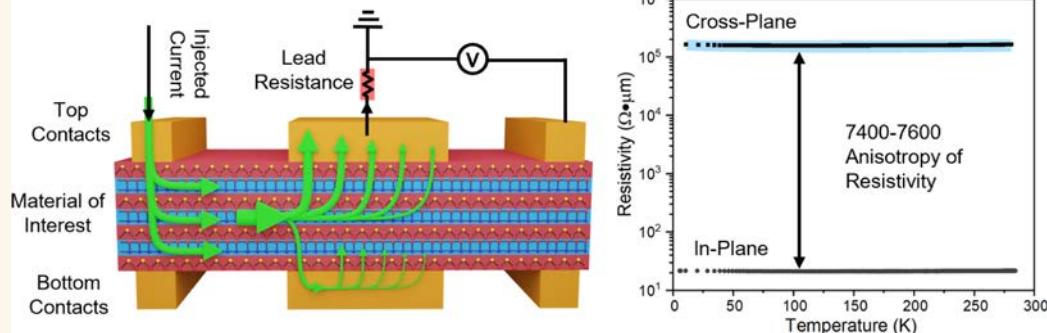


Simultaneous Characterization of In-Plane and Cross-Plane Resistivities in Highly Anisotropic 2D Layered Heterostructures

Sizhe Weng,[○] Yu Wang,[○] Celsey Price, Hannah R. Blackwood, Marisa Choffel, Aaron Miller, Ruoxi Li,
Mingrui Chen, Ping Lu, Sina Ilkhani, Arun Majumdar, David C. Johnson,* and Stephen B. Cronin*

Cite This: <https://doi.org/10.1021/acsnano.3c13232>


Read Online

ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Understanding and characterizing the intrinsic properties of charge carrier transport across the interfaces in van der Waals heterostructures is critical to their applications in modern electronics, thermoelectrics, and optoelectronics. However, there are very few published cross-plane resistivity measurements of thin samples because these inherently 2-probe measurements must be corrected for contact and lead resistances. Here, we present a method to extract contact resistances and metal lead resistances by fitting the width dependence of the contact end voltages of top and bottom electrodes of different contact widths to a model based on current crowding. These contributions are then subtracted from the total 2-probe cross-plane resistance to obtain the cross-plane resistance of the material itself without needing multiple devices and/or etching steps. This approach was used to measure cross-plane resistivities of a $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure containing alternating layers of PbSe and VSe₂ with random in-plane rotational disorder. Several samples measured exhibited a 4 order of magnitude difference between cross-plane and in-plane resistivities over the 6–300 K temperature range. We also reported the observation of charge density wave transition in the cross-plane transport of the $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure. The device fabrication process is fully liftoff compatible, and the method developed enables the straightforward measurement of the resistivity anisotropy of most thin film materials with nm thicknesses.

KEYWORDS: anisotropy, resistivity, characterization, contact resistance, van der Waals heterostructures

INTRODUCTION

Semiconducting heterostructures and superlattices have attracted considerable interest in the scientific and industrial communities due to their exotic properties and wide range of applications in modern electronics, thermoelectrics, and optoelectronics.^{1–4} Early studies focused on III–V semiconducting heterostructures and oxide superlattices, which were mainly fabricated through epitaxial growth, such as molecular beam epitaxy (MBE)^{5,6} or metal organic chemical vapor deposition (MOCVD).^{7,8} Although many state-of-the-art electronic devices (i.e., photodetectors and light-emitting

diodes) have been demonstrated, such growth methods are constrained by crystallographic symmetry similarities and lattice constant matching. More recently, van der Waals (vdW) heterostructures with vertical integration of layered

Received: December 31, 2023

Revised: August 20, 2024

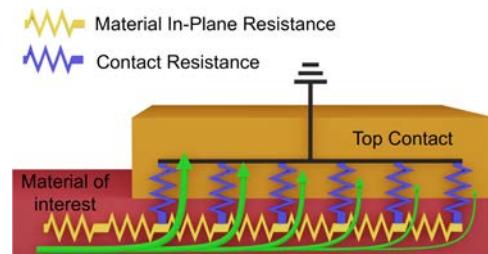
Accepted: August 21, 2024

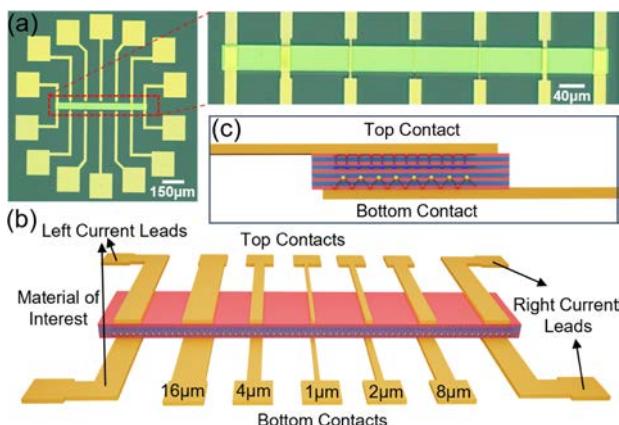
36 materials offer an alternative approach to integrate two-
 37 dimensional materials that do not rely on strong chemical
 38 bonding between adjacent layers.^{1,9} Such heterointegration
 39 provides a more versatile selection of materials with disparate
 40 lattice structures, such as graphene, hexagonal boron nitride
 41 (hBN), and transition metal dichalcogenides (TMDs).¹⁰ The
 42 optical and electrical properties of vdW heterostructures and
 43 devices have been under intensive study, and many interesting
 44 phenomena have been discovered, including ultrafast charge
 45 transfer (within 50 fs) in photoexcited MoS₂/WS₂ hetero-
 46 structures, 55% external quantum efficiency of photocurrent
 47 generation in graphene/MoS₂/graphene vertical junctions,^{11,12}
 48 all-electrical single photon light emitting diodes realized in
 49 graphene/hBN/WS₂ heterostructures,¹³ and graphene/hBN/
 50 graphene field effect tunneling transistors.¹⁴ Recently, there has
 51 been a emerging trend in vertically integrating 2D materials
 52 with traditional semiconductors and oxide superlattices,
 53 resulting in the creation of even more exotic artificial
 54 heterostructures or superlattices with atomically clean and
 55 electronically distinct interfaces.^{15,16} Since the functionalities of
 56 most of the above-mentioned heterostructures and super-
 57 lattices rely heavily on the carrier transport across the
 58 interfaces, studying the fundamental electrical transport
 59 properties in the cross-plane direction of vdW heterostructures
 60 is of great importance to the future development of
 61 nanoelectronics and nanophotonics.

62 There are few reports probing the intrinsic properties of
 63 charge carrier transport across the interfaces in vdW
 64 heterostructures due to the difficulty of separating large
 65 contact resistances from the relatively small cross-plane
 66 resistance of thin films (1–100 nm thick) in 2-probe
 67 measurements. The most common method of measuring
 68 resistivity tensors in anisotropic materials is based on the
 69 method developed by Montgomery.¹⁷ However, their
 70 approach requires the contact width of the contacts to be
 71 less than 10% of the film thickness to measure the cross-plane
 72 resistivity accurately.¹⁸ For 50 nm thick vdW heterostructures,
 73 it is very difficult to fabricate Ohmic metal contacts with
 74 contact widths smaller than 5 nm. Another approach used to
 75 extract the resistivity in the cross-plane direction include
 76 measuring properties in samples where regions between
 77 contact pads have been etched to varying depths to form a
 78 mesa structure, followed by applying the modified transfer line
 79 method (M-TLM).^{3,19–21} These methods require the variation
 80 of contact resistance between different devices to be much
 81 smaller than the cross-plane resistance of the material, which is
 82 challenging to achieve experimentally for a variety of reasons
 83 including surface damage from contact metal deposition, Fermi
 84 level pinning, and nonuniformity at the material/contact
 85 interface.^{22,23} Another reported approach is to sandwich the
 86 material of interest between a large bottom electrode and a
 87 small top electrode in a two-probe measurement config-
 88 uration.²⁴ However, the measured resistance includes the lead
 89 and contact resistance from the metal/material interface, which
 90 usually dominates in the measured total resistance in the cross-
 91 plane direction.

