition and the entire audio sample are fed to the

STT model to get the transcriptions. If the corresponding parts of

the transcriptions are similar, the audio is detected as benign. If not,

the audio is adversarial. The detection is done based on the premise

that adversarial attacks distort the temporal dependence within

the audio. The authors claim that the temporal dependency-based

approach is lightweight, simple and highly effective at detecting

traditional adversarial attacks [36].

The above methods need pre-processing of the audio sample and

need to consider the transcription of the audio sample to arrive

at the decision. This is a time-consuming process and is the main

limitation of the existing classical detection methods.

2.5.2 Filtering. Defence mechanisms such as adversarial training

and convex relaxations [33] are harder to be used in speech recogni-

tion. Olivier et al. proposed a defence based on randomized smooth-

ing for speech recognition systems which is robust to all the attacks

that use inaudible noise [23]. Eisenhofer et al. proposed a method to

tame audio adversarial attacks on ASRs by applying psychoacoustic

principles [17]. They proposed to modify the existing ASR systems

by (i) adding psychoacoustic filtering to remove the inaudible parts

of the input audio and (ii) applying a band-pass filter after the fea-

ture extraction layer to remove the lower and higher frequencies

of the audio signal and training the STT models with augmented

data. Through this mechanism, they showed that ASR systems learn

a better approximation of human perception and adversaries are

forced to bring any adversarial perturbation into audible ranges.

At present, the most prevalent defence mechanism in audio

processing is denoising which removes/reduces perturbations in

audio. One commonly used technique for denoising is autoencoders.

Wu et al. proposed Mockingjay, which utilizes bidirectional trans-

former encoders [29]. The model learns to reconstruct or predict

the original frames given masked frames during training. In [28],

Wu et al. proposed Transformer Encoder Representations from Al-

teration (TERA), a more advanced self-supervised model compared

to Mockingjay which utilises alteration along three orthogonal axes

(time, frequency and magnitude) to pre-train transformer encoders.

Sreeram et al. propose a denoiser based on the DEMUCS archi-

tecture that is independent of the downstream ASR pipeline [11].

They found that training the denoiser with a perceptually moti-

vated loss increases the adversarial robustness without affecting

the benign audio samples. The authors adopted the pre-trained

DEMUCS-based denoising model, presented by Defossez et al. in [9].

DEMUCS architecture is an encoder-decoder-based deep neural

network with U-Net skip connections and a sequence modelling

network which is developed for music-source separation in the

waveform domain [16]. Defossez et al. have shown that it could

successfully be converted into a casual speech enhancer, processing

speech waveforms in real-time on consumer-level CPU [9].

3 A NEW SIGNAL PROCESSING ATTACK

A variety of attacks is required to evaluate the robustness of our

defence mechanism. However, previous work includes only two

state-of-the-art signal processing attacks. Therefore, we propose a

new signal processing attack by combining frequency decimation

and imaginary component clipping methods. The decimation steps

are the same as what is outlined in the Yeehaw Junction attack [5].

Through several experiments, we identified that the optimal deci-

mation threshold exhibits a parabolic pattern. When the decimation

threshold is set too high, substantial noise arises due to decima-

tion before entering the clipping process, resulting in identifiable

perturbations to the audio. On the other hand, if the decimation

threshold is set too low, there are no significant frequency bins re-

moved. We also observed that the clipping effect greatly influences

the audio quality. Hence, the new attack focuses on determining

an optimized decimation threshold based on experimental values

following a parabolic pattern.

The decision to clip only the imaginary components of the audio

sample stems from the understanding that the imaginary compo-

nent of a complex value captures the contribution of sine waves

of different frequencies to the audio. In a manner similar to the

Yeehaw Junction clipping process, we selectively clip the imaginary

components after obtaining the DFT of the audio, which provides

both the real and imaginary components.

