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Abstract— We present a scalable combined localization in-
frastructure deployment and task planning algorithm for un-
derwater assembly. Infrastructure is autonomously modified to
suit the needs of manipulation tasks based on an uncertainty
model on the infrastructure’s positional accuracy. Our uncer-
tainty model can be combined with the noise characteristics
from multiple sensors. For the task planning problem, we
propose a layer-based clustering approach that completes the
manipulation tasks one cluster at a time. We employ movable
visual fiducial markers as infrastructure and an autonomous
underwater vehicle (AUV) for manipulation tasks. The pro-
posed task planning algorithm is computationally simple, and
we implement it on AUV without any offline computation re-
quirements. Combined hardware experiments and simulations
over large datasets show that the proposed technique is scalable
to large areas.

I. INTRODUCTION

Autonomous assembly of structures using drones or free-
floating robots is a promising direction for creating rapidly
deployable, flexibly designed structures [1]. In most real-
world systems, localization relative to a reference is achieved
using calibrated and fixed positional infrastructure such as
motion capture systems or visual fiducials [2]-[5]. Unfor-
tunately, these systems are not scalable as the coverage
area is fixed and scaling beyond the coverage area requires
redesigning the positioning technology.

To overcome the limited coverage area of the positioning
technologies, we propose to design the positioning infras-
tructure as a dynamic component of the construction plan.
Our method allows localizing against large structures with
minimal modification to the area around them and can also
be integrated with existing underwater construction structures
to make them scalable — see Fig. 1 that shows our robot in
action while moving a fiducial marker.

Localization infrastructure is often considered to have a
constant noise distribution, allowing coverage algorithms to
plan based on the noise properties of the fixed infrastruc-
ture. However, the properties of localization infrastructure
often depend on environmental factors: distance from the
infrastructure, reflections, or water temperature gradients
influence the accuracy of the positioning systems [6]. As
the accuracy depends on relative positioning between the
infrastructure and the robot, high-accuracy positioning can
only be provided in a small fixed area resulting in either
large infrastructure requirements, or small structures. Instead,

This project was partially supported by the NSF GRFP, CNS-1919647,
2024541, 2144624.

Fig. 1: AUV placing a reconfigurable fiducial marker on a foundation while
localizing using another marker following our proposed method.

by understanding the noise properties of the infrastructure
components and modeling them accurately as a function
of environmental factors, we show that it is possible to
dynamically reconfigure the infrastructure to maximize the
positioning accuracy of any region. Our noise formulation
model is also conducive to sensor fusion techniques and,
hence, can be extended for the case of multiple sensors.

For a given construction structure manipulation task, we
have to plan the movement of infrastructure such that the
repositioned infrastructure guarantees the accuracy of the
manipulation task. This planning is challenging and results
in the combined deployment and sequencing problem.

To solve this problem, we group the manipulation tasks
using a clustering algorithm that guarantees that the ra-
dius of any cluster is within the high localization accuracy
achievable with the dynamic markers. We reposition the
markers to have high accuracy for the cluster and execute
the manipulation tasks, one cluster at a time.

For implementation, we use visual fiducial markers
mounted on plates that are movable on our previously
developed error-correcting construction foundations [7]. The
AUV views these markers with a downward-facing wide-
angle camera and can compute the position accuracy using
our noise model. The implementation of our clustering-
based planning algorithm is computationally simple, and we
implemented it on the AUV itself without any external cloud
computing requirements. We validated the proposed tech-
nique both experimentally and on large simulation datasets.

Our technique is particularly interesting for the case where
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deploying large amounts of infrastructure is impractical or
expensive. In real-world scenarios, it is often the case as the
sparse area of interest is often near a protected region that we
cannot permanently mar. For example, in the construction of
artificial reefs, the surrounding areas are critically important
to protect. In hard to reach places such as caves, or very
deep waters, transporting large amounts of infrastructure can
be impossible. Our technique is a foundational component
towards a scalable solution for these cases. A number of
practical challenges, such as flexibility in terms of material
of connected components per layer, will be subject of future
studies as discussed at the end of the paper.

II. RELATED WORK

Uncertainty-based planning. Infrastructure placement for
small scale scenes is a well-studied problem. In particular,
Magnago et al. [8] define a landmark placement algorithm
that computes a static landmark placement based on certainty
requirements. We consider the problem of dynamically alter-
ing landmark placements. We also develop a direct model of
positional certainty based on visual fiducial measurements.

