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SARKOZY’S THEOREM IN VARIOUS FINITE FIELD SETTINGS

ANQI LI AND LISA SAUERMANN

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

ABsTRACT. In this paper, we strengthen a result by Green about an analogue of Sarkozy’s theorem in the setting
of polynomial rings F,[x]. In the integer setting, for a given polynomial F' € Z[x] with constant term zero, (a
generalization of) Sarkozy’s theorem gives an upper bound on the maximum size of a subset A C {1,...,n}
that does not contain distinct a;, a, € A satisfying a; — a, = F(b) for some b € Z. Green proved an analogous
result with much stronger bounds in the setting of subsets A C F,[x] of the polynomial ring F,[x], but required
the additional condition that the number of roots of the polynomial F € F,[x] is coprime to g. We generalize
Green’s result, removing this condition. As an application, we also obtain a version of Sarkozy’s theorem with
similarly strong bounds for subsets A C F, for ¢ = p" for a fixed prime p and large n.

1. INTRODUCTION
In this paper, we study variants of Sarkozy’s theorem [11]].

Theorem 1.1 (Sarkozy’s Theorem). Let a(n) be the maximum size of a subset A C {1,2,...,n} such that
there do not exist distinct a;,ay € A with a; — ay = b* for some b € Z. Then lim a(n)/n = 0.
n—o00

A natural generalization of this theorem is to replace 5* by another polynomial F(b), yielding the follow-
ing result (observed for example in [S]).

Theorem 1.2 (Generalization of Sarkézy’s Theorem). Let F € Z[x] be a polynomial of degree k with
constant term zero. Let Bi(n) be the maximum size of a subset A C {1,...,n} such that there do not exist
distinct ay,ay € A with a; — ay = F(b) for some b € Z. Then lim Bi(n)/n = 0.

n—oo

The best known quantitative bounds for a(n) and S(n) improve upon the trivial bounds a(n) < n and
Bi(n) < n by polylogarithmic factors. Specifically, the best known bound for Theorem [L1] is a(n) <
O(n/(log n)cloglogloeny for some absolute constant ¢ > 0 due to Bloom and Maynard [1]. Building upon
work of Pintz—Steiger—Szemerédi [9], Rice [[10] obtained the bound Si(n) < O(n/(log n)® loglogloglogny for
Theorem [L.2] for some constant ¢(k) > 0 depending on k.

A few years ago, Green [4ﬂ considered the following analogue of Theorem [L.2]for polynomial rings (an
analogue of Theorem [L.1lin this setting with much weaker quantitative bounds was shown earlier by Lé& and
Liu [6]).

Theorem 1.3 ([4, Theorem 1.2]). Let g be a prime power and let F' € Fy[x] be a polynomial of degree k with
constant term zero. Suppose the number of roots of F in F, is coprime to q. Let y, ;(n) be the maximum size
of a set A of polynomials with degree less than n in Fy[x] such that there do not exist distinct polynomials
p1(x), p2(x) € A with pi(x) — p2(x) = F(b(x)) for some b(x) € Fy[x]. Then there exists a constant t,; < q
such that y,;(n) <2 - (t50)".
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We observe that one trivially has y,x(n) < ¢", since the total number of polynomials of degree less than
nin Fy[x] is ¢". In light of this, the shape of the Green’s bound is drastically different from those mentioned
earlier in the integer setting. Recall that in the integer setting the best known bounds are polylogarithmic
saving over the trivial bound n. In contrast, in the polynomial ring setting, Theorem gives a much
better power saving bound over the trivial bound ¢"”. To obtain these strong bounds in the polynomial
setting, Green utilized the Croot-Lev—Pach [2] polynomial method. Croot-Lev—Pach [2] introduced this
new polynomial technique to obtain a new power saving upper bound for the size of subsets in Zj without
three-term arithmetic progressions. This polynomial method has found many applications, leading to several
important breakthroughs such as the groundbreaking power saving upper bound on the capset problem by
Ellenberg—Gijswijt [13].

