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6 ABSTRACT: Understanding and characterizing the intrinsic properties of charge carrier transport across the
7 interfaces in van der Waals heterostructures is critical to their applications in modern electronics, thermoelectrics,
8 and optoelectronics. However, there are very few published cross-plane resistivity measurements of thin samples
9 because these inherently 2-probe measurements must be corrected for contact and lead resistances. Here, we present
0 a method to extract contact resistances and metal lead resistances by fitting the width dependence of the contact end
11 voltages of top and bottom electrodes of different contact widths to a model based on current crowding. These
2 contributions are then subtracted from the total 2-probe cross-plane resistance to obtain the cross-plane resistance
13 of the material itself without needing multiple devices and/or etching steps. This approach was used to measure
14 cross-plane resistivities of a (PbSe),(VSe,); heterostructure containing alternating layers of PbSe and VSe, with
s random in-plane rotational disorder. Several samples measured exhibited a 4 order of magnitude difference between
6 cross-plane and in-plane resistivities over the 6—300 K temperature range. We also reported the observation of
7 charge density wave transition in the cross-plane transport of the (PbSe);(VSe,), heterostructure. The device
8 fabrication process is fully liftoff compatible, and the method developed enables the straightforward measurement of
19 the resistivity anisotropy of most thin film materials with nm thicknesses.
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21 INTRODUCTION diodes) have been demonstrated, such growth methods are 32
constrained by crystallographic symmetry similarities and 33
lattice constant matching. More recently, van der Waals 34
(vdW) heterostructures with vertical integration of layered 3s

22 Semiconducting heterostructures and superlattices have
23 attracted considerable interest in the scientific and industrial
24 communities due to their exotic properties and wide range of
25 applications in modern electronics, thermoelectrics, and
26 optoelectronics.'~* Early studies focused on II-V semi- Received:  December 31, 2023
27 conducting heterostructures and oxide superlattices, which Revised:  August 20, 2024
28 were mainly fabricated through epitaxial growth, such as Accepted:  August 21, 2024
29 molecular beam epitaxy (MBE)>° or metal organic chemical

30 vapor deposition (MOCVD).”® Although many state-of-the-

31 art electronic devices (i.e., photodetectors and light-emitting
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materials offer an alternative approach to integrate two-
dimensional materials that do not rely on strong chemical
bonding between adjacent layers.”” Such heterointegration
provides a more versatile selection of materials with disparate
lattice structures, such as graphene, hexagonal boron nitride
(hBN), and transition metal dichalcogenides (TMDs).' The
optical and electrical properties of vdW heterostructures and
devices have been under intensive study, and many interesting
phenomena have been discovered, including ultrafast charge
transfer (within SO fs) in photoexcited MoS,/WS, hetero-
structures, 55% external quantum efficiency of photocurrent
generation in graphene/MoS,/graphene vertical junctions," ">
all-electrical single photon light emitting diodes realized in
graphene/hBN/WS, heterostructures,"” and graphene/hBN/
graphene field effect tunneling transistors.'* Recently, there has
been a emerging trend in vertically integrating 2D materials
with traditional semiconductors and oxide superlattices,
resulting in the creation of even more exotic artificial
heterostructures or superlattices with atomically clean and
electronically distinct interfaces.'”'® Since the functionalities of
most of the above-mentioned heterostructures and super-
lattices rely heavily on the carrier transport across the
interfaces, studying the fundamental electrical transport
properties in the cross-plane direction of vdW heterostructures
is of great importance to the future development of
nanoelectronics and nanophotonics.