Clipping the imaginary components alters the Power Spectral

Density of the audio, resulting in indirect changes to the audio

phase. By focusing on the imaginary components, we manipulate

the audio in a way that effectively deceives ASR systems while

maintaining imperceptibility to human listeners.

Suppose the DFT of the audio sample is denoted as G + 9~, where

9 denotes the imaginary component. Then clipping only the imagi-

nary component changes the DFT as follows:

G + 9~ → G + 9~
:1

:2
(1)

:1 and :2 are constants. :1 is the absolute threshold value for clip-

ping and :2 is the absolute value of the imaginary component

(:2 = |~ |). Imaginary component clipping changes the phase of

each frequency component as shown in the equation below:

q = tan(
~

G
) → q = tan(

~ · :1

:2 · G
) (2)

Hence, the main stages in crafting the new attack can be identified

as (i) decomposing the original audio waveform to its frequency

components, (ii) decimating the low-intensity frequencies, (iii) sepa-

rating the real and imaginary components of frequency components

(iv) clipping only the imaginary component based on a thresh-

old value, (v) reconstructing a raw audio waveform concatenating

real imaginary components, (iv) evaluating it by sending through

an ASR System. This process is repetitively done, alternating the

clipping threshold at each iteration until the attack is successful.

Figure 3 provides a detailed overview of the process of creating

the new attack. Figure 4 elaborates its architecture, which is the

separation of real and imaginary components of the DFT decompo-

sition and clipping only the imaginary part using a threshold before

constructing the final waveform. These visual representations help

demonstrate the intricate steps involved in our approach. Since we
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We determined the number of layers to fine-tune experimentally.

We achieved the best results by only fine-tuning the two convolu-

tional layers of the Whisper [26] encoder. During the fine-tuning,

we froze all the multi-headed attention layers of the encoder and

only kept the convolutional layers as trainable.

Algorithm 1: Encoder fine-tuning

1 Requires: An encoder 5\ from an STT model, adversarial

attack g ·, speech samples dataset � .

2 Hyper-parameters: Number of epochs # . Gradient step

size (learning rate) _

3 5\ ′ ← 5\ ;

4 for 8 = 0, 1, 2, ..., # do

5 for G ∈ � do

6 G ′ ← g (G);

7 G<4; ←<4; (G);

8 G ′
<4;
←<4; (G ′);

9 ℎU ← 5 ′
\
(G ′

<4;
);

10 ℎV ← 5 ′
\
(G<4; );

11 ℎW ← 5\ (G<4; );

12 !1 = ‖ℎU − ℎW ‖!2 ;

13 !2 = ‖ℎV − ℎW ‖!2 ;

14 ! = !1 + !2;

15 \ ′ ← \ ′ − _∇\ ′!

16 end

17 end

4.3 Benign Sample Detection

Even though we designed our self-supervised fine-tuning loss to re-

duce the damages that happen to transcriptions of benign samples,

there could still be small errors. We must ensure that the proposed

Robust Whisper approach would not cause errors with the benign

samples. Ideally, we expect only the attacked samples to be recon-

structed using Robust Whisper. To achieve this, we developed a

benign sample detector to detect whether a given audio sample is

attacked or benign. Only the samples that are classified as “attacked”

are fed into Robust Whisper. The benign samples are fed into the

default Vanilla Whisper model, which is not fine-tuned with our

proposed defence mechanism.

The detector is a binary classifier. The architecture is given in

Figure 7. First, the log-mel spectrogram of the audio is taken. For

that, the Short-Time Fourier Transform (STFT) of the audio sig-

nal is generated, and then a mel filterbank is applied to the STFT

magnitudes. Here, the mel scale is non-linear and approximates

how the pitch variations are perceived by humans. After that, the

magnitudes are transformed into a logarithmic scale. The reason

for this is that the way that people perceive loudness is logarithmic.

