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Abstract— The optical effects that are observed in under-
water imagery are more complex than those in-air. This is
partially because we enclose most underwater cameras in a
watertight enclosure, such as a hemispheric dome window. We
then observe optical issues including the distortion effects of the
lens, e.g., wide-angle field-of-view (FOV), the refractive effects
at the enclosure (water-acrylic and acrylic-air) interfaces, and
offset effects of a non-centered camera with respect to the dome.
In this paper, we present an N-Sphere (NS) and Shifted N-
Sphere (S-NS) camera models, tailored to these cameras and
lenses mounted in water-tight dome enclosures. The proposed
camera models treat each layer of effects as a ‘sphere’ that a
3D point will project on. Furthermore, the S-NS model includes
additional parameters to address the camera offset variability.
The versatility of the NS model makes it applicable to various
lenses, as validated with fisheye (FOV > 120°) and wide-FOV
(FOV =~ 120°). We validated our models with different in-
water calibration sequences, lenses, and housing setups, as
well as with comparisons with other state-of-the-art camera
models. Additionally, we demonstrated the performance of our
proposed models in an example stereo-based visual odometry
application. The low computational load of the proposed models
makes it ideal for integrating in real-time visual navigation and
reconstruction frameworks. We provide full math derivations
of the proposed models as well as example C++ header files'
for easy incorporation in independent projects.

I. INTRODUCTION

In this paper, we present the N-Sphere (NS) and Shifted N-
Sphere (S-NS) camera models, tailored to cameras mounted
in water-tight hemispheric dome enclosures. Our models are
able to address the image distortions, as illustrated in Fig. 1,
that are due to the medium change at the enclosure’s interface
and the off-centering of the camera in relation to the dome.
In addition, the models are applicable to a variety of camera
lenses, including those with wide-angle field-of-view (FOV).
It is computationally light in its projection operations, which
is vital for the techniques used in robot visual navigation
and 3D reconstruction. As such, an improved camera model
will help elevate the work in applications like coral reef and
seabed monitoring [1], [2], construction inspections [3], [4],
and archaeological site assessment [5], [6].

With the advancement in underwater sensor and robot
systems, especially with the use of Autonomous Underwater
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Fig. 1: Illustration of an Autonomous Underwater Vehicle (AUV) in the
midst of conducting vision-based navigation and 3D reconstruction. The
images captured by the AUV appear distorted due to water-glass-air medium
changes at the enclosure, wide-angle lens-based refraction, and camera off
centering with respect to the dome. Our proposed camera models address
these issues to help aid in underwater robotic operations.

Vehicles (AUVs), there is an increased interest in conducting
complex aquatic missions, such as cataloging reefscapes [7],
tracking animals [8], inspecting marine infrastructure [9], and
exploring seafloor terrains [10], [11]. A commonality across
these different studies is the necessity for extracting high
resolution data that are geometrically accurate. While sonars
provide accurate geometric descriptions, only cameras are
capable of capturing scene color and texture. Therefore, there
is a lot of work in designing and implementing vision-based
algorithms, from Photometric Stereo [12] and Structure-
from-Motion [13] to Visual Odometry (VO) [14] and Visual
Simultaneous Localization and Mapping (VSLAM) [15],
to aid in these underwater operations. However, various
degradation effects, such as light absorption and scattering
during light travel in water, affect camera imagery [16], [17].
Two other challenges, which are the focus of this paper, are
the distortion effect due to the medium change at the camera
housing interface [18] and the offset-based effect due to the
camera’s off-centering with respect to the dome [19]. If left
unresolved, these issues will negatively affect the geometric
accuracy of the applied vision-based algorithms [20].

To utilize a camera underwater, a water-tight housing is
necessary. But, during a light ray’s travel to the camera image
sensor, it will change directions twice given the two medium
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transitions, from water to housing (typically acrylic-based)
and housing to air. The significance in the change of direction
depends on the two mediums’ refraction indexes and the
ray’s incident angle with respect to the housing’s surface nor-
mal. In addition, sea water’s index of refraction is the most
irregular due to its contingency on pressure, temperature,
and salinity [21]. Since the effect of the refraction index is
possible to estimate [22], most underwater camera calibration
work focuses on how the camera enclosure’s shape affects
the image distortion [18], [19], [23], [24].