There are few reports probing the intrinsic properties of
charge carrier transport across the interfaces in vdW
heterostructures due to the difficulty of separating large
contact resistances from the relatively small cross-plane
resistance of thin films (1—100 nm thick) in 2-probe
measurements. The most common method of measuring
resistivity tensors in anisotropic materials is based on the
method developed by Montgomery.'” However, their
approach requires the contact width of the contacts to be
less than 10% of the film thickness to measure the cross-plane
resistivity accurately.18 For 50 nm thick vdW heterostructures,
it is very difficult to fabricate Ohmic metal contacts with
contact widths smaller than 5 nm. Another approach used to
extract the resistivity in the cross-plane direction include
measuring properties in samples where regions between
contact pads have been etched to varying depths to form a
mesa structure, followed by applying the modified transfer line
method (M-TLM).>"?~*" These methods require the variation
of contact resistance between different devices to be much
smaller than the cross-plane resistance of the material, which is
challenging to achieve experimentally for a variety of reasons
including surface damage from contact metal deposition, Fermi
level pinning, and nonuniformity at the material/contact
interface.””** Another reported approach is to sandwich the
material of interest between a large bottom electrode and a
small top electrode in a two-probe measurement config-
uration.”* However, the measured resistance includes the lead
and contact resistance from the metal/material interface, which
usually dominates in the measured total resistance in the cross-
plane direction.

The approach to measure cross plane resistivity presented in
this paper is based on the phenomena of current crowding,
which was extensively explored in the 1960s and 1970s.”°~*’
The phenomenon of current crowding has been shown to be
very important in diverse areas, ranging from being an
important loss mechanism in LED’s”” to increasing electro-
migration leading to the formation of interfacial voids.”” Figure

1 illustrates the basis of current crowding using a transition line 99 f1

model where magenta resistors represent the interface

Material In-Plane Resistance

"VV\F Contact Resistance =

Figure 1. Schematic diagram of an equivalent circuit illustrating
the concept of current crowding. More current flowing from the
yellow to the black wires will pass through the initial intervening
blue resistors than later ones, with the amount dependent on the
resistivities of both the material of interest and the interface.

resistance. Current flowing from the yellow to the green
wires will not be the same in each of the intervening magenta
resistors. More current will pass through the initial resistor
than later ones, with the amount dependent on the resistivities
of both the wires and the interface. To measure cross plane
resistivity, we need to add contacts on the bottom of the
sample, which adds a second interface and potential current
pathway through the contact and across to the opposite
contact. The transmission line model derived herein includes
the bottom contact, which modifies the top current
distribution if the in-plane conductivity is low.

Here, we present a approach to characterize both the in-
plane and cross-plane resistivities of ultrathin samples. We use
in-plane measurements to determine the resistances of the
lithographically defined gold leads connecting the sample to
the bonding pads (typically 20—100 Q) and the contact
resistivities of the top and bottom contacts. These contribu-
tions are then subtracted from the measured two-probe total
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cross-plane resistance to obtain the cross-plane resistance of 119

the heterostructure material. The cross-plane resistivity is
calculated from the cross-plane resistance using the measured
sample thickness and contact areas. This approach uses a
simple device geometry without needing multiple devices and/
or etch steps. We demonstrate the utility of our approach by
characterizing several (PbSe);(VSe,); heterostructures, all
yielding 4 order of magnitude anisotropies between the in-
and out-of-plane resistivities over the 6—300 K temperature
range. In this work, the electrical properties of nm thick van
der Waals heterostructures have been characterized in both
directions on the same device with contact resistances fully
accounted for, and we believe this technique can be
generalized and applied to characterize a wide range of thin
film materials if the deposition or growth of the target material
does not require epitaxial substrates.

RESULTS AND DISCUSSION

The optical image and schematic diagram of as-fabricated
device are shown in Figure 2a,b. In the present study, 50 unit
cells of the (PbSe);(VSe,); heterostructure (~30 nm thick)
are sandwiched between arrays of top and bottom electrodes
with § contact widths ranging from 1 to 16 um, detailed
fabrication processes are demonstrated in the Method section.
Figure 3a—c shows the characterization data obtained on an
annealed (PbSe);(VSe,); heterostructure using the conditions
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Figure 2. (a) Optical microscope image and (b) schematic diagram
of the as-fabricated device with various contact widths from 1 to
16 pm. (c) Side view of the device, shows that the top and bottom
electrodes extend across the material of interest. The electrodes
end at 3 um away from the edge of the material to avoid potential
short circuit between top and bottom contacts.
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Figure 3. (a) The specular diffraction pattern of a (PbSe)(VSe,),
heterostructure. The indices are given above each reflection. (b)
Grazing incidence in plane X-ray diffraction patterns of the self-
assembled (PbSe),(VSe,); heterostructure collected from a sample
subjected to identical annealing conditions as the fabricated
device. Indices for both the PbSe and VSe, sublattices are given
above each reflection. (c) High angle annular dark field scanning
tunneling electron microscopy (HAADF-STEM) image of
(PbSe),(VSe,), heterostructure. Colored bars show the positions
of atomic planes of Pb (blue), V (green), and Se (purple). (d) A
schematic of the structure of the (PbSe),(VSe,), heterostructure
illustrating the off-axis rotational disorder of the constituent
sublattices seen in the HAADF-STEM image.