We considered the log-mel spectrogram because it offers a means

of representing the frequency content of an audio signal in a man-

ner that is similar to how people perceive sound. This makes it

simpler to process and analyse audio data. Then the generated

log-mel spectrogram is sent through three 1-D convolution layers

Figure 7: Detector architecture.

with Rectified Linear Unit (ReLU) activation. Convolution layers

are selected to detect temporal dependencies of the input. Next,

the output is sent through a max pool layer, followed by a linear

layer with ReLU activation, and finally through a linear layer again.

We considered small kernel sizes and shallow architecture to pre-

vent the model from overfitting to underlying words and to learn

more global features of the audio. We also randomly added Additive

White Gaussian Noise (AWGN) to benign samples to avoid overfit-

ting and make the model more robust. We did not add AWGN to

attacked samples since they already have enough distortions and

Yeehaw Junction attack adds AWGN.We introduced randomness by

randomly selecting the SNR from a uniform distribution. We also

randomly left half of the benign samples without adding any noise.

The target of learning as much as global features is the reason for

the higher number of filters of the convolutional layers.

5 EXPERIMENTAL SETUP

5.1 Datasets

For training and testing, we created our own signal processing

attack datasets. To create these datasets we used two publicly avail-

able datasets used in the literature for training and testing STT

models. Panayotov et al. [24] created the Librishpeech dataset us-

ing a large corpus of public-domain audiobooks that are part of the

LibriVox project. We used non-overlapping portions of the train-

clean-100 subset of Librispeech for our datasets. Ardila et al. [12]

created the Common Voice dataset, which is a large multilingual
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speech corpus by crowd-sourcing. We used multiple subsets (multi-

ple versions of Delta Segments) of the Common Voice dataset to

create our datasets. We randomly picked samples for these subsets

in a way there are no duplicates and no overlaps between subsets.

We ran the three attack algorithms Kenansville, Yeehaw Junction,

and Imaginary clipping, on the previously mentioned datasets to

create the adversarial audios. As explained in the sections 2.3 and

3, the attack algorithms require an ASR system to query. We use

Whisper [26] and AssemblyAI [1] for this purpose. A summary

of the datasets is given in Table 1. The dataset names have the

following format

{C0B:}_{0CC02:43_<>34;}_{B>DA24_30C0B4C}

Table 1: Dataset summary.

Dataset Name Number of Samples

cl_whisper_librispeech 18000

cl_assembly_librispeech 300

cl_whisper_commonvoice 300

cl_assembly_commonvoice 300

ae_whisper_librispeech 9000

ae_assembly_librispeech 150

ae_whisper_commonvoice 150

ae_assembly_commonvoice 150

cl (classification) and ae (auto-encorder) denote the tasks. cl

datasets are used for training and testing the detector, while ae

datasets are used for training and testing the encoder. attacked_model

refers to the STT model that was queried to create the adversarial

samples.

For the training, validation, and testing of the encoder, we use

60%, 20%, and 20% of the ae_whisper_librispeech, respectively. Addi-

tionally, we use ae_assembly_librispeech, ae_whisper_commonvoice,

and ae_assembly_commonvoice for testing the encoder. Similarly,

for the training, validation, and testing of the detector, we use 60%,

20%, and 20% of the cl_whisper_librispeech, respectively. Addition-

ally, we use ae_assembly_librispeech, ae_whisper_commonvoice, and

ae_assembly_commonvoice for testing the detector.

5.2 Experiments

Our experiments can bemainly categorized into two sections, exper-

iments conducted to compare between the attacks and experiments

conducted to evaluate the defence mechanism.

5.2.1 Experiments to compare between a�acks. We initially con-

ducted a separate experiment to compare the attacks; Kenansville,

Yeehaw Junction, and the new attack we developed, which is the

Imaginary Clipping attack. The dataset we used was the publicly

available common voice dataset, and we selected 50 random data

samples from the dataset. Data samples were sent through an attack

algorithm querying an STT model until it generates the best possi-

ble perturbed audio which is the least perceptible to the human ear.