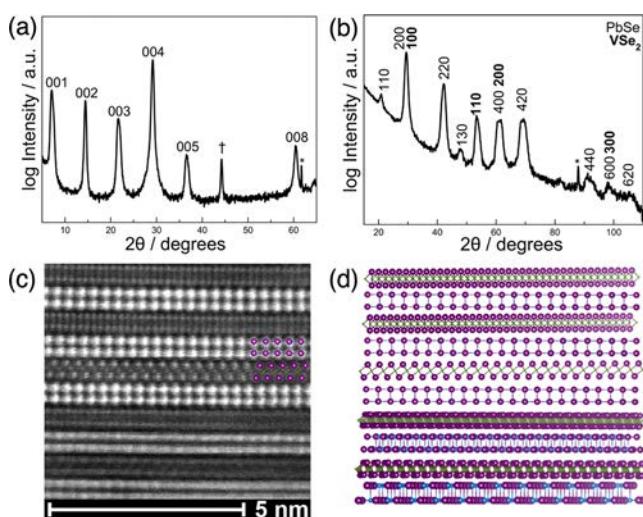
92 The approach to measure cross plane resistivity presented in
 93 this paper is based on the phenomena of current crowding,
 94 which was extensively explored in the 1960s and 1970s.^{25–27}
 95 The phenomenon of current crowding has been shown to be
 96 very important in diverse areas, ranging from being an
 97 important loss mechanism in LED's²⁸ to increasing electro-
 98 migration leading to the formation of interfacial voids.²⁹ Figure

1 illustrates the basis of current crowding using a transition line model where magenta resistors represent the interface




Figure 1. Schematic diagram of an equivalent circuit illustrating the concept of current crowding. More current flowing from the yellow to the black wires will pass through the initial intervening blue resistors than later ones, with the amount dependent on the resistivities of both the material of interest and the interface.

resistance. Current flowing from the yellow to the green wires will not be the same in each of the intervening magenta resistors. More current will pass through the initial resistor than later ones, with the amount dependent on the resistivities of both the wires and the interface. To measure cross plane resistivity, we need to add contacts on the bottom of the sample, which adds a second interface and potential current pathway through the contact and across to the opposite contact. The transmission line model derived herein includes the bottom contact, which modifies the top current distribution if the in-plane conductivity is low.


Here, we present a approach to characterize both the in-plane and cross-plane resistivities of ultrathin samples. We use in-plane measurements to determine the resistances of the lithographically defined gold leads connecting the sample to the bonding pads (typically 20–100 Ω) and the contact resistivities of the top and bottom contacts. These contributions are then subtracted from the measured two-probe total cross-plane resistance to obtain the cross-plane resistance of the heterostructure material. The cross-plane resistivity is calculated from the cross-plane resistance using the measured sample thickness and contact areas. This approach uses a simple device geometry without needing multiple devices and/or etch steps. We demonstrate the utility of our approach by characterizing several (PbSe)₁(VSe₂)₁ heterostructures, all yielding 4 order of magnitude anisotropies between the in- and out-of-plane resistivities over the 6–300 K temperature range. In this work, the electrical properties of nm thick van der Waals heterostructures have been characterized in both directions on the same device with contact resistances fully accounted for, and we believe this technique can be generalized and applied to characterize a wide range of thin film materials if the deposition or growth of the target material does not require epitaxial substrates.

RESULTS AND DISCUSSION

The optical image and schematic diagram of as-fabricated device are shown in Figure 2a,b. In the present study, 50 unit cells of the (PbSe)₁(VSe₂)₁ heterostructure (~30 nm thick) are sandwiched between arrays of top and bottom electrodes with 5 contact widths ranging from 1 to 16 μm , detailed fabrication processes are demonstrated in the Method section. Figure 3a–c shows the characterization data obtained on an annealed (PbSe)₁(VSe₂)₁ heterostructure using the conditions

Figure 2. (a) Optical microscope image and (b) schematic diagram of the as-fabricated device with various contact widths from 1 to 16 μm . (c) Side view of the device, shows that the top and bottom electrodes extend across the material of interest. The electrodes end at 3 μm away from the edge of the material to avoid potential short circuit between top and bottom contacts.

Figure 3. (a) The specular diffraction pattern of a $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure. The indices are given above each reflection. (b) Grazing incidence in plane X-ray diffraction patterns of the self-assembled $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure collected from a sample subjected to identical annealing conditions as the fabricated device. Indices for both the PbSe and VSe_2 sublattices are given above each reflection. (c) High angle annular dark field scanning tunneling electron microscopy (HAADF-STEM) image of $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure. Colored bars show the positions of atomic planes of Pb (blue), V (green), and Se (purple). (d) A schematic of the structure of the $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure illustrating the off-axis rotational disorder of the constituent sublattices seen in the HAADF-STEM image.

current increases from -0.2 to 0.2 mA in $50\ \mu\text{A}$ incremental steps and Ohmic behavior is observed. The temperature dependent corrected in-plane resistivity, plotted in **Figure S6a**. **Figure S6c** shows a similar order of magnitude and temperature dependence to that previously reported by Wang et al.,³⁰ Hite et al.,³¹ and Cordova et al.³² The upturn in the resistivity at low temperatures results from a charge density wave transition in the monolayer thick VSe_2 layers.³³ The in-plane resistivity data indicate that the $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure survived the processing steps.

A sequence of 2-probe in-plane measurements using the top and bottom contacts are then conducted to determine the lead and contact resistances, as illustrated in **Figure 4a**. Current is injected through pairs of contacts, and the voltage of an adjacent contact is measured relative to ground. Typical I-V curves for the 2-probe measurements are plotted in **Figure S1** showing Ohmic behavior at the metal/heterostructure interface. The measured voltage is the sum of the potential drop due to the current flowing through the lithographically defined electrode connecting the heterostructure material to the bonding pads (i.e., leads) and the voltage drop at the end of the contact due to the fraction of the total current (1 mA) flowing through the end of the contact. This latter contribute is referred to as the contact end voltage. The amount of current flowing through the far end of the grounded contact depends on the contact width of the contact and the relative magnitude of the contact conductance with respect to the sample's in-plane resistivity, resulting in the systematic trend in the measured voltage with contact width plotted in **Figure 5a**. The fits to these contact width-dependent curves are described below.