described above. These data show the formation of highly
crystalline materials with atomically sharp interfaces.

The completed devices are used to measure the in-plane
resistivity of the material of interest using a 4-probe
configuration to make sure the processing steps have not
altered the properties of deposited film. We used 4 top or
bottom contacts to perform a 4-probe in-plane transport
measurement, in which the current is flowing between the two
outer electrodes and the voltage difference between the 1 and 2
pum leads was measured. At each temperature, the conducting

current increases from —0.2 to 0.2 mA in 50 yA incremental
steps and Ohmic behavior is observed. The temperature
dependent corrected in-plane resistivity, plotted in Figure S6a.
Figure S6c shows a similar order of magnitude and
temperature dependence to that previously reported by
Wang et al,*® Hite et al,*! and Cordova et al.>* The upturn
in the resistivity at low temperatures results from a charge
density wave transition in the monolayer thick VSe, layers.”
The in-plane resistivity data indicate that the (PbSe);(VSe,);
heterostructure survived the processing steps.

A sequence of 2-probe in-plane measurements using the top
and bottom contacts are then conducted to determine the lead
and contact resistances, as illustrated in Figure 4a. Current is
injected through pairs of contacts, and the voltage of an
adjacent contact is measured relative to ground. Typical I-V
curves for the 2-probe measurements are plotted in Figure S1
showing Ohmic behavior at the metal/heterostructure inter-
face. The measured voltage is the sum of the potential drop
due to the current flowing through the lithographically defined
electrode connecting the heterostructure material to the
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bonding pads (i.e., leads) and the voltage drop at the end of 174

the contact due to the fraction of the total current (1 mA)
flowing through the end of the contact. This latter contribute is
referred to as the contact end voltage. The amount of current
flowing through the far end of the grounded contact depends
on the contact width of the contact and the relative magnitude
of the contact conductance with respect to the sample’s in-
plane resistivity, resulting in the systematic trend in the
measured voltage with contact width plotted in Figure 5a. The
fits to these contact width-dependent curves are described
below.

Figure 4b presents a schematic illustration of the theoretical
analysis of the in-plane current flowing through a contact.
Here, Vio,(x) and Viguom (%) are the electrical potential
differences between the material and the top and bottom
contacts as a function of position x, measured from the inner
edge of the contact. The contact resistances are modeled by
adding parallel resistors on both the top and bottom of the

. ’
material, and G,

the interface per unit length of the top and bottom contacts,
respectively.”” We assume the contact is at an equal potential
as a function of position, x, since the resistivity of the contact
material (Au) is around 107® Q-m,”' ™ which is very small
comparing with the in-plane resistivity of the (PbSe),(VSe,),
heterostructure. I(x) represents the current flowing in the
material at location x along the contact and R’, the in-plane
material resistance per unit length, is taken as a constant at
each measurement temperature (21.8 Q-um™' at room
temperature) calculated from the in plane 4-probe resistivity
measurement. The top contact is grounded while the bottom
contact is floating. Then, Vyo,(%), Viottom (), and I(x) can be

analyzed by constructing the following differential equations:
%"(@ = —RI(x) (1)
dvbﬁom(x) = —RI(x) (2)
dz(;) = ~GiopViop(®) = Grotiom Vhotiom(¥) 3)
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Figure 4. (a) Schematic diagram of the three-terminal voltage measurement showing the nonuniform current distribution in the grounded
top contact and the floating bottom contact. The voltage measured is the sum of the voltage drop at the end of the top contact due to the
current density there and the voltage drop across the lithographically defined gold lead connecting the material of interest to the bonding
pad. The current distribution in the floating bottom contact also indicates the significance of the impact from the bottom electrode, even if
only the top electrodes are being measured. (b) Equivalent circuit diagram of the in-plane and cross-plane current flow analysis. The positive

x direction and the origin of the axis are indicated at the bottom.