For each data sample, we obtained results using the three attack

methods and three ASR query engines. The attack procedure is as

mentioned in Section 3. For the query purpose, the three ASRs —

AssemblyAI, OpenAI Whisper, and Google Cloud Speech API were

utilized. The results of the experiments are described in Section 6.1.

5.2.2 Experiments to evaluate the defence mechanism. We conduct

experiments for the encoder, detector, and end-to-end defence under

four scenarios. These four scenarios are designed in increasing order

of difficulty of the transferability for the defence. All the adversarial

data used for training was generated by querying Whisper [26]

STT model using audio files from the source dataset librispeech

(i.e. {task}_whisper_librispeech). In each scenario, we change either

attacked_model, source_dataset, or both.

• Scenario 1: This is the least challenging scenario for our

defence. In this scenario, we evaluate our models on test data

coming from the same distribution as training data. We use

20% of {task}_whisper_librispeech dataset.

• Scenario 2: In this scenariowe only change the attacked_model

to AssemblyAI [1] (i.e {task}_assembly_librispeech). This is

comparatively a difficult task compared to Scenario 1 as the

targeted model is different. At the same time, we observed

AssemblyAI is a muchmore robust model thanWhisper. This

causes attacks to add higher perturbations to audio, making

it harder to be reconstructed.

• Scenario 3: In this scenariowe only change the source_dataset

to Common Voice while keeping the attacked_model simi-

lar to that of training data (i.e {task}_whisper_commonvoice).

This task is comparatively more difficult than Scenario 1 as

the audio distribution is drastically different from what the

model is trained on.

• Scenario 4: In this scenario we change both attacked_model

and source_dataset resulting in the most difficult scenario.(i.e

{task}_assembly_commonvoice). Since this is the combination

of Scenarios 2 and 3, it is more difficult than all previous

scenarios.

The {task} parameter of each scenario changes accordinglywhether

we are evaluating the encoder, detector, or the end-to-end defence.

The results of the experiments are analyzed in Section 6.

6 RESULTS

In this section, we first outline a comparison between different

attacks including the new attack - Imaginary Clipping (Section 6.1)

and then discuss results of Robust Whisper (Section 6.2).

6.1 Comparison Between Attacks

As described in Section 5.2.1, the results obtained by comparing

attacks using three different ASRs are tabulated in Table 2. The

metrics we used for the comparison are Mean Squared Error (MSE)

and the WER. The MSE is the L2 distance between the frequency

components of the original and the perturbed audio. A lower MSE

indicates less imperceptibility of the perturbation to the human

ear. WER represents the percentage of words that the ASR incor-

rectly predicted for the perturbed audio referenced to the original

transcription. For the computation of WER, we used the pytorch

WordErrorRate Module. For a successful attack, the WER should be

higher. We recorded the median value for the MSE and the WER to

avoid the effect of outliers. Additionally, we recorded the success

rate of each attack. The success rate indicates how many samples
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out of the 50 were actually attacked. We did this analysis because

some attacks may end up not changing the transcriptions at all,

resulting in an unsuccessful attack. The cause for this is the upper

bound we set for the distortion the attack algorithm is allowed to

add while querying the model.

Table 2: Attack success rate with 50 audio samples. Median

MSE and MSR are also outlined.

Attacks
AssemblyAI Whisper Google Cloud

Success

Rate
WER MSE

Success

Rate
WER MSE

Success

Rate
WER MSE

Kenansville 50/50 0.106 18.039 50/50 0.134 0.646 46/50 0.183 0.001

Yeehaw Junction 39/50 0.111 56.147 49/50 0.4 9.215 50/50 0.833 8.863

Imaginary Clipping 32/50 0.101 38.85 47/50 0.417 10.4 49/50 0.833 8.976

Kenansville shows the highest success rate across all three ASRs.