There are two common underwater camera housings:
flat-pane windows and hemispheric domes. While flat-pane
windows are attractive for their simplicity in built, they
induce challenging distortion effects that make it difficult to
model, violating the popular pinhole projection model [18].
Moreover, the distortion effect due to the flat-pane window
reduces the camera’s FOV, making them incompatible with
cameras with wide-angle lenses.

Hemispheric dome housings are prevalent in many afford-
able underwater robots (e.g., BlueROV2). Unlike with flat-
pane housings, if the camera’s optical center is at the center
of the hemispheric dome, then one can assume the pinhole
projection model. In other words, all incident light rays will
hit the dome glass at its surface normal. Thus, no refraction
will occur during its pass into the second medium (air) to
the camera sensor. However, this assumption is not always
true, especially for stereo cameras under one dome [19],
cameras with more complex lenses, such as wide-angle (FOV
=~ 120°) and fisheye (FOV > 120°) [25], or cameras that are
unintentionally off-centered during placement. But, with the
rise in use of fisheye and wide-angle lenses for improving an
AUV’s FOV [26], dome housings are necessary to prevent
any periphery clippings.

Therefore, this paper focuses on advancing the underwater
camera model for cameras of various lens types, like wide-
angle and fisheye, placed in hemispheric domes. Specifically,
we are motivated by three inspirations. 1) The work on the
Double Sphere (DS) camera model by Usenko et al. [27]
shows it to be geometrically accurate for fisheye cameras,
while computationally faster than the state-of-the-art models,
like the Kannala-Brandt [28]. 2) The observation by Iscar
and Johnson-Roberston [19] that a dome housing acts like
an additional lens in the camera-dome optical system. 3)
The need for a less time-intensive method for calibrating
cameras, not centered within a dome enclosure [19]. Hence,
in this paper we show that by extending the DS model to
include additional spheres, or lenses (the dome), as well as
offset-based parameters, a new model can more accurately
represent the distortion effects that occur with wide-angle
and fisheye cameras in underwater dome housings.

The structure of the paper is as follows: in Section II,
we provide an overview of various camera calibration tech-
niques applied to underwater applications. In Section III,
we introduce the proposed N-Sphere and the Shifted N-
Sphere camera models and their derivations. In Section 1V,
we compare the proposed models with the state-of-the art
camera models, showcasing the following contributions:

o The proposed NS and S-NS camera models are apt for
cameras mounted in water-tight dome enclosures.

e The proposed models are applicable to various lenses,
including fisheye and wide-FOV lenses.

o The proposed models fit under a set of diverse environ-
ments and camera-housing setups, with an analysis of
other state-of-the-art models.

o The proposed models preserve the overall computational
benefits that DS already displayed and, as demonstrated,
are well-suited for integrating in real-time VO/VIO or
VSLAM systems.

While not evaluated, we believe the proposed models should
be applicable to standard cameras (FOV < 120°) in dome-
port enclosures. Overall, improving the underwater camera
model will strengthen the foundation for robust and accurate
underwater state estimation and 3D reconstruction, necessary
for a large variety of operations, such as preservation of ar-
chaeological sites, surveying reef ecosystems, and inspecting
man-made constructions.

II. RELATED WORK

There is extensive work on modeling the underwater image
formation and related medium-induced effects. This includes
light attenuation due to absorption and scattering, and light
refraction due to water-air transitions. Here we focus on
another topic of interest, representing the distortion effects
due to the shape of the camera enclosure, which is typically
either a flat-pane window or hemispheric dome, as well as
the positioning of the camera in the enclosure.

