


robotic deployments.

• A novel decision-making framework, based on the

aforementioned modeling framework, for spatio-

temporal sampling over a long-time horizon.

• Analysis of the tradeoff between efficiency and accuracy

– i.e., minimizing or maximizing the number of sam-

pling performed – through experiments on synthetic and

real-world phenomena.

Experimental results demonstrate that our method signif-

icantly reduces the number of sampling days while also

preserving the quality of model reconstruction. This work

represents the foundation of long-term spatio-temporal sam-

pling to support scientists in their endeavor to monitor and

protect our environment.

The paper is structured as follows. The next section dis-

cusses related work specifically focusing on spatio-temporal

monitoring. Section III formally states the sampling problem

of focus. Section IV describes the modeling used for keeping

track of changes in the uncertainty over time, which allows

for decisions to be taken on when and where to sample,

as presented in Section V. Experimental setup, results and

concluding remarks are presented in Section VI, VII, and

VIII respectively.

II. RELATED WORK

Several approaches have been proposed for sampling in

a region of interest, where robots have to collect spatial

information in the environment. Such approaches typically

fall in two categories, coverage [8]–[10] with robots that have

to cover every point in the region of interest with the sensor

footprint; and adaptive sampling [11]–[14] where robots

will adapt to measurements taken during the mission. Some

recent surveys on exploration and sampling include [7], [15].

The mainstream methods look at spatial sampling in static

environments, neglecting the temporal components important

in expeditionary science [16]. Here, we highlight the work

that focuses on spatio-temporal monitoring.

Spatio-temporal monitoring can be achieved by having

robots following preplanned missions [17] or offline op-

timized paths [18] and collecting data repeatedly. Some

adaptation of preplanned missions to external factors can

allow persistent monitoring in the ocean [19]. Reactive

strategies like artificial potential field can also be found in

the literature [20]. Graphs can represent the locations and

their connections that the robots need to visit; when the

objective function is submodular, i.e., when a sample from a

location provides less utility because other closer locations

have already been sampled, a greedy algorithm can have

approximation guarantees [21]. Gaussian Processes (GPs)

have been used for modeling the spatio-temporal map, where

for example the robot moves following a simple behav-

ior [22]. More commonly, GPs are used for finding paths that

maximize the information gain and minimize the traveled

distance [23]–[25]. Monte Carlo Tree Search (MCTS) is

another technique used to balance exploration and exploita-

tion and is shown to capture time dynamics [26], [27]. [28]

compared in simulation a number of different methods for

sampling in ocean areas above a certain threshold ranging

from boustrophedon [8] to sequential Bayesian optimization

[29]. The latter, an adaptive sampling method, outperforms

the others. Some methods model explicitly dynamics so that

the exploration strategy can predict environment change and

accordingly decide when to explore a specific area [30]. In a

multi-robot scenario, some work have looked at distributing

the workload fairly by geometrically subdividing the region

of interest [31]. A distributed multi-robot strategy exploits a

reduced-order model from sparse measurements in order to

then estimate areas without measurements and accordingly

reconfigure the sensing locations [32].

There have also been attempts on combining different

sensor streams and proposing sampling strategies, such as

mobile robots and static nodes [33], ASV with UAV [34],

[35] and ASV with satellite [36]. Their goal was to enhance

the efficiency of the sampling mission by compensating the

weakness of one sensor stream and leveraging the strength

of another sensor stream.

Differently from the current literature, our objective is to

use prior data to take informed decisions on days when to

deploy the robots and sample rather than making arbitrary

deployments.

III. PROBLEM STATEMENT

Our aim is to estimate the state of an unknown spatio-

temporal phenomenon F in a 2D environment E ¢ R
2,

during a monitoring period with a long-time horizon T.

Specifically, F =
⋃T

t=1 Ft , where Ft is a snapshot of F at

some time step t.