In Theorem it is natural to only consider polynomials with constant term zero. Indeed, suppose
F(T) =T?-T + 1 and let A be the set of polynomials with degree less than n in F,[x] with constant term
zero. Then |A| = ¢"! and there do not exist p;(x), po(x) € A and b(x) € IFy[x] with p1(x) — p2(x) = F(b(x)).
This is because F(b(x)) always has constant term 1 for any b(x) € F,[x] while p;(x) — p>(x) has constant
term O for all p;(x), p2(x) € A. Now, |A| = ¢""! is a constant fraction of the total number of polynomials
in IF,[x] with degree less than n. So we cannot hope for a good bound on |A| in Theorem without the
assumption that F has constant term zero. Similarly in Theorem[1.2] the constant term zero condition cannot
be removed.

However, the condition in Theorem [L.3]on the number of roots of F being coprime to ¢ is not as natural,
and is an artefact of Green’s proof. In this paper, we strengthen Theorem [L.3]by showing that the condition
on the number of roots of F is unnecessary.

Theorem 1.4. Let g be a prime power and let F € Fy[x] be a polynomial of degree k with constant term
zero. Let 'y, i(n) be the maximum size of a set A of polynomials with degree less than n in Fy[x] such that
there do not exist distinct polynomials pi(x), p2(x) € A with p1(x) — p2(x) = F(b(x)) for some b(x) € Fy[x].
Then there exist constants 0 < t,; < q and ¢y > 0 such that y, i (n) < ¢y - (t4)" holds for all n.

Our proof gives the following value for 7,:

S T R
tgx = inf -
0<x<l  yz(g=D=1/(kd))

) )]

where d = min{k, (g— 1)(1 + logq k)}. It is not hard to show that this value 7, satisfies 7, < ¢g. Indeed, when
x = 1, the expression on the right hand side evaluates to g. Furthermore, the derivative of the expression
is positive at x = 1. Consequently, the infimum of this expression over 0 < x < 1 is strictly less than g,
meaning that 7, ; < g. We remark that optimizing the bounds in Green’s proof in [4] gives the same value of
t4x in Theorem [L3]as in (L).

An explicit example of a polynomial F to which Theorem [L.4] but not Theorem applies is the follow-
ing: Let g = p”" for a prime p and consider the polynomial F(x) = P (x=1)...(x = (p - 1)) for any
k > p. Then F has exactly p roots in F, and so it does not satisfy the condition in Theorem on the
number of roots of F being coprime to q.

Another setting similar to F,[x] in which one may consider a Sarkodzy-style problem is [F,, for a prime
power g = p". We obtain the following result in the setting of F,, as an application of Theorem L4l

Corollary 1.5. Let p be a prime, g = p" be a prime power and F € F,[x] be a polynomial of degree k
with constant term zero. Let 1,1 (n) be the size of the maximum subset A C F, that does not contain distinct
ay,ay € A such that a) — ay = F(b) for some b € F,. Then there exist constants 0 < t,; < p and c,; > 0
such that 0, (n) < cp i - (tpx)" holds for all n.

Again, the value of 7, is as given by (1). In this direction, Peluse [7, 8] studied polynomial patterns
in IF, for g of sufficiently large characteristic depending on the polynomial pattern. Using Fourier analytic
techniques, Peluse [7] proved a power-saving bound on sets A C F, not containing polynomial progres-
sions a,a + P(b),...,a + P.(b) for some a,b € F, with b # 0, for given linearly independent polynomials
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Pi(x),...,P.(x) in Z[x] with constant term zero, assuming that ¢ has large characteristic. The setting in
Corollary corresponds to the r = 1 setting of Peluse’s result. By applying the Croot-Lev—Pach polyno-
mial method, we prove a power-saving bound in Corollary[1.5]in a complementary regime to Peluse’s result:
while Peluse’s theorem holds for IF, (where g = p") with sufficiently large characteristic p, Corollary
holds for F, (where g = p") with any fixed characteristic p but with n large.

