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Abstract—There are many applications where an autonomous
agent can perform many sets of actions. It must choose one set
of actions based on some behavioral constraints on the agent.
Past work has used deontic logic to declaratively express such
constraints in logic, and developed the concept of a feasible status
set (FSS), a set of actions that satisfy these constraints. However,
multiple FSSs may exist and an agent needs to choose one in
order to act. As there may be many different objective functions
to evaluate status sets, we propose the novel concept of Pareto-
optimal feasible status sets or POSS. We show that checking if a
status set is a POSS is co-NP-hard. We develop an algorithm to
find a POSS and in special cases when the objective functions are
monotonic (or anti-monotonic), we further develop more efficient
algorithms. Finally, we conduct experiments to show the efficacy
of our approach and we discuss possible ways to handle multiple
Pareto-optimal Status Sets.

I. INTRODUCTION

Autonomous agents are becoming increasingly important in

the real-world. A good example is self-driving cars (SDC for

short) where agents already control several functions, such as

lane changes and speed changes in Tesla vehicles [1]. Another

example involves proposals for nuclear power plants involving

agents that can increase coolant pressure, temperature, and

more [2]. Autonomous agents are also being proposed for use

with implantable medical devices [3]. These are critical appli-

cations. They are characterized by certain common features:

Declarative Operating Rules. The agents involved need to

take actions while respecting declaratively specified behavioral

requirements, i.e., the desired behavior should be specified in

an easy to understand high-level language such as logic, not

code specifying how that desired behavior is to be accom-

plished. For instance, a self-driving car should be forbidden

to move into a lane when the location it is moving to is going

to be occupied by another vehicle. It may be obligatory for

an autonomous agent to shut off certain processes when the

coolant level in a power plant drops below some threshold. An

agent managing an implantable device may be permitted but

not obliged to warn the user when there is a danger of a non-

life threatening malfunction. All such behavioral requirements

should be stated in a declarative language that is easy to

understand for domain experts.
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Concurrent Actions. The agents may perform zero, one or

more actions simultaneously, e.g., shut off a process, send

messages to other agents and/or human users.

Constraints on Actions. There are constraints on sets of

actions that can be done concurrently, e.g., coolant pressure

cannot be increased and decreased at the same time. Certain

combinations of actions may lead to impossible or undesirable

states (e.g., one where there is a nuclear leak). Such constraints

can be expressed easily in high-level logical languages.

Autonomy. The agents are autonomous, i.e., they can make

a conscious choice between different sets of actions that they

can take at a given time.

Multiple Objectives. The agents may measure the desirability

of a set of actions along multiple dimensions, e.g., annoyance

to user if she gets too many alerts, maximizing safety of the

environment considered, cost, time, and more.

Deontic logic [4], [5] has been studied for more than 50

years. It extends classical logic to support reasoning with the

effects of actions on the state of the world. In multi-agent

applications, agents should operate under certain behavioral

constraints. In self-driving cars, for instance, agents should

obey the rules of the road. They may be permitted to do

certain things in some conditions, forbidden from doing things

in other conditions, obliged to do some things in yet other

circumstances, and more. Deontic logic therefore studies the

permissions, obligations, and forbidden modalities and devel-

ops the logical foundations of their interactions both with each

other, with classical logic and actions.

A declarative deontic logic framework within which we can

express what the agent is permitted to do, obliged to do, and

forbidden to do in various situations has already been pro-

posed by [6], [7]. Their “IMPACT” framework defines “agent

programs” that encode desired declarative agent behaviors, the

syntactic concept of a status set, and the semantic concept of

a feasible status set (FSS). Intuitively, an FSS captures a set

of actions that the agent can perform, compatible with its op-

erating rules, constraints on actions, concurrency constraints,

and the deontic logic modalities. IMPACT was shown in [8]

to support easy articulation of desired high-level behavioral

requirements for 3 broad applications: transportation, supply

chain management, and an online store. However, IMPACT

does not incorporate any objective functions. Subsequently,

[9] proposed the concept of optimal status sets in which an

agent can choose a feasible status set (and hence a set of

actions to perform) that optimizes a single objective function,

but multiple objective functions are not allowed.

Real world agents may consider many factors. A nuclear
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power monitoring agent may wish to minimize the number of

alerts sent to the engineering team while simultaneously max-

imizing safety. This requires consideration of two orthogonal

but incomparable objective functions. In general, no single

solution might simultaneously optimize all objective functions.

A typical approach to deal with this is Pareto-optimality [10]:

a solution is Pareto-dominated if there is another solution

that strictly improves some objective function value without

degrading the other objective functions’ values; and, a solution

is Pareto-optimal if it is not Pareto-dominated. The Pareto

frontier is the set of all Pareto-optimal solutions, all of which

are considered equally good. To the best of our knowledge,

the combination of logical methods and Pareto-optimality has

not been studied before.

