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ABSTRACT

Understanding the transfer of carbon between Earth’s surface reservoirs is necessary for interpreting
climate transitions in Earth history and predicting future climate change. Warming associated with
the 16.9-14.7 Ma Miocene Climate Optimum and subsequent cooling during the 14.7-13.8 Ma Middle
Miocene Climate Transition provide opportunities to study carbon cycle dynamics in the geologically
recent past. The Monterey Hypothesis interprets the Middle Miocene Climate Transition cooling as part
of a positive feedback in which enhanced organic carbon burial on the eastern Pacific margin drew
down atmospheric CO,. This idea has been supported by the correlation of organic-rich deposits in the
Monterey Formation in coastal California with the mid-Miocene Monterey Event, a globally-observed
positive shift in the §'3C of marine carbonates that may be indicative of elevated burial of §'3C-
depleted organic carbon. Here, we use 31 new U-Pb zircon laser ablation inductively coupled plasma
mass spectrometry ages and 14 new isotope dilution thermal ionization mass spectrometry ages from
volcanic ash beds in the Monterey Formation along the Santa Barbara coast to constrain the timing
and tempo of organic carbon mass accumulation in some of the most organic-rich rocks in California.
The new age model demonstrates that peaks in organic carbon mass accumulation rate in the Monterey
Formation do not coincide with the Monterey Event, and that total organic carbon content in the Miocene
Santa Barbara Basin is inversely correlated with sedimentation rate. We propose that changes in organic
carbon burial rates in the Monterey Formation were driven by a combination of sea-level change and
local tectonically-mediated basin formation, which provided first-order controls on sedimentation rate,
and that organic carbon burial in the Monterey Formation is better described as a response to, rather

than a driver of, global climate.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

bution of organic-rich rocks in California remains a subject of de-
bate. Deposition of the Monterey Formation spanned the Miocene

Organic-rich strata of the Monterey Formation were deposited ~ Climatic Optimum [MCO, marked by peak Neogene temperatures

in borderland basins along the western margin of North Amer-
ica during the Miocene, and are the primary source and reservoir
rocks for California’s hydrocarbon resources (Bramlette, 1946; Pis-
ciotto and Garrison, 1981; Behl et al.,, 1999). Although the burial
and preservation of organic material in the Monterey Formation
has been investigated for more than half a century, attribution of
the specific global and local processes that resulted in the distri-
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(Modestou et al., 2020) and a nadir of Antarctic ice extent (Foster
et al.,, 2012)] through onset of the subsequent global cooling trend
(Westerhold et al., 2020; Holbourn et al., 2014), motivating the hy-
pothesis that organic carbon burial in the Monterey Formation and
temporally-equivalent units in the eastern Pacific drove Miocene
climate change (Vincent and Berger, 1985; Flower and Kennett,
1993). Conversely, other workers have suggested that the MCO was
marked by low marine organic carbon burial rates (Li et al., 2023;
John et al., 2002), consistent with hypotheses suggesting that local
preservation factors, rather than enhanced organic production and
burial, were responsible for the elevated organic content of Mon-
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Fig. 1. A) Neogene sedimentary basins of California, modified from Behl (1999), with study area highlighted in red and expanded in B). C) Stratigraphic sections through
outcrops at four beach-cliff exposures of the Monterey Formation, with U-Pb zircon ages appended onto the bentonites from which they were derived. Maximum depositional

ages are represented with a <.

terey Formation shales (Isaacs, 1984; John et al., 2002; Follmi et
al., 2005).

These hypotheses can be assessed by quantifying the rate and
timing of organic carbon burial in the Monterey Formation. Ex-
isting age models for the Monterey Formation rely primarily on
biostratigraphy (John et al., 2002; Follmi et al., 2005), with sec-
ondary constraints from chemostratigraphy and magnetostratigra-
phy. However, evidence of reworking and sedimentary condensa-
tion (Follmi et al., 2005) complicates age assignment, as does vari-
able preservation of calcareous skeletal material (Barron, 1986) and
limited absolute age calibration for Californian marginal biozones
(Crouch and Bukry, 1979). Carbon and oxygen isotope chemostrati-
graphic correlations of the Monterey Formation to global records
(Flower and Kennett, 1993) are compromised by carbonate authi-
genesis (Bldttler et al, 2015), and basin restriction (Isaacs et al.,
2001; Hancock et al., 2019).

Here, we present precise U-Pb geochronology on zircon derived
from volcanic ash beds intercalated within Monterey Formation
strata. These dates anchor age models through four stratigraphic
sections along the northern edge of the Santa Barbara Channel
(Fig. 1). At the El Capitan and Naples sections, age models are
paired with both new and previously published total organic car-
bon (TOC) measurements to constrain the rate of organic carbon
burial. All age models are then integrated into a basinal chronos-
tratigraphy to assess the synchronicity of lithostratigraphic change
across the Santa Barbara Basin (SBB) and to consider mecha-
nisms for driving the accumulation of organic carbon. Within this
chronostratigraphic framework, changes in TOC abundance and or-
ganic carbon mass accumulation rate (OCMAR) are compared with
putative far-field drivers, and are used to assess the relationships
between organic carbon burial in the Monterey Formation and
Miocene climate change.
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Fig. 2. Field photographs of Monterey Formation outcrops from the Santa Barbara Basin. A) laminated shales, Tajiguas. Smaller, homogeneously distributed light specks are
foraminifera and other calcareous fossil material, while larger white grains are angular granule-sized clasts of remobilized authigenic phosphate or dolomite. B) Massive
shale (bottom) overlain by laminated porcelanite, middle Naples. C) Condensed phosphatic interval, Tajiguas Beach. Continuous white layers are lag deposits of authigenic
phosphatic clasts cemented by additional phosphatic material. Note dispersed authigenic phosphate nodules in relatively expanded shale above the condensed horizons. D)
reworked angular phosphatic grains in cross bedded shale matrix, Naples. High concentrations of phosphatic grains typically host secondary phosphatic cements. E) Bentonites
in outcrop at Tajiguas, weathering yellow-to-ochre and separated by dark calcareous shale with a characteristic light gray weathering rind. Upper ash is EAGC2014, which sits
at 3.0 m in the composite Tajiguas section (Fig. 1). F) Detail of the block breccia horizon, Naples. Note variable folding of reworked shale clasts, indicating variable lithification

of the source shales prior to remobilization.