Figure 4b presents a schematic illustration of the theoretical analysis of the in-plane current flowing through a contact. Here, $V_{\text{top}}(x)$ and $V_{\text{bottom}}(x)$ are the electrical potential differences between the material and the top and bottom contacts as a function of position x , measured from the inner edge of the contact. The contact resistances are modeled by adding parallel resistors on both the top and bottom of the material, and G'_{top} and G'_{bottom} represent the conductances of the interface per unit length of the top and bottom contacts, respectively.³⁴ We assume the contact is at an equal potential as a function of position, x , since the resistivity of the contact material (Au) is around $10^{-8}\ \Omega\cdot\text{m}$,^{31–35} which is very small comparing with the in-plane resistivity of the $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure. $I(x)$ represents the current flowing in the material at location x along the contact and R' , the in-plane material resistance per unit length, is taken as a constant at each measurement temperature ($21.8\ \Omega\cdot\mu\text{m}^{-1}$ at room temperature) calculated from the in plane 4-probe resistivity measurement. The top contact is grounded while the bottom contact is floating. Then, $V_{\text{top}}(x)$, $V_{\text{bottom}}(x)$, and $I(x)$ can be analyzed by constructing the following differential equations:

$$\frac{dV_{\text{top}}(x)}{dx} = -R'I(x) \quad (1)$$

$$\frac{dV_{\text{bottom}}(x)}{dx} = -R'I(x) \quad (2)$$

$$\frac{dI(x)}{dx} = -G'_{\text{top}}V_{\text{top}}(x) - G'_{\text{bottom}}V_{\text{bottom}}(x) \quad (3)$$

described above. These data show the formation of highly crystalline materials with atomically sharp interfaces.

The completed devices are used to measure the in-plane resistivity of the material of interest using a 4-probe configuration to make sure the processing steps have not altered the properties of deposited film. We used 4 top or bottom contacts to perform a 4-probe in-plane transport measurement, in which the current is flowing between the two outer electrodes and the voltage difference between the 1 and 2 μm leads was measured. At each temperature, the conducting

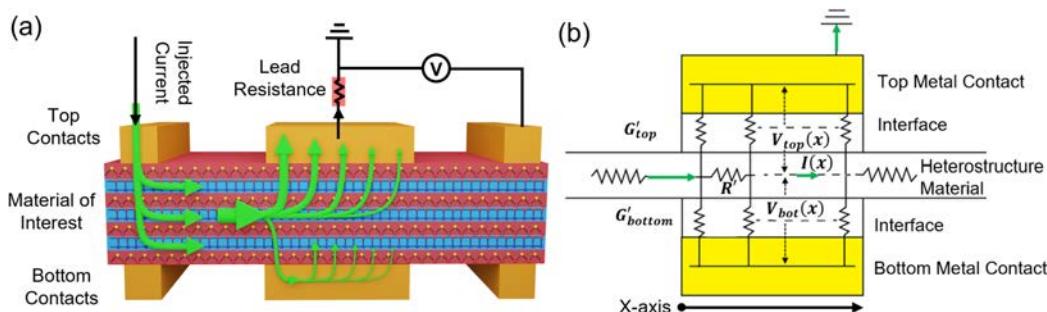


Figure 4. (a) Schematic diagram of the three-terminal voltage measurement showing the nonuniform current distribution in the grounded top contact and the floating bottom contact. The voltage measured is the sum of the voltage drop at the end of the top contact due to the current density there and the voltage drop across the lithographically defined gold lead connecting the material of interest to the bonding pad. The current distribution in the floating bottom contact also indicates the significance of the impact from the bottom electrode, even if only the top electrodes are being measured. (b) Equivalent circuit diagram of the in-plane and cross-plane current flow analysis. The positive x direction and the origin of the axis are indicated at the bottom.

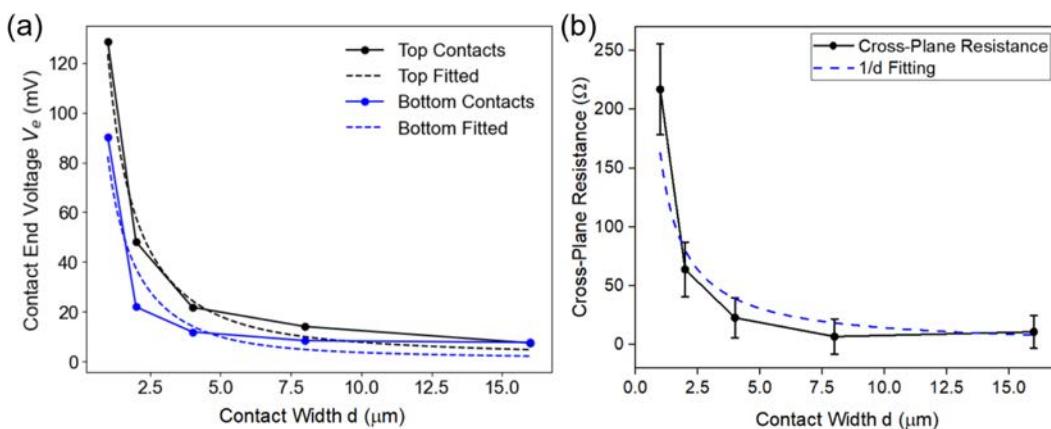


Figure 5. (a) The measured voltage drop plotted as a function of the contact width. As the contact width becomes larger, the current density at the end of the contact approaches zero, and the measured voltage approaches the voltage drop due to the gold lead connecting the material of interest to the bonding pad. (b) The contact-subtracted cross-plane resistance plotted as a function of contact width. Since the contact lengths (perpendicular to the direction of current flow) are all equal, the resistance should vary as $1/d$. The blue curve is the best fit through the data points.

209 The equations are solved by applying Dirichlet and integral
210 form boundary conditions: $I(x = 0) = I_i$, $I(x = d) = 0$, and
211 $\int_0^d G'_{top} V_{top}(x) = I_i$, where I_i is the total current in the material
212 before entering the region between the contacts, and d is the
213 contact width. Based on the above-mentioned constraints, the
214 solutions are as follows:

$$V_{top}(x) = ZI_i \cot h(\alpha d) \cos h(\alpha x) - ZI_i \sin h(\alpha x) + \frac{G'_{bottom}}{G'_{top}} \frac{I_i}{(G'_{top} + G'_{bottom})d} \quad (4)$$

$$V_{bottom}(x) = ZI_i \cot h(\alpha d) \cos h(\alpha x) - ZI_i \sin h(\alpha x) - \frac{I_i}{(G'_{top} + G'_{bottom})d} \quad (5)$$

$$I(x) = I_i \cos h(\alpha x) - I_i \cot h(\alpha d) \sin h(\alpha x) \quad (6)$$

218 where $Z = \sqrt{\frac{R'}{(G'_{top} + G'_{bottom})}}$ and $\alpha = \sqrt{(G'_{top} + G'_{bottom})R'}$. This
219 result is similar to previous analyses for a single top contact in
220 which the potential difference between the material and
221 contact also follows hyperbolic decay along the contact
222 periphery.^{34,36,37} However, for our top and bottom contact

223 configuration, the voltage drop across the material/contact
224 interface contains an additional term containing the contact
225 width d and the conductance of both top and bottom contacts.
226 We define the contact end voltage drop as²²

$$V_{end} = V(x = d) \quad (6.5)$$

228 During the experiment, top contacts are first grounded to
229 measure V_{end}^{top} followed by bottom electrodes grounded to study
230 V_{end}^{bot} with the definitions given by

$$V_{end}^{\text{top}} = \frac{ZI_i}{\sin h(\alpha d)} + \frac{G'_{bottom}}{G'_{top}} \frac{I_i}{(G'_{top} + G'_{bottom})d} + R_{\text{lead}}^{\text{top}} I_i \quad (7)$$

$$V_{end}^{\text{bot}} = \frac{ZI_i}{\sin h(\alpha d)} + \frac{G'_{top}}{G'_{bottom}} \frac{I_i}{(G'_{top} + G'_{bottom})d} + R_{\text{lead}}^{\text{bottom}} I_i \quad (8)$$