Russell et al. [9] develop a swarm robot foraging algorithm
that dynamically deploys and re-deploys sensor motes. While
the sensors are moved to provide certainty implicitly, they
do not model localization quality during their deployment.

Sensor coverage problems also directly relate to our work.
In particular, dynamic sensor coverage problems consider
moving sensors. Liu et al. [10] consider randomly moving
mobile sensors and analyze coverage properties. Clustering
has been applied to dynamic coverage problems [11], but
the sensors themselves were considered as mobile units
rather than beacons, which are deployed and re-deployed
by a moving robot. Sensor deployments via actuators are
also similar to our problem [12]. However, the problems of
deployments of actuators often focus on coverage and do not
discuss the coupling of localization and deployment.

In sensor coverage problems, some works incorporate a
continuous sensor field intensity [13], [14]. In the attenuated
disk model, sensing quality decays with the distance to the
sensor. This modeling is similar in spirit to our modeling
of visual fiducials, but our model focuses as much on
directionality as on distance in determining the noise model.

Deployment planning algorithms for heterogeneous robot
teams also relate to our work. Such algorithms consider both
cases where rewards are known apriori and those in which
rewards are randomly distributed [15]-[17]. Our problem
statement is similar in that there is competition for resources
and dependencies imposed by deployment decisions, but we
judge the quality of the assignment by the time required
to execute the deployment plan rather than as rewards
accumulated at each assignment.

Localization. Mainstream underwater localization relies
on acoustic sensors, such as Doppler Velocity Log (DVL),
long/short/ultrashort baseline acoustic positioning systems,
and multibeam or sidescan sonars [6], [18], [19]. While
such sensors allow the robot to navigate in large areas, their
accuracy depends on a number of external factors, including

multipath effect and their overall resolution, making acoustic
sensors not best suited to support manipulation tasks. Vision-
based perception is ubiquitously adopted for many robotics
tasks [20], including underwater [21], given camera’s low
cost and ability to capture rich information of the sur-
rounding. The literature classified state estimation methods
according to different axes, with one being on whether they
minimize reprojection errors of tracked features — indirect
methods, such as ORB-SLAM ([22] — or the alignment error
considering image intensity values — direct methods, e.g.,
DSO [23]. Adding IMUs [24] can improve state estima-
tion and including loop closure will allow the odometry
estimate to be corrected. Underwater, however, vision-based
perception still remains a challenge mainly due to the haze,
color loss, and featureless environments [25], [26]. Given the
precision required by the underwater construction task, we
rely on visual fiducial markers and extend the operation area
of the robot by allowing the robot to move them.

Fisheye cameras are often used to localize mobile
robots [27], [28], but there are no techniques for modeling
the quality of features detected using a visual fiducial marker.

Visual fiducial markers have been developed specifically
for fisheye cameras [29] with the purpose of providing
better position information. Other visual fiducial markers
have been developed to reduce positioning noise [30]. To
our knowledge, no attempt has been made to directly model
the uncertainty of detecting visual fiducials. An exploration
of the noise properties of visual fiducials is presented by
Kalaitzakis er al. [31], but the geometry of the noise distri-
bution is unexplored.

Free-floating construction systems. We are inspired by
the limitations of our autonomous underwater construction
system [7]. This work builds on and extends our autonomous
underwater construction robot. Previously, it localized using
a single visual fiducial that provided a limited coverage area.

Existing aerial free-floating construction systems com-
monly make use of fixed-place motion capture systems [1],
[2], [32]. These motion capture systems provide precise, low
latency position information but require numerous precisely
calibrated cameras with limited coverage area. We want
to provide coverage to large areas with limited need for
complex fixturing.

III. PROBLEM MODEL

We consider the problem of deploying and moving in-
frastructure dynamically to provide high quality localization
information for a set of tasks at known positions in global
coordinates. The robot localizes using m beacons which can
be placed and moved throughout the mission. The quality
of information coming from the beacons depends on how
the robot is positioned relative to the beacons. Information
from each of the beacons can be combined to increase the
localization accuracy. Our goal is to find a mission plan,
A, which consists of an ordered set of actions a;. Each a;
can correspond to picking up a beacon, placing a beacon, or
completing a task.



Each of the n tasks, located at t; € R3, requires a
high enough precision of localization information. We model
the quality of information coming from a beacon b; using
a function X(r;) — X,, € R3>*3 which maps relative
positions (r;) into covariance matrices that describe the noise
distribution of the information coming from the beacon. We
assume zero mean error. Information from multiple sensors
can be combined by using sensor fusion equations. We
use the equations described by Smith and Cheeseman [33].
Algorithm 1 shows how we combine noise distributions from
multiple sensors.