Flat-pane windows are a simple, flexible choice, especially
for designing water-tight housings. However, the refraction
at the pane interface leads to significant image distortions
that are challenging to handle. For instance, it reduces the
camera’s FOV by 25% [6], [29]. More importantly, cameras
in flat-pane housings do not possess a single viewpoint, thus
are incompatible with the perspective projection model [18].

Luczynski er al. addressed this issue by introducing the
Pinax model [23], which adopts both the pinhole model
characteristics, assuming that the location of the camera is as
close to the window pane as possible, and the axial model’s
projection function from [30]. While the model works well,
it does require assumptions, including the camera’s distance
from the pane, the pane’s thickness, and the refraction index
of the water.

A camera in a hemispheric dome port adheres to the
perspective projection model as long as the camera’s optical
center is at the dome’s center [25] and the lens in use
has limited radial distortion (FOV < 120°). With a valid
setup, each incoming light ray’s angle aligns with the surface
normal at its incident point, resulting in no bending during
the transition from water to air. This assumption is difficult
to comply with since it requires perfectly manufactured
domes [25] and precise camera positioning. One approach is
to model the light ray’s paths during the changes at medium
interfaces. The name of this technique is raytracing, and typ-
ically requires calibration data above and below water [31].
On the other hand, miniscule offsets only induce negligible



errors, easily ignored or absorbed by camera parameters
during calibration [32]. However, many still observe the
importance of addressing the refraction effects at the water-
acrylic and acrylic-air interfaces of the enclosure [33].

Furthermore, we cannot always center cameras in a dome,
for example a stereo camera system positioned under one
dome viewport. Under this circumstance, Iscar and Johnson-
Roberson [19] were able to recover the camera position
relative to the dome by observing the measured distortions
and utilizing the point spread function that characterizes the
camera-lens-dome system. However, the calibration approach
is time intensive and requires prior knowledge of the medi-
ums’ indices of refraction as well as the point spread function
measurements for possible camera-dome positions. Similarly,
in the study by Pedersen et al. [34], they observed that action-
cameras, such as GoPro and Intova, did not present good 3D
reconstruction results metric-wise. It was most likely due to
the distortions from the small focal length lenses, but also
possibly due to the unsuitable dome enclosures. Since they
calibrated the associated data using the pinhole model with
radial-tangential distortions, the authors concluded that these
cameras require a more suitable model.

Interestingly, during Iscar’s and Johnson-Roberson’s [19]
analysis on cameras housed in domes, they observed space-
varying defocus effects. They reflected that a hemispheric
dome approximately acts as another lens in the optical
system. This remark led to the interest of the work on the
Double Sphere (DS) camera model by Usenko et al. [27].
They extended the Unified Camera Model (UCM) [35],
already designed for catadioptric cameras, such that it could
better represent a wide variety of fisheye lenses. Impor-
tantly, they showed that the computation load of the pro-
jection and unprojection operations is low, compared to
other well known fisheye camera models, including Kannala-
Brandt [28], which is currently the state-of-the-art method
for fisheye camera calibration [10]. It is to our knowledge
that no underwater work has utilized the UCM or DS camera
models in their calibration procedure.

If the DS model can accurately model the image formation
of fisheye or wide angle lenses, then introducing another
sphere in the model could then account for the refraction
due to the hemispheric dome. Moreover, if there is camera
positioning offset from the center of the dome, then this
could potentially represent as an offset of a portion of the
spheres in the model. Therefore, this paper proposes the N-
Sphere (NS) and Shifted N-Sphere (S-NS) camera models to
address the need of an underwater camera model for wide-
FOV cameras, enclosed in a dome enclosure with potential
off-centering.