Organization. In Section 2, we collection some preliminary tools in order to apply the Croot—Lev—Pach
polynomial method. We prove Theorem [L.4]in Section 3 and Corollary [L.5]in Section 4.

2. PRELIMINARY TOOLS

In this section, we collect some useful results to be applied later.

Lemma 2.1. Let S C FJ with |S| > 1. Then there exists a polynomial p € Fylx, ..., xu] of degree at most
IS| =1 such that Y, ,c5 p(a) # 0.
Proof. We explicitly construct such a polynomial u. Suppose that the elements of S are vV, ... vISD e
Fg. For j = 2,...,IS], let {; € Fy[xi,...,x,] be a linear polynomial corresponding to the equation of
a hyperplane passing through v/ but not passing through v(V. Consider u(xy, ..., x,) = HljS:Iz tj. By
construction, degu = |S| = 1, u() £ 0 and u(»?) = 0 for all 2 < j < |S|. Hence, it follows that
Vaes u(@) = L5 () # 0. 0
In the following lemma, given a polynomial u, we construct a suitable polynomial to facilitate applying
the Croot-Lev—Pach polynomial method [2] in our setting. For a polynomial P(x) € Fy[xy,...,x,], we

define its support to be supp(P) = {x € F : P(x) # 0}.

Lemma 2.2. Let g be a prime power and d be a positive integer. Consider a polynomial map © :=
(D1,...,00) : IF;" - PZ where ¢; € Fylxy,...x,] and deg¢; < d for all 1 < i < n. Assume further
that there exists some p € Fy[x,..., Xn] satisfying ¥ co-10)p(a@) # 0. Then there exists a polynomial
P € Fylxy,...,x,] of degree at most (g — 1)(n — m/d) + (deg u)/d such that P(0) # 0 and supp(P) C im(®P).

In the proof of this lemma, we construct such a polynomial P explicitly. To bound its degree, we utilize
the following observation on vanishing power sums.

Observation 2.3. Let g be a prime power and 0 < k < g — 1 be an integer. Then ), xeF, =0

Here, we use the usual convention that 0° = 1.

Proof. For k = 0, note that 3 cp, *=3 xer, 1 = 0. For 1 <k < ¢ -1, recall that IFZ; is cyclic, and let & be a
generator of IF;;. Then we have the geometric series

fk(q—l)

q-2 -
ZXkZZokaZI_—fk:O. O

xelFy, i=

Proof of Lemma Construct the polynomial P € Fy[x, ..., x,] as follows:

n
Pxi,...ox) = ) @ [ (1= o= gita)™™). @)
ackF)! i=1
We claim that P(b) = ¥ cp-1(») (@) for every b € FZ. This is because if a € ®~!(b), then b; = ¢;(a) for
all 1 <i<mnandso [, (1—(b;— $i(a))?~') = 1. Conversely, if a ¢ ®~!(b) then there is some index j such
that b; # ¢;(a) and so 1 — (b; — ngj(a))q‘1 = 0. In particular, [T, (1 - (b; - $i(a))?~") = 0 since the jth term
vanishes. Consequently, it follows that P(b) = 3 ,cq-15) #(a) for all a € Fy.

It follows by the condition for u that we have P(0) = } ,cq-1(0) #(@) # 0. Furthermore, since O ') =0
for b ¢ Im(®), we have P(b) = 0 for all b ¢ Im(D).
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It remains to check that deg P < (¢ — 1)(n — m/d) + (degw)/d.
Let us consider each of the terms

o, ...,am X1,..., %) = play,...,ay) l_[(l —(x; —¢,~(a1,...,am))q_1)
i=1

in (2) as a polynomial in Fylai,...,am, x1,...,x,]. Note that P(x1, ..., x,) = Zadpzl Oay,...,am, X1, ..., Xp).
Furthermore, we introduce a nonstandard weighting of the polynomial ring Fy[ay, ..., ap, X1, . .., x,], which
we denote by deg”. While we continue to view each x; as having degree deg*(x;) = 1, we view each g; as
having degree deg”(a;) = 1/d. Then we for example have deg”(x/a;) = r + s/d. Note that, under this new
weighting, we have deg”(x; — ¢i(ay, ..., a,)) < 1, since deg ¢; < d. Consequently, it follows that