Algorithm 1 Procedure to fuse covariance matrices of uncertain
positions [33].

Require: Covariance matrices X1, ..., 2k
Ensure: Fused covariance matrix X

D ¥+ 3

2: foriel...,ndo

3: K+ 2(2+3%)!

4: Y+ Y¥-K¥%

5: return X

Each task ¢; requires a high enough precision to be com-
pleted. We model the precision requirements using a scalar
C; which is obtained by applying a certainty approximation
function C(X) — C; € R to the fused covariance matrix
Y. We define C(X) as a function which approximates the
probability that location readings are inside of a given error
range. Receiving a location reading outside of the error range
could cause the robot to fail at its task.

To move a beacon b;, the robot must have precise enough
location information for both pickup and placement. This
means that beacons must be clustered to provide coverage
of one another. For simplicity in our initial exploration, we
assume perfect placement of the beacons. This assumption is
reasonable for moving beacons on error-correcting founda-
tions. In future work, we plan to extend our method to model
a decay in the quality of information of moved beacons
because of small placement errors.

For simplicity, we also assume a known relative orientation
R of the AUV. In practice, the orientation of a free-floating
robot can be sensed with a high accuracy using out-of-the-
box AHRS boards. An initial calibration step can be used to
measure the relative rotation for the set of beacons.

1D example. Consider a robot operating in a 1D world
with no collisions. Two beacons, red and blue in Figure 2,
provide coverage with precision ¥,.(r) = 72, that is the
quality of information decays quadratically with the distance
to the beacon. We set C(X) = 1 — X because, in 1D, ¥
is a scalar and can be used directly. The beacons start at

positions b; = —0.1 and b, = 0.1. The robot is given one
task to complete at position ¢; = .7. Our fusion function
2
2 Ty

in Algorithm 1 becomes ¥ = r{ — e The task has a
requirement 1 — > > 0.95. Moving a beacon requires the
same certainty. Figure 2 shows an example of the problem.

We can compute a coverage area for a single beacon
and a pair of beacons to guide our creation of a simple
mission plan: [b; — 0.224,b; + 0.224]. To reach and cover
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Fig. 2: Series of steps to cover a task at ¢1 with the red and blue beacons.
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Fig. 3: (a) Predicted and measured largest eigenvector directions in real
world experiment. The arrows extend from the marker’s position. (b) Results
from simulated corner noise. In both cases the predicted and measured
directions closely match.

our task at position 0.7, we need to move one beacon to
position .7 — 0.224 = 0.476. Moving the beacons will
require multiple hops due to their limited coverage area.
Our final plan A is then A = MOVEBEACON(b;,0.324),
MOVEBEACON (b2, 0.548), COMPLETE(%;).

In the specific case of assembly a task ¢; will represent
placing a block at ¢;’s location. For this application, we write
PLACEBLOCK(¢;) to mean placing a block at location ¢;. We
also replace MOVEBEACON with MOVEMARKER when we
are dealing with a reconfigurable visual fiducial marker.

IV. NOISE CHARACTERIZATION OF VISUAL FIDUCIALS

The first step to implementing our assembly planning and
localization method is to accurately model the noise distribu-
tion of visual fiducial markers. To understand how the noise
distribution varies based on the relative position between
the fisheye camera and a marker, we built a simulator. The
simulator applies Gaussian distributed noise to the distorted
corner positions of the visual fiducial, then undistorts them
using the Kannala-Brandt Camera model [34] — typically
used for fisheye lenses — and solves the Perspective-n-point
problem. This simulation captures the important sources of
noise: sensor noise and barrel distortion. We experimentally
validate our simulator and noise model in Section VI-C.

Figure 3 shows outputs from a real world experiment
(a) and from our simulation (b). We found that the noise
distribution was highly structured and could be predicted
using only two values: the largest eigenvector and eigenvalue.



Fig. 4: Position readings from a static fisheye lens camera for a static visual
fiducial marker. Blue points are detected positions and the red line represents
the ground truth value for 7.

Further, the eigenvector is parallel to the position vector. In
the remainder of this section, we discuss how we predict the
two components.