III. N-SPHERE AND SHIFTED N-SPHERE CAMERA
MODELS

Before discussing the proposed camera models, we will
briefly define some notations used in the paper. Lowercase
letters will denote scalars, e.g., u, while bold lowercase
letters will denote vectors, e.g., X.
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Fig. 2: Schematic illustrations of the N-Sphere (NS) (left) and Shifted N-
Sphere (S-NS) (right) camera models for the case of n = 3, or so-called
Triple-Sphere (TS) and Shifted Triple-Sphere (S-TS) camera models. A 3D
point (black) projects onto sphere 1 (blue), located at the origin for both TS
and S-TS. The point then projects consecutively onto spheres 2 (green) and
3 (purple), offset by &1 and &2 in the z axis, respectively. Therefore, the
center of sphere 3 is located &1 + &2 from sphere 1. The pinhole (orange
X) is located 2~ from sphere 3. In the S-TS case, spheres 2 and 3 and
the pinhole shift by a and b offsets, in the = and y axes, respectively. The
image plane is then located ﬁ from the pinhole.

We represent pixel coordinates as u = [u,v]T € © C R?,
and 3D point coordinates as x = [z,y, 2] € Q C R®. Note,
© is the set of valid pixel coordinates on the image plane,
while (2 is the set of valid 3D point projections. The camera
coordinate frame is as follows. The z axis aligns with the
principal axis of the camera, and the x and y axes align with
the corresponding axes on the image plane.

Regarding the camera model operations, the projection
function is the mapping 7 : 2 — ©. The inverse or the
unprojection function is the mapping 7! : @ — . Note
that the result of the unprojection function is a bearing vector
of unit length.

A. N-Sphere Camera Model

The proposed N-Sphere Sphere (NS) camera model is an
extension of the DS camera model [27], which is itself an
extension of the UCM [35]. Here, there are n number of
spheres; if n = 2 then it would entail the DS model, and if
n = 1 then it would entail the UCM. Note that when n = 0,
we result back to the pinhole camera model. The conception
of the n spheres is to approximate the different levels of
refraction that might occur in the lens/camera level as well
as the medium change at the dome enclosure interface. Fig. 2
left illustrates an example of the NS camera model where
n = 3, or so-called Triple-Sphere (TS) camera model.

In the NS camera model, a point consecutively projects
onto the n number of spheres, each offset by the previous
sphere i by &; € [—1, 1] along the z axis. Note, a positive &;
moves the sphere ¢ 4 1 along the negative direction of the z
axis. Afterwards, the final point projects onto the image plane



via the pinhole, offset by - from the last sphere where
€ [0, 1]. Furthermore, the i 1mage plane is off by ;= from
the pinhole plane. Overall, the NS camera model contalns

n+ 4 parameters i= [.fTa fya Cz, Cy7a7§1a cee 7571—1]T
The projection function is as follows:
. f””ad —(1— a)(z+Z T €5dy) Cy
7T(Xa 1) f =t + c ) (1)
Yad,—(1— a)(z+§;j “le;idy) v
d; = \/x2 2 (2 T 6dy)?, 2)
where projections are valid for:
Q={xeR®z> —w,d,}, 3)

-1
wo + Z;'L=1 &

wy = —= : )
Vwo+ 52 )2 - wg +1
= ifa<0.5
wy = @ 5
‘ {;a if a > 0.5 ©)
The unprojection function is as follows:
My Ze H] 2 Zé] 0
i) = ke, |my | |2 HJ:2 ze, | — 0], (©
1 1 &1
ke k;
Ze = T % ; @)
ke — 125 kj =&
(1= (=23)»)r?
ke - : 8)
-1
o &+ \/1 + (1= &2 1m0 2 ©)
; 1+r2z2 Hp J+1 Zép 7
U— Cy v — ¢
mizfi(l—a), my = 7 Y(1 - a), (10)
z Yy
rzzmi—i-mf/. an
Here, unprojections are valid for:
B R2 if « <0.5 (12)
| {ueRp? <L) ifa>05

As one may notice, the NS camera model is represented
and can be coded in a dynamic programming fashion.

B. Shifted N-Sphere Camera Model

The proposed Shifted N-Sphere (S-NS) camera model
addresses the common issue of centering the camera in a
dome enclosure. In many cases, there is some offset along
the = and y axes. In the S-NS model, the first sphere is
at the origin, but the consecutive spheres are off by a and
b with respect to the z and y axes. Consequently, this
will move the pinhole as well. Fig. 2 right presents an
example of the Shifted Triple-Sphere (S-TS) camera model.
The number of parameters for this model increases by two:
i= [fw,fy,cw,cy,a,fl,...,En,l,a,b]T.

