


transitions, from water to housing (typically acrylic-based)

and housing to air. The significance in the change of direction

depends on the two mediums’ refraction indexes and the

ray’s incident angle with respect to the housing’s surface nor-

mal. In addition, sea water’s index of refraction is the most

irregular due to its contingency on pressure, temperature,

and salinity [21]. Since the effect of the refraction index is

possible to estimate [22], most underwater camera calibration

work focuses on how the camera enclosure’s shape affects

the image distortion [18], [19], [23], [24].

There are two common underwater camera housings:

flat-pane windows and hemispheric domes. While flat-pane

windows are attractive for their simplicity in built, they

induce challenging distortion effects that make it difficult to

model, violating the popular pinhole projection model [18].

Moreover, the distortion effect due to the flat-pane window

reduces the camera’s FOV, making them incompatible with

cameras with wide-angle lenses.

Hemispheric dome housings are prevalent in many afford-

able underwater robots (e.g., BlueROV2). Unlike with flat-

pane housings, if the camera’s optical center is at the center

of the hemispheric dome, then one can assume the pinhole

projection model. In other words, all incident light rays will

hit the dome glass at its surface normal. Thus, no refraction

will occur during its pass into the second medium (air) to

the camera sensor. However, this assumption is not always

true, especially for stereo cameras under one dome [19],

cameras with more complex lenses, such as wide-angle (FOV

≈ 120◦) and fisheye (FOV > 120◦) [25], or cameras that are

unintentionally off-centered during placement. But, with the

rise in use of fisheye and wide-angle lenses for improving an

AUV’s FOV [26], dome housings are necessary to prevent

any periphery clippings.

Therefore, this paper focuses on advancing the underwater

camera model for cameras of various lens types, like wide-

angle and fisheye, placed in hemispheric domes. Specifically,

we are motivated by three inspirations. 1) The work on the

Double Sphere (DS) camera model by Usenko et al. [27]

shows it to be geometrically accurate for fisheye cameras,

while computationally faster than the state-of-the-art models,

like the Kannala-Brandt [28]. 2) The observation by Iscar

and Johnson-Roberston [19] that a dome housing acts like

an additional lens in the camera-dome optical system. 3)

The need for a less time-intensive method for calibrating

cameras, not centered within a dome enclosure [19]. Hence,

in this paper we show that by extending the DS model to

include additional spheres, or lenses (the dome), as well as

offset-based parameters, a new model can more accurately

represent the distortion effects that occur with wide-angle

and fisheye cameras in underwater dome housings.

The structure of the paper is as follows: in Section II,

we provide an overview of various camera calibration tech-

niques applied to underwater applications. In Section III,

we introduce the proposed N-Sphere and the Shifted N-

Sphere camera models and their derivations. In Section IV,

we compare the proposed models with the state-of-the art

camera models, showcasing the following contributions:

• The proposed NS and S-NS camera models are apt for

cameras mounted in water-tight dome enclosures.

• The proposed models are applicable to various lenses,

including fisheye and wide-FOV lenses.

• The proposed models fit under a set of diverse environ-

ments and camera-housing setups, with an analysis of

other state-of-the-art models.

• The proposed models preserve the overall computational

benefits that DS already displayed and, as demonstrated,

are well-suited for integrating in real-time VO/VIO or

VSLAM systems.

While not evaluated, we believe the proposed models should

be applicable to standard cameras (FOV < 120◦) in dome-

port enclosures. Overall, improving the underwater camera

model will strengthen the foundation for robust and accurate

underwater state estimation and 3D reconstruction, necessary

for a large variety of operations, such as preservation of ar-

chaeological sites, surveying reef ecosystems, and inspecting

man-made constructions.

II. RELATED WORK

There is extensive work on modeling the underwater image

formation and related medium-induced effects. This includes

light attenuation due to absorption and scattering, and light

refraction due to water-air transitions. Here we focus on

another topic of interest, representing the distortion effects

due to the shape of the camera enclosure, which is typically

either a flat-pane window or hemispheric dome, as well as

the positioning of the camera in the enclosure.

Flat-pane windows are a simple, flexible choice, especially

for designing water-tight housings. However, the refraction

at the pane interface leads to significant image distortions

that are challenging to handle. For instance, it reduces the

camera’s FOV by 25% [6], [29]. More importantly, cameras

in flat-pane housings do not possess a single viewpoint, thus

are incompatible with the perspective projection model [18].