In this paper, we combine deontic logic [11] and Pareto-

optimality. Specifically, we make the following contributions:

1) We propose the new concept of a Pareto-Optimal (Fea-

sible) Status Set, or POSS for short, which combines

deontic logic and Pareto optimality. It combines the

power of logic and the power of optimization. We show

that the problem of checking if a given status set is

Pareto-optimal is co-NP-hard, and it is co-NP-complete

under some reasonable assumptions.

2) We develop the first algorithm to find a POSS for a

given agent-state pair.

3) We develop the first algorithms to compute POSS’s

when the objective functions are monotonic (or anti-

monotonic).

4) We report on a prototype implementation of our frame-

work, showing that POSS works well on a realistic

collaborative SDC scenario, where we vary several pa-

rameters and assess their impact on performance.

The paper is organized as follows. Section II discusses

related work. Section III provides a motivating example of

a futuristic collaborative SDC scenario in which multiple cars

collaborate to achieve their objectives. Section IV provides a

brief overview of IMPACT [6], [7], [8]. Section V extends IM-

PACT so that agents consider multiple objective functions and

introduces Pareto-optimal (Feasible) Status Sets. It then studies

the complexity of the problem. Section VI presents exact and

heuristic algorithms to solve this problem. Section VII presents

an experimental assessment of these algorithms. Section VIII

discusses possible ways to handle the situation where a Pareto

front has multiple Pareto-optimal Status Sets. Section IX

describes limitations and outlook for future work. Section X

concludes the paper.

II. RELATED WORK

We build upon deontic logic based agents introduced by [6],

[8]. While there is plenty of previous work on multiagent

systems (e.g., see [12], [13], [14]), to the best of our knowl-

edge, there is only one effort [9] that tries to build agents

that optimize their actions in the presence of both deontic

behavioral rules and constraints. [9] is limited to one objective

function, while our approach can handle several. [15] proposes

the jDALMAS system, which includes a preference structure

based on a theory of normative positions [16]. They consider

a partial ordering on actions to be taken by an agent, but do

not consider explicit numerical objective functions. [15] does

not consider objective functions. In addition, we develop novel

algorithms for weakly/strongly monotonic and anti-monotonic

objective functions, whereas neither [9] or [15] consider such

specialized objective functions.

[17] provides an excellent overview of logic-based agent

systems, but does not say much about deontic logic (except

for the jDALMAS effort mentioned above) or optimization,

suggesting that there is a lot of room for work in this space.

There have been many numeric approaches to Pareto opti-

mization [18], [19], [20], [21], [22], [23] that do not involve

logic. All of these algorithms focus on searching for optimal

solutions over the feasible solution space, but they do not

consider how to generate feasible solutions over a logical

solution space, which is fundamental for the logical approach.

In multi-agent settings, [24] proposes a distributed approach

to find a Pareto-optimal solution. [25] looks at a very specific

scheduling problem where two agents compete to work on a

machine: one agent tries to minimize the number of delayed

jobs it initiated, while the other agent wants to maximize

a different quantity associated with its jobs. [26] studies a

similar situation. [27] combines deterministic policy gradients

with Pareto optimization to develop good recommender sys-

tems. [28] provides an excellent view of agent-based methods

for network traffic management. While these are important

efforts, none of them combine logic and optimization. The

behaviors of these agents are not declaratively specified and

in some cases, optimization focuses on very specific objective

functions. In contrast, we provide declarative deontic logic

based constraints1 that are easy to explain to stakeholders and

show how our objective functions can be easily optimized. We

present different types of algorithms depending on the different

properties of the objective functions (e.g., no restrictions

on the objective function, weakly/strongly monotonic, and

weakly/strongly anti-monotonic). Additionally, we propose

approximation algorithms.

Future work could examine the use of probabilistic and/or

defeasible deontic rules in situations where there is uncertainty

about the state and/or where there is uncertainty in whether

certain behavioral norms can be relaxed [32], [33].

III. MOTIVATING EXAMPLE

Consider a divided highway as shown in Figure 1. Cars are

traveling from left to right on one side of the highway which

can be thought of as a matrix. For simplicity, in this example,

1A logical theory consists of a set of formulas (which include rules) in
logic. An interpretation is an assignment of truth values to atomic formulas.
A model of a logical theory is an interpretation that satisfies all the formulas
in the logical theory. We can therefore see an analogy between integer 0-1
constraints and logic. Just as numeric 0-1 constraints, such as xa + xb ≥ 1,
constrain the space of solutions, logical formulas (including rules) constrain
the space of interpretations that can be models. For instance, considering the
logical formula (a ∨ b), the models are the interpretations that make at least
one of a, b true. With the rule a → b acting as a constraint on the space
of interpretations, we limit interest to those interpretations that either make b

true or a false, or both. The articulation of how logical formulas and rules can
be viewed as constraints goes back several decades. We refer the reader to
[29], [30], [31] for a detailed exposition on why logical rules can be viewed
as constraints. That said, not all constraints can be viewed as logical rules.
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Fig. 1. A highway represented as a matrix (cars traveling from left to right).

the number of cars is fixed. Some cells are marked with an “X”

to indicate that there is no road there. Some cells are marked

“EXIT” to specify that there is an exit at that location. The

exit also shows the destination (location A or B). A car that

exits at location (4, 4) can make it to both locations A and

B, while one that exits at (4, 8) can only get to B. Initially,

the red car is traveling at 2 cells/second, while the green and

orange cars are traveling at 1 cell/second.