A. Scale noise

In our experiments on fiducial marker noise when viewed
through a fisheye lens, we found that the axis of largest
noise very consistently pointed towards the camera. Figure 4
shows an example of a set of relative position measurements
for a single visual fiducial measured by a static camera.
The position vector is marked in red and aligns closely
with the largest eigenvector of the noise distribution (blue).
We noticed this phenomenon to be consistent across vari-
ous positions. The largest eigenvector dominates the noise
distribution, and the other two are an order of magnitude
smaller. We provide empirical evidence for this observation
in Section VI-C.

B. A definition of (r)

Algorithm 2 shows our covariance matrix prediction pro-
cedure. It accepts as arguments 7, the relative position, £, a
predictor of the largest eigenvalue and A;, an upper bound
on the two smaller eigenvalues.

The largest eigenvalue, A, is predicted using a spline
which is calibrated on experimental data. vy, v, and vs are
our predictions of the eigenvectors. The largest eigenvector,
v1, is predicted to be the normalized position vector. The
other two eigenvectors, vy, and vz are predicted to be
orthogonal to r and one another. Line 6 accumulates the
eigenvalues into a 3 x 3 diagonal matrix. The matrices A and
S are multiplied together to produce a predicted covariance
matrix which has the predicted eigenvalues and eigenvectors.

Algorithm 2 Find covariance matrix X, for a relative position 7.

Require: r, 3, \;

Ensure: X,

DAk B(r)

vl ﬁ

V2 <~ ORTHOGONAL(T)

v3 ¢~ ORTHOGONAL(T, v2)
A < HSTACK(v1,v2,v3)
S < DIAG(A«, Ai, As)
return ASA~!

A R ol Sl

V. FINDING FEASIBLE ASSEMBLY PLANS IN PRACTICE

We model the assembly process as a set of manipulation
tasks located at points in 3D space. The probability of
completing a task C(X,) is the probability that a block
dropped will be inside of the acceptance area of the slot it is
aimed at. As a structure is built, it can occlude the view of
markers, therefore, the markers must be continually moved
as the structure is erected to increase C(2,).

A. Computing C(%,)

To enable planning during the construction process, we
define C' : ¥, — 'R, which takes as input a covariance
matrix and outputs the probability of successfully dropping
a block. A block or marker is successfully placed if the robot
decides to initiate the placement action within an acceptable
range of the ideal position. This acceptable range () is
dictated by the design of the error-correcting construction
foundation. Assuming that the uncertainty in position is
well approximated with a multivariate Gaussian, C'(3,) is
the probability that a random sample position drawn from
N(0,%,) is within the sphere of radius a.

Analytically computing this probability is challenging.
Instead, we use a conservative approximation. The largest
eigenvalue (\,) is a conservative estimate of the standard
deviation of noise in any direction. So, we assume that
the noise distribution along all three coordinate axes is
independent and is equal to A,. This approximation results
in the closed form estimate C*(X%,):

C(,) > erf =C*(%,). (1)

o 3
(7o)
B. A layer-based approach for assembly

To assemble a structure, the robot must manipulate mark-
ers which can rest on top of blocks in order to localize while
blocks are placed. When placed, the blocks can obscure sight
of the markers. Planning around obscured markers introduces
difficult nonlinearities into the constraints for any solver
hoping to find feasible solutions.

To construct feasible plans efficiently without needing
to model occlusions between the structure as it is erected
and the markers, we propose a layer-by-layer algorithm.
Algorithm 3 shows our strategy for generating feasible plans
for a structure with n slots, using m markers.

Our algorithm works by dividing the blocks into layers
ly,..., 1y, where [; is the bottom layer of blocks, I, is the
layer to be placed above [, and so on with [; being the
topmost layer of blocks. For each i € {1,2,...,h}, we first
cluster [; to obtain clusters of width at most r, where r is an
empirical determination of a marker’s coverage radius based
on the bound in Equation 1. In our implementation, this is
achieved using a subroutine CLUSTERUNTILRADIUS(I;, 7).
This subroutine performs k-means clustering on /; using a
value of k that is tuned, via binary search, to be the minimum
possible such that all cluster widths are at most 7.

The sub-procedure EXTRACTCENTERS finds the center
point of each cluster. The cluster centers are then passed into



Algorithm 3 Layer-by-layer traversal.