Łuczyński et al. addressed this issue by introducing the

Pinax model [23], which adopts both the pinhole model

characteristics, assuming that the location of the camera is as

close to the window pane as possible, and the axial model’s

projection function from [30]. While the model works well,

it does require assumptions, including the camera’s distance

from the pane, the pane’s thickness, and the refraction index

of the water.

A camera in a hemispheric dome port adheres to the

perspective projection model as long as the camera’s optical

center is at the dome’s center [25] and the lens in use

has limited radial distortion (FOV < 120◦). With a valid

setup, each incoming light ray’s angle aligns with the surface

normal at its incident point, resulting in no bending during

the transition from water to air. This assumption is difficult

to comply with since it requires perfectly manufactured

domes [25] and precise camera positioning. One approach is

to model the light ray’s paths during the changes at medium

interfaces. The name of this technique is raytracing, and typ-

ically requires calibration data above and below water [31].

On the other hand, miniscule offsets only induce negligible





via the pinhole, offset by ³
1−³

from the last sphere, where

α ∈ [0, 1]. Furthermore, the image plane is off by 1
1−³

from

the pinhole plane. Overall, the NS camera model contains

n+ 4 parameters i = [fx, fy, cx, cy, α, ξ1, . . . , ξn−1]
T
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The unprojection function is as follows:
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u− cx

fx
(1− α), my =

v − cy

fy
(1− α), (10)

r2 = m2
x +m2

y. (11)

Here, unprojections are valid for:

Θ =

{

R
2 if α ≤ 0.5

{u ∈ R
2|r2 ≤ 1

2³−1} if α > 0.5
(12)

As one may notice, the NS camera model is represented

and can be coded in a dynamic programming fashion.

B. Shifted N-Sphere Camera Model

The proposed Shifted N-Sphere (S-NS) camera model

addresses the common issue of centering the camera in a

dome enclosure. In many cases, there is some offset along

the x and y axes. In the S-NS model, the first sphere is

at the origin, but the consecutive spheres are off by a and

b with respect to the x and y axes. Consequently, this

will move the pinhole as well. Fig. 2 right presents an

example of the Shifted Triple-Sphere (S-TS) camera model.

The number of parameters for this model increases by two:

i = [fx, fy, cx, cy, α, ξ1, . . . , ξn−1, a, b]
T .

Since the S-NS model is nearly identical to the NS model,

we only report the equations with modifications (highlighted

in red).

The projection function is as follows:

π(x, i) =

[

fx
x∆

³dn−(1−³)(z+
∑n−1

j=1
Àjdj)

fy
y∆
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]

+
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]

, (13)
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√

x∆
2 + y∆

2 + (z +
∑j−1

q=1 ξqdq)
2 o/w

(14)

x∆ = x+ ad1, y∆ = y + bd1, (15)

where projections are valid for:

Ω = {x ∈ R
3|z > −wnd∆}, (16)

d∆ =
√

x2
∆ + y2∆ + z2. (17)

The unprojection operation is as follows:

π−1(u, i) = kÀ1


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my

1
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√
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ξ1∆ = amxzϵ

n−1
∏

p=j+1

zÀp + bmyzϵ

n−1
∏

p=j+1

zÀp + ξ1, (20)

δ = a2 + b2 + ξ21 − 1, (21)

and Θ still holds as defined in the NS camera model.

C. Camera Model Parameters Optimization

To optimize the camera model parameters, we rely on a

target with known size visible from different camera poses,

e.g., checkerboard. By detecting corners on the target, the

procedure solves an optimization problem, minimizing the

reprojection error. We use the Gauss-Newton algorithm to

iteratively solve the optimization problem. Note that we

calculated the corresponding Jacobians for the projection

and unprojection functions (not reported here for space

constraints).





Dataset
Lens

Train/Test Ratio #

Test
#

KB [28]
8 param.

UCM [35]
5 param.

DS [27]
6 param.

TS ⋆

7 param.
QS ⋆

8 param.
S-UCM ⋆

7 param.
S-DS ⋆

8 param.
S-TS ⋆

9 param.