A. State

We assume the existence of an arbitrary but fixed logical

language within which the state can be expressed. We as-

sume readers are familiar with standard expressions such as

constants, variables, predicate symbols, atoms, and formulas

in logic [34]. Following Prolog convention [35], we denote

variables with upper case symbols—everything else will be

denoted via lower case symbols.

At any point t in time, the state is a set of ground (i.e.,

containing constants only) logical atoms. In our motivating

example, we use atoms of the following form:

1) at(car, x, y, t) describes the location (x, y) of a car at

time t, e.g., at(red , 1, 1, 1) says that at time 1, the red

car is at location (1, 1).
2) speed(car, s, t) is the speed of a car at time t, e.g.,

speed(red , 2, 1) says that at time 1, the red car is

traveling at 2 cells/second.

3) dest(car, loc) specifies the destination of a car, e.g.,

dest(red , B) says that the red car’s destination is B.

This means the red car can take either exit in Figure 1.

4) exit(y, loc) specifies where there is an exit and the

location it leads to, e.g., exit(8, B) says that there is

an exit to B at location (4, 8) (for simplicity, in this

example, we assume exits are always in the bottom lane

which is why the x value is not explicitly stated).

The table below shows the initial state S0 of our running

example—additionally, the initial state stores information on

two exits at locations (4, 4) and (4, 8) leading to A,B and B,

respectively. All three agents know this initial state.

car at speed dest
red (1,1) 2 B

green (2,2) 1 A

orange (3,2) 1 B

Furthermore, we assume the existence of a derived predicate

pred_at(car, x, y, t+t′) that predicts the location (x, y) of car
at time t + t′, assuming inertia, i.e., that the car continues at

its current speed without making any changes. This predicate

can be readily derived from the at and speed predicates.

B. Agent Actions

We assume the existence of a language with a set of action

symbols, which generate action atoms (or simply actions)

using the constants and variables from the language used to

express a state above. In our motivating example, the cars are

capable of taking the following actions:

1) accel(car, s1, s2, t) says car accelerates from speed s1
to s2 at time t. Here s1 < s2.

2) decel(car, s1, s2, t) says car decelerates from speed s1
to s2 at time t. Here s1 > s2.

3) continue(car, t) keeps car going at its current speed

at time t. So if the red car executes the action

continue(red , 1) at time 1, it will end up at location

(1, 3) at time 2.

4) go_left(car, t) moves car one lane to the left. So if the

green car performs this action in its initial state, then

it will end up at time 2 at (1, 3) (which would lead to

a collision if the red car performed the action in the

preceding bullet).

5) go_right(car, t) moves car one lane to the right. So if

the green car performs this action in its initial state, then

it will end up at time 2 at (3, 3) (which would lead to a

collision with the orange car if that car were to execute

the “continue” action at time 1).

6) exit(car, x, y, t) says car is going to exit the highway

at location (x, y) at time t.
7) req(car1 , car2 , action, t) says that car1 requests car2

for permission to perform action at time t. For instance,

req(green, red, go_left(green, 2, 2, 1, 1), 1) has green

telling red that it would like to shift lanes to the left

at time 1 from location (2, 2) going to a current speed

of 1. This is like a turn signal. But green can perform

this action only if red responds that it will slow down

or shift to the right in order to avoid a collision.

8) ok(car1 , car2 , action, t). Here car2 agrees to the re-

quest by car1 to perform action at time t.
9) deny(car1 , car2 , action, t) is the opposite situation:

car2 does not agree to the request by car1 to perform

action at time t.

Assumption. Without loss of generality, we assume that one

tick of time is enough for a car to make a request and receive

a response and take an action.2

Each action α has a precondition Pre(α) which is a logical

condition, an add list Add(α), and a delete list Del(α), both

of which are sets of ground atoms. Action α is executable in

state St if Pre(α) is true in St—if it is executed, then Del(α)
is deleted from St while Add(α) is added to St in order to

yield the new state.

As an example, for the action α = accel(car, s1, s2, t), we

have Pre(α) = speed(car, s1, t) & (s1 < s2), Del(α) =
speed(car, s1, t), and Add(α) = speed(car, s2, t+ 1).

Autonomy. Cars can make decisions autonomously. One car

may deny (or not respond) to a request from another car.

2One time unit t can be thought as having three parts: by (t+0.33), a car
sends one or more messages to other cars, by (t+0.67) it receives responses,
and it decides what to do before (t+ 1) and does it exactly at (t+ 1).
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Collaboration. The messaging actions (req, ok, deny) en-

able agents to collaborate.

In general, we assume that an application domain has an

associated set of action symbols and that we can define a

notion of (ground) action atoms in the usual way [8], [36],

[37]. The above shows a specific set of action symbols and

action atoms in our running SDC example.

IV. BACKGROUND: IMPACT AGENTS

We assume that arbitrary but fixed sets of actions and

predicate symbols describing the state have been chosen as

illustrated via the SDC example in the preceding section.