deg” Q(ay,...,am, X1, ...,X,) < (degu)/d + (g — Dn. 3
Each monomial in Q(ay,...,ay, X1,...,Xx,) is of the form ail' ‘--af,';’xfl ---x{;” with non-negative inte-
gerS i1,...,lmy J1r---»Jm- We claim that in the sum P(xy,...,x,) = ZaeF;" Oay,...,am, X1,...,X%,), the

contributions from the monomials aill ...ai;lnxfl xr];" with iy + --- + iy, < (¢ — 1)m vanish. Indeed, if
i1 + -+ iy < (g — 1)m, there exists some index s with 0 < iy < ¢ — 1. By Observation we have
Yayer, @5 = 0, and therefore

il im i1 ... in _ is il g1 ls+l im jl .. jn —
Zal...amx{ x) —[Z a‘v] Z ay...aja;y . ..anx x| =0.
(a1

m
QEF‘I asqu A1 5ereslis—1 5051 5eees i ) EFY !

Thus, all monomials a’I‘ ceam x{' - x" with iy +- - - +i,, < (g— 1)m cancel when we take the summation over

alla € IFZ’. This means that all monomials in P(xq,...,x,) = ZaeF;" O(ai,...,anm, x1,...,Xx,) are obtained
from monomials aill ‘--af’,’,’x{I <X in Oay, ..., am, X1, - . ., Xy) such that iy + -« + iy > (g — hm. By (3),

for these monomials we have
i+t jn S deg’(@) - dyx x50 = (g = Dm/d < (deg)/d + (g - Dn = (g = Dm/d.

Thus, all monomials with non-zero coefficients in P(xy, ..., x,) are of the form x{l e x,’;” with ji+---+ j, <
(degu)/d + (g — 1)n — (¢ — 1)m/d. This shows that

deg P < (degp)/d + (q — Dn = (g — Dm/d = (q — )(n —m/d) + (degp)/d,

as desired. m]
Lastly, we recall the key lemma in the Croot-Lev—Pach [2] polynomial method.

Lemma 2.4. Let P € Fy[xy,...,x,] and let M be the q" X q" matrix with rows and columns indexed by
elements FZ, where for all (u,v) € FZ X FZ the (u,v) entry is My, = P(u —v). Then

rank(M) < 2|{(a1,...,an) €e{0,1,....g—-1}":a1+...+a, < degP/2}|.
We provide a proof of this lemma for the sake of completeness.

Proof. Let the number of (ay,...,a,) € {0,...,g— 1}" such that @1 + ... + @, < deg P/2 be T. First, we
claim that it suffices to prove that M,, = P(u—v) = gl Sfi(w)gi(v) for some fi, gk € Fylx1,. .., x,]. Indeed,
this implies the statement in the lemma because then we can write M = ZIZI M), where each My, is a rank 1
matrix.

Now, let us construct such polynomials fi, gx for k = 1,...,27. Note that each monomial in P(u — v) is
of the form u‘l” ...uﬁ”vll71 ...vﬁ” witha; +---+a, < (degP)/2 or by + --- + b, < (deg P)/2. Consequently,
by grouping together monomials with the same factor of degree at most (deg P)/2 in either u or v, we may

write

Pu=v) = Y Qi) + ) | Rih(),
h h
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where the sums are over all monomials # with degree degh < (deg P)/2 and Qy,R;, € Fylx1,..., x,] are
polynomials indexed by the monomials ~. The number of such monomials % is T, so this gives the desired
expression of the form P(u —v) = Zgl fe(w)gr(v). O