2. Geological background

The Monterey Formation of the SBB outcrops in beach cliff ex-
posures along the northern edge of the Santa Barbara Channel
(Fig. 1B; Isaacs, 1981). Shale, carbonate, and porcelanite (porous
opaline silica) of the Monterey Formation broadly expand eastward
with lateral variability in both thickness and facies over sub-km
to km-scales, consistent with deposition within an active, fault-
bounded transtensional borderland basin (Luyendyk et al., 1980).
The thickness and facies changes within these coastal outcrops are
a manifestation of similar variability spanning the greater SBB: the
outcrops on the northern channel coast represent the condensed,
banktop-proximal equivalents of thicker, siliceous basinal facies of

the central Santa Barbara Channel (Hornafius, 1991). These basinal
deposits are bounded to the south by another paleotopographic
high (Isaacs, 1984), which now forms the Santa Barbara Channel
Islands.

The Monterey Formation is subdivided into three lithostrati-
graphic units: the Calcareous Facies, Phosphatic Facies, and Siliceous
Facies (Pisciotto and Garrison, 1981). The basal Calcareous Facies
rests above the Rincon Shale and consists of calcareous-siliceous
shales (Fig. 2A), interspersed with minor dolostone and porcelan-
ite (Fig. 2B). The overlying Phosphatic Facies features darker, or-
ganic carbon-rich shale with abundant authigenic phosphatic and
dolomitic nodules (Fig. 2C), reworked deposits of authigenic ma-
terial (Fig. 2D), concentrated phosphorite beds (Fig. 2C), and rare
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lenticular dolomite (John et al., 2002; Féllmi et al., 2005; Isaacs et
al., 2001; Bohacs and Schwalbach, 1994). The uppermost Siliceous
Facies is dominated by largely-featureless porcelanite beds, inter-
rupted by subsidiary shale and marl horizons (Isaacs et al., 2001;
Laurent et al., 2015).

The relative abundance of the biogenous, terrigenous, and au-
thigenic components of the Monterey Formation can vary on cen-
timeter scales within individual vertical sections (John et al., 2002;
Follmi et al., 2005) and on decimeter to kilometer scales along
strike, following the compositional and facies variability described
above. Bulk sedimentation rates broadly represent a combination
of terrigenous and biogenous sediment fluxes to the depozone,
with changes in the relative magnitude of these fluxes (as well
as post-depositional authigenesis) resulting in the lithological vari-
ability observed throughout all three facies. Although the Miocene
SBB was relatively distal from the continental margin, outer bor-
derland paleotopographic highs (Hornafius, 1991; Marsaglia et al.,
2006) may have provided local sediment sources, potentially aug-
mented by fine current-borne suspended terrigenous material from
the continental margin (as observed in the modern Tanner Basin;
Gorsline et al., 1968). Most shales within the Miocene SBB contain
between ~20-50% terrigenous detrital material (F6llmi et al., 2005;
Laurent et al., 2015). However, abundant Type Il kerogen suggests a
primarily marine origin for organic carbon in the Monterey Forma-
tion (Laurent et al., 2015). The occurrence of dominantly biogenous
rocks, such as porcelanites and cherts, has been previously at-
tributed to either exceptional productivity (Barron, 1986; Pisciotto
and Garrison, 1981), or to punctuated episodes of high biogenic
flux during periods of relatively minimal terrigenous input, re-
sulting in less dilution of the biogenous material (Isaacs, 1984).
Reworking and remobilization of these components must also be
considered, as the removal of fine-grained material by winnow-
ing currents and slumping/mass wasting events played a major
role in concentrating coarser authigenic material, as evidenced by
reworked, clast-supported beds of nodular phosphate within the
Phosphatic Facies (Fig. 2C; John et al., 2002; Follmi et al., 2005;
Laurent et al., 2015).

In the SBB, all three facies are intercalated with volcanic ash
beds, most of which have been altered to bentonite clay (Fig. 2E),
that range from <1 c¢cm to >1 m thick. Bentonites outcrop as re-
cessive ochre, maroon, green, or blue-gray lamina within the sur-
rounding strata. Some ashes in the SBB have been mineralogically
or geochemically correlated within the SBB (Hornafius, 1994) and
with potential eruptive sources (Knott et al., 2022), but few ash
beds from the SBB have been dated with U-Pb geochronology (Fen-
ton, 2018).

3. Methods

Between 2018 and 2021, stratigraphic sections were measured
at multiple Monterey Formation outcrop localities on the northern
edge of the Santa Barbara Channel. Within each section, bentonites
were collected for U-Pb geochronology, with ~0.5 kg of sample
collected from each horizon. All geochronological sample locations
are compiled in Table SM1. At the El Capitan section, shales were
collected for TOC and XRF analysis at ~1 m intervals in the lower
100 m of the section, and at ~30 cm intervals in the upper por-
tion of the section. Sampling targeted fresh surfaces with minimal
weathering rind (which are abundant due to active cliff retreat),
and without visual evidence of hydrocarbon migration. Zircons
from geochronological samples were dated with laser ablation-
inductively coupled plasma mass spectrometry (LA-ICPMS), and a
subset of zircons from fourteen samples were dated with chemi-
cal abrasion-isotope dilution-thermal ionization mass spectrometry
(CA-ID-TIMS). El Capitan shale samples were powdered and com-
positionally analyzed with a handheld XRF, and an aliquot of each
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sample was decarbonated and analyzed for TOC content. Full de-
scriptions of geochronological and geochemical analyses are avail-
able in the attached Supplementary Material.