233 where $R_{\text{lead}}^{\text{top}}$ and $R_{\text{lead}}^{\text{bottom}}$ represent the contact lead resistances
234 of the top and bottom electrodes, respectively. Figure 5a shows
235 the contact end voltage measurements plotted with respect to
236 contact width and the results of fitting this data to eqs 7 and 8.
237 The theoretical analysis fits the data well, indicating that the

238 floating contact on the other side must be included as it
 239 provides a parallel pathway for the current. The extracted
 240 contact lead resistivities per unit length $\rho_{\text{lead}}^{\text{top}}$ and $\rho_{\text{lead}}^{\text{bottom}}$ are
 241 2.42 ± 0.16 and $0.85 \pm 0.16 \Omega \cdot \mu\text{m}^{-1}$, respectively. The fitted
 242 values of G'_{top} and G'_{bottom} are $(7.91 \pm 0.72) \times 10^{-3}$ and $(11.7$
 243 $\pm 1.6) \times 10^{-3} \Omega^{-1} \cdot \mu\text{m}^{-1}$, resulting in contact resistivities of
 244 $(5.1 \pm 0.6) \times 10^3$ and $(3.4 \pm 0.6) \times 10^3 \Omega \cdot \mu\text{m}^2$ for the top and
 245 bottom contacts, respectively. These values are on the same
 246 order of magnitude as that of Au/WSe₂ interface reported
 247 previously.³⁸

248 The cross-plane resistances were measured between top and
 249 bottom contact pairs with different contact widths. The
 250 measured resistance is the sum of the two contact resistances
 251 (determined from G'_{top} and G'_{bottom}), the two contact leads
 252 resistances ($R_{\text{lead}}^{\text{top}}$ and $R_{\text{lead}}^{\text{bottom}}$), and the cross-plane resistance
 253 of the material itself. Figure 5b presents the extracted cross-
 254 plane resistances plotted with respect to the contact width.
 255 Since the width of the contacts in the other dimension
 256 (perpendicular to the current flow) is kept constant (i.e., 40
 257 μm), one would expect the extracted material cross-plane
 258 resistance to vary as $1/d$ if the current is confined to the area of
 259 the contact as it crosses the sample, which is shown as the
 260 fitted line in Figure 5b. While there is considerable error,
 261 mainly due to taking the difference of two large numbers, the
 262 systematic $1/d$ trend in resistance with contact width indicates
 263 the uniformity of both the top and bottom contacts across the
 264 sample. The fitted average cross-plane resistivity from this
 265 simple model is $160,000 \pm 50,000 \Omega \cdot \mu\text{m}$, which is 4 orders of
 266 magnitude larger than the measured in-plane resistivity.

267 A potential source of systematic error in converting the
 268 cross-plane resistance into a resistivity lies in assuming that the
 269 cross-sectional area is equal to the contact dimensions.
 270 Depending on the sample resistivity and thickness, there will
 271 be broadening of the flowing pathway of the injected current in
 272 the sample after passing through the contacts. This effect
 273 becomes especially important as the contact widths become
 274 smaller and/or the sample becomes thicker. There is an
 275 inherent trade-off in choosing the contact widths. The impact
 276 of lateral current spreading is smaller as contact widths are
 277 increased. However, larger contact widths result in smaller
 278 cross-plane resistances, which results in larger uncertainties
 279 after the large contact and lead resistances are subtracted from
 280 the measured total cross-plane resistance. Smaller contact
 281 widths give larger cross-plane resistances after the contact and
 282 lead resistances are subtracted from the measured cross-plane
 283 resistance. However, current spreading needs to be considered
 284 when converting the resistances to cross-plane resistivities. In
 285 the sample studied, the impact of lateral current spreading is
 286 small as evidenced by the observed $1/d$ dependence of contact
 287 resistance versus contact width in Figure 5b. Figure S2
 288 contains simulations of current spreading as functions of
 289 sample thicknesses and contact widths, which also shows small
 290 current broadening effect when sample thickness is in tens of
 291 nanometers.

292 We measured the temperature dependent on the cross-plane
 293 resistivity through the 1 and 2 μm leads to probe possible
 294 mechanisms for the very large difference between the in plane
 295 and cross plane resistivities. Considering the experimental
 296 trade-offs discussed above, the relatively small contact areas of
 297 the 1 and 2 μm widths maximize the sample cross-plane
 298 resistance, which is advantageous when subtracting the

299 interface and lead resistances from the total measured cross
 300 plane resistance. We measured the systematic change in the
 301 contact end voltage with contact width at six different
 302 temperatures, which were used to determine the contact
 303 conductances and lead resistances at each temperature (see
 304 Figure S3 for the fits of the contact end voltages). The change
 305 in the lead resistances with temperature (Figure 6b) are
 306

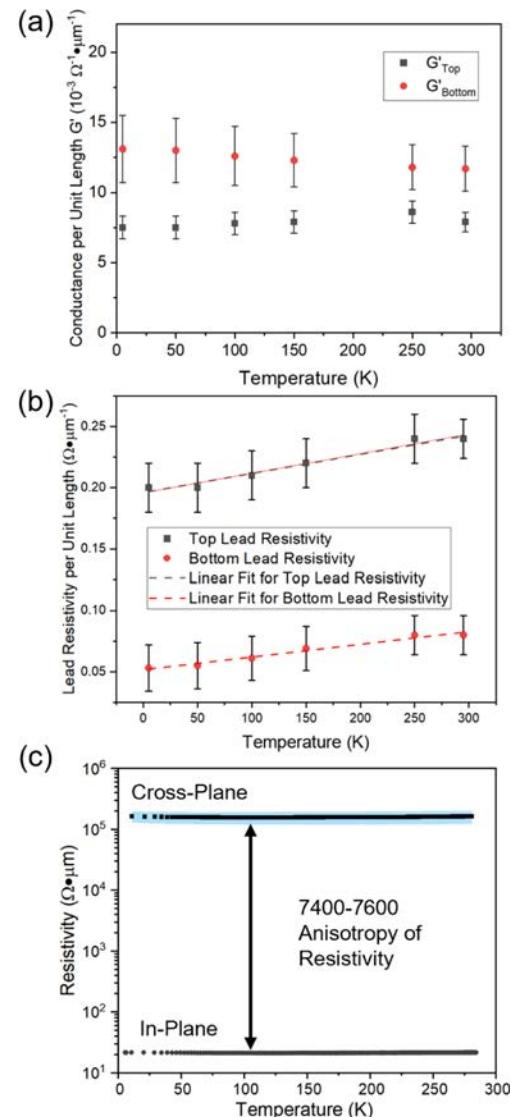


Figure 6. Temperature dependence of (a) interface contact conductance per unit length, and (b) subtracted lead resistivity per unit length of top and bottom electrodes. (c) Extracted cross-plane and in-plane resistivities of $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure plotted with respect to temperature.

consistent with the expected temperature dependence of the 306 metallic gold leads.^{39,40} Within the experimental error, the 307 measured contact conductances are temperature independent 308 (Figure 6a).³⁹

309 Despite their importance in electromechanical devices, there 310 are surprisingly few reports of large area contact conductances 311 because of the strong dependence of interface conductance on 312 surface roughness, contamination, and other nonuniformities. 313 The difficulties in reproducibly preparing interfaces make 314 measurement of intrinsic interface resistances challenging. A 315

316 recently reported island size dependent electrical contact
317 resistance of nanoscale gold islands on graphite with atomically
318 flat interfaces using conductive atomic force microscopy
319 showed that the total measured resistance is the sum of the
320 resistances between the tip and the gold and the gold and the
321 graphite, which were challenging to separate.⁴¹ The temper-
322 ature independent conductance values we observed are
323 reasonable, given the metallic nature of the gold contacts
324 and VSe₂ surface layers of our heterostructure.