Since the S-NS model is nearly identical to the NS model,
we only report the equations with modifications (highlighted
in red).

The projection function is as follows:

Jo—=— 2
(i) = ; adi—(=)HTI 6d) | [zx} a3
Yad, —(1- a)(ZJrZ"fll &idj) Y
Vit +y? + 22 ifj=1
d; = 5 5 g 3 (14)
\/«TA +ys2+ (2 + Zq:l qdq) o/w
Ty =T+ ady, ys=1y+bdy, (15)
where projections are valid for:
Q={xe Rz > —w,d.}, (16)
dy = /22 +y2 + 22 (17)
The unprojection operation is as follows:
My | | Re H;:zl 3 a
Wﬁl(uvi) = ke, |y Ze H;L:_zl 2| — bl (18)
1 1 &
n—1
R A =S (19)
& 2, 2 22 '
14 r2z Hp —j+1 %,
n—1 n—1
S1a = amgze H e, +bmyz, H ze, + &1, (20)
p=j+1 p=j+1
d=a?+ b+ -1, (21)

and O still holds as defined in the NS camera model.

C. Camera Model Parameters Optimization

To optimize the camera model parameters, we rely on a
target with known size visible from different camera poses,
e.g., checkerboard. By detecting corners on the target, the
procedure solves an optimization problem, minimizing the
reprojection error. We use the Gauss-Newton algorithm to
iteratively solve the optimization problem. Note that we
calculated the corresponding Jacobians for the projection
and unprojection functions (not reported here for space
constraints).



IV. EVALUATION
A. Camera Calibration

We evaluated our proposed models with various calibra-
tion sequences, collected in-air and in-water settings with
different camera lens and dome housing setups.

We used two fisheye lenses: an ADL-HFE1414C [36] with
a 1.4mm focal length and a 185° FOV, and a FOCtek CS-
M2.5IR [37] with a 2.5mm focal length and 190° FOV.
For ease, we will shorthand them as ADL (185°) and
FOCtek (190°), respectively. We used a BFS-U3-16S2C-CS
camera [38] (blackfly’s 1440x1080) with a 5 MP resolution,
a horizontal FOV of 80°, and a vertical FOV of 64°.

We collected the main calibration sequences in a fresh-
water river with either a 3 or 4in diameter dome, utilizing
a checkerboard as the calibration target. Additionally, we
included sequences captured with the ADL (185°) lens in a
swimming pool and in air, with and without the 4in dome.
For each dataset scenario, we created three train-test datasets,
where the training dataset consists of 67% of the data and
the rest considered for testing.

We also included a calibration sequence captured with
one of CUREE AUV’s [39] black and white stereo cameras
housed in a 2 in diameter dome. The camera is an OAK-FFC
0OV9282 M12 [40] with a 1 MP (1280x8000) resolution,
a horizontal FOV of 80°, and a vertical FOV of 54°. Its
lens is an ArduCam M23325H12 [41] with a 3.25mm
focal length and a 120° FOV. We will note this camera
as ArduCam (120°). The corresponding calibration dataset,
however, consisted of only 12 images of a 9 x 14 ChArUco
board (104 corners). To compensate, we applied the leave-
one-out cross-validation method, a special case of the k-fold
cross-validation [42]. As such, we created 12 datasets with
11 training images and 1 testing image.

Our proposed models that we chose to evaluate include TS,
Quadruple-Sphere (QS), Shifted UCM (S-UCM), Shifted DS
(S-DS), and Shifted TS (S-TS). We compared our proposed
models with KB [28], commonly used for fisheye lenses,
UCM [35], and DS [27]. In addition, we ran the pinhole
camera model with radial-tangential distortion (Pinhole RT)
on the sequence using the OAK-FFC (120°) camera. We
utilized the calibration module within the VIO system [43],
called basalt?, created by the same authors of the DS model,
since it has all the camera calibration modules of interest.