We utilize two heterogeneous sensors, ZS and ZG that

observe F at comparable spatial resolutions. ZS is a re-

mote sensing tool (e.g., satellite) that observes Ft at fixed

time intervals TS, where 1 < TS f T , to obtain the data

DS = {DiTS
},∀i ∈ {0, . . . , T

TS
}. ZG is a point measurement

sensor (e.g., ASV) that can observe FtD if deployed at tD
to obtain the data DG = {DtD}. Note that tD is unknown, as

it represents the time steps of when to deploy ZG.

We assume DS and DG can be transformed into a common

space Z by some function Ψ : D∗ 7→ Z, such that Ft =
f (Ψ(D∗))+ ε , where ε ∼ N (0,σ2) is the Gaussian noise

in Ψ(D∗). Given Ψ, ZS and ZG do not need to collect

data during the same time step. Since ZS’s time schedule

is known and set, only ZG’s schedule needs to be optimized,

by minimizing the cost of deployment and operation while

preserving a predictive accuracy, ∆ of Ft .

Thus, our goals are:

1) To determine the time tD in the future of when to

deploy ZG while preserving the desired predictive

accuracy, and

2) Given tD, to identify the critical locations Xc that ZG

must sample.

IV. SPATIO-TEMPORAL FIELD MODELLING

As our proposed approach is based on GPs and their

properties, here we include a brief description of the GPs

together with an analysis on the accuracy of the estimates.



Let D = [X ,Y ] be a dataset, where X is a 3D vector with

(t, p,q) ∈ X , with t ∈R being time and (p,q) ∈ E a location

in E . Let Y be a vector of their corresponding measurements,

y = Ψ(D∗)+ ε collected by any given sensor, such that for

every (t, p,q)∈X , there is a corresponding y∈Y . Let X∗ be a

3D vector of test inputs, whose corresponding measurements,

Y∗ are to be estimated. Then, a GP model f∗ for estimating

X∗ is drawn from a normal distribution defined as

f∗|X ,Y,X∗ ∼ N (µ(X ,X∗),Σ), (1)

where the mean vector µ(X ,X∗) and covariance matrix Σ are

µ(X ,X∗) = K(X∗,X)[K(X ,X)+σ2
n I]−1Y, (2)

Σ = K(X∗,X∗)−K(X∗,X)[K(X ,X)+σ2
n I]−1K(X ,X∗). (3)

The elements of the covariance matrix, K(·, ·) are given

by a kernel function, which describes the spatio-temporal

correlation between a pair of inputs. We apply a commonly

used kernel because of its general applicability to different

domains, the squared exponential (SE), [37], defined as

ky(xp,xq) = σ2
f exp(−

(xp − xq)
2

2l2
)+σ2

n σpq, (4)

where l is the length scale representing the function smooth-

ness; σ2
f is signal variance determining the amplitude; σ2

n is

the noise variance accounting for the estimate noise; and δpq

is the Kronecker delta (δpq = 1 if p = q, else δpq = 0).

Using the SE kernel, a GP model is parameterized by

θ = (σ2
f , l,σ

2
n ), which are determined from the data using

Maximum Likelihood Estimation (MLE) [37], by maximiz-

ing

log p(Y |X ,θ) =−
1

2
Y T

Σ
−1
y Y −

1

2
log |Σy|−

n

2
log2π. (5)

Assuming we are given an accurate GPR estimator, θ̂ that

estimates some random variable θ ; the Mean Squared Error

(MSE) [38] in the estimates is given by

MSE(θ̂) = E[(θ̂ −θ)2]. (6)

We can express E[(θ̂ −θ)2] in terms of the GPR variance to

obtain [38]

MSE(θ̂) = Var(θ̂)+Bias2(θ̂). (7)

where Var(θ̂) is the posterior variance of GPR and Bias(θ̂)
is the model bias. Accordingly, for an unbiased estimator as

a GP [39]

Var(θ̂)f MSE(θ̂) = ∆, (8)

where ∆ is a MSE constant that can be predefined by the

user. From Equation (8), we can define the accuracy of GPR

estimates as a function of its posterior variance. Based on

this formulation, we define a desired accuracy value, ∆, to

determine the efficiency of the adaptive sampling mission.