4. Results
4.1. Geochronology and age model

LA-ICPMS U-Pb dating resolved statistically-significant young
magmatic zircon populations from 31 bentonite samples from
the Monterey Formation. All weighted-mean ages calculated from
these populations are stratigraphically consistent (younging up-
ward), within 20 uncertainty (Figs. 1, 3). 14 samples also analyzed
with CA-ID-TIMS yielded modeled eruptive ages that are strati-
graphically consistent and indistinguishable, within uncertainty,
from LA-ICPMS weighted mean ages calculated for the same sam-
ple (Fig. 4A). The equivalence of LA-ICPMS and CA-ID-TIMS ages
across all dually-measured samples suggests that despite differ-
ences in precision (Fig. 3), ages developed using both analytical
techniques may be directly compared. Ages utilized in the chronos-
tratigraphic framework are summarized in Fig. 1.

Discrete bentonite beds without visible bedding structures were
sampled for geochronology. Although these horizons are inter-
preted to have formed primarily as the result of volcanic airfall,
some horizons were likely reworked during and soon after de-
position, as corroborated by older detrital tails on all LA-ICPMS
age spectra. Older grains are expected in airfall tuffs falling into
an active siliciclastic depozone, either as inherited grains incor-
porated before or during eruption, or as detrital grains. For the
LA-ICPMS data, the youngest coherent population of zircons de-
rived from each bentonite is interpreted as the eruptive age of
the ash horizon. However, CA-ID-TIMS analyses revealed variabil-
ity within the uncertainty envelope of weighted mean-LA-ICPMS
ages, including samples where the youngest dated grain is statis-
tically distinct from the rest of the population. For these samples,
the age of the youngest grain precisely analyzed with CA-ID-TIMS
is treated as a maximum depositional age (MDA, Fig. 1).

Ages from El Capitan and Naples were input into a stratigraphic
Markov-Chain Monte Carlo (MCMC) model in the Chron.jl pack-
age (Schoene et al., 2019). Four ash ages from El Capitan were
correlated with specific ash horizons at Naples Beach based on
previously described tephrochronological (Hornafius, 1994), bios-
tratigraphic (John et al., 2002; Follmi et al., 2005), and lithostrati-
graphic similarities between sections. These ages were incorpo-
rated into the Naples age model with additional (+1.5 m) vertical
uncertainty to account for potential miscorrelation. For horizons
with multiple age constraints (e.g. a TIMS modeled eruptive age
and a LA-ICPMS weighted mean age), the age with the least an-
alytical uncertainty was chosen as the model constraint. For the
three horizons at El Capitan where a weighted-mean or modeled-
eruptive age was not calculated (due to a distinct young grain in a
LA-ICPMS sample, or a single young grain in a group of TIMS anal-
yses), the resultant MDA was utilized in the age model. All ages
utilized in the Chron.jl framework are in bold text in Table SM1,
and depicted in Fig. 1. The model was run at a vertical resolution
of 0.2 m, with 30,000 steps (10,000 runs discarded for burn-in),
and 95% credible intervals were calculated (Figs. 4B, 5A).

Sedimentation rates and 68% credible intervals (Fig. 4D, 5C)
were calculated in the Chron.jl age-height model framework us-
ing an overlapping binned approach. Here, we utilize a shifting
bin size of (age)/10, with a 10-bin overlap in order to minimize
spurious spikes or rapid transitions in sedimentation rate observed
with narrower bins. Regardless of the binning method, the trends
and mean modeled sedimentation rates are comparable, and con-
sistently approach values expected for linear sedimentation rates
between age constraints.
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A summary of all geochronological data, including concordia diagrams and weighted-mea

4.2. Organic carbon mass accumulation rate

TOC measurements on shales from El Capitan Beach range from
1-24 wt% TOC (Fig. 4C). The trends of this new dataset largely
agree with earlier measurements from El Capitan by John et al.
(2002), as well as with TOC datasets from Naples Beach (Fig. 5B;
Follmi et al, 2005; Isaacs et al., 2001, Bohacs and Schwalbach,
1994). TOC data from prior publications was integrated into our
measured sections by matching tie points from the measured sec-
tions into our stratigraphic framework. For each measured section,
an exponential moving average was calculated with the compiled
TOC data in order to characterize trends in TOC abundance, and
appended with a 1o analytical uncertainty envelope (Figs. 3C, 4B).

Organic carbon mass accumulation rate (OCMAR, mg/cm?/kyr)
is calculated using the following equation:

(1)

where S (m/Myr) is modeled sedimentation rate, Cy; (Wt%) is or-
ganic carbon (in this case an exponential moving average of TOC
measurements taken through the section), and p (g/cm?) is an as-
sumed shale density of 2.1 g/cm3. 1o uncertainty is propagated

using the following equation:
0OCMAR (oS 2+ 0 Crot 2+ %
OCMAR S Crot P

where oS is 1o uncertainty in sedimentation rate generated by
Chron.jl; 0Cy is 1.8%, the 1o analytical uncertainty associated
with our TOC measurements, and op is 0.2 g/cm3, or the esti-
mated 1o uncertainty associated with potential variability in shale
density through the section. OCMARs for both El Capitan and

OCMAR = S * Ctot * 0

(2)

n plots for all measured samples, can be found in the Supplementary Materials.

Naples are plotted both against stratigraphic height (Figs. 4E, 5D)
and time (Fig. 6A).

Usage of post-compaction average shale density accounts for
compaction-related change in both density and apparent sedimen-
tation rate in OCMAR estimates. This is particularly important in
porcelanite-dominated intervals (e.g. ~120-140 m at El Capitan
and ~190-200 m at Naples): the thickness of porcelanites derived
from diatomaceous biogenous material can be reduced by a factor
of 7 from their depositional thickness (given an initial porosity of
90% at deposition and a post-burial porosity of 10%; Isaacs, 1984).
However, a density of 2.5 g/cm3, the upper 20 bound of density
estimates utilized in our OCMAR calculation, is roughly equivalent
to a pure diatomaceous porcelanite at 6.5% porosity, which is sig-
nificantly less than porosities for measured porcelanites in the SBB
(Isaacs, 1983), and mitigates potential compaction-related under-
estimates of OC accumulation rate through this interval. Overall,
our mean assumed density is higher than average shale density
through the section, resulting in a conservative overestimate of
MAR through each section, and bolstering the argument for rela-
tively low rates of OC burial in the Miocene SBB. This overestimate
is further enhanced in silica-dominated intervals by the preferen-
tial sampling of shale: silica-rich porcelanites were not targeted for
TOC sampling, and as a result the calculated average TOC content
through porcelanite-dominated intervals is likely an overestimate.