It shows the least MSE, but also it has the least WER as well. Yeehaw

Junction attack has a high MSE. The new attack also has a high

MSE but comparatively, it is lesser than the Yeehaw. Observing the

WERs of the Yeehaw attack and the new attack, it can be stated

that the new attack shows competitive results to the Yeehaw attack

with a relatively high WER.

Although the purpose for developing a new attack was to evalu-

ate the robustness of our defence mechanism, the Imaginary Clip-

ping attack is competitive compared to existing attacks. So it may be

of interest to explore the attack as future work beyond the current

paper.

6.2 Robust Whisper

Robust Whisper is compared with three baselines. (i) With the

undefended Whisper model. (ii) In [11], Sreeram et al. introduced

DEMUCS-Denoiser, a fine-tuned version of DEMUCS speech en-

hancement model [9], against adversarial attacks. The fine-tuning

was done using a perceptual loss. When evaluating this method,

we create a pipeline. First, the audio is sent through the filtering

model (DEMUCS-denoiser) and then the filtered audio is sent to

the undefended Whisper model. (iii) MetricGan+ [18] is the most

downloaded speech enhancement model available on Hugging Face.

MetricGan+ is not fine-tuned against adversarial attacks. We use

it as a baseline for speech enhancement models to show that an

off-the-shelf speech enhancement model is not able to filter out the

adversarial perturbations. We use the same pipeline used for the

DEMUCS-denoiser to evaluate MetricGan+. Table 3 summarizes the

results according to the four scenarios explained in Section 5.2. In

three out of the four scenarios, our approach gave the best results.

DEMUCS-denoiser, which is fine-tuned using a perceptual task,

underperforms our method in three scenarios. This supports the

hypothesis of how the disjoint nature of tasks while training can af-

fect performance. The results also show how even a state-of-the-art

speech enhancement model not only underperforms but also makes

the transcriptions much worse. Qualitative results are shown in

Table 4.

It is important to note that we consider the transcription of the

benign audio taken from the original Whisper ASR as the ground

truth. This is applicable to both quantitative and qualitative results

in the paper. All the WERs are calculated based on this. The main

reason for this is the objective of the defence. The objective of the

Table 3: Results of text reconstruction. Robust Whisper is

compared with the undefended Whisper model, a state-of-

the-art speech enhancement model, and an audio source sep-

aration model fine-tuned with a perceptual loss (DEMUCS-

denoiser) on the task of text reconstruction. We evaluated

results under four scenarios explained in Section 5.2.2. The

recorded WERs are averaged values across each test dataset.

Dataset
Whisper_

LibriSpeech

Whisper_

CommonVoice

AssemblyAI_

Librispeech

AssemblyAI_

CommonVoice

A
tt
ac
k
ed

Undefended 0.10419 0.4370 0.3535 0.8281

speechbrain-MetricGan+ 0.1539 0.5471 0.4105 1.1617

DEMUCS-denoiser 0.1099 0.4127 0.2901 1.4431

RobustWhisper 0.0730 0.3630 0.3002 0.5937

B
en
ig
n speechbrain-MetricGan+ 0.0573 0.1957 0.0516 0.2460

DEMUCS-denoiser 0.0252 0.1584 0.0214 0.0995

RobustWhisper 0.0167 0.1453 0.0273 0.0783

defence is to make the model robust, in other words reducing the

variance of the output against perturbations added by the attacks.

That is why the lower bound of the WER is,�'\ as explained in

Section 4.2.

Another important point to note is the WER for benign samples

in our method. Even though we used the second loss !2 given in

Equation 5, we can still observe a small WER for the benign samples

when using Robust Whisper. This can be reduced by using more

training data. However, our focus is to find a method to adapt STT

models to new attacks quickly and with a minimum amount of data.

So, as we discussed in the section 4.3, we build an attack detection

model to handle benign audio samples so that the benign samples

are not put through Robust Whisper. The results of the accuracy of

the detector is analyzed in the next section.