A. Agent Program

Every agent has an associated “agent program” that governs

what the agent can and cannot do. In this section, we recall

these definitions from [8]. If α is an action, then Fα, Pα, Oα,
Doα are status atoms indicating that an action is forbidden,

permitted, obligatory, and to be done, respectively.

An operating rule (or just rule) is an expression of the form

SA← χ & SA1 & . . . & SAn

where SA,SA1 , . . . ,SAn are status atoms and χ is a logical

condition (expressed using the predicate symbols). Intuitively,

this rule says that if χ is true in the current state and if status

atoms SA1 , . . . ,SAn are all true, then SA must also be true.

These rules impose constraints—for example, the rule Fα ←
Doβ imposes the logical constraint that if action β is done,

then action α is forbidden.

An agent program is a finite set of rules.

Example 1. The red car’s allowed behavior can be expressed

by the rules reported in Figure 2.

Paccel(red, S1, S2, T ) ← 1 f S2 f 3.
Pcontinue(red, T ) ← speed(red, S, T )& 1 f S f 3.

Pdecel(red, S1, S2, T ) ← 1 f S2 f 3.
Faccel(red, S1, S2, T ) ← S2 > 3.
Fdecel(red, S1, S2, T ) ← S2 < 1.

Fcontinue(red, T ) ← speed(red, S, T )&S > 3.
Fcontinue(red, T ) ← speed(red, S, T )&S < 1.
Pexit(red, 4, 4, T ) ← at(red, 3, 4, T ).
Pexit(red, 4, 8, T ) ← at(red, 3, 8, T ).

Fgo_left(red, T ) ← at(red, X, Y, T )&X = 1.
Fgo_right(red, T ) ← at(red, X, Y, T )&X = 3.

Pgo_left(red, T ) ← at(red, X, Y, T )&X > 1.
Pgo_right(red, T ) ← at(red, X, Y, T )&X < 3.
Odeny(Car1 , red,

go_left(Car1 , X, Y, S, T ), T ) ← pred_at(red, X′, Y ′, T + 1)&
pred_at(Car1 , X′, Y ′, T + 1)&
Doreq(Car1 , red,
go_left(Car1 , X, Y, S, T ), T ).

Fig. 2. Red car’s agent program.

The first seven rules say that the red car is allowed to have

a speed in the range [1, 3]. This is a logical constraint which

ensures that the red car cannot have a speed outside such a

range. The next two rules say that the red car can take either of

the two exits on the highway (as both lead to its destination, B)

when it is near the exits. The following four rules say the car

cannot go left from the leftmost lane, nor can it go right from

the rightmost lane (exit action is not considered a right turn

but a different action), while it is permitted to go left (resp.,

right) when there is a lane on the left (resp., right). The last

rule for the red car exhibits selfish behavior. It always denies

requests that cause it to change its current behavior. All of

these rules thus operate as logical constraints on actions.

The agent program for the green car is identical to that of

the red car except for three differences: (i) it cannot reach a

speed greater than 2, (ii) it is obliged to take the first possible

exit, and (iii) the last rule makes the green car’s behavior

kinder and more cooperative as it is willing to adjust its own

behavior when other cars request a move.

The agent program for the orange car is identical to that

of the green car but it must stick to a constant speed of 1 and

it is permitted to exit at either of the two exits.

An agent program specifies constraints on the agent’s be-

havior: what the agent is obliged to do or forbidden from

doing in certain situations and what it is permitted but not

required to do. Of course, the precondition of any permitted

action must be true in a given state. Thus, these rules act as

logical constraints on the agent’s behavior.

B. Concurrent Action

An agent might choose to simultaneously do multiple things

in a given state (e.g., a car may both accelerate and change

lanes at the same time). In this case, we define a function

called conc(A,St) which takes a set of actions A and state

St as input and returns a new state St+1. [8] defines multiple

possible ways of defining concurrent action execution.

C. Integrity Constraints

We can also write a set of integrity constraints defining

valid states. Agents must not to take actions which would lead

to a state that violates the integrity constraints. For instance,

we would like an integrity constraint which says that an

agent must not enter the same place as another agent. In

general, an integrity constraint is either a denial constraint

or a definite constraint, which we define below. If A1, . . . , An

are atoms (including atoms involving comparison operators),

then a denial constraint has the form

← A1 & · · ·&An.

This denial constraint says that not all of A1, . . . , An can be

true in a given state. For example,

← at(Car1 , X, Y, T )& at(Car2 , X, Y, T )&Car1 ̸= Car2

is a denial constraint that says that two different cars cannot

be in the same place at the same time (as this would be a

collision). Many other denial constraints can be written for our

sample SDC scenario. Again, these are all logical constraints

on what can and cannot be done in a given state.

If A0, A1, . . . , An are atoms (atoms involving comparison

operators are also allowed), then a definite constraint is an

expression of the form

A0 ← A1 & · · ·&An.