4.3. Shale elemental abundances

The Al/Si ratio, Ti content, Ca content, and Si/Ti ratio of El
Capitan shales are plotted against TOC content in Fig. 7. All XRF-
derived elemental abundances of Al, Ca, Si, and Ti are compiled
in Table S5. Al/Si ratios (Fig. 7B), a proxy for clay abundance and
mineral surface area (Galy et al., 2007; Van Hoang et al., 2010),
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show a positive relationship with TOC content, as does Ti content
(Fig. 7C), which is a redox-insensitive proxy for the abundance of
terrigenous material in shale (Calvert and Pedersen, 2007). Mean-
while, both Ca abundance and the Si/Ti ratio have a broadly neg-
ative relationship with TOC (Fig. 7D, E). Ca serves as a proxy for
CaCO3 abundance (Rothwell and Croudace, 2015), which, in Mon-
terey Formation shales, is strongly influenced by the occurrence
biogenous material (Féllmi et al., 2005). Si/Ti ratios indicate the
relative prevalence of biogenous versus terrigenous silica sources,
with higher ratios indicating a larger biogenous component (e.g.
Agnihotri et al., 2008).

5. Discussion
5.1. Drivers of organic carbon accumulation in the Monterey Formation

High-TOC intervals within Monterey Formation sections of the
SBB have been interpreted to represent enhanced organic carbon
(OC) burial associated with upwelling-related increases in primary
productivity (Flower and Kennett, 1993). This interpretation pre-
dicts synchronous increases in TOC and biogenous sediment flux

that are uncommon in the SBB, as evidenced by inverse relation-
ships between biogenous proxies and TOC at El Capitan (Fig. 7C,D)
and elsewhere (Follmi et al., 2005; Laurent et al., 2015). Rather,
TOC content is the result of the collective influence of several driv-
ing factors, including: 1) productivity, which delivers an initial flux
of OC to the depozone; 2) dilution, which reduces the relative
portion of organic carbon in a sediment through the deposition
of non-organic material, and 3) preservation, which results in the
survival and retention of only a fraction of initially-deposited OC.
Although syn- and early-post-depositional preservational processes
may have been important in modulating TOC content at El Capitan
and Naples, evidence of minimal burial diagenesis at both locali-
ties (Isaacs, 1981) suggests that later post-depositional degradation
or migration of locally-deposited OC is likely negligible. OCMAR,
the flux of OC buried in a sedimentary sequence, represents the
combined effects of productivity, dilution, and preservation over
time. Our new age model allows us to quantify changes in OC-
MAR through Monterey Formation sections, and directly compare
the timing of OCMAR variability with the timing of putative re-
gional and global drivers.
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Fig. 5. Age model and modeled organic carbon mass accumulation rate (OCMAR) for Naples. A) age vs. height model for Naples, showing the 95% credible interval envelope
of modeled age-height relationships. Note the usage of four ages correlated from the El Capitan section. The El Capitan ash ages were correlated to specific ash horizons
at Naples Beach based on extant tephrochronological (Hornafius, 1994), biostratigraphic (John et al., 2002; F6llmi et al., 2005), and lithostratigraphic similarities between
sections. However, they were incorporated into the age model with additional (+1.5 m) vertical uncertainty to account for potential miscorrelation. The temporal extents of
the MCO and MMCT are represented by vertical bars. B) TOC data from Naples compiled from Follmi et al. (2005), Isaacs et al. (2001), and Bohacs and Schwalbach (1994),
with a moving average through the data depicted as a solid line with 1o analytical uncertainty envelope. C) Modeled sedimentation rate for Naples with 68% credible interval
envelope. D) Modeled OCMAR curve and 68% credible interval envelope for Naples, plotted vs. stratigraphic height.

The MCO and MMCT are defined by shifts in the §'80 composi-
tion of benthic foraminifera (Steinthorsdottir et al., 2021), which
reflect a combination of seawater temperature and ice volume
(Chappell and Shackleton, 1986). Peaks in OCMAR in the Mon-
terey Formation occur prior to the onset of the MCO and during
and after the MMCT (Fig. 6). These peaks could be interpreted to
be consistent with the Monterey Hypothesis, as increased organic
burial in Monterey strata is coincident with cooler intervals in the
climatic proxy record (Fig. 6), potentially indicative of enhanced
positive feedbacks between cooling, thermocline development, up-
welling, and primary productivity (Vincent and Berger, 1985). Al-
ternatively, OC burial in the Monterey Formation could be con-
trolled by eustatically- and climatically-induced changes that ex-
tend beyond enhanced upwelling and productivity. These changes
include shifts in regional hydrology (changing fluxes of nutrients
or clay to the basin), basinal redox state (expansion/contraction of
oxygen minima, changes in redox gradient depth), or basinal cir-
culation (changing winnowing currents or upwelling), all of which
can influence TOC abundance in Monterey Formation sediments.

Similarly, the coincidence between a drop in OCMAR and the
onset of the MCO (Fig. 6) suggests a relationship, but the causal-
ity can again be interpreted in several ways: 1) warming or
other climate-induced environmental changes could have caused a
change in the magnitude or locus of upwelling and/or productivity,
which could have driven a reduction in biogenous flux in the SBB
during the MCO, or 2) sea-level rise could have caused changes
in total sediment delivery to the borderland environment, which
would manifest as reduced syn-MCO terrestrial flux to borderland
depozones. These scenarios are considered within the context of a
depositional model for the Monterey Formation in Section 5.3.