(@)

120 | —e— Top Contacts
< ---- Top Fitted
E 1001 —e— Bottom Contacts
~ ---- Bottom Fitted
@

o
8
G
>
o
=
w
©
8
c
Q
8]

5.0 7.5 10.0
Contact Width d (um)

( )250 8 \—s— Cross-Plane Resistance

_ - = = 1/d Fitting

~

=

o 200

Qo

=

i}

w

2 150

11

©

2 100+

5

a.

2

8 50

[&]

it
04 i
T T T T T T
0.0 25 5.0 75 100 125 150

Contact Width d (um)

Figure S. (a) The measured voltage drop plotted as a function of the contact width. As the contact width becomes larger, the current density
at the end of the contact approaches zero, and the measured voltage approaches the voltage drop due to the gold lead connecting the
material of interest to the bonding pad. (b) The contact-subtracted cross-plane resistance plotted as a function of contact width. Since the
contact lengths (perpendicular to the direction of current flow) are all equal, the resistance should vary as 1/d. The blue curve is the best fit

through the data points.

200 The equations are solved by applying Dirichlet and integral

210 form boundary conditions: I(x = 0) = Ii, I(x = d) = 0, and
d

- /0 Grop Viop(x) = I, where Iis the total current in the material

212 before entering the region between the contacts, and d is the
213 contact width. Based on the above-mentioned constraints, the

214 solutions are as follows:

Vmp(x) = ZI, cot h(ad)cos h(ax) — ZI, sin h(ax)

+ Glgottom Ii

215 Gt/op (thop + G{Jottom)d (4)

Viottom(®) = ZI cot h(ad)cos h(ax) — ZI, sin h(ax)

L
216 (Gt/op + G{)ottom)d (5)
bi; 1) =1, cos h(ax) — I, cot h(ad)sin h(ax) (6)
R ’ ’ ’ .

s where Z = Gt ) and @ = \/(Gtop + Gpowom)R - This
219 result is similar to previous analyses for a single top contact in
220 which the potential difference between the material and
221 contact also follows hyperbolic decay along the contact

) 34,36,37
222 periphery. However, for our top and bottom contact

configuration, the voltage drop across the material/contact

interface contains an additional term containing the contact

width d and the conductance of both top and bottom contacts.

We define the contact end voltage drop as™
Vnd = V(x = d)

€]

223
224
225
226

(6.5) 537

During the experiment, top contacts are first grounded to 228

measure V.o followed by bottom electrodes grounded to study 229
V2 with the definitions given by
ZI
sin h(ad)

230

’
Gbortom Iz

G (Gl + Gl;ottom)d

top

top __
Vnd -

€]

t
’ + Rle?illi
top
(7) 231

Grop L
Gl;ottom (Gt,op + Gl,)ottom)d

bott
+ Riga ], (8)

ZI.

bot __ i

4™ §in h(ad)

232

t
where R and R 201"

represent the contact lead resistances 233
234
235
236

237

of the top and bottom electrodes, respectively. Figure Sa shows
the contact end voltage measurements plotted with respect to
contact width and the results of fitting this data to eqs 7 and 8.
The theoretical analysis fits the data well, indicating that the
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238 floating contact on the other side must be included as it
239 provides a parallel pathway for the current. The extracted

240 contact lead resistivities per unit length plzg and pli:);mm

241 2.42 + 0.16 and 0.85 + 0.16 Q-um™", respectively. The fitted
54, values of G, and Gy o are (7.91 + 0.72) X 107 and (11.7

top

are

243 + 1.6) X 107 Q7'um™", resulting in contact resistivities of
244 (5.1 £ 0.6) X 10% and (3.4 + 0.6) X 10 Q-um? for the top and
245 bottom contacts, respectively. These values are on the same
246 order of magnitude as that of Au/WSe, interface reported
27 previously.*®