Air - No dome
ADL (185◦)
3552 / 1824

1
0.181 (0.217)

0.135
0.387 (0.373)

0.315
0.202 (0.235)

0.147
0.202 (0.233)

0.121
0.185 (0.219)

0.135
0.369 (0.365)

0.301
0.187 (0.224)

0.139
0.187 (0.222)

0.139

2
0.182 (0.122)

0.138
0.369 (0.266)

0.330
0.172 (0.114)

0.141
0.165 (0.107)

0.140
0.168 (0.110)

0.140
0.356 (0.249)

0.317
0.185 (0.124)

0.142
0.187 (0.127)

0.142

3
0.175 (0.212)

0.139
0.351 (0.341)

0.325
0.188 (0.222)

0.152
0.188 (0.221)

0.152
0.175 (0.211)

0.139
0.340 (0.329)

0.312
0.177 (0.212)

0.141
0.179 (0.214)

0.141

Air - 4 in dome
ADL (185◦)
2832 / 1440

1
0.197 (0.177)

0.165
0.255 (0.213)

0.218
0.187 (0.174)

0.153
0.178 (0.167)

0.166
0.196 (0.178)

0.166
0.259 (0.220)

0.218
0.187 (0.173)

0.168
0.177 (0.166)

0.166

2
0.225 (0.251)

0.149
0.288 (0.283)

0.197
0.215 (0.248)

0.153
0.203 (0.241)

0.151
0.220 (0.251)

0.150
0.296 (0.292)

0.197
0.211 (0.246)

0.153
0.202 (0.241)

0.151

3
0.193 (0.219)

0.163
0.249 (0.255)

0.221
0.189 (0.217)

0.165
0.181 (0.210)

0.163
0.200 (0.225)

0.162
0.250 (0.255)

0.221
0.194 (0.217)

0.164
0.182 (0.212)

0.161

Pool - 4 in dome
ADL (185◦)
3504 / 1776

1
0.689 (0.559)

0.594
0.687 (0.539)

0.612
0.701 (0.555)

0.596
0.711 (0.564)

0.596
0.701 (0.548)

0.596
0.685 (0.527)

0.608
0.695 (0.553)

0.593
0.670 (0.549)

0.587

2
0.694 (0.544)

0.591
0.703 (0.540)

0.604
0.705 (0.549)

0.593
0.711 (0.554)

0.593
0.670 (0.547)

0.592
0.708 (0.537)

0.597
0.698 (0.535)

0.587
0.673 (0.530)

0.579

3
0.711 (0.548)

0.579
0.725 (0.557)

0.588
0.719 (0.553)

0.580
0.720 (0.554)

0.580
0.703 (0.595)

0.579
0.721 (0.553)

0.585
0.715 (0.551)

0.577
0.699 (0.584)

0.569

River - 4 in dome
ADL (185◦)

41424 / 21312

1
0.303 (0.271)

0.269
0.327 (0.290)

0.296
0.315 (0.278)

0.272
0.301 (0.270)

0.271
0.302 (0.271)

0.271
0.296 (0.267)

0.260
0.269 (0.246)

0.229
0.266 (0.245)

0.228

2
0.310 (0.252)

0.264
0.337 (0.275)

0.290
0.325 (0.260)

0.266
0.324 (0.260)

0.266
0.325 (0.260)

0.266
0.299 (0.246)

0.257
0.263 (0.220)

0.231
0.247 (0.211)

0.227

3
0.311 (0.280)

0.265
0.337 (0.302)

0.290
0.324 (0.287)

0.268
0.323 (0.287)

0.268
0.310 (0.279)

0.266
0.301 (0.277)

0.254
0.273 (0.255)

0.225
0.270 (0.253)

0.223

River - 3 in dome
ADL (185◦)

45360 / 23328

1
0.219 (0.201)

0.184
0.340 (0.290)

0.290
0.226 (0.205)

0.186
0.221 (0.202)

0.184
0.227 (0.205)

0.186
0.339 (0.290)

0.289
0.224 (0.204)

0.185
0.210 (0.194)

0.179

2
0.217 (0.197)

0.185
0.343 (0.287)

0.291
0.225 (0.201)

0.187
0.225 (0.201)

0.187
0.226 (0.202)

0.187
0.342 (0.286)

0.290
0.222 (0.199)

0.186
0.224 (0.200)

0.186

3
0.226 (0.230)

0.179
0.346 (0.314)

0.291
0.233 (0.234)

0.182
0.233 (0.234)

0.182
0.235 (0.234)

0.182
0.344 (0.311)

0.290
0.232 (0.232)

0.180
0.233 (0.234)

0.180

River - 4 in dome
FOCtek (190◦)
59280 / 30480

1
0.439 (0.534)

0.410
0.440 (0.592)

0.410
0.438 (0.592)

0.410
0.438 (0.592)

0.410
0.442 (0.594)

0.409
0.438 (0.592)

0.408
0.439 (0.593)

0.408
0.439 (0.594)

0.408

2
0.430 (0.554)