5.2. Relationships between sedimentation rate and TOC

Despite differences in the magnitude of both TOC content and
sedimentation rate in contemporaneous intervals of the El Capi-
tan (Fig. 4) and Naples (Fig. 5) sections, OCMAR at both local-
ities is comparable in terms of both magnitude and variability
(Fig. 6). Sedimentation rate and TOC abundance are inversely cor-
related at both locations (r-values of -0.67 and -0.44, respectively;
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Fig. 6. A) Organic carbon mass accumulation rates (OCMARs) and 68% credible interval envelopes for El Capitan and Naples, plotted vs. time, with blue and teal intervals
demarcating the temporal extent of the Miocene Climatic Optimum (MCO) and mid-Miocene Climatic Transition (MMCT) (Steinthorsdottir et al., 2021). Note relatively low
OCMAR during the MCO. Previous estimates for OCMAR in the Santa Barbara Basin are shown as dashed lines. B) Compiled §'3C from benthic foraminiferal tests plotted vs.
time (ODP cores 1337-1338, Westerhold et al., 2020), with the temporal extent of the Monterey Event positive §'3C isotope shift (Vincent and Berger, 1985) depicted as a
green box. C) Compiled §'80 from benthic foraminifera plotted vs time (Westerhold et al., 2020). D) Modeled global eustatic sea level change, in meters (Miller, 2020).

Fig. 7A), yielding relatively low OCMARs in high-TOC intervals, and
vice-versa, consistent with previous OCMAR estimates (John et al.,
2002; Follmi et al., 2005).

Secular differences in the relationships between TOC and vari-
ous sediment component flux proxies observed in high- and low-
sedimentation rate intervals at El Capitan (Fig. 7B-E) suggest that
sedimentation rate influences processes that can control TOC abun-
dance. Al/Si ratios, which serve as a proxy for clay abundance (Galy
et al,, 2007), are positively correlated with TOC, indicating the im-
portance of clay shielding (Kennedy et al., 2002) as a preservation
mechanism for TOC in the Miocene SBB. Furthermore, the slope of
that positive correlation is dependent on sedimentation rate: lower
sedimentation rates result in a much stronger relationship between
clay and TOC than higher sedimentation rates, despite similar Al/Si
ratios across all modeled sedimentation rates (Fig. 7B). This trend,
which is also observed in Ti abundance (Fig. 7C), is consistent with
the observed negative correlation between sedimentation rate and
TOC abundance. At high sedimentation rates, dilution plays a dom-
inant role in determining TOC abundance through the addition of
material that either does not contain OC, or does not contribute to
the preservation of organic material in the depozone. Conversely,
at low sedimentation rates, strong relationships between clay prox-
ies and TOC indicate the importance of preservation in determining
TOC content. Indeed, the most linear relationship between TOC and
clay abundance occurs during the post-MMCT interval at El Capitan
(Fig. 7B), which features the lowest sedimentation rates observed
in the section.

Relationships between TOC and biogenous flux proxies (Fig. 7D,
E) are also dependent on sedimentation rate. Thus, as sedimen-
tation rate affects a variety of factors that control the abundance
of TOC, factors that control sedimentation rate were fundamental
in determining the TOC content of Miocene Santa Barbara Basin
strata. Importantly, in Holocene-to-modern Californian borderland
basins, topographic variability and eustatic sea-level modulate sed-
imentation rates across the margin (Gorsline et al., 1968; Covault
and Sharman, 2019).

5.3. Depositional model for organic carbon accumulation in the Santa
Barbara Basin

With modern analogs in mind, we propose that a combination
of local tectonics and eustasy were primary controls on Monterey
Formation depositional systems, sedimentation rates, and organic
carbon accumulation, with organic carbon deposition responding
to, rather than driving, climatic variability. Changes in sea-level
exacerbated the depositional effects of changing paleotopography
in the tectonically evolving Miocene SBB, resulting in substantial
changes in sedimentation rate and TOC abundance through both
time and space (Fig. 8).

5.3.1. Low sea level, high sedimentation rate

In this model, high sedimentation rates are most common
during relative eustatic minima, when sediment sources (either
terrigenous sources or banktops/shelves) are most likely to be
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Fig. 7. A) Relationships between modeled sedimentation rate and TOC content at El Capitan and Naples, showing an inverse correlation at both localities (r values of -0.67
and -0.44, respectively). Comparison of TOC and elemental proxy data from El Capitan shales, including B) Al/Si ratio, a proxy for mineral surface area and clay abundance
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sedimentation rate in determining TOC abundance across different depositional regimes.

exposed to processes, such as gravitational instability, subaerial
exposure, or current action, that mobilize and deposit sediment
into available accommodation space (Fig. 8A). This is especially
prevalent during periods of active faulting in the basin, during
which time material accumulating on local topographic highs is
frequently remobilized and redeposited into actively-generated
accommodation space through mass-wasting processes. Shales
(Fig. 8A), both massive and laminated, dominate intervals of the
Miocene SBB with high post-compaction sedimentation rates. Al-
though stepwise changes in terrigenous flux have been argued to
be responsible for shifts in both sedimentation rate and OCMAR in
the Miocene SBB (Isaacs, 1984), Monterey Formation shales contain
a terrigenous component fraction that is consistently variable be-
tween ~20-60% throughout most of the Calcareous and Phosphatic
Facies (Follmi et al., 2005; Laurent et al., 2015), an interval which
encompasses the full range of sedimentation rates modeled for