248 The cross-plane resistances were measured between top and
249 bottom contact pairs with different contact widths. The
250 measured resistance is the sum of the two contact resistances

top and Gy .., the two contact leads

251 (determined from G,

. t b .
252 resistances (Rioh and Rog°™), and the cross-plane resistance

253 of the material itself. Figure 5b presents the extracted cross-
254 plane resistances plotted with respect to the contact width.
255 Since the width of the contacts in the other dimension
256 (perpendicular to the current flow) is kept constant (i.e., 40
257 um), one would expect the extracted material cross-plane
258 resistance to vary as 1/d if the current is confined to the area of
259 the contact as it crosses the sample, which is shown as the
260 fitted line in Figure Sb. While there is considerable error,
261 mainly due to taking the difference of two large numbers, the
262 systematic 1/d trend in resistance with contact width indicates
263 the uniformity of both the top and bottom contacts across the
264 sample. The fitted average cross-plane resistivity from this
265 simple model is 160,000 + 50,000 €-um, which is 4 orders of
266 magnitude larger than the measured in-plane resistivity.

267 A potential source of systematic error in converting the
268 cross-plane resistance into a resistivity lies in assuming that the
269 cross-sectional area is equal to the contact dimensions.
270 Depending on the sample resistivity and thickness, there will
271 be broadening of the flowing pathway of the injected current in
272 the sample after passing through the contacts. This effect
273 becomes especially important as the contact widths become
274 smaller and/or the sample becomes thicker. There is an
275 inherent trade-off in choosing the contact widths. The impact
276 of lateral current spreading is smaller as contact widths are
277 increased. However, larger contact widths result in smaller
278 cross-plane resistances, which results in larger uncertainties
279 after the large contact and lead resistances are subtracted from
280 the measured total cross-plane resistance. Smaller contact
281 widths give larger cross-plane resistances after the contact and
282 lead resistances are subtracted from the measured cross-plane
283 resistance. However, current spreading needs to be considered
284 when converting the resistances to cross-plane resistivities. In
285 the sample studied, the impact of lateral current spreading is
286 small as evidenced by the observed 1/d dependence of contact
287 resistance versus contact width in Figure Sb. Figure S2
288 contains simulations of current spreading as functions of
289 sample thicknesses and contact widths, which also shows small
290 current broadening effect when sample thickness is in tens of
291 nanometers.

292 We measured the temperature dependent on the cross-plane
203 resistivity through the 1 and 2 pm leads to probe possible
2904 mechanisms for the very large difference between the in plane
205 and cross plane resistivities. Considering the experimental
296 trade-offs discussed above, the relatively small contact areas of
207 the 1 and 2 ym widths maximize the sample cross-plane
298 resistance, which is advantageous when subtracting the
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interface and lead resistances from the total measured cross 299
plane resistance. We measured the systematic change in the 300
contact end voltage with contact width at six different 3o1
temperatures, which were used to determine the contact 302
conductances and lead resistances at each temperature (see 303
Figure S3 for the fits of the contact end voltages). The change 304
in the lead resistances with temperature (Figure 6b) are 30s f6

(a)

E

el T
S *  Glagiiom
ip 151

£

2 ; }
4

=10 :

5 a

8 5

=

k!

S

°

S0 . . . y v ,
9 o 50 100 150 200 250 300

Temperature (K)

=

Lead Resistivity per Unit Length (Qeum™)

= =
o o
= tH
L 1
——
\
\
——
\
\
|
o |
\
—
\
\
\
\
\
\
—la—
\
\
|
[——

0454 : Top Lead Resistivity

Bottom Lead Resistivity
- Linear Fit for Top Lead Resistivity
- - -Linear Fit for Bottom Lead Resistivity

FHE———

0 50 100 150 200 250 300
Temperature (K)

0.10

o

=1

&
1

(C) 108
Cross-Plane
10° " 'y
E
&
G 10°4
; ] 7400-7600
2 .1 Anisotropy of
2.4 e
§ 3 Resistivity
e ]
107
In-Plane
10 : . - - :
0 50 100 150 200 250 300

Temperature (K)