For fair comparison, we ran two rounds of optimization.
The first round of optimization initialized the model with
default values, with many points were likely to be rejected
as outliers. After convergence, we used the new intrinsic
parameter values for the second round of calibration. At this
time, almost all points in the training dataset stay during
optimization. If not, we run another round. Finally, we use
the converged intrinsic parameters for evaluation.

After optimizing the calibration parameters with the train-
ing dataset, we evaluate the models with the testing dataset
over an average of ten rounds. Table I reports the mean
reprojection error (in pixels) based on the testing dataset,

2https ://cvg.cit.tum.de/research/vslam/basalt
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Fig. 3: An example VO [43] run where the CUREE AUV [39] traversed
over a reefscape. Here, we used the downward-looking stereo pair of
cameras with ArduCam (120°) lenses (left). The plot (right) shows the
final trajectories based on the provided camera model.

the corresponding standard deviation, as well as the mean
reprojection error on the training dataset. Best and second-
best results on the test datasets are in green and orange,
respectively.

Overall our proposed NS and S-NS camera models showed
great performance, yet dependent on the camera and type of
enclosure. Notably in the river 4in dome cases, the S-NS
models performed substantially well. These results indicate
that the camera placement setup may not be as precise as
we believed, but fortunately the camera models were able to
compensate for this fault. On the other hand, for river 3in
dome cases, the state-of-the-art KB model outperformed the
rest. We observed that the optimized ¢ parameters for the
NS models were very small, suggesting that the cameras are
possibly well-positioned in the dome relative to the z axis
and that the NS models, in this case, are only adequate for
modeling the fisheye lens distortion. Furthermore, the TS and
QS results barely differ from the DS results. While the S-NS
models exhibited better results than the NS models, their &
parameters still did not provide any benefit in representing
the underwater image distortions.

We would like to address a general point regarding the
number of spheres utilized in the NS camera models. In
many cases, adding another sphere to the model, e.g., from
TS to QS, does not inherently lead to better performance.
For example with the 4in dome FOCtek (190°) sequence,
the QS camera model provided lower training-based mean
reprojection error compared to the TS camera model. How-
ever, QS testing mean reprojection error was higher than that
of TS, signifying that after a certain increase of spheres, the
model will lead to overfitting behavior.

B. Visual Odometry Application

We demonstrated the implications of our proposed and
state-of-the-art camera models on a real-time VO run with
the CUREE AUV [39] traversing over a reefscape. In this VO
experiment, we first calibrated the downward-looking stereo
camera (ArduCam (120°)) intrinsic and extrinsic parameters
through basalt, and then ran basalt’s VO module [43].
Fig. 3 shows the plot of the resulting trajectories based
on the following camera models: Pinhole RT, KB, S-UCM