Intuitively, a definite constraint says that if A1, . . . , An are

all true in a given state, then A0 must also be true in that
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state. For example, the definite constraint Loc1 = Loc2 ←
dest(Car, Loc1)& dest(Car, Loc2) says that a given car has

only one destination.

D. Action Constraints

Finally, we allow the specification of a form of

logical constraints called action constraints with the

same syntax of the integrity constraints previously

introduced, but involving action atoms instead of

ordinary atoms. For instance, in our SDC scenario,

← go_left(Car , T )& go_right(Car , T ) says that a car

cannot try to move both left and right at the same time,

← accel(Car , S1, S2, T )& decel(Car , S1′, S2′, T ) says it

cannot both accelerate and decelerate at the same time, and←
ok(Car1 ,Car2 ,Action, T )& deny(Car1 ,Car2 ,Action, T )
says it cannot both OK and deny the same request.

E. Status Set Semantics

In this section, we describe the semantics of agent programs

from [6]. A status set SS is a finite set of ground status atoms.

There are many status sets that can be consistent with a given

state and a given agent program. We call such status sets

feasible and they are defined as follows.

Definition 1. A status set SS is feasible w.r.t. a state St, an

agent program P , a set of integrity constraints IC , and a set

of action constraints AC , iff:

1) Oα ∈ SS → Pα ∈ SS ;

2) Oα ∈ SS → Doα ∈ SS ;

3) Doα ∈ SS → Pα ∈ SS ;

4) Pα ∈ SS → Fα /∈ SS ;

5) Pα ∈ SS → Pre(α) is true in St;

6) If SA← χ & SA1 & . . . & SAn is a ground instance of

an operating rule in the agent program P and χ is true

in state St and {SA1 , . . . ,SAn} ¦ SS , then SA ∈ SS .

7) {α | Doα ∈ SS} satisfies the action constraints in AC ;

8) If St satisfies IC , then the new state conc({α | Doα ∈
SS}, St) satisfies IC .

Given a set of numeric constraints, a “solution” is an

assignment of values to the variables in those constraints that

ensures that all the numeric constraints are satisfied. Feasible

status sets are sets of ground status atoms which are assigned

a 0-1 truth value (those in the set are 1, those not in the set

are 0) which satisfy a given agent program in a given state.

Thus, the rules in the agent program and the state act as logical

constraints that determine which status sets are feasible and

which ones are not.

Example 2. Consider the (initial) state presented in Sec-

tion III-A, the red car agent program in Example 1, and the

integrity and action constraints discussed in Sections IV-C

and IV-D, respectively. Let’s focus on the red car. Suppose the

red car has not received any request by other cars, and conc

performs all actions in parallel determining the new positions

of the red car given its speed, lane, etc.

The status set SS consisting of the following status atoms
is feasible:

Paccel(red , 2, 3, 1),Pcontinue(red , 1),Pdecel(red , 2, 1, 1),
Fgo_left(red , 1),Pgo_right(red , 1),Docontinue(red , 1),
Faccel(red , S1, S2, 1) for every S1 and every S2 > 3,
Fdecel(red , S1, S2, 1) for every S1 and every S2 < 1.

In fact, as per Definition 1, the status set SS above satisfies

• Conditions 1)–4), which can be easily verified;

• Condition 5), assuming that for each Pα in SS , the

current state satisfies α’s preconditions;

• Condition 6), as each status atom that should be derived

from the agent program is indeed in SS ;

• Condition 7), as all action constraints are satisfied by the

Doα status atoms in SS ;

• Condition 8), as the new state satisfies the ICs.

V. PARETO-OPTIMAL (FEASIBLE) STATUS SETS

In any given state, an agent might have 0, 1, or several

feasible status sets. Each feasible status (FSS) set SS has an

associated set Do(SS ) = {α | Doα ∈ SS} of actions to be

done if the agent chooses SS . Given an agent program, state,

action and integrity constraints, FSSs are like solutions, just as

sets of numeric constraints have solutions. Which FSS should

an agent choose and act in accordance with?

In our SDC scenario, there can be different criteria a car

might follow, e.g., a first criterion might minimize lane shifts

(to increase safety); a second criterion might be to leave the

highway at the exit closest to the destination. One feasible

status set SS 1 might have it stay in the current lane, feasible

status set SS 2 might make the car change lane on the right

bringing it closer to the exit, while feasible status set SS 3

might make the car change lane on the left, making it further

from the exit. Thus, SS 1 and SS 2 are incomparable in that

SS 1 optimizes the first criterion but not the second, while the

opposite holds for SS 2. On the other hand, SS 3 is strictly

worse than both SS 1 and SS 2 and should be ruled out. Thus,

an agent may use one or more criteria to select which of the

several feasible status sets to base its actions on; such criteria

are expressed via objective functions, defined below.

