


deploying large amounts of infrastructure is impractical or

expensive. In real-world scenarios, it is often the case as the

sparse area of interest is often near a protected region that we

cannot permanently mar. For example, in the construction of

artificial reefs, the surrounding areas are critically important

to protect. In hard to reach places such as caves, or very

deep waters, transporting large amounts of infrastructure can

be impossible. Our technique is a foundational component

towards a scalable solution for these cases. A number of

practical challenges, such as flexibility in terms of material

of connected components per layer, will be subject of future

studies as discussed at the end of the paper.

II. RELATED WORK

Uncertainty-based planning. Infrastructure placement for

small scale scenes is a well-studied problem. In particular,

Magnago et al. [8] define a landmark placement algorithm

that computes a static landmark placement based on certainty

requirements. We consider the problem of dynamically alter-

ing landmark placements. We also develop a direct model of

positional certainty based on visual fiducial measurements.

Russell et al. [9] develop a swarm robot foraging algorithm

that dynamically deploys and re-deploys sensor motes. While

the sensors are moved to provide certainty implicitly, they

do not model localization quality during their deployment.

Sensor coverage problems also directly relate to our work.

In particular, dynamic sensor coverage problems consider

moving sensors. Liu et al. [10] consider randomly moving

mobile sensors and analyze coverage properties. Clustering

has been applied to dynamic coverage problems [11], but

the sensors themselves were considered as mobile units

rather than beacons, which are deployed and re-deployed

by a moving robot. Sensor deployments via actuators are

also similar to our problem [12]. However, the problems of

deployments of actuators often focus on coverage and do not

discuss the coupling of localization and deployment.

In sensor coverage problems, some works incorporate a

continuous sensor field intensity [13], [14]. In the attenuated

disk model, sensing quality decays with the distance to the

sensor. This modeling is similar in spirit to our modeling

of visual fiducials, but our model focuses as much on

directionality as on distance in determining the noise model.

Deployment planning algorithms for heterogeneous robot

teams also relate to our work. Such algorithms consider both

cases where rewards are known apriori and those in which

rewards are randomly distributed [15]–[17]. Our problem

statement is similar in that there is competition for resources

and dependencies imposed by deployment decisions, but we

judge the quality of the assignment by the time required

to execute the deployment plan rather than as rewards

accumulated at each assignment.

Localization. Mainstream underwater localization relies

on acoustic sensors, such as Doppler Velocity Log (DVL),

long/short/ultrashort baseline acoustic positioning systems,

and multibeam or sidescan sonars [6], [18], [19]. While

such sensors allow the robot to navigate in large areas, their

accuracy depends on a number of external factors, including

multipath effect and their overall resolution, making acoustic

sensors not best suited to support manipulation tasks. Vision-

based perception is ubiquitously adopted for many robotics

tasks [20], including underwater [21], given camera’s low

cost and ability to capture rich information of the sur-

rounding. The literature classified state estimation methods

according to different axes, with one being on whether they

minimize reprojection errors of tracked features – indirect

methods, such as ORB-SLAM [22] – or the alignment error

considering image intensity values – direct methods, e.g.,

DSO [23]. Adding IMUs [24] can improve state estima-

tion and including loop closure will allow the odometry

estimate to be corrected. Underwater, however, vision-based

perception still remains a challenge mainly due to the haze,

color loss, and featureless environments [25], [26]. Given the

precision required by the underwater construction task, we

rely on visual fiducial markers and extend the operation area

of the robot by allowing the robot to move them.

Fisheye cameras are often used to localize mobile

robots [27], [28], but there are no techniques for modeling

the quality of features detected using a visual fiducial marker.

Visual fiducial markers have been developed specifically

for fisheye cameras [29] with the purpose of providing

better position information. Other visual fiducial markers

have been developed to reduce positioning noise [30]. To

our knowledge, no attempt has been made to directly model

the uncertainty of detecting visual fiducials. An exploration

of the noise properties of visual fiducials is presented by

Kalaitzakis et al. [31], but the geometry of the noise distri-

bution is unexplored.

Free-floating construction systems. We are inspired by

the limitations of our autonomous underwater construction

system [7]. This work builds on and extends our autonomous

underwater construction robot. Previously, it localized using

a single visual fiducial that provided a limited coverage area.

Existing aerial free-floating construction systems com-

monly make use of fixed-place motion capture systems [1],

[2], [32]. These motion capture systems provide precise, low

latency position information but require numerous precisely

calibrated cameras with limited coverage area. We want

to provide coverage to large areas with limited need for

complex fixturing.

III. PROBLEM MODEL

We consider the problem of deploying and moving in-

frastructure dynamically to provide high quality localization

information for a set of tasks at known positions in global

coordinates. The robot localizes using m beacons which can

be placed and moved throughout the mission. The quality

of information coming from the beacons depends on how

the robot is positioned relative to the beacons. Information

from each of the beacons can be combined to increase the

localization accuracy. Our goal is to find a mission plan,

A, which consists of an ordered set of actions ai. Each ai

can correspond to picking up a beacon, placing a beacon, or

completing a task.











structure. In the future, we plan to explore ways to increase

the flexibility of our method.
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