325 The temperature dependent measurement of both cross-
326 plane and in-plane material resistivities is plotted in Figure 6c.
327 The resistivity in the cross-plane direction with 2 μm width
328 shows a value of around 160,000 $\Omega\cdot\mu\text{m}$ throughout the entire
329 temperature range, decreasing smoothly by about 5% to a
330 minimum value at \sim 100 K before increasing by the same
331 amount as the temperature is decreased to 6 K (Figure S6b).
332 The temperature dependence is very similar to the measured in
333 plane resistivity, which has a minimum resistivity at a similar
334 temperature that is 2% smaller than the room temperature
335 value. This indicates that the charge density wave transition is
336 also observed in the cross-plane transport of (PbSe)₁(VSe₂)₁
337 heterostructure, which has not been reported before. The net
338 result is that ratio of the cross-plane resistivity divided by the
339 in-plane resistivity is relatively constant as a function of
340 temperature, varying between 7400 and 7600.

341 Previous studies have shown similar high anisotropy
342 between the resistivity along the *c*-axis and *a*-axis in bulk
343 highly oriented pyrolytic graphite (HOPG), and they
344 attributed the conducting mechanism in the cross-plane
345 direction to thermal excitation of charge carriers across
346 stacking fault potential barriers as well as impurity-assisted
347 interlayer hopping.⁴² This leads to nonlinear *I*–*V* curves,
348 which are also reported in cross-plane studies of NbSe₂ and
349 HfS₂ multilayer flakes.²⁴ High resistivity anisotropy has also
350 been observed in In₂Se₃ nanowires, in which semiconducting
351 and metallic behaviors are observed along different crystal
352 directions.⁴³ However, all the findings mentioned above only
353 involve single component materials. For vdW heterostructures,
354 the anisotropy is mostly attributed to the weekly interacting
355 van der Waals gap between two adjacent layers.^{21,24,44} Kwon et
356 al. have reported an anisotropy of 2000 from Sb₂Te₃/GeTe
357 superlattice films.²¹ These values are similar to our measured
358 anisotropy.

359 The four-order-of-magnitude ratio of cross-plane to in-plane
360 resistivity found for (PbSe)₁(VSe₂)₁ heterostructure in our
361 study is of similar magnitude to previous reports for misfit layer
362 compounds. Misfit layer compounds are a family of materials
363 containing transition metal dichalcogenide layers interleaved
364 with rock salt structured layers (MX)_{1+d}TX₂ where M is Sn,
365 Pb, Bi or a rare earth metal, X is S or Se, d is the misfit
366 parameter determined for the ratio of unit cell areas of the two
367 constituents and T is Ti, V, Nb or Ta. The (PbSe)₁(VSe₂)₁
368 investigated in this work differs from a misfit layer compound
369 by having turbostratic disorder between the PbSe and VSe₂
370 planes. Prior reports of anisotropy of electrical resistivity of
371 misfit layer compounds ranged from factors of 50 to 10,000
372 depending on the compound investigated.⁴⁵ Our measured
373 anisotropy falls within the range previously reported. The only
374 report of the temperature dependence of the anisotropy of a
375 misfit layer compound, (SnS)_{1.17}NbS₂, was also temperature
376 independent.⁴¹ Both (SnS)_{1.17}NbS₂ and (PbSe)₁(VSe₂)₁
377 consists of a structural layer that is a small bandgap
378 semiconductor as a bulk phase (SnSe or PbSe) and alternating

379 with a transition metal dichalcogenide which is metallic as a 379
380 bulk phase (NbS₂ or VSe₂). One would expect the cross-plane 380
381 transport to be dominated by the small band gap semi- 381
382 conductor while the in-plane transport to be dominated by the 382
383 metallic layer. For alternating thick layers of these materials, 383
384 one would expect a temperature dependent anisotropy due to 384
385 the temperature dependent carrier concentration of the 385
386 semiconducting layer. The similar temperature dependences 386
387 of the in-plane and cross-plane resistivities of our data suggest 387
388 both conductivities are related to the density of states of the 388
389 VSe₂ monolayers. Naively, one would expect the conduction 389
390 band wave function to exponentially decay outside of the 390
391 metallic layer. The spatial extent of the wave function is 391
392 measured by scanning tunneling spectroscopy and is on the 392
393 order of a nanometer. Since the PbSe layer is only 0.6 nm 393
394 thick, the conduction bands of adjacent VSe₂ layers overlap 394
395 within the PbSe. In this simple picture, the density of states of 395
396 this overlapped region is 7500 times lower than the density of 396
397 states within a VSe₂ layer. While this hypothesis needs to be 397
398 tested by synthesizing heterostructures with thicker PbSe 398
399 layers between VSe₂ layers, the ability to measure and subtract 399
400 the lead and contact resistances from the total measured 400
401 resistivity overcomes the inherent limitations of two lead 401
402 resistance measurements in the cross-plane direction. 402

403 There are several experimental limitations to the approach 403
404 presented herein to measure cross-plane resistivity, which 404
405 depends on being able to extract top and bottom lead and 405
406 contact resistances from contact end voltage measurements. 406
407 This requires observing the contact end voltage increase as 407
408 contacts are reduced in contact width, which depends on the 408
409 ratio of the conductance of the contact to that of the sample. 409
410 As the ratio increases, current crowding increases and lead 410
411 contact width needs to be decreased to observe a voltage 411
412 increase. Conversely, a reduced ratio requires thicker lead 412
413 widths to obtain a contact end voltage dominated by the lead 413
414 resistance. Since the conductance of the sample increases with 414
415 sample thickness and different materials can be chosen to vary 415
416 the contact conductance, there are some experimental 416
417 parameters that can be tuned to optimize the experiment. 417
418 However, samples with high in-plane resistances relative to the 418
419 contact will be challenging to measure. 419

420 The second experimental factor to consider is sample 420
421 thicknesses, which can often be adjusted to optimize the 421
422 experiment. Thicker samples will increase the cross-plane 422
423 sample resistance, increasing the percentage of the total cross- 423
424 plane resistance caused by the sample. Increasing sample 424
425 thickness will also, however, increase the broadening of the 425
426 current path through the sample in the cross-plane measure- 426
427 ment. To probe this factor, we simulated various conditions 427
428 using the COMSOL Multiphysics software package as shown 428
429 in Figure S2. Current broadening increases dramatically as 429
430 sample thickness increases, but as sample thickness decreases, 430
431 the electrical potential gradient change becomes limited to the 431
432 near contact region. The lateral current profiles near the edges 432
433 of contacts are similar to each other, which indicates that the 433
434 current broadening effect is about the same across all the 434
435 contacts with different contact widths. In this thickness regime, 435
436 the graph of the material's cross-plane resistance versus contact 436
437 width will approach zero much quicker than a $1/d$ dependence 437
438 as a result of the current broadening. One can compensate for 438
439 this factor by fitting the data to $1/(d + b)$, where *b* is the extent 439
440 of the current broadening. 440