the SBB (Figs. 4,5). Similarly, Ti and Ca abundances express similar
ranges of variability across a variety of sedimentation rates at El
Capitan (Fig. 7C,D). This could be indicative of consistent, concomi-
tant changes in independent biogenic and terrigenous fluxes to the
depozone, yielding similar shale compositions at a variety of differ-
ent sedimentation rates. Alternatively, shale deposition represents
the remobilization of material previously deposited on shelves or
banktops that is later distributed (purple arrows, Fig. 8) to depo-
zones on the slope or shelf-slope transition, resulting in reworked,
redeposited shales with compositions that reflect prior mixing of
biogenous and terrigenous fluxes (blue and red arrows respectively,
Fig. 8) in a shelf or banktop environment. This scenario agrees with
the interpretations of Follmi et al. (2005), who argue that most
mudstones and shales observed at Naples Beach are the product
of gravity-flow deposition, rather than vertical rain-out from distal
suspended sediment load.
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Fig. 8. Cartoon depiction of sedimentation patterns across the SBB, as controlled by
tectonic and eustatic changes. Arrow sizes are proportional to flux magnitude. A)
Low sea level and active tectonism result in the deposition of both primary and re-
mobilized sediment into newly created accommodation space. High sedimentation
rates, dominated by remobilized sediment flux, result in thick shales with relatively
low TOC content. Dashed box shows area detailed in panel C. B) High sea level re-
duces terrigenous flux to the depozone, as well as diminishes the ability of shallow
current action to rework material on submerged paleotopographic highs. Biogenous
flux becomes the dominant sediment source, resulting in deposition of biogenous
lithologies. C) Detail of a submerged paleotopographic high, illustrating topographic
control on thickness and lithologic variability.

The highest sedimentation rates and lowest sustained TOC con-
centrations observed in this study are hosted within the pre-MCO
basal Monterey Formation, which is dominated by shale lithologies
(Fig. 2A). The elevated sedimentation rates through this interval
drive relationships between TOC and proxies for clay, terrigenous
sediment abundance, and biogenous sediment abundance that are
distinct from those in younger intervals with lower, albeit more
variable sedimentation rates (Fig. 7). Importantly, this interval con-
tains abundant evidence of active tectonism and basinal evolution:
large thickness differences between sections (Fig. 1) suggest vari-
able generation of accommodation space likely related to normal
faulting on the interior margin of the basin along present day
Santa Cruz Island (Hornafius, 1991), culminating with the depo-
sition of slumped block breccias (Fig. 2F) found across the SBB at
~17.0 Ma (Fig. 1). It is unclear whether the block breccia hori-
zon represents a single event (e.g., a seismite) or is the result of
tectonically- or eustatically-induced instability. While debris flows
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occur along the modern Californian margin during intervals of both
sea-level rise and fall, debris flows that occurred during transgres-
sions are most common (Covault and Graham, 2010). The temporal
proximity of the onset of the MCO with the block breccia horizon
suggests a potential association with the transgression at the onset
of the MCO. Furthermore, the occurrence of a coarse litharenitic
sandstone within the breccia horizon at the El Capitan locality is
indicative of the presence of a likely-proximal terrigenous sedi-
ment source to the Miocene SBB. However, similar to the modern
Californian margin, the throughflow of coarse clastic material to
basinal depozones may have been largely restricted to submarine
canyons (Covault and Sharman, 2019), resulting in the observed
dearth of coarse clastic material in the northern SBB outcrops.

5.3.2. High sea level, low sedimentation rate

During relative sea level maxima, potential sediment sources
are inundated, resulting in a reduction of both terrigenous mate-
rial and remobilized banktop material to the depozone (Fig. 8B).
Biogenous material becomes the most voluminous contribution
to the depozone, resulting in the accumulation of dominantly
biogenous lithologies.

This model scenario is best represented in the SBB by a de-
crease in apparent sedimentation rate at ~17.0 Ma that is con-
comitant with a shift in dominant lithology from calcareous shale
to porcelanite beds (Fig. 1; Fig. 2B), as well as low-to-moderate
TOC and a decrease in OCMAR. The base of this interval aligns
temporally with the onset of the MCO (Herbert et al., 2022; West-
erhold et al., 2020) and a eustatic sea-level rise at ~16.9 Ma of
~40 m (Miller et al., 2020). This scenario supports previously pro-
posed models for the occurrence of biogenous lithologies as the
result of reduced detrital input (Isaacs, 1984), and suggests that
reduced terrigenous input, rather than a reduction in primary pro-
ductivity, is responsible for reduced OCMAR across the early MCO
interval. Additionally, the low TOC measured through this interval
can potentially be explained by the reduction of detrital material
to the depozone, thereby limiting clay-mediated preservation of
TOC and resulting in concomitant local minima in sedimentation
rate and TOC abundance that are not observed elsewhere in the
section. Alternatively, the high porosity and permeability of domi-
nantly biogenous material in a pre-compaction setting could have
resulted in the relatively poor preservation of OC, driving both low
TOC and low post-compaction apparent sedimentation rate.

5.3.3. Low sea level, low sedimentation rate

When material is transferred from relatively high topography
(e.g. sills or banktops, Fig. 8) into adjacent accommodation space,
highly condensed stratigraphy and/or unconformities will develop
along those topographic highs (Fig. 8C). During periods of rapid
uplift or topographic generation, gravitational mass wasting will
remobilize most material found on banktops, regardless of grain-
size, density or hydraulic stability. When the dominant source of
sediment remobilization is current action, however, material above
a certain grain size, density, or hydraulic stability threshold will
remain in-situ, while more easily-mobilized material is scoured
and redeposited elsewhere. As a result, lowstand intervals during
which banktops, shelves, and slopes are exposed to persistent win-
nowing currents will feature condensed regions with extremely
low sedimentation rates and a high probability of significant un-
conformity surfaces.

This scenario is exemplified in the SBB by rocks of the Phos-
phatic Facies (Fig. 1), which host both the lowest sedimentation
rates and highest TOC contents measured in the basin. A ~60 m
sea-level fall associated with East Antarctic Ice Sheet (EAIS) growth
beginning at ~13.8 Ma (Holbourn et al., 2014; Miller et al., 2020)
may have amplified paleotopographic variability across banktop
highs (Hornafius, 1991) in the northern SBB. This variability drove
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the deposition of discontinuous lag deposits of reworked authi-
genic phosphatic nodules and phosphatic hardgrounds (Fig. 2C),
which define the condensed interval of the Phosphatic facies. Dif-
ferences in condensation between sections are significant, resulting
in this interval containing the only long-lived decoupling of OC-
MARs between El Capitan and Naples beaches (Fig. 6). At El Cap-
itan and Naples, the condensed interval spans 13.25 Ma to just
younger than 11.32 Ma, while hardgrounds appear before 14.27 Ma
at Tajiguas Beach, and are abundant between 13.89 Ma and 10.15
Ma (Fig. 1). The Phosphatic Facies contains evidence of sediment
reworking (Fig. 2D) and variable hydrodynamic conditions across
sub-decimeter lateral distances, with authigenic calcareous and
phosphatic material forming clast-supported conglomeratic lags in
regions where finer material has been winnowed away (Fig. 2C).