Dit;f:‘ Test KB [28] UCM [35] DS [27] TS « QS * S-UCM * S-DS * S-TS «
Train/Test Ratio # # 8 param. S param. 6 param. 7 param. 8 param. 7 param. 8 param. 9 param.
1 0.181 (0.217) | 0.387 (0.373) | 0.202 (0.235) | 0.202 (0.233) 0.369 (0.365) | 0.187 (0.224) | 0.187 (0.222)
Air - No dome 0.135 0.315 0.147 0.121 0.135 0.301 0.139 0.139
ADL (185°) 5 0.182 (0.122) | 0.369 (0.266) | 0.172 (0.114) | 0.165 (0.107) 0.356 (0.249) | 0.185 (0.124) | 0.187 (0.127)
3550 / 1824 0.138 0.330 0.141 0.140 0.140 0.317 0.142 0.142
N 3 0.175 (0.212) | 0.351 (0.341) | 0.188 (0.222) | 0.188 (0.221) | 0.175 (0.211) | 0.340 (0.329) 0.179 (0.214)
0.139 0.325 0.152 0.152 0.139 0.312 0.141 0.141
1 0.197 (0.177) | 0.255 (0.213) | 0.187 (0.174) 0.196 (0.178) | 0.259 (0.220) | 0.187 (0.173) | 0.177 (0.166)
Air - 4in dome 0.165 0.218 0.153 0.166 0.166 0.218 0.168 0.166 .
ADL (185°) 2 0.225 (0.251) | 0.288 (0.283) | 0.215 (0.248) 0.220 (0.251) | 0.296 (0.292) | 0.211 (0.246) | 0.202 (0.241)
2832 / 1440 0.149 0.197 0.153 0.151 0.150 0.197 0.153 0.151
; 07937 (0.219) 70249107255y | 0.189 (0:217) |0 T8 T (07210507200 (07225 | 0250 (0.255) 7| "0.194 (0.217)
- 0.163 0.221 0.165 0.163 0.162 0.221 0.164 0.161
1 0.689 (0.559) | 0.687 (0.539) | 0.701 (0.555) | 0.711 (0.564) | 0.701 (0.548) 0.695 (0.553) | 0.670 (0.549)
Pool - 4in dome 0.594 0.612 0.596 0.596 0.596_ 0.608 0.593 0.587
ADL (185°) 5 0.694 (0.544) | 0.703 (0.540) | 0.705 (0.549) | 0.711 (0.554) | 0.670 (0.547) | 0.708 (0.537) | 0.698 (0.535)
3504 / 1776 0.591 0.604 0.593 0.593 0.592 0.597 0.587 0.579
; 077117(0:548) 1707257 (0.557) | 70:7197(0.553) 7| 70,720 (0.554) 0.7217(0:553) 07157 (0:351) 07699 (075849
0.579 0.588 0.580 0.580 0.579 0.585 0.577 0.569
River - 4in dome 1 0.303 (0.271) | 0.327 (0.290) | 0.315 (0.278) | 0.301 (0.270) | 0.302 (0.271) | 0.296 (0.267) 0.266 (0.245)
ADL (185°) 0.269 0.296 0.272 0.271 0.271 0.260 0.229 0.228
41424 ] 21312 2 0.310 (0.252) | 0.337 (0.275) | 0.325 (0.260) | 0.324 (0.260) | 0.325 (0.260) | 0.299 (0.246) 0.247 (0.211)
0.264 0.290 0.266 0.266 0.266 0.257 0.231 0.227
3 0.311 (0.280) | 0.337 (0.302) | 0.324 (0.287) | 0.323 (0.287) | 0.310 (0.279) | 0.301 (0.277) 0.270 (0.253)
0.265 0.290 0.268 0.268 0.266 0.254 0.225 0.223
| 0.340 (0.290) | 0.226 (0.205) | 0.221 (0.202) | 0.227 (0.205) | 0.339 (0.290) | 0.224 (0.204) | 0.210 (0.194)
River - 3in dome 0.184 0.290 0.186 0.184 0.186 0.289 0.185 0.179
ADL (185°) 2 0.217°(0.197) | 0.343 (0.287) | 0.225 (0.201) | 0.225 (0.201) | 0.226 (0.202) | 0.342 (0.286) 0.224(0.200)
45360 / 23328 0.185 0.291 0.187 0.187 0.187 0.290 0.186 0.186
- - 3 0.226 (0.230) | 0.346 (0.314) | 0.233 (0.234) | 0.233 (0.234) | 0.235 (0.234) | 0.344 (0.311) 0.233 (0.234)
0.179 0.291 0.182 0.182 0.182 0.290 0.180 0.180
1 0.440 (0.592) | 0.438 (0.592) | 0.438 (0.592) | 0.442 (0.594) | 0.438 (0.592)
River - 4in dome 0.410 0.410 0.410 0.410 0.409 0.408__ 0.408 0.408
FOCtek (190°) 2 0.430 (0.554) | 0.430 (0.553) 0.431 (0.553) | 0.431 (0.553) | 0.427 (0.552)
50280 / 30480 0.416 0.416 0.416 0.416 0.416 0.414_ N 0.414 0.414
5 0.438°(0.586) | 70.439 (0.586) | 0.441 (0.586) 04427(0:587) | 707436 (0.585) 7| 0.438 (0.585)
0.411 0.411 0.411 0.411 0.411 0.409 0.409 0.409
| 0.334 (0.404) | 0.369 (0.446) | 0.370 (0.446) | 0.370 (0.446) | 0.369 (0.445) 0.352 (0.433) | 0.352 (0.434)
River - 3in dome 0.308 0.326 0.326 0.326 0.326 0.315 0.315 0.315
FOCtek (190°) 5 0.330 (0.380) | 0.359 (0.405) | 0.359 (0.406) | 0.359 (0.405) | 0.360 (0.405) | 0.343 (0.393) | 0.343 (0.395)
18000 / 9264 0.308 0.334 0.334 0.334 0.334 0.322 0.322 0.322
3 07349 (04211703797 (0:440) | 0:3807(0:4405 | 70,378 (0:439) 7| "0.379 (0:442) | 0.362 (0.432)
0.300 0.328 0.328 0.328 0.328 0.315 0.315 0.315
Dit;f:‘ Pinhole RT KB [28] UCM [35] DS [27] TS « S-UCM « S-DS * S-TS «
Train/Test Ratio # 12 param. 8 param. 5 param. 6 param. 7 param. 7 param. 8 param. 9 param.
:f;u_cir;n(?ggf) 0.581 (0.373) | 0.581 (0.368) | 0.574 (0.365) | 0.583 (0.368) | 0.597 (0.378) 0.583 (0.372) | 0.559 (0.357)
1144 / 104 0.479 0.482 0.482 0.481 0.481 0.430 0.480 0.480