441 Based on the discussion in the previous two paragraphs, the
442 approach presented herein to measure cross-plane resistivity is
443 best suited to anisotropic samples aligned such that the high
444 resistivity direction is perpendicular to the sample substrate.
445 High cross-plane resistivity for the material being examined
446 allows film thickness to be kept small enough that current
447 broadening is minimized and also results in a smaller
448 percentage of the total measured cross-plane resistance due
449 to the lead and contact resistances. Low in-plane resistivity
450 enables current crowding to be measured with contact widths
451 that can be prepared with optical lithography. Isotropic
452 materials will be challenging to measure, as low resistivity
453 materials will result in most of the total measured cross-plane
454 resistance due to the lead and contact resistances. Subtracting
455 two large numbers to obtain a small remainder leads to a large
456 error in the remainder. High resistivity isotropic materials will
457 require ultrathin contact widths to measure a change in the
458 contact end voltage, as the current will concentrate at the
459 beginning of the contact. Fortunately, there are many
460 heterostructures where anisotropic behavior is expected.
461 Another concern that arises is the possibility that the
462 conduction behavior might be dominated by other mecha-
463 nisms, such as tunneling and conductive filament (CF)
464 formation through defects. In the future, we will verify the
465 cross-plane conduction behavior by varying the film thick-
466 nesses and layer composition, as well as performing hysteresis
467 measurements. Additionally, vdW monolayers and hetero-
468 structures have shown promising results in photochemical and
469 photoelectrochemical reactions due to their high surface-to-
470 volume ratio, strong photoabsorption, and intrinsically hosted
471 catalytic sites.^{46–48} While the catalytic performances in various
472 reactions have been intensively studied, their conversion
473 efficiencies also rely on charge carrier transport along both
474 in-plane and cross-plane directions.^{49,50} We believe our
475 developed measurement technique will provide additional
476 insights into future photocatalyst design.

477 CONCLUSION

478 In conclusion, we have fabricated and tested a facile method to
479 measure the intrinsic cross-plane and in-plane resistivities of
480 van der Waals heterostructures. By flowing current along the
481 in-plane direction, the gold lead resistances and interface
482 conductances of the top and bottom electrodes are first
483 quantified by measuring the variation in current crowding as a
484 function of contact width. The interface and lead resistances
485 can then be subtracted from the total measured cross-plane
486 resistance to obtain the cross-plane resistivity of the sample.
487 We find that the in-plane and cross-plane contact resistances of
488 the measured $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure differ by a factor
489 of 7500. Within the temperature range from 6 to 300 K, the
490 difference in the electric resistivity between the cross-plane and
491 in-plane directions is temperature independent, suggesting that
492 the cross-plane resistivity is due to overlap of the wave function
493 of adjacent VSe_2 layers in the $(\text{PbSe})_1(\text{VSe}_2)_1$ heterostructure.
494 We also reported the observation of charge density wave
495 transition in the cross-plane transport of $(\text{PbSe})_1(\text{VSe}_2)_1$
496 heterostructure. We believe the developed framework of
497 accurate characterization of in-plane and cross-plane resistivity,
498 measured on the same sample, will be highly beneficial to the
499 whole thin film research community.

METHOD

500
501 **Device Fabrication.** The device is fabricated by first
502 patterning an array of five contact widths from 1 to 16 μm
503 using electron beam lithography (Raith EBPG 5200) on
504 oxidized Si substrates. Thirty nm thick Ti/Au is deposited on
505 the pattern yielding a pattern of different width bottom
506 contacts after liftoff. A second lithography step is used to
507 define a rectangular window (600 $\mu\text{m} \times 40 \mu\text{m}$) on the bottom
508 electrodes. The material of interest is then deposited onto the
509 patterned substrate. A second array of electrodes is then
510 patterned to serve as top contacts aligned directly above the
511 bottom contacts. To minimize sample heating during
512 deposition of the top contacts, the substrates are approximately
513 1 m from the metal sources and the deposition rate is round 1
514 \AA/s .

515 **Heterostructure Synthesis and Characterization.** Precursors were deposited on <100> Si wafers with native oxide using a custom-built physical deposition chamber. Elemental V (99.995%, Alfa Aesar) and Pb (99.8%, Alfa Aesar) were deposited using 6 keV electron beam guns while elemental Se (99.99%, Alfa Aesar) was deposited using a Knudsen effusion cell. Elemental layers were deposited by exposing the substrate to a plume of atoms from the heated sources. The time the substrate was exposed was controlled by pneumatic shutters that close after the desired thickness has been deposited. The desired thickness was measured using a quartz crystal microbalance and the sequence and thickness of elemental layers can be controlled using custom LabView software. The number of atoms of each element deposited was measured using X-ray fluorescence (XRF) using a Rigaku Primus II ZSX spectrometer. The measured XRF intensities were converted into the number of atoms per unit area for each constituent as described by Hamann and coworkers.³⁵ The period of the deposited sequence of layers was measured using X-ray reflectivity (XRR).

535 The precursors were converted to the targeted hetero-
536 structure by *ex situ* annealing at 300 °C for 30 min on a hot
537 plate in an inert N_2 atmosphere ($\text{O}_2 < 0.8 \text{ ppm}$). Specular X-
538 ray diffraction (XRD), X-ray reflectivity (XRR) and grazing
539 incidence in-plane X-ray diffraction (GIPXRD) patterns were
540 collected using a Rigaku Smartlab diffractometer, also with
541 $\text{Cu-K}\alpha$ radiation ($\lambda = 0.15418 \text{ nm}$). LeBail fitting of the
542 GIPXRD data was performed on FullProf Suite to obtain
543 lattice parameters. An FEI Titan G2 80–200 STEM with a Cs
544 probe corrector and ChemiSTEM technology (X-FEG and
545 Super-X EDS with four windowless silicon drift detectors)
546 operated at 200 kV were used to obtain high-angle annular
547 dark-field (HAADF) images and EDS scans over selected
548 regions.

ASSOCIATED CONTENT

549 **SI Supporting Information**

550 The Supporting Information is available free of charge at
551 <https://pubs.acs.org/doi/10.1021/acsnano.3c13232>.

553 Ohmic contact of all leads, current spreading simulation,
554 contact end voltage drops at different temperatures,
555 cross-plane resistivity times contact width d plotted as a
556 function of d , material synthesis and device preparation,
557 and linear plots of in-plane and cross-plane resistivity of
558 the $(\text{PbSe})_1(\text{VSe}_2)_1$ material (PDF)

559 AUTHOR INFORMATION

560 Corresponding Authors

561 **David C. Johnson** — *Department of Chemistry, University of*
562 *Oregon, Eugene, Oregon 97403, United States; orcid.org/0000-0002-1118-0997; Email: davej@uoregon.edu*

563 **Stephen B. Cronin** — *Ming Hsieh Department of Electrical*
564 *Engineering, Department of Chemistry, and Department of*
565 *Physics and Astronomy, University of Southern California,*
566 *Los Angeles, California 90089, United States; orcid.org/0000-0001-9153-7687; Email: scronin@usc.edu*

569 Authors

570 **Sizhe Weng** — *Ming Hsieh Department of Electrical*
571 *Engineering, University of Southern California, Los Angeles,*
572 *California 90089, United States; orcid.org/0000-0002-*
573 *6555-2442*