3. SARKOzY’S THEOREM IN F,[x]

In this section, we prove Theorem which strengthens Theorem due to Green [4]. In his proof,
Green encodes the polynomial F' via a map ®: F' — F} in such a way that the image of ® corresponds to
the set of polynomials of the form F(b(x)) for some b(x) € F,[x] of degree at most m, and such that |D~1(0)]
is the number of roots of F in IF,. Green’s proof proceeds by constructing a polynomial P € Fy[xy,..., x,]
of relatively low degree such that P(x) = |®~!(x)| for all x € F”, and hence supp(P) c im(®). One can
then apply Lemma to the polynomial P, obtaining an upper bound for the rank of the ¢" X ¢" matrix
M indexed by elements of Fy, where the (u, v) entry is given by P(u —v). A set A as in Theorem gives
rise to a subset A C IFZ satisfying (A — A) N im(®) = {0}. For such a subset A C FZ, one can show that
the |A| X |A| submatrix of M indexed by the elements of A is diagonal (i.e. all off-diagonal entries in this
submatrix are zero). The diagonal entries of this submatrix are all equal to P(0) = |®~1(0)]. Thus, if |®~1(0)|
is non-zero in F, (i.e. if the number of roots of F in I, is coprime to g), this |A| X |A| submatrix has full rank
|A|, and so |A| is at most the rank of the matrix M (which together with Lemma [2.4] gives the desired bound
for |A]). However, if |®~1(0)]| is zero in IF,, this |A| X |A| submatrix is all-zero and we cannot make any useful
conclusions from the bound for the rank of M. This is why the assumption on the number of roots of F in
[F, being coprime to g is needed in Green’s proof.

In our proof, we retain the same construction of @: F7' — Fy. However, we replace Green’s construction
of P with a different construction of a polynomial P with supp(P) C im(®), still of relatively low degree,
ensuring that P(0) is non-zero in F, without making Green’s assumption that the number of roots of F' in F,
is coprime to g. The construction of our polynomial P relies on Lemmas and 2.2 proved in the previous
section.

Proof of Theorem We begin with a similar reduction as in [4]. Let P, , denote the set of all polynomials
in F,[T] with degree less than n. Let m = |(n — 1)/k] + 1 > n/k. We identify P,, with IFZ by mapping
a polynomial to an n-tuple representing its coefficients. Specifically, we map co + c1x + -+ + c,_1 X" to
(co, €1, - --»>cn—1). Under this identification, we encode h(x) — F(h(x)) as a polynomial map @ : IFZ]" - IFZ.

More specifically, @: Fg' — F is given by
(I)(Co, e ,Cm—l) = (¢0(C0, ey Cm_l), ooy ¢n_1(C0, ey Cm_l)),

where the polynomials ¢; € Fy[xi,. .., x,] are specified by F(co+cix+-- A1 XY = do(co,s - . Cma1) +
d1(coy ...y Cm_1)X + -+ + ¢y_1(co, ..., cm_l)x”‘l. Here, we note that by our assumption that deg F = k, we
have deg(F(co + c1x+ -+ cpog X" D)) <k(m—1)=k-|(n - 1)/k] <n—1.

We observe some properties of ®@. First, note that ®~'(0) corresponds to the roots of F in IF,. Since F has
constant term zero, it follows that 0 € ®~!(0). Furthermore, because deg F < k, it has at most & roots in [F,
and so |®~1(0)| < k.

Next, we claim that deg ¢; < min{k, (¢ — 1)(1 + log, k)} for 0 < i < n — 1 (which was also observed in

[4]). It is clear that deg ¢; < k since deg F' = k. To show that deg ¢; < (¢ — 1)(1 + log, k), start by writing

- J IR AY
(Co+61x+...+cm_1x’" l)t: H(CO"'Cqu +~‘+cm_1x(m 1)4)

J
where t = (...t 1), is the base g expansion of 7. In particular, this shows that deg ¢; < max,<, D (t) <
(g- DA+ logq k) where D,(1) is the sum of the digits of # under base g expansion.