TABLE I: Camera model evaluation across various in-air and in-water scenarios with fisheye (ADL (185°) [36] and FOCtek (190°) [37]) and wide-FOV
(ArduCam (120°)) lenses. A * notates our proposed models. We split each dataset uniformly, such that the training dataset consisted of 67% of the data
and the remainder assigned to the test dataset. Below the dataset name, we report the number of points used for training and testing, respectively. We
report, over ten runs, the mean reprojection error and standard deviation (in pixels) of the test dataset followed by the mean reprojection error (in pixels)

of the train dataset. Best and

(ours), and S-TS (ours). Trajectories based on our proposed
models followed closely with the trajectory based on KB.
We observed slight offsetting, possibly due to the shifting
nature of our models. While it would be interesting to study
in more detail with the aid of ground truth data, motion
capture systems are not easily deployable in the field. We do
consider utilizing controlled experiments in the future.

V. CONCLUSION AND FUTURE WORK

We presented the N-Sphere and Shifted N-Sphere cam-
era models, designed for underwater cameras enclosed in
hemispheric dome-ports, a common setup for cameras with
wide-angle FOV lenses. The prevalent concerns with this
setup are the refraction effects that occur at the enclosure’s
interface and the off-centering of the camera in relation
to the dome. Our models address the refraction effect by

results on the test datasets are in green and

, respectively.

treating the dome as an additional lens (sphere) in a fisheye-
based camera model and compensate for the camera offset
by shifting the sphere(s) in the model. We validated our
models capability through various calibration experiments in
different camera-dome builts and water environments. Fur-
thermore, we showed its effectiveness in a VO application.
An immediate extension of our N-Sphere camera mod-
els is to account for the potential rotational offset of the
camera with respect to the expected principal axis of a well-
positioned camera. This extension would be an important
consideration to make, especially if there is any observed
camera off-centering. Furthermore, we are interested in con-
ducting a more thorough evaluation of how these various
camera models affect the performance of state-of-the-art VO
and VSLAM systems, especially with ORB-SLAM3 [44],
which has shown to work well in underwater scenes [17].



A well-represented underwater camera model would have
a direct impact on the geometric accuracy for a variety of
robotic visual navigation and 3D reconstruction tasks. A
vital requirement in operations, such as marine infrastructure
inspections, biolife monitoring, and reefscape exploration.
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