574 **Yu Wang** — *Mork Family Department of Chemical Engineering*
575 *and Materials Science, University of Southern California, Los*
576 *Angeles, California 90089, United States; Department of*
577 *Mechanical Engineering, Stanford University, Stanford,*
578 *California 94305, United States; orcid.org/0000-0002-*
579 *0307-1301*

580 **Celsey Price** — *Department of Chemistry, University of*
581 *Oregon, Eugene, Oregon 97403, United States*

582 **Hannah R. Blackwood** — *Department of Chemistry,*
583 *University of Oregon, Eugene, Oregon 97403, United States;*
584 * orcid.org/0000-0003-2360-1119*

585 **Marissa Choffel** — *Department of Chemistry, University of*
586 *Oregon, Eugene, Oregon 97403, United States*

587 **Aaron Miller** — *Department of Chemistry, University of*
588 *Oregon, Eugene, Oregon 97403, United States; orcid.org/0000-0003-0493-9464*

589 **Ruoxi Li** — *Mork Family Department of Chemical Engineering*
590 *and Materials Science, University of Southern California, Los*
591 *Angeles, California 90089, United States; orcid.org/*
592 *0000-0002-6432-6072*

593 **Mingrui Chen** — *Mork Family Department of Chemical*
594 *Engineering and Materials Science, University of Southern*
595 *California, Los Angeles, California 90089, United States*

596 **Ping Lu** — *Sandia National Laboratories, Albuquerque, New*
597 *Mexico 87185, United States*

598 **Sina Ilkhani** — *Department of Chemistry, University of*
599 *Southern California, Los Angeles, California 90089, United*
600 *States*

601 **Arun Majumdar** — *Department of Mechanical Engineering,*
602 *Stanford University, Stanford, California 94305, United*
603 *States; orcid.org/0000-0003-4226-9705*

604 Complete contact information is available at:

605 <https://pubs.acs.org/10.1021/acsnano.3c13232>

607 Author Contributions

608 [○]S.W. and Y.W. contributed equally to this work. S.W., Y.W.,
609 D.C.J., and S.B.C. conceived and planned the experiments.
610 S.W. carried out the experiment and analyzed the data and
611 Y.W. derived the models and helped carry out the COMSOL
612 simulations. C.P., H.R.B., M.C., and A.M. carried out the
613 material synthesis and characterization. R.L. and M.C. assisted
614 with device characterization and EBL. S.W., Y.W., D.C.J., and
615 S.B.C. wrote the manuscript and all authors discussed the
616 results and contributed to the final manuscript.

617 Notes

618 The authors declare no competing financial interest.

ACKNOWLEDGMENTS

619 This research was supported by the U.S. Department of 620
621 Energy, Office of Basic Energy Sciences under Award No. DE- 621
622 FG02-0746376 (Y.W.), the National Science Foundation 622
623 (NSF) under Award No. CBET-2323031 (S.W.), and the 623
624 Office of Naval Research Award N00014-22-1-2697 (R.L.). 624
625 The research at the University of Oregon and Stanford 625
626 University was supported by the Office of Naval Research 626
627 MURI Award N00014-21-1-2377. 627

REFERENCES

(1) Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. *Nature* **2013**, *499* (7459), 419–425.

(2) Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. *Nat. Mater.* **2012**, *11* (9), 764–767.

(3) Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. *Nature* **2001**, *413* (6856), 597–602.

(4) Hamann, D. M.; Hadland, E. C.; Johnson, D. C. Heterostructures containing dichalcogenides-new materials with predictable nanoarchitectures and novel emergent properties. *Semicond. Sci. Technol.* **2017**, *32* (9), 093004.

(5) Silin, A. P. Semiconductor superlattices. *Sov. Phys. J.* **1985**, *28* (11), 972.

(6) Collier, C. P.; Vossmeier, T.; Heath, J. R. NANOCRYSTAL SUPERLATTICES. *Annu. Rev. Phys. Chem.* **1998**, *49* (1), 371–404.

(7) Thompson, A. G. MOCVD technology for semiconductors. *Mater. Lett.* **1997**, *30* (4), 255–263.

(8) Ludowise, M. Metalorganic chemical vapor deposition of III-V semiconductors. *J. Appl. Phys.* **1985**, *58* (8), R31–R55.

(9) Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. *Nat. Rev. Mater.* **2016**, *1* (9), 16042.

(10) Cheng, R.; Wang, F.; Yin, L.; Wang, Z.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. *Nat. Electron.* **2018**, *1* (6), 356–361.

(11) Hong, X.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. *Nat. Nanotechnol.* **2014**, *9* (9), 682–686.

(12) Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. *Nat. Nanotechnol.* **2013**, *8*, 952–958.

(13) Palacios-Berraquero, C.; Barbone, M.; Kara, D. M.; Chen, X.; Goykhman, I.; Yoon, D.; Ott, A. K.; Beitner, J.; Watanabe, K.; Taniguchi, T.; et al. Atomically thin quantum light-emitting diodes. *Nat. Commun.* **2016**, *7* (1), 12978.

(14) Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; et al. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. *Science* **2012**, *335* (6071), 947–950.

(15) Liu, Y.; Huang, Y.; Duan, X. Van der Waals integration before and beyond two-dimensional materials. *Nature* **2019**, *567* (7748), 323–333.

(16) Sarkar, D.; Xie, X.; Liu, W.; Cao, W.; Kang, J.; Gong, Y.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. *Nature* **2015**, *526* (7571), 91–95.

(17) Montgomery, H. C. Method for Measuring Electrical Resistivity of Anisotropic Materials. *J. Appl. Phys.* **1971**, *42* (7), 2971–2975.

(18) dos Santos, C. A. M.; de Campos, A.; da Luz, M. S.; White, B. D.; Neumeier, J. J.; de Lima, B. S.; Shigue, C. Y. Procedure for

685 measuring electrical resistivity of anisotropic materials: A revision of
686 the Montgomery method. *J. Appl. Phys.* **2011**, *110* (8), 083703.

687 (19) Yang, B.; Liu, W. L.; Liu, J. L.; Wang, K. L.; Chen, G.
688 Measurements of anisotropic thermoelectric properties in super-
689 lattices. *Appl. Phys. Lett.* **2002**, *81* (19), 3588–3590.

690 (20) Chen, J.; Hamann, D. M.; Choi, D. S.; Poudel, N.; Shen, L.;
691 Shi, L.; Johnson, D. C.; Cronin, S. B. Enhanced Cross-plane
692 Thermoelectric Transport of Rotationally-disordered SnSe₂ via Se
693 Vapor Annealing. *Nano Lett.* **2018**, *18* (11), 6876–6881.

694 (21) Kwon, H.; Khan, A. I.; Perez, C.; Asheghi, M.; Pop, E.;
695 Goodson, K. E. Uncovering thermal and electrical properties of
696 Sb₂Te₃/GeTe superlattice films. *Nano Lett.* **2021**, *21* (14), 5984–
697 5990.

698 (22) Ber, E.; Grady, R. W.; Pop, E.; Yalon, E. Uncovering the
699 Different Components of Contact Resistance to Atomically Thin
700 Semiconductors. *Adv. Electron. Mater.* **2023**, *9*, 2201342.

701 (23) Schroder, D. K. Contact Resistance and Schottky Barriers. In
702 *Semiconductor Material and Device Characterization*; Wiley, 2005; pp.
703 127184.