Require: Structure with slots S = {s1,...,sn}, marker positions M =
{b1,b2,...,bm}
Ensure: Assembly plan A
1: Divide S into layers I1,...,1}
20 A+
3: forie{1,...,h} do

4: C <~ CLUSTERUNTILRADIUS(I;,T)

5: C <+ EXTRACTCENTERS(C)

6: ¢1,¢2, ..., ¢k < FINDTOUR(C) > ¢fficient tour on cluster cen-

ters

7 for j =1 to k do > process clusters in tour order

8: C; + CLUSTEROF(c;)

9: A + A.extend(WALKTOCOVERAGE(M, ¢;)) & move mark-
ers into cluster

10: for s € C; \ M do ©> place blocks in slots unoccupied by
narkers

11: A + A.append (PLACEBLOCK(s))

12: for s € M do > move markers to place remaining blocks

13: p <= NEARESTNEIGHBOR(s, C;)

14: p+p+(0,0,1)

15: A + A.append(MOVEMARKER(s, p))

16: A + A.append(PLACEBLOCK(s))

17: return A

FINDTOUR which computes a tour of the cluster centers O
which has elements that index the clusters.

In each cluster produced by CLUSTERUNTILRA-
DIUS(l;, ), we select m points to serve as marker desti-
nations. We choose the marker destinations to be the m
farthest points from each other in the cluster. We then
use the sub-procedure WALKTOCOVERAGE to transition the
markers between destinations. We achieve this via a simple
hopping strategy, like the one discussed in Section III. This
strategy repeatedly hops one marker to the outside of the
other marker’s coverage area, resembling a “gait” if one
imagines the markers to be a robot’s feet. In this way, we
position the markers at the m destinations within a cluster,
place the blocks within that cluster, and repeat for successive
clusters in that layer. Since the maximum cluster width is the
coverage radius of a marker, we can ensure that each marker
is always covered by another marker, enabling us to continue
the gait after the blocks in a cluster have been placed.

After blocks have been placed around each of the markers
in the cluster, the markers must be moved to make room
for the remaining blocks. To do this, the loop in lines 12
to 16 iterates over each marker, moves it on top of the
nearest block to it, and then places a block where the
marker used to be. If the cluster has fewer than m points,
two markers might share the same nearest neighbor and
cause the markers to be placed in the same location. We
avoid this edge case by requiring a minimum cluster size
of m in CLUSTERUNTILRADIUS(I;, ); this is feasible via a
reasonable assumption that m markers can be placed within
radius 7.

VI. EXPERIMENTS

We implement our reconfigurable visual fiducial localiza-
tion system in both hardware and simulation, and the results
are described in the following.

(a) (b)

Fig. 5: (a) Reconfigurable visual fiducial design. (b) Robot’s eye view during
assembly with the reconfigurable fiducials.

Fig. 6: The AUV performing the last placement of the two hop maneuver.

A. Experimental setup

Our hardware implementation is deployed on the Droplet
AUV system [5], [7]. A ROS node holds the known global
position of the visual fiducial markers. As the markers are
moved, the node is notified and then marker readings are
offset accordingly before performing the sensor fusion steps
described in Algorithms 1 and 2.

For viewing visual fiducial markers, the robot is equipped
with FLIR Blackfly camera with a Senko fisheye lens
mounted facing downards. The camera is mounted in a 3 inch
Blue Robotics acrylic enclosure with a dome. Figures 6, 1
show the camera mounted on the robot and Figure 5 (b)
shows how the scene looks through the camera.

B. Hardware testing

To validate the concept of reconfigurable visual fiducials
in practice, we mounted visual fiducial markers on our error
correcting connector geometry [7]. We show the design in
Figure 5. The fiducials provide error correction during both
pickup via the top handle (red in Figure 5) and placement.

We tested the concept of walking behaviors by implement-
ing a 1D hopping strategy. The robot was able to successfully
perform manipulation tasks in a large area with a side of
2.8 meters using cement blocks placed by hand. This side
is 57% longer than the widest side usable by our previous
implementation. Note that the side of the line covered was
bounded by the physical width of the pool and not the robot’s
ability to stack blocks successfully. Figure 6 shows the AUV
completing the maneuver.

To verify that the visual fiducial marker fusion procedure
reduces the localization noise, we recorded the measured
positions and the number of valid marker readings when the
robot was still. When only one marker was determined as
valid, the standard deviation of position measurements on
the X axis was 4.3 cm, but when two markers were valid,
the standard deviation was reduced to 0.69 cm; around 6x



improvement. On the Y axis, we observe similar improve-
ments: from 6.0 cm to 1.5 cm; around 4x improvement.