Note that the running time and memory complexity of GP

modeling is O(N3) and O(N2), respectively [37] – where N

is the size of the training set D. This makes the GP model

intractable for real-time exploration of large areas (e.g., N >

100 on an embedded system). We’ll show in the next section

how we address this challenge.

V. SENSOR SCHEDULING ALGORITHM

Suppose we have a time series of snapshots of a spatio-

temporal field. Then, its future flow can be predicted using

various models [37], [40], one of which is a Gaussian Process

Regression (GPR) model just described. In this section, we

describe how a GPR can be used to optimize the schedule

of sensors utilized in a persistent monitoring task.

Initially, we need to strategically identify hot-spot lo-

cations, X ∈ E , whose measurements at any given time t

are sufficient for reconstructing the snapshot Ft ¢ F of the

field. The goal is to minimize the number of data points

required for modeling F and the cost of operating sensor

ZG, while also preserving the predictive accuracy of the

estimates. One strategy for determining hot spots is to divide

the environment into cells of a particular resolution and

use the measurements from the center of each cell in the

modeling. Note, the resolution can be empirically optimized

for a given predictive accuracy ∆, using a GPR model.

Assuming the historical measurements of F , specifically

Dt =
⋃t

i=−∞ Di taken up to t from X , can be used to

accurately reconstruct Ft , the following properties are upheld:

1) Spatial variability: Dt captures the spatial variations

(non-stationarity) that occurs in Ft ,∀t = 1, . . . ,T .

2) Temporal variability: Dt captures the temporal varia-

tions in F that occurs within the time window [−∞, t].

With the spatial variability property, the task of moni-

toring spatial variations in Ft can be reduced to monitoring

hot-spot locations X at t. This minimizes the computational

cost of modeling Ft and the operational cost of sampling

with sensor ZG. On the other hand, the temporal variability

property allows us to predict temporal variations that may

occur at every location x ∈ X and, hence, identify those that

may require sampling in the near future for proper planning.

We leverage these properties in designing the proposed

approach for scheduling the deployment of the on-demand

sensor ZG.

A. Predicting Future States

Given X , Dt (i.e., all data collected up to t,) and a desired

predictive accuracy ∆, our goal is to predict snapshots FTc =
{Fi,∀i= t, t+1, . . . , t+Tc} for timestamped hotspot locations

XTc , where Tc is the remaining number of time steps from t to

the end of the current cycle for sensor ZS. We focus on this

particular time window because no new data is collected from

any sensor in this period, making it the right time to decide

on whether or not to deploy ZG. To obtain FTc , we can train a

GPR model with Dt and use it for prediction. However due to

the high computational demands of GPR, this approach may

become intractable as the size of Dt increases over time. To

address this, we propose a mixture of GP experts approach

outlined in Algorithm 1.

In this approach, Dt is partitioned into clusters and each

cluster is used to train a GPR model that makes local

predictions of XTc , denoted as Ŷc (lines 2-6). We assume that

the resulting clusters categorize Dt into i.i.d. subsets that can

be modeled by a GPR, and the trained GPR can estimate new
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[45] S. Müller, L. Schüler, A. Zech, and F. Heße, “GSTools v1.3: A
toolbox for geostatistical modelling in python,” Geoscientific Model

Development, vol. 15, no. 7, pp. 3161–3182, 2022.
[46] R. Vaughan, “Massively multi-robot simulation in stage,” Swarm

intelligence, vol. 2, no. 2, pp. 189–208, 2008.
[47] A. E. Carter and C. T. Ragsdale, “A new approach to solving the

multiple traveling salesperson problem using genetic algorithms,”
European journal of operational research, vol. 175, no. 1, pp. 246–
257, 2006.


	Introduction
	Related Work
	Problem Statement
	Spatio-Temporal Field Modelling
	Sensor Scheduling Algorithm
	Predicting Future States
	Scheduling Next Deployment

	Experiments
	RESULTS AND DISCUSSION
	Conclusions