A strong positive relationship between Al/Si ratio and TOC
through this interval (Fig. 7A) suggests that even in a winnow-
ing environment, clay abundance plays a significant role in de-
termining the abundance of organic carbon. While this may seem
counterintuitive for an environment wherein fine-grained material
is preferentially removed, both directional currents and waves can
concentrate clays in the shallow subsurface of the sediment, re-
sulting in a clay-enriched layer that is more resistant to hydraulic
removal than adjacent, clay-poor horizons (Wu et al., 2018). The
development of an “armored” clay-rich layer provides a mechanism
for maintaining clays in an actively-winnowing environment, and
also provides an avenue for porosity reduction in the upper sed-
iment column. Follmi et al. (2005) argue that porosity reduction
during phosphogenesis provides enhanced preservational potential
for OC by limiting porewater throughput and decreasing oxidative
remineralization potential below low-porosity horizons. The excep-
tional TOC content (and resultant variable OCMAR) of the post
MMCT interval may therefore be a function of preservation both
by clay shielding as well as by porosity reduction associated with
both winnowing-related clay armoring and phosphogenesis, with
the locus of winnowing and phosphogenesis controlled by basinal
topography (Féllmi et al., 2005, 2017).

5.4. Timing and magnitude of organic carbon accumulation in the
Monterey Formation

The age model presented here demonstrates that these TOC-
rich sections along the SBB coast that were used to argue for
increased organic burial during the MCO and MMCT (Flower and
Kennett, 1993) have moderate OCMARs because they are con-
densed. This does not necessarily imply that all Monterey Forma-
tion exposures that formed in other settings will have the same
record of organic burial, as different depositional systems will re-
spond differently to sea-level change. For example, during low-
stands, when upper slope and banktop sections are winnowed,
more fine material, including clay, may be delivered to deeper-
water sections, promoting enhanced carbon burial (Fig. 8A). In-
deed, seismic profiles across the Santa Barbara channel suggest sig-
nificant thickening of units contemporaneous with the condensed
interval of the northern SBB Phosphatic Facies (Hornafius, 1991).
Thus, for the Monterey Hypothesis to be retained, exceptional or-
ganic carbon burial would have had to have occurred elsewhere
on the California margin, away from the northern SBB sections in
offboard deposits.

Exceptional rates of organic carbon burial are not the baseline
in the Miocene SBB: the maximum OCMAR observed at Naples
Beach, which precedes the MCO, is within the range of OCMARs
measured along Holocene productive margins (Fig. 9). In gen-
eral, SBB strata host OCMARs more akin to those observed on
lower productivity margins or within the modern California bor-
derland basins (between ~250-1650 mg/cm?/kyr, Jahnke, 1990).
Estimated OCMARs from the Belridge Field of the San Joaquin
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Basin, an expanded, clastic-rich Monterey Formation locality, are
similar to those of the SBB sections and modern Californian bor-
derland basins (Fig. 9), ranging between ~490-2200 g/cm?/kyr
(see Supplementary Materials). However, the current age model for
Belridge Field strata (Scheirer and Magoon, 2007) suggests that the
highest OCMARs in this interval postdate the end of the MMCT, un-
dermining arguments for a driving relationship between OC burial
in the Monterey Formation and the onset of Miocene cooling.

5.5. Organic burial in the Monterey Formation and the Monterey Event

A core tenet of the Monterey Hypothesis is the proposed cor-
relation between positively-shifted §13C values of the Monterey
Event with enhanced episodes of organic burial in the Monterey
Formation (Vincent and Berger, 1985; Flower and Kennett, 1993).
The Monterey Event is characterized by a +1%o shift in the §13C
of foraminiferal tests (interpreted to record changes in the iso-
topic composition of marine dissolved inorganic carbon, or DIC)
from marine sediment cores around the globe. The §'3C of DIC
is set by the sum of the isotopic composition and fluxes of in-
puts and outputs of carbon into the global marine reservoir, and
can be schematically represented with a simple single-box model
(Fig. 10A). On timescales longer than the residence time of car-
bon in the deep ocean, this model can be simplified by assuming a
steady state, with the magnitude and composition of output fluxes
balancing those of the input (Kump and Arthur, 1999):

(Sncin = (5]3C0rg X forg) + 813Ccarb x (1— forg) (3)

Here, forg represents the fraction of carbon that is removed from
the marine reservoir as organic carbon, while §13C;,, §13Corg, and
813Ccarp, Tepresent the isotopic compositions of carbon input into
the marine system, buried organic carbon, and carbon in buried
carbonates, respectively. Although this relationship is an oversim-
plification of the dynamic global carbon cycle, this mass balance
model provides a quantitative test of hypotheses related to changes
in organic carbon burial. Here, we use this framework to assess the
significance of the rates of organic carbon burial in the Monterey
Formation relative to the mass-balance requirements of the ~1%o
813C excursion of the Monterey Event.