C. Validation of noise model

To validate our prediction model of covariance matrices
given in Algorithm 2, we conducted both real world and
simulation experiments. Our simulator projects a marker at a
given relative position into the camera and offsets the corners
according to a Gaussian distribution. This noise addition
simulates the effects of pixel flicker on corner detection.

Figure 3 (a) shows the results of our physical testing. We
arrayed visual fiducials in an area spanning about 1.4 meters
on the positive X and Y axes. This setup mimics the distances
between markers used in practice. We predict the direction of
the largest eigenvector as the median of the measured relative
positions. We found that the predicted direction is accurate
to within 4 degrees. This result shows that computing the
direction of the largest eigenvector as the position vector is
effective in practice.

To more extensively test our prediction algorithm, we
conducted a test using a spline predictor of the largest
eigenvalue trained on 6250 noise distributions generated at
known relative positions in our simulator. We set the upper
bound for the smallest two eigenvalues to 10~%. We set « to
2cm for Equation 1. We tested the trained predictions from
Algorithm 2 using 5184 test relative positions not present in
the training data.

To evaluate the quality of Algorithm 2, we checked
whether its predictions were more or less conservative than
measured covariance matrices in the test dataset. We eval-
uated whether Algorithm 2 produced more or less conser-
vative results by comparing the bound in Equation 1 for
the predicted covariance matrix X} against the measured
covariance matrix Y,.. We found that in 98.3% of cases
C*(33) < C*(X,). In the other 1.7% of cases, C*(¥,) was
only smaller than C*(X¥) by at most 3.4%. To avoid this
case, we configure our planning algorithm so two markers
are always visible.

When combining the two worst predictions using Algo-
rithm 1, we find that the fused covariance matrix is a conser-
vative estimate. We combined the covariance matrices of the
two worst over-predictions of C*(3,.) for both measured and
predicted covariances. We found that the predicted C*(X,)
is 40% lower (59%) than the measured bound (99%).

Our estimate of the noise is often very conservative, but
we will show in the following section that large structures
still have a high predicted success probability when planned
using Algorithm 3.

D. Assembly algorithm

To test Algorithm 3 we use both a hand crafted plan
checker and a full underwater robot 3D simulator called
DAVE [35]. Our plan checker checks lines of sight to visual
fiducials and computes the predicted certainty of every step.
We use the underwater robot simulator to determine whether
a plan which is feasible according to the plan check is also
feasible under realistic control noise. We ran a construction

(a) (b)

Fig. 7: (a) Visualization of plan checker. Green blocks represent markers.
(b) Robot moving markers in the DAVE simulator.

TABLE I: Effect of increasing the cluster radius on plan efficiency and prob-
ability of success. After a certain cluster size, occlusions make construction
impossible.

T Predicted P(success) | # steps
2.5 0 226
2.0 0.82 240
1.5 0.96 259
1.0 0.99 345

process with 74 build steps. Figure 7 (b) shows the partially
completed structure in the DAVE simulator. With realistic
control noise, the robot kept at least two markers in view
100% of the time.

As the number of manipulation steps increases, the time
to build a structure increases. Our layer-based construction
(Algorithm 3) takes an input a parameter r» which describes
the radius of clusters used for marker placement. Between
each cluster, the markers are moved in an expensive walking
procedure, so increasing 7 could improve the efficiency of the
construction process but at the cost of reducing the reliability.
Table I shows how changing r affects the number of steps
required to build a 200 block structure and the certainty
afforded during construction with three markers. We measure
the predicted P(success) as the product of the probability
of success of every state in the construction process. We
also tested a pyramidal structure containing 1800 blocks.
The assembly planning algorithm took about 5 minutes to
plan the structure and the predicted probability of success
for r = 1.5 is 91%.

VII. CONCLUSIONS & FUTURE WORK

This paper proposes a novel strategy for localizing relative
to error correcting structures while planning the construction
process. Our method is shown to work in practice at small
scale and at large scale in simulation. We also show the
robot being able to reliably complete the “hopping” strategy
for moving the markers, extending the area for assembly.

We plan to improve the scale and quality of our hardware
implementation. Planning for large scale construction with
heterogeneous materials will require adaptive and flexible
clustering strategies. Materials which are not well described
by a bounding box may require more sophisticated strategies
for avoiding occlusions.

Our assembly process is currently limited to structures
which have only a single connected component per layer.
If there is more than one connected component in a layer,
the markers can become stranded as they are lifted up the



structure. In the future, we plan to explore ways to increase
the flexibility of our method.
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