Figure 6. Temperature dependence of (a) interface contact
conductance per unit length, and (b) subtracted lead resistivity
per unit length of top and bottom electrodes. (c) Extracted cross-
plane and in-plane resistivities of (PbSe);(VSe,); heterostructure
plotted with respect to temperature.

consistent with the expected temperature dependence of the 306
metallic gold leads.””" Within the experimental error, the 307
measured contact conductances are temperature independent 308
(Figure 6a). 309

Despite their importance in electromechanical devices, there 310
are surprisingly few reports of large area contact conductances 311
because of the strong dependence of interface conductance on 312
surface roughness, contamination, and other nonuniformities. 313
The difficulties in reproducibly preparing interfaces make 314
measurement of intrinsic interface resistances challenging. A 315
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recently reported island size dependent electrical contact
resistance of nanoscale gold islands on graphite with atomically
flat interfaces using conductive atomic force microscopy
showed that the total measured resistance is the sum of the
resistances between the tip and the gold and the gold and the
graphite, which were challenging to separate.”’ The temper-
ature independent conductance values we observed are
reasonable, given the metallic nature of the gold contacts
and VSe, surface layers of our heterostructure.

The temperature dependent measurement of both cross-
plane and in-plane material resistivities is plotted in Figure 6c.
The resistivity in the cross-plane direction with 2 ym width
shows a value of around 160,000 Q-xm throughout the entire
temperature range, decreasing smoothly by about 5% to a
minimum value at ~100 K before increasing by the same
amount as the temperature is decreased to 6 K (Figure S6b).
The temperature dependence is very similar to the measured in
plane resistivity, which has a minimum resistivity at a similar
temperature that is 2% smaller than the room temperature
value. This indicates that the charge density wave transition is
also observed in the cross-plane transport of (PbSe);(VSe,),
heterostructure, which has not been reported before. The net
result is that ratio of the cross-plane resistivity divided by the
in-plane resistivity is relatively constant as a function of
temperature, varying between 7400 and 7600.

Previous studies have shown similar high anisotropy
between the resistivity along the c-axis and a-axis in bulk
highly oriented pyrolytic graphite (HOPG), and they
attributed the conducting mechanism in the cross-plane
direction to thermal excitation of charge carriers across
stacking fault potential barriers as well as impurity-assisted
interlayer hopping.”” This leads to nonlinear I-V curves,
which are also reported in cross-plane studies of NbSe, and
HfS, multilayer flakes.”* High resistivity anisotropy has also
been observed in In,Se; nanowires, in which semiconducting
and metallic behaviors are observed along different crystal
directions.” However, all the findings mentioned above only
involve single component materials. For vdW heterostructures,
the anisotropy is mostly attributed to the weekly interacting
van der Waals gap between two adjacent layers.””*** Kwon et
al. have reported an anisotropy of 2000 from Sb,Te;/GeTe
superlattice films.”" These values are similar to our measured
anisotropy.

The four-order-of-magnitude ratio of cross-plane to in-plane
resistivity found for (PbSe),(VSe,); heterostructure in our
study is of similar magnitude to previous reports for misfit layer
compounds. Misfit layer compounds are a family of materials
containing transition metal dichalcogenide layers interleaved
with rock salt structured layers (MX),4TX, where M is Sn,
Pb, Bi or a rare earth metal, X is S or Se, d is the misfit
parameter determined for the ratio of unit cell areas of the two
constituents and T is Ti, V, Nb or Ta. The (PbSe);(VSe,),
investigated in this work differs from a misfit layer compound
by having turbostratic disorder between the PbSe and VSe,
planes. Prior reports of anisotropy of electrical resistivity of
misfit layer compounds ranged from factors of 50 to 10,000
depending on the compound investigated.”” Our measured
anisotropy falls within the range previously reported. The only
report of the temperature dependence of the anisotropy of a
misfit layer compound, (SnS),;,NbS,, was also temperature
independent.*’ Both (SnS),;,NbS, and (PbSe),(VSe,),
consists of a structural layer that is a small bandgap
semiconductor as a bulk phase (SnSe or PbSe) and alternating