Assuming an input isotopic composition of -6%o (roughly the
composition of volcanogenic CO,; Shields and Mills, 2017) and an
average 3§ 13COrg composition of -23%o, which approximates the av-
erage §13C of global Miocene organic carbon (Katz et al., 2005)
as well as 813Cqg of the Monterey Formation (mean §'3Corg of -
23.18%0 in El Capitan shales, Table SM4; Laurent et al., 2015) the
~1%o shift in the §13C of DIC observed during the Monterey Event
could have been driven by an increase in forg of ~10% (from 0.277
to 0.306), with no appreciable change in total C flux in or out
of the global surface system. Given an assumed conservative av-
erage global carbon burial flux of ~0.6 GtC/yr (Li et al., 2023),
this shift in foz requires an additional 0.017 GtC/yr flux of or-
ganic carbon out of the marine system. If all this additional flux
was accommodated by organic burial in the Monterey Formation
(assuming a depositional area of ~180,000 km?, equivalent to the
total area of Neogene basins outlined in Fig. 1A), an OCMAR of
9,440 mg/cm?/kyr would need to have been sustained across all
Californian Neogene basins during Monterey Event time. Expand-
ing depositional area to an estimate of total circum-Pacific Neo-
gene basin area (~600,000 km?; Vincent and Berger, 1985) yields
a sustained OCMAR of 2833 mg/cm?/kyr. This rate is higher than
those reported anywhere in the Monterey Formation, and substan-
tially higher than those observed in the SBB during early Monterey
Event time (<250 mg/cm?/kyr from 15.75-16.75 Ma, Fig. 6). A sim-
ple sensitivity test (see Supplementary Materials) shows that this
relationship is replicated by a range of reasonable estimated §'3Cj,
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and 613C0rg values. It is therefore unlikely that organic burial in the
Monterey Formation, or indeed in all circum-Pacific basins, was the
primary driver of the positive isotopic excursion of the Monterey
Event.

5.6. Alternative drivers of the Monterey Event

Similar to the Monterey Formation, global rates of organic car-
bon burial may have responded to, rather than driven, changes
in global climate. The positively-shifted foraminiferal §'3C values
of the Monterey Event begin during the MCO, and lag an abrupt
shift in foraminiferal 880 values (Fig. 6) associated with warming,
ice loss, and sea-level rise at the beginning of the MCO (Hol-
bourn et al., 2014). Eustatic sea level models suggest a ~40 m
syn-MCO transgression (Miller et al., 2020), providing support for
hypotheses that propose enhanced organic carbon burial on con-
tinental shelves during eustatic maxima (Fig. 10B) as a driver of
positive marine §'3C excursions (Compton et al., 1990; Bjerrum et
al,, 2006; Sosdian et al., 2020). Inundation of continental shelves
may have produced an increase in shallow marine depositional
environments that can support more efficient organic burial than
the deep ocean (Hedges and Keil, 1995). This hypothesis is sup-
ported by the mid-Miocene geological record: estuarine coals on
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the Sunda Shelf record evidence of enhanced organic carbon de-
position in nearshore marginal environments (Fikri et al., 2022;),
while phosphorites on the eastern seaboard of North America have
been interpreted as the product of organic-rich deposits that were
emplaced during syn-MCO highstands and subsequently oxidized
during lowstands (Compton et al., 1990).

This hypothesis is distinct from that of Li et al. (2023), who
present a global compilation of Neogene organic carbon burial
rates in deep marine environments, and argue that a decrease
in marine organic burial during the Middle Miocene is indicative
of low global organic carbon burial rates and anemic global fore.
However, the locations that make up this compilation largely sam-
ple open marine depositional environments that represent a small
fraction of global organic burial (Hedges and Keil, 1995). Thus, the
organic carbon burial record of Li et al. (2023), and indeed in the
Monterey Formation, could be interpreted as a syn-MCO fractional
shift in the locus of marine primary productivity, export, and burial
from deeper marine environments to shallower, marginal environ-
ments associated with changes in sea level. The apparent decrease
in deep marine OC burial would therefore be compensated by the
increased burial and/or recycling of organic carbon in proximal en-
vironments, consistent with the shelf-inundation hypotheses dis-
cussed above.
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burial to newly-inundated epicontinental settings may have balanced decreases in
deep marine organic burial rates, consistent with the observations of Li et al. (2023).
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5.7. Organic carbon burial and Miocene climate

Although organic carbon burial in the Monterey Fm and equiv-
alent circum-Pacific basinal deposits cannot explain the Monterey
Event alone, the isotopic shift of the Monterey Event may have
been related to transgression and organic carbon burial over a
broader continental shelf area, and can be achieved without chang-
ing the total global carbon burial flux. In this scenario, changes in
the inorganic carbon cycle must be invoked to exert influence on
global carbon mass balance and drive climate change, to which a
dynamic organic carbon cycle would then respond. Potential inor-
ganic drivers of the MCO warming include the outgassing of CO,
associated with the eruption of the Columbia River Flood Basalts,
with weathering of the resultant basaltic edifice contributing to
subsequent cooling (Hodell and Woodruff, 1994) for several million
years after the cessation of volcanism at ca. 15.9 Ma (Kasbohm and
Schoene, 2018). Additional changes in inorganic carbon sources
from slowing seafloor spreading rates (Herbert et al, 2022) or
changes in sinks from enhanced silicate weathering in the tropics
(Park et al., 2020) have been proposed as contributors to Miocene
cooling. Our data from the Monterey Formation are consistent with
hypotheses for inorganic geological drivers of long-term climate
change, and support the notion that organic carbon burial in the
Miocene responded to, rather than drove, global climate.

6. Conclusions

A new age model for the Monterey Formation incorporates
31 new LA-ICPMS and 14 CA-ID-TIMS U-Pb zircon ages from the
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northern coast of the Santa Barbara Channel. Modeled sedimen-
tation rates from this age model were combined with TOC data
from sections at El Capitan and Naples to assess the magnitude
and timing of OCMAR in the Miocene Santa Barbara Basin, and
show that peaks in SBB OCMAR do not correspond with the Mon-
terey Event shift in the global 8§'3Cpic record from a timing or
mass-balance perspective. Rather than driving climate, TOC burial
in the Monterey Formation was controlled by changes in sedimen-
tation rate, which was in turn controlled by a combination of local
tectonics and eustasy. Thus, contrary to the driving relationship
postulated by the Monterey Hypothesis, organic carbon deposition
in the Monterey Formation was largely a response to basin forma-
tion and climate change.
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