0.416
0.430 (0.553)

0.416
0.429 (0.553)

0.416
0.431 (0.553)

0.416
0.431 (0.553)

0.416
0.427 (0.552)

0.414
0.429 (0.554)

0.414
0.429 (0.554)

0.414

3
0.438 (0.586)

0.411
0.439 (0.586)

0.411
0.441 (0.586)

0.411
0.437 (0.585)

0.411
0.442 (0.587)

0.411
0.436 (0.585)

0.409
0.438 (0.585)

0.409
0.437 (0.586)

0.409

River - 3 in dome
FOCtek (190◦)
18000 / 9264

1
0.334 (0.404)

0.308
0.369 (0.446)

0.326
0.370 (0.446)

0.326
0.370 (0.446)

0.326
0.369 (0.445)

0.326
0.351 (0.433)

0.315
0.352 (0.433)

0.315
0.352 (0.434)

0.315

2
0.330 (0.380)

0.308
0.359 (0.405)

0.334
0.359 (0.406)

0.334
0.359 (0.405)

0.334
0.360 (0.405)

0.334
0.343 (0.393)

0.322
0.343 (0.395)

0.322
0.342 (0.394)

0.322

3
0.349 (0.421)

0.300
0.379 (0.440)

0.328
0.380 (0.440)

0.328
0.378 (0.439)

0.328
0.379 (0.442)

0.328
0.362 (0.432)

0.315
0.361 (0.431)

0.315
0.361 (0.433)

0.315

Dataset
Lens

Train/Test Ratio #

Pinhole RT
12 param.

KB [28]
8 param.

UCM [35]
5 param.

DS [27]
6 param.

TS ⋆

7 param.
S-UCM ⋆

7 param.
S-DS ⋆

8 param.
S-TS ⋆

9 param.

Sea - 2 in dome
ArduCam (120◦)

1144 / 104

0.581 (0.373)
0.479

0.581 (0.368)
0.482

0.574 (0.365)
0.482

0.583 (0.368)
0.481

0.597 (0.378)
0.481

0.571 (0.363)
0.480

0.583 (0.372)
0.480

0.559 (0.357)
0.480

TABLE I: Camera model evaluation across various in-air and in-water scenarios with fisheye (ADL (185◦) [36] and FOCtek (190◦) [37]) and wide-FOV
(ArduCam (120◦)) lenses. A ⋆ notates our proposed models. We split each dataset uniformly, such that the training dataset consisted of 67% of the data
and the remainder assigned to the test dataset. Below the dataset name, we report the number of points used for training and testing, respectively. We
report, over ten runs, the mean reprojection error and standard deviation (in pixels) of the test dataset followed by the mean reprojection error (in pixels)
of the train dataset. Best and second-best results on the test datasets are in green and orange, respectively.

(ours), and S-TS (ours). Trajectories based on our proposed

models followed closely with the trajectory based on KB.

We observed slight offsetting, possibly due to the shifting

nature of our models. While it would be interesting to study

in more detail with the aid of ground truth data, motion

capture systems are not easily deployable in the field. We do

consider utilizing controlled experiments in the future.

V. CONCLUSION AND FUTURE WORK

We presented the N-Sphere and Shifted N-Sphere cam-

era models, designed for underwater cameras enclosed in

hemispheric dome-ports, a common setup for cameras with

wide-angle FOV lenses. The prevalent concerns with this

setup are the refraction effects that occur at the enclosure’s

interface and the off-centering of the camera in relation

to the dome. Our models address the refraction effect by

treating the dome as an additional lens (sphere) in a fisheye-

based camera model and compensate for the camera offset

by shifting the sphere(s) in the model. We validated our

models capability through various calibration experiments in

different camera-dome builts and water environments. Fur-

thermore, we showed its effectiveness in a VO application.

An immediate extension of our N-Sphere camera mod-

els is to account for the potential rotational offset of the

camera with respect to the expected principal axis of a well-

positioned camera. This extension would be an important

consideration to make, especially if there is any observed

camera off-centering. Furthermore, we are interested in con-

ducting a more thorough evaluation of how these various

camera models affect the performance of state-of-the-art VO

and VSLAM systems, especially with ORB-SLAM3 [44],

which has shown to work well in underwater scenes [17].



A well-represented underwater camera model would have

a direct impact on the geometric accuracy for a variety of

robotic visual navigation and 3D reconstruction tasks. A

vital requirement in operations, such as marine infrastructure

inspections, biolife monitoring, and reefscape exploration.
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