with a transition metal dichalcogenide which is metallic as a
bulk phase (NbS, or VSe,). One would expect the cross-plane
transport to be dominated by the small band gap semi-
conductor while the in-plane transport to be dominated by the
metallic layer. For alternating thick layers of these materials,
one would expect a temperature dependent anisotropy due to
the temperature dependent carrier concentration of the
semiconducting layer. The similar temperature dependences
of the in-plane and cross-plane resistivities of our data suggest
both conductivities are related to the density of states of the
VSe, monolayers. Naively, one would expect the conduction
band wave function to exponentially decay outside of the
metallic layer. The spatial extent of the wave function is
measured by scanning tunneling spectroscopy and is on the
order of a nanometer. Since the PbSe layer is only 0.6 nm
thick, the conduction bands of adjacent VSe, layers overlap

within the PbSe. In this simple picture, the density of states of 395
this overlapped region is 7500 times lower than the density of 396

states within a VSe, layer. While this hypothesis needs to be
tested by synthesizing heterostructures with thicker PbSe
layers between VSe, layers, the ability to measure and subtract
the lead and contact resistances from the total measured
resistivity overcomes the inherent limitations of two lead
resistance measurements in the cross-plane direction.

There are several experimental limitations to the approach
presented herein to measure cross-plane resistivity, which
depends on being able to extract top and bottom lead and
contact resistances from contact end voltage measurements.
This requires observing the contact end voltage increase as
contacts are reduced in contact width, which depends on the
ratio of the conductance of the contact to that of the sample.
As the ratio increases, current crowding increases and lead
contact width needs to be decreased to observe a voltage
increase. Conversely, a reduced ratio requires thicker lead
widths to obtain a contact end voltage dominated by the lead
resistance. Since the conductance of the sample increases with
sample thickness and different materials can be chosen to vary
the contact conductance, there are some experimental
parameters that can be tuned to optimize the experiment.
However, samples with high in-plane resistances relative to the
contact will be challenging to measure.

The second experimental factor to consider is sample
thicknesses, which can often be adjusted to optimize the
experiment. Thicker samples will increase the cross-plane
sample resistance, increasing the percentage of the total cross-
plane resistance caused by the sample. Increasing sample
thickness will also, however, increase the broadening of the
current path through the sample in the cross-plane measure-
ment. To probe this factor, we simulated various conditions
using the COMSOL Multiphysics software package as shown
in Figure S2. Current broadening increases dramatically as
sample thickness increases, but as sample thickness decreases,
the electrical potential gradient change becomes limited to the
near contact region. The lateral current profiles near the edges
of contacts are similar to each other, which indicates that the
current broadening effect is about the same across all the
contacts with different contact widths. In this thickness regime,
the graph of the material’s cross-plane resistance versus contact
width will approach zero much quicker than a 1/d dependence
as a result of the current broadening. One can compensate for
this factor by fitting the data to 1/(d + b), where b is the extent
of the current broadening.
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Based on the discussion in the previous two paragraphs, the
approach presented herein to measure cross-plane resistivity is
best suited to anisotropic samples aligned such that the high
resistivity direction is perpendicular to the sample substrate.
High cross-plane resistivity for the material being examined
allows film thickness to be kept small enough that current
broadening is minimized and also results in a smaller
percentage of the total measured cross-plane resistance due
to the lead and contact resistances. Low in-plane resistivity
enables current crowding to be measured with contact widths
that can be prepared with optical lithography. Isotropic
materials will be challenging to measure, as low resistivity
materials will result in most of the total measured cross-plane
resistance due to the lead and contact resistances. Subtracting
two large numbers to obtain a small remainder leads to a large
error in the remainder. High resistivity isotropic materials will
require ultrathin contact widths to measure a change in the
contact end voltage, as the current will concentrate at the
beginning of the contact. Fortunately, there are many
heterostructures where anisotropic behavior is expected.
Another concern that arises is the possibility that the
conduction behavior might be dominated by other mecha-
nisms, such as tunneling and conductive filament (CF)
formation through defects. In the future, we will verify the
cross-plane conduction behavior by varying the film thick-
nesses and layer composition, as well as performing hysteresis
measurements. Additionally, vdW monolayers and hetero-
structures have shown promising results in photochemical and
photoelectrochemical reactions due to their high surface-to-
volume ratio, strong photoabsorption, and intrinsically hosted
catalytic sites.**** While the catalytic performances in various
reactions have been intensively studied, their conversion
efficiencies also rely on charge carrier transport along both
in-plane and cross-plane directions.””*" We believe our
developed measurement technique will provide additional
insights into future photocatalyst design.