6.3 Benign Sample Detection

Since signal processing attacks are a new domain, and due to

the limitations of publicly available datasets, there are no fixed

machine learning-based detectors for signal processing attacks.

So, we checked the results for non-parametric classical methods,

which were discussed in Section 2.5.1. This includes temporal de-

pendency [36] and three types of audio transformations named

down-sampling and up-sampling, quantization and dequantization,

and filtering [19]. We compared our method with these existing

methods under the four scenarios discussed in Section 5.2.2. We

used the AUC score and average time per sample as the comparing

metrics. The results are shown in Table 5. Our detector gives the

best performance for all four scenarios.

Further, for our classifier, the accuracy, precision, recall, and F1

score metrics were calculated for the four different test scenarios in

Section 5.2.2. Table 6 shows the calculated results. As we explained

in the section 5.2.2, the increasing difficulty has affected the per-

formance of the detector. The detector has the best performance in

the first scenario and the worst performance in the fourth scenario,

which are the most difficult and least difficult scenarios, respec-

tively. The results show that the detector finds scenario 3 more

difficult than scenario 2. This is mainly caused by the high distor-

tions added to the audio by the attacks due to the high robustness

of the AssemblyAI STT model. The high distortion makes it easier

for the detector to detect the attack. Overall, the results prove that
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Table 4: Comparison of Transcriptions. In the first column, we show the transcriptions of benign audio taken from the

undefended Whisper. In the second column, we show the changes that happen to the transcriptions when the attacked version

of audio is given to the undefended Whisper model. In the last column, we show the transcriptions of the attacked audios

taken from the Robust Whisper.

Original Transcription Transcription from undefended Whisper Transcription from Robust Whisper

and also try drawing for engraving. I mean, also try drawing for a reading
Men also try drawing for engraving.

She was educated in Alfred University.
She loves and gives me the ultimate

beauty of life.

She was in Britain in Alfred, University.

But he never lost his love of motorcycle

racing.

But he never lost his love of notice, I

thought racing

But he never lost his love of motorcycling racing.

He was married but had separated

from his wife.

He was married but had subraised him

from his wife.

He was married but had separated from his wife.

Table 5: Detection results. The performance of our detector is compared with four existing classical detector methods under

four scenarios in terms of AUC score and average time per sample.

Detector Method
Whisper_LibriSpeech AssemblyAI_LibriSpeech Whisper_CommonVoice AssemblyAI_CommonVoice

AUC score Avg. Time AUC score Avg. Time AUC score Avg. Time AUC score Avg. Time

Temporal

Dependency
0.5859 3.9500 0.4968 31.7900 0.5450 3.4800 0.5447 33.3800

Down-sampling &

Up-sampling
0.6303 4.0500 0.7800 39.1000 0.6679 3.2900 0.6328 36.0000

Quantization &

Dequantization
0.5329 4.0960 0.6483 38.0400 0.6477 3.3400 0.5991 33.7100

Filtering 0.6102 4.2800 0.7067 32.0600 0.6308 3.4200 0.6476 32.2000

Our detector 0.9966 0.1250 0.9536 0.0120 0.9255 0.0190 0.8530 0.0150

our detection mechanism is transferable across different datasets

and STT models.

Table 6: Detection results II. AUC score, accuracy, precision,

recall, and F1 score results of our detector under four differ-

ent test scenarios.

Attacked Model Dataset AUC Score Accuracy Precision Recall F1 Score

whisper librispeech 0.9966 0.9781 0.9899 0.9665 0.9780

assembly librispeech 0.9536 0.9233 0.9379 0.9067 0.9220

whisper commonvoice 0.9255 0.7667 0.7083 0.9067 0.7953

assembly commonvoice 0.8289 0.7300 0.6994 0.8067 0.7492

The performance of our proposed detector for the four different

scenarios is shown in Table 7. In those results, most of the points

fall under correctly detecting clean or attacked audio samples. This

suggests that our classifier is successful in identifying attacked

audio samples. Moreover, we conducted more experiments on the

detector in noisy environments, and the results are analyzed in

Appendix A.2.1.