704 (24) Najmaei, S.; Neupane, M. R.; Nichols, B. M.; Burke, R. A.;
705 Mazzoni, A. L.; Chin, M. L.; Rhodes, D. A.; Balicas, L.; Franklin, A.
706 D.; Dubey, M. Cross-Plane Carrier Transport in Van der Waals
707 Layered Materials. *Small* **2018**, *14* (20), 1703808.

708 (25) Murrmann, H.; Widmann, D. Current crowding on metal
709 contacts to planar devices. *IEEE Trans. Electron Devices* **1969**, *16* (12),
710 1022–1024.

711 (26) Schroder, D. K. *Semiconductor material and device character-
712 ization*; John Wiley & Sons, 2015.

713 (27) Berger, H. Solid State Electron. *Solid-State Electron.* **1972**, *15*,
714 145.

715 (28) Wang, L.; Zhang, Z.-H.; Wang, N. Current crowding
716 phenomenon: Theoretical and direct correlation with the efficiency
717 droop of light emitting diodes by a modified ABC model. *IEEE J.
718 Quantum Electron.* **2015**, *51* (5), 1–9.

719 (29) Yongsunthon, R.; Tao, C.; Rous, P.; Williams, E. Surface
720 electromigration and current crowding. *Nanophenomena at Surfaces*;
721 Springer, 2011, *47*, 113143. .

722 (30) Wang, Y.; Hamann, D. M.; Cordova, D. L. M.; Chen, J.; Wang,
723 B.; Shen, L.; Cai, Z.; Shi, H.; Karapetrova, E.; Aravind, I.; et al.
724 Enhanced Low-Temperature Thermoelectric Performance in
725 (PbSe)_{1+δ}(VSe₂)₁ Heterostructures due to Highly Correlated
726 Electrons in Charge Density Waves. *Nano Lett.* **2020**, *20* (11),
727 8008–8014.

728 (31) Hite, O. K.; Falmbigl, M.; Alemayehu, M. B.; Esters, M.; Wood,
729 S. R.; Johnson, D. C. Charge density wave transition in (PbSe) 1+ δ
730 (VSe₂)_n compounds with n= 1, 2, and 3. *Chem. Mater.* **2017**, *29*
731 (13), 5646–5653.

732 (32) Cordova, D. L. M.; Fender, S. S.; Kam, T. M.; Seyd, J.;
733 Albrecht, M.; Lu, P.; Fischer, R.; Johnson, D. C. Designed synthesis
734 and structure–property relationships of kinetically stable [(PbSe) 1+
735 δ] m (VSe₂) 1 (m= 1, 2, 3, 4) heterostructures. *Chem. Mater.* **2019**,
736 *31* (20), 8473–8483.

737 (33) Falmbigl, M.; Putzky, D.; Ditto, J.; Esters, M.; Bauers, S. R.;
738 Ronning, F.; Johnson, D. C. Influence of defects on the charge density
739 wave of ([SnSe] 1+ δ) 1 (VSe₂) 1 ferecystals. *ACS Nano* **2015**, *9*
740 (8), 8440–8448.

741 (34) Berger, H. Contact resistance on diffused resistors. In *1969
742 IEEE International Solid-State Circuits Conference. Digest of Technical
743 Papers*, IEEE, 1969..

744 (35) Wang, Y.; Hamann, D. M.; Cordova, D. L. M.; Chen, J.; Wang,
745 B.; Shen, L.; Cai, Z.; Shi, H.; Karapetrova, E.; Aravind, I.; et al.
746 Enhanced Low-Temperature Thermoelectric Performance in
747 (PbSe)_{1+δ}(VSe₂)₁ Heterostructures due to Highly Correlated
748 Electrons in Charge Density Waves. *Nano Lett.* **2020**, *20* (11),
749 8008–8014.

750 (36) Ting, C.-Y.; Chen, C. Y. A study of the contacts of a diffused
751 resistor. *Solid-State Electron.* **1971**, *14* (6), 433–438.

(37) Scorzoni, A.; Finetti, M. Metal/semiconductor contact resistivity and its determination from contact resistance measurements. *Mater. Sci. Rep.* **1988**, *3* (2), 79–137.

(38) Moon, I.; Choi, M. S.; Lee, S.; Nipane, A.; Hone, J.; Yoo, W. J. Analytical measurements of contact resistivity in two-dimensional WSe₂ field-effect transistors. *2D Mater.* **2021**, *8* (4), 045019.

(39) Sambles, J. R.; Elsom, K. C.; Jarvis, D. J. The electrical resistivity of gold films. *Philos. Trans. R. Soc. A* **1982**, *304* (1486), 759 365–396.

(40) De Vries, J. Temperature and thickness dependence of the resistivity of thin polycrystalline aluminium, cobalt, nickel, palladium, silver and gold films. *Thin Solid Films* **1988**, *167* (1–2), 25–32.

(41) Vazirisereshk, M. R.; Sumaiya, S. A.; Martini, A.; Baykara, M. Z. Measurement of electrical contact resistance at nanoscale gold-graphite interfaces. *Appl. Phys. Lett.* **2019**, *115* (9), 091602.

(42) Matsubara, K.; Sugihara, K.; Tsuzuku, T. Electrical resistance in the c direction of graphite. *Phys. Rev. B* **1990**, *41* (2), 969–974.

(43) Peng, H.; Xie, C.; Schoen, D. T.; Cui, Y. Large Anisotropy of Electrical Properties in Layer-Structured In₂Se₃ Nanowires. *Nano Lett.* **2008**, *8* (5), 1511–1516.

(44) Cao, W.; Huang, M.; Yeh, C.-H.; Parto, K.; Banerjee, K. Impact of transport anisotropy on the performance of van der Waals materials-based electron devices. *IEEE Trans. Electron Devices* **2020**, *67* (3), 1310–1316.

(45) Wiegers, A. G. Misfit layer compounds: Structures and physical properties. *Prog. Solid State Chem.* **1996**, *24* (1–2), 1–139.

(46) Li, Y.; Gao, C.; Long, R.; Xiong, Y. Photocatalyst design based on two-dimensional materials. *Mater. Today Chem.* **2019**, *11*, 197–216.

(47) Chen, J.; Bailey, C. S.; Hong, Y.; Wang, L.; Cai, Z.; Shen, L.; Hou, B.; Wang, Y.; Shi, H.; Sambur, J.; et al. Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe₂. *ACS Photonics* **2019**, *6* (3), 787–792.

(48) Jun, S. E.; Lee, J. K.; Jang, H. W. Two-dimensional materials for photoelectrochemical water splitting. *Energy Adv.* **2023**, *2* (1), 34–53.

(49) Chen, J.; Bailey, C. S.; Cui, D.; Wang, Y.; Wang, B.; Shi, H.; Cai, Z.; Pop, E.; Zhou, C.; Cronin, S. B. Stacking Independence and Resonant Interlayer Excitation of Monolayer WSe₂/MoSe₂ Heterostructures for Photocatalytic Energy Conversion. *ACS Appl. Nano Mater.* **2020**, *3* (2), 1175–1181.

(50) Lin, Y.-R.; Cheng, W.-H.; Richter, M. H.; DuChene, J. S.; Peterson, E. A.; Went, C. M.; Al Balushi, Z. Y.; Jariwala, D.; Neaton, J. B.; Chen, L.-C.; et al. Band Edge Tailoring in Few-Layer Two-Dimensional Molybdenum Sulfide/Selenide Alloys. *J. Phys. Chem. C* **2020**, *124* (42), 22893–22902.