Now, suppose A C P, is a non-empty subset of polynomials such that there do not exist distinct poly-
nomials p(x), p2(x) € A with pi(x) — pa(x) = F(b(x)) for some b(x) € Fy[x]. Under the identifica-
tion of P,, with F as explained above, we can instead consider A as a subset of Fj with the property
that (A — A) N im(®) = {0}. We can apply Lemma to the set ®~!(0) which gives us a polynomial
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u € Fylxy,...,x,] with the property degu < |®~'(0) — 1 < k — 1 such that Yaco-y (@) # 0. Let
P € Fylxi,...,x,] be the polynomial obtained from using this polynomial u in Lemma and setting
d = min{k, (g — 1)(1 + logq k)}. Recall P has the following properties:

e P(0)#0,
o supp(P) C im(®), and
e degP<(qg—1D(n—-m/d)+k-1)/d.

Now, as in Lemmal[2.4lapplied to the polynomial P, consider the ¢" X ¢" matrix M indexed by elements of
IFZ, where for all (u,v) € PZ XFZ the (u, v) entry is given by P(u—v). Since P(0) # 0, all diagonal entries of M
are nonzero. We claim that in the |A| X |A| submatrix of M indexed by elements of A, all off-diagonal entries
are zero. Indeed, for any distinct u,v € A we have we have u—v € (A —A)\ {0}. As (A —A)Nim(D) = {0}, it
follows that u — v ¢ im(®) and therefore u — v ¢ supp(P), which means that M,,, = P(u — v) = 0. So indeed
all off-diagonal entries of the |A| X |A| submatrix of M indexed by elements of A are zero. Therefore this
submtarix is a diagonal matrix and has rank equal to |A|. We can conclude that |A| < rank(M), and together
with Lemma[2.4] we obtain the bound

|A| < rank(M) <2

1 my k-1
{(al,...,cxn)e{o,l,...,q— V:iap+--+a, < 5((6]— 1)(n—3)+ 7)}‘
Note that this last expression is equal to the sum of all the coefficients corresponding to monomials of degree
at most % ((q = )(n —m/d) + (k — 1)/d) in the expansion of (1 + x + --- + x4~!)". In particular, for every
0 < x < 1, we have

g . x3(q=D=m/d)+(k=-1)/d) - (14 x4+
We can conclude that
|A|<2 (1+x+'“+xq_l)n < (1+-x+"'+xq_l)n _ 2 1+x+---+x‘1_1n
T AgDeemidr -/ T Sg-Domnfkdyrk-1/@d)  x®k=DID) L g-1)(1-1/(ka))

for every 0 < x < 1. Note that the infimum in (1) is actually attained by some value 0 < x < 1 (indeed,
the expression on the right side goes to infinity for x — 0, and the derivative of this expression is positive at
x = 1). For this value of x (which depends only on ¢ and %, but not on n), we obtain

Al < 2 (1+x+-~-+x‘1‘1

n
: = - (t n
_x(k—l)/@d) x%(q—l)(l—l/(kd)) ) Cq,k ( q,k) ,

where ¢, = 2/ x%=D/Cd g 3 constant only depending on ¢ and k. O

4. SARKOzY’s THEOREM IN F,

In this section, we give an application of Theorem [L.4] by proving Corollary which is a variant of
Séarkozy’s Theorem in F,;, where g = p" is a prime power.

Proof of Corollary[L.5l Suppose A C F, is a non-empty subset that does not contain distinct elements
ay,ap € A such that a; — ay = F(b) for some b € F,,.

We make an identification of F, with the polynomial ring setting in Theorem Note that F, can be
written as a n-dimensional vector space over F, with basis 1,5, ..., B! where 3 is the root of any degree n
irreducible polynomial over F,. In particular, this means that we can think of elements of I, as polynomials
of degree less than n in F,[f].

Applying Theorem to A under this identification of F, with F,[B8], we get |A| < cpi - (tpx)" as
desired. O
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