6.4 Regularized Robust Whisper

Figure 2 illustrates the finalized approach of our end-to-end defence,

Regularized Robust Whisper. First, the detector classifies the input

audio signal as attacked or benign. Only the attacked audio samples

Table 7: Confusion Matrix results of four scenarios.

True label clean attacked clean attacked

Predicted label attacked attacked clean clean

Whisper_Librispeech 18 1757 1764 61

Assembly_Librispeech 9 136 141 14

Whisper_Commonvoice 56 136 94 14

Assembly_Commonvoice 55 123 95 27

are fed to Robust Whisper. If not attacked, we can use the already

available Vanilla Whisper model for transcription.

Results of the Regularized Robust Whisper are shown in Ta-

ble 8. We see that WERs of benign audio samples are reduced in

the Regularized Robust Whisper in comparison to the standalone

Robust Whisper in all four scenarios. We need to be mindful of the

adversarial audio samples that mistakenly get detected as benign.

These incorrectly identified attacked samples will be sent through

the undefended Whisper, causing a higher WER. This is reflected in

our results. When evaluated on attacked samples, you can observe

a slight increase in the WERs in three out of four scenarios. But

this increase is negligible compared to the improvement we achieve

with the benign samples. Thus, the Regularized Robust Whisper

performs better than the standalone Robust Whisper. We want to

note that the zero WER achieved by the Defended Regularized solu-

tion for the benign samples in the LibriSpeech-AssemblyAI scenario
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Table 8: Results of the Regularized Robust Whisper. The

A�acked Undefended shows the WERs resulting from the un-

defended whisper model against attacked audios. It is used

as a baseline to get an idea of the worst-caseWER of each sce-

nario. The analysis of the defended system is again divided

into two sub-scenarios, (i) the performance with attacked

samples (A�acked Defended) (ii) the performance with be-

nign samples (Benign Defended). In each sub-scenario, we

compare the results of the standalone Robust whisper and

the Regularized Robust Whisper.

Dataset
LibriSpeech CommonVoice LibriSpeech CommonVoice

Whisper Whisper AssemblyAI AssemblyAI

Attacked Undefended 0.1042 0.4370 0.3535 0.8282

Attacked Defended Standalone 0.0730 0.3630 0.3002 0.5937

Attacked Defended Regularized 0.0729 0.3638 0.3009 0.5903

Benign Defended Standalone 0.0167 0.1453 0.0273 0.0790

Benign Defended Regularized 0.0058 0.0589 0.0000 0.0422

is caused by the number of test samples we used. We tested 150

benign audio samples to calculate it. All 150 were correctly identi-

fied by our detector, resulting in a zero WER. Further, we conduct

more experiments in noisy environments and discuss the results in

Appendix A.2.2.

6.5 Adaptive Attacks

In this paper, our goal is to design a defence against signal pro-

cessing attacks. To the best of our knowledge, this is the first such

defence. So it remains a future research problem to design and

analyse possible adaptive attacks against these kinds of defences.

To maximize the chance that this defence is robust, we proposed a

new signal processing attack (Imaginary Clipping) and show our

defence is robust to it. We leave for future work a full investigation

of adaptive attacks. That said, it is worth discussing the limita-

tions and advantages of our method concerning potential (future)

adaptive attacks. As we have shown experimentally, our method

is robust to noise, thus adaptive attacks that seek to add noise to

evade detection are not expected to be successful. However, since

our defence uses an underlying STT model, an attacker could target

this model with an optimization-based attack, but our main focus in

this paper is on signal processing attacks. Ultimately our argument

is empirical in nature, but our methodology is in line with existing

prior research, which often evaluates robustness against adaptive

attacks [32] through a series of experiments. For example, Wang

et al. [32] proposed a dynamic inference-time defence robust to

adaptive attacks that optimize the model by minimizing the model

output entropy. They validate the robustness of the defence through

extensive experimentation on multiple models, datasets, and exper-

imental settings. We followed a similar approach in our experiment

to ensure the robustness of our defence by experimenting on an

out-of-distribution dataset, multiple models and different levels of

noisy environments.