Definition 2. An objective function objf is a mapping that

assigns a real number to any given feasible status set SS .

objf is said to be:

1) weakly monotonic iff for any pair SS 1,SS 2 of feasible

status sets, SS 1 ¦ SS 2 → objf(SS 1) f objf(SS 2);
2) strongly monotonic iff for any pair SS 1,SS 2 of feasible

status sets, {α | Doα ∈ SS 1} ¦ {α | Doα ∈ SS 2} →
objf(SS 1) f objf(SS 2);

3) weakly anti-monotonic iff for any pair SS 1,SS 2 of fea-

sible status sets, SS 1 ¦ SS 2 → objf(SS 2) f objf(SS 1);
4) strongly anti-monotonic iff for any pair SS 1,SS 2 of

feasible status sets, {α | Doα ∈ SS 1} ¦ {α | Doα ∈
SS 2} → objf(SS 2) f objf(SS 1).

In the previous definition, the higher objf(SS ), the better

SS . As an example, an objective function that minimizes the

number of lane shifts is defined as follows:

objf(SS ) = −| {Do go_left(car, t) ∈ SS} ∪
{Do go_right(car′, t′) ∈ SS}|.
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We assume that each agent has an associated non-empty,

finite set OF of objective functions. An agent will act in

accordance with a feasible status set that is Pareto-optimal

w.r.t. this set of functions.

Definition 3. A feasible status set SS⋆ is Pareto-optimal w.r.t.

a set OF of objective functions iff there is no other feasible

status set SS such that for all objf ∈ OF objf(SS ) g objf(SS⋆)
and for some objf ∈ OF objf(SS ) > objf(SS⋆).

It is important to note that the above definition is key—it

ties together the logical notion of a feasible status set (which

is like a “solution” over a numeric domain) with the numeric

notion of an objective function.

When only one objective function is present (i.e., |OF| = 1),

Pareto-optimality coincides with the classical formulation of

a (single objective function) optimization problem over the

logical domain. That is, an optimal solution is a solution such

that there is no other solution with a strictly better value for

the objective function. In fact, with only one objective function

objf, Definition 3 states that a feasible status set SS⋆ is Pareto-

optimal iff there is no other feasible status set SS such that

objf(SS ) > objf(SS⋆).
In general, there could be zero, one, or many Pareto-optimal

feasible status sets. In this case, we can choose one in several

ways. One possibility is to choose any solution randomly—this

is what is done in classical numerical optimization. However,

additional options are also possible. We discuss these in

Section VIII.

We investigated the complexity of the central problem of

deciding whether a given status set is a Pareto-optimal feasible

status set. We start with the following proposition, which

establishes an upper-bound under reasonable conditions.

Proposition 1. If the agent program, the integrity constraints,

the action constraints, and the action predicate names are

fixed, and conc and the objective functions can be computed

in polynomial time, then deciding whether a given status set

SS is a Pareto-optimal feasible status set is in co-NP.

Proof. We first show that deciding whether a status set SS ′ is

feasible can be done in polynomial time under the assumptions

in the statement. Conditions 1)–5) of Definition 1 can be

clearly verified in polynomial time. Condition 6) can be

verified in polynomial time because the agent program is

fixed (and thus, there is a polynomial number of ground

instances of operating rules). Condition 7) can be verified

in polynomial time because the action constrains are fixed.

Condition 8) can be verified in polynomial time because

(i) conc can be computed in polynomial time, (ii) checking

constraint satisfaction can be done in polynomial time, since

the integrity constrains are fixed.

We now show that the complementary problem, that is,

deciding whether SS is not a Pareto-optimal feasible status

set, is in NP. We first check whether SS is feasible; if not,

then answer yes. As shown above this check can be done in

polynomial time. If SS is feasible, then we guess a status

set SS ′, and check that (i) SS ′ is feasible, and (ii) for all

objective functions objf, objf(SS ′) g objf(SS ), and for some

objective function objf, objf(SS ′) > objf(SS ). Check (i) can

be done in polynomial time, as shown above. Check (ii) can be

done in polynomial time because the objective functions can

be computed in polynomial time. Also, SS ′ has polynomial

size, since the actions’ predicates are fixed.

We now turn our attention to the lower-bound and show

that deciding whether a given status set is a Pareto-optimal

feasible one is co-NP-hard. In particular, co-NP-hardness

holds even if the agent program, the integrity constraints,

the action constraints (whose set is indeed empty), the action

predicate names, and conc are fixed, there is only one fixed

objective function, and conc and the objective functions can

be computed in polynomial time.

Theorem 1. Deciding whether a given status set is a Pareto-

optimal feasible status set is co-NP-hard.

Proof. We reduce the NP-hard 3-colorability problem to the

complement of our problem, that is, deciding whether a status

set SS is not a Pareto-optimal feasible status set. An instance

of 3-colorability is an undirected graph (V,E), for which it

has to be decided whether there exists a 3-coloring, that is, a

way of assigning exactly one of three colors to every vertex

in V so that no two adjacent (w.r.t. E) vertices have the same

color. We derive an instance of the complement of our problem

as follows. The initial state is S0 = {vertex(v) | v ∈ V } ∪
{edge(v, v′) | (v, v′) ∈ E} ∪ {color(c1), color(c2), color(c3)}.
The actions are as follows:

• For v ∈ V , we have action dummycola(v, c1) with

Pre(dummycola(v, c1)) = true , Del(dummycola(v,
c1)) = ∅, and Add(dummycola(v, c1)) = {dummycol(v,
c1), colored(v)}.

• For v ∈ V , c ∈ {c1, c2, c3}, action coloringa(v, c) with

Pre(coloringa(v, c)) = true , Del(coloringa(v, c)) = ∅,
and Add(coloringa(v, c)) = {coloring(v, c), colored(v)}.

• For each v ∈ V , action vertexa(v) with

Pre(vertexa(v)) = true , Del(vertexa(v)) = ∅, and

Add(vertexa(v)) = {vertexs(v)}.

The agent program contains Do vertexa(X) ← vertex(X).
The integrity constraints are:

← coloring(X,C1)& dummycol(Y,C2)
← edge(X,Y )& coloring(X,C)& coloring(Y,C)
← coloring(X, c1)& coloring(X, c2)
← coloring(X, c1)& coloring(X, c3)
← coloring(X, c2)& coloring(X, c3)
colored(X)← vertexs(X)

The set of action constraints is empty. We also have

conc(A,St) = St \ (
⋃

³∈A Del(α)) ∪
⋃

³∈A Add(α) and

objf(SS ) = |{Do coloringa(v, c) ∈ SS}|. The status set SS

contains Do vertexa(v), P vertexa(v), Do dummycola(v, c1),
P dummycola(v, c1), for each v ∈ V . We now show that

(V,E) has a 3-coloring iff SS is not a Pareto-optimal feasible

status set. First of all, we point out that SS is feasible and

objf(SS ) = 0, which can be easily verified.

(⇒) Let φ : V → {c1, c2, c3} be a 3-coloring of (V,E).
We first show that the following status set is feasible:

SS ′ =
⋃

v∈V {Do vertexa(v),P vertexa(v)} ∪⋃
v∈V {Do coloringa(v, φ(v)),P coloringa(v, φ(v))}
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Conditions 1)–4) of Definition 1 are clearly satisfied by SS ′.

Condition 5) is satisfied, as all action preconditions are trivially

true. Condition 6) is satisfied since for each vertex(v) in St,

Do vertexa(v) is included in SS ′. Condition 7) is satisfied

because there are no action constraints. Let us now discuss

Condition 8). Notice that S0 satisfies the ICs. We need to show

that S1 = conc({α |Doα ∈ SS ′}, St) satisfies the ICs. By def-

inition of conc, and the actions’ Del and Add sets, S1 = S0∪
{vertexs(v) | v ∈ V } ∪

⋃
v∈V {coloring(v, φ(v)), colored(v)}.

Since φ is a 3-coloring, it can be easily verified that all ICs

are satisfied by S1. Hence, SS ′ is a feasible status set and

objf(SS ′) = |V |. W.l.o.g. we can assume the original graph

has at least one vertex and thus objf(SS ′) > 1, and thus SS

is not Pareto-optimal.

(⇐) Suppose (V,E) has no 3-coloring. We show that there

is no feasible status set SS ′ containing at least one status

atom of the form Do coloringa(v, c)—which implies that SS is

Pareto-optimal. Reasoning by contradiction, suppose SS ′ ex-

ists. In order for SS ′ to be feasible, it must satisfy Condition 6)

of Definition 1, and thus SS ′ must include {Do vertexa(v) |
v ∈ V }. This means that the new state S1 will include

{vertexs(v) | v ∈ V }, as per definition of conc and the Add

sets for vertexa(v) actions. In order for S1 to satisfy the last

IC, S1 must include {colored(v) | v ∈ V }. Since SS ′ includes

at least one status atom of the form Do coloringa(v, c), S1

includes coloring(v, c), and thus SS ′ cannot include any status

atom of the form Do dummycola(v
′, c1), because otherwise

dummycol(v′, c1) would be in S1 violating the first IC. Thus,

the only way for S1 to have an atom colored(v) for each

vertex v ∈ V is that SS ′ has at least one Do coloringa(v, c)
status atom for each vertex v ∈ V . Notice that each status

atom Do coloringa(v, c) yields the atom coloring(v, c) in S1.

In order for S1 to satisfy the third to fifth ICs, S1 must contain

at most one coloring(v, c) atom for each vertex v. Thus, S1

contains exactly one coloring(v, c) atom for each vertex v.

Notice that S1 must satisfy also the second IC. Now it is easy

to see that the function assigning to each vertex v the color

c iff coloring(v, c) belongs to S1 is a 3-coloring, which is a

contradiction.

From the results above, we get the following corollary.

Corollary 1. If the agent program, the integrity constraints,

the action constraints, and the action predicate names are

fixed, and conc and the objective functions can be computed

in polynomial time, then deciding whether a given status set

is a Pareto-optimal feasible status set is co-NP-complete.

VI. ALGORITHMS

In this section, we introduce several algorithms to compute

Pareto-optimal feasible status sets.

First, we present a “helper” algorithm (used by all other

algorithms) to compute the “closure” of a status set (Algo-

rithm 1). Then, we propose a baseline algorithm that can be

used with arbitrary sets of objective functions (Algorithm 2).

Next, we develop exact algorithms for weakly/strongly anti-

monotonic objective functions (Algorithms 3–4). These meth-

ods leverage anti-monotonicity to improve on the baseline.

Their basic idea is to traverse up a lattice of status sets in

a breadth-first fashion, where the lattice is defined w.r.t. set-

inclusion (resp., set-inclusion of Doα atoms) for weakly (resp.,

strongly) anti-monotonic objective functions. This strategy

allows the algorithms to start from the “smallest” possibly

feasible status sets, look for a Pareto-optimal feasible one,

and move to bigger status sets only if needed.

A similar idea can be applied to weakly and strongly

monotonic objective functions, but the lattice is traversed

downwards starting from the “biggest” possibly feasible status

sets. We found this strategy less effective compared to the anti-

monotonic case, because the biggest status sets to start from

may contain many contradictory status atoms (e.g., violating

action constraints) and moving to smaller feasible ones might

require traversing several levels of the lattice. For this reason,

with weakly/strongly monotonic objective functions, in order

to significantly improve on the baseline algorithm, we intro-

duced heuristics leading to the two approximation algorithms

presented in the following (Algorithms 5 and 6).

All algorithms in this section except for the “helper” one

take as input: a state St, an agent program P , a set IC of

integrity constraints, a set AC of action constraints, a conc

function, a set OF of objective functions, and a set A of ground

actions. Algorithms 5 and 6 have an additional input τ , which

is used for the heuristic search and will be discussed later.

A. Helper Algorithm

The Closure algorithm (cf. Algorithm 1) takes as input a

status set SS , a current state St, an agent program P , and a

set DC of denial action constraints. The goal of the algorithm

is to compute a status set that includes SS and satisfies

Conditions 1)-6) of Definition 1, as well as Condition 7) w.r.t.

denial action constraints only, if such a status set exists. If a

status set is returned, it might not be feasible, as Condition 7)

of Definition 1 w.r.t. definite action constraints, as well as the

last condition of Definition 1, still need to be verified.

The algorithm first “closes” SS w.r.t. Conditions 1)–3) of

Definition 1 (lines 1–6). It then checks if Conditions 4), 5),

and 7) are all satisfied (lines 7–10). If any of them is

not satisfied, then § is returned. Otherwise, the algorithm

iteratively enforces Condition 6) of Definition 1 (lines 11–

26), thereby possibly deriving further ground status atoms.

While doing so, the algorithms enforces Conditions 1)–3) of

Definition 1 (lines 18–21) and checks that Conditions 4)–5)

and Condition 7) (w.r.t. the denial action constraints in DC ) of

Definition 1 remain satisfied w.r.t. the ground status atoms that

are being derived (lines 22–25)—once again, if any condition

is violated, § is returned, otherwise the algorithms keeps

adding new ground status atoms until a fixpoint is reached

and the resulting set is returned (line 27).

It is worth noting that every ground status atom derived by

the algorithm must be in any status set SS ′ extending SS in

order for SS ′ to be possibly feasible. A status set returned by

the algorithm that satisfies also Condition 7) of Definition 1

w.r.t. all action constraints as well as Condition 8) is feasible.

The proposition below states an important property that will

be leveraged by the algorithms introduced in the following.
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Algorithm 1 Closure

Input: A status set SS , a state St, an agent program P , and
a set DC of denial action constraints.

Output: A status set or §.
1: for each Oα ∈ SS s.t. Pα ̸∈ SS do
2: Add Pα to SS .
3: for each Oα ∈ SS s.t. Doα ̸∈ SS do
4: Add Doα to SS .
5: for each Doα ∈ SS s.t. Pα ̸∈ SS do
6: Add Pα to SS .
7: if there exists α s.t. (i) {Pα,Fα} ¦ SS or (ii) Pα ∈ SS and

Pre(α) is false in St then
8: return §.
9: if {α | Doα ∈ SS} does not satisfy DC then

10: return §.
11: SS ′ := SS .
12: repeat
13: SS ′′ := SS ′.
14: for each ground rule r of P do
15: Let r be SA← χ & SA1 & . . . & SAn .
16: if χ is true in St and {SA1 , . . . ,SAn} ¦ SS ′ then
17: Add SA to SS ′.
18: if SA = Oα then
19: Add Pα and Doα to SS ′.
20: else if SA = Doα then
21: Add Pα to SS ′.
22: if there exists α s.t. (i) {Pα,Fα} ¦ SS ′ or (ii) Pα ∈

SS ′ and Pre(α) is false in St then
23: return §.
24: if {α | Doα ∈ SS ′} does not satisfy DC then
25: return §.
26: until SS ′ = SS ′′

27: return SS ′.

Proposition 2. Let LSS = Closure(∅, St, P,DC ) for any

status St, agent program P , and set of denial action con-

straints DC . If LSS = §, then there is no feasible status set.

If LSS ̸= §, every feasible status set (if any) contains LSS .

Proof. When Closure is called with SS = ∅, lines 1–10 have

no effect. Then, lines 11-27 are executed, enforcing Condi-

tions