CONCLUSION

In conclusion, we have fabricated and tested a facile method to
measure the intrinsic cross-plane and in-plane resistivities of
van der Waals heterostructures. By flowing current along the
in-plane direction, the gold lead resistances and interface
conductances of the top and bottom electrodes are first
quantified by measuring the variation in current crowding as a
function of contact width. The interface and lead resistances
can then be subtracted from the total measured cross-plane
resistance to obtain the cross-plane resistivity of the sample.
We find that the in-plane and cross-plane contact resistances of
the measured (PbSe),(VSe,), heterostructure differ by a factor
of 7500. Within the temperature range from 6 to 300 K, the
difference in the electric resistivity between the cross-plane and
in-plane directions is temperature independent, suggesting that
the cross-plane resistivity is due to overlap of the wave function
of adjacent VSe, layers in the (PbSe),(VSe,); heterostructure.
We also reported the observation of charge density wave
transition in the cross-plane transport of (PbSe),(VSe,);
heterostructure. We believe the developed framework of
accurate characterization of in-plane and cross-plane resistivity,
measured on the same sample, will be highly beneficial to the
whole thin film research community.

METHOD

Device Fabrication. The device is fabricated by first
patterning an array of five contact widths from 1 to 16 ym
using electron beam lithography (Raith EBPG 5200) on
oxidized Si substrates. Thirty nm thick Ti/Au is deposited on
the pattern yielding a pattern of different width bottom
contacts after liftoff. A second lithography step is used to
define a rectangular window (600 ym X 40 ym) on the bottom
electrodes. The material of interest is then deposited onto the
patterned substrate. A second array of electrodes is then
patterned to serve as top contacts aligned directly above the
bottom contacts. To minimize sample heating during
deposition of the top contacts, the substrates are approximately
1 m from the metal sources and the deposition rate is round 1
AJs.

Heterostructure Synthesis and Characterization.
Precursors were deposited on <100> Si wafers with native
oxide using a custom-built physical deposition chamber.
Elemental V (99.995%, Alfa Aesar) and Pb (99.8%, Alfa
Aesar) were deposited using 6 keV electron beam guns while
elemental Se (99.99%, Alfa Aesar) was deposited using a
Knudsen eftfusion cell. Elemental layers were deposited by
exposing the substrate to a plume of atoms from the heated
sources. The time the substrate was exposed was controlled by
pneumatic shutters that close after the desired thickness has
been deposited. The desired thickness was measured using a

S13

522
523
524
525

quartz crystal microbalance and the sequence and thickness of s26

elemental layers can be controlled using custom LabView
software. The number of atoms of each element deposited was
measured using X-ray fluorescence (XRF) using a Rigaku
Primus II ZSX spectrometer. The measured XRF intensities
were converted into the number of atoms per unit area for
each constituent as described by Hamann and coworkers.*
The period of the deposited sequence of layers was measured
using X-ray reflectivity (XRR).

The precursors were converted to the targeted hetero-
structure by ex situ annealing at 300 °C for 30 min on a hot
plate in an inert N, atmosphere (O, < 0.8 ppm). Specular X-
ray diffraction (XRD), X-ray reflectivity (XRR) and grazing
incidence in-plane X-ray diffraction (GIPXRD) patterns were
collected using a Rigaku Smartlab diffractometer, also with
Cu—Ka radiation (4 = 0.15418 nm). LeBail fitting of the
GIPXRD data was performed on FullProf Suite to obtain
lattice parameters. An FEI Titan G2 80—200 STEM with a Cs
probe corrector and ChemiSTEM technology (X-FEG and
Super-X EDS with four windowless silicon drift detectors)
operated at 200 kV were used to obtain high-angle annular
dark-field (HAADF) images and EDS scans over selected
regions.
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