7 CONCLUSION

In this paper, we propose a self-supervised fine-tuning algorithm

— Robust Whisper, to make existing ASR systems robust to new

adversarial attacks by filtering adversarial audio. Our approach

has the advantage that it only requires the fine-tuning of the en-

coder of the STT model and does not require any human-annotated

samples. We perform experiments across four scenarios, compare

them with other state-of-the-art defence mechanisms and show

that our approach performs better than existing methods. Robust

Whisper used on both attacked and benign samples can result in

transcription errors on benign samples. We elaborate on how com-

bining Robust Whisper with a signal processing attack detection

model, which detects attacked audio, can increase the accuracy of

the overall approach. However, we believe that this problem can be

handled by enough training data. We leave this as an open research

problem for the future.
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Aswe explained in Section 2.3, the decimation and clipping in signal

processing attacks result in similar flat frequency domain patterns.

Also, the Yeehaw Junction attack [5] adds noise while querying the

STT model. This is also a cause of this ambiguity.

As a summary, we have tested our benign detection model with

three different types of audio samples — (i) clean benign samples, (ii)

noisy benign samples, and (iii) attacked samples. As we discussed in

Section 4.3, we want our detector to only feed attacked samples to

the Robust Whisper to reduce errors introduced by our system. So,

our detector needs to classify both clean benign samples and noisy

benign samples as benign. Results of Section 6.3 and Section A.2.1

show the ability of our detection model to achieve this behaviour.

Table 10: Accuracy of correctly identifying benign samples

under noisy environments

SNR (dB) 0 5 10 20 30 Clean

Accuracy 1 1 0.975 0.9375 0.6375 0.8

A.2.2 Regularized Robust Whisper in Noisy Environments. Our

main goal is accurately identifying signal processing attacks and giv-

ing robust transcriptions for them. As we discussed in Section A.2.1,

our detection model is able to classify benign samples coming from

noisy environments as benign samples. So our end-to-end system,

Regularized Robust Whisper, will direct them to the Vanilla Whis-

per model. So it is important to note that transcription errors the

Vanilla Whisper model causes in noisy environments will appear in

our end-to-end solution. We did tests to ensure this. Similar to the

experiment in Section A.2.1 we picked 250 benign samples from a

segment of Common Voice [12] dataset and added different levels

of AWGN, Dataset has 50 benign samples per SNR level (0, 5, 10, 20,

30). We named this new dataset, which has different noise levels,

as ae_awgn_commonvoice. Then, we calculated the WERs of the

transcriptions given by the Vanilla Whisper STT model and Regu-

larized Robust Whisper. Table 11 shows the results of our tests. The

WERs made by the two systems are the same. This ensures that our

detector has accurately identified benign samples and directed all

of them to Vanilla Whisper. Even though a robust system should

be robust to any kind of distortion, since our goal in this paper is

building a defence against signal processing attacks, we leave this

problem for future research.

Table 11: Regularized Robust Whisper behaviour against

benign samples in noisy environments. Benign Undefended

shows the WER Vanilla Whisper STT model makes for noisy

benign samples. Benign Defended Regularized row shows the

WER Regularized Robust Whisper makes for noisy benign

samples.

SNR(db) 0 5 10 20 30

Benign Undefended 0.4298 0.9016 0.3717 0.2231 0.1440

Benign Defended Regularized 0.4298 0.9016 0.3717 0.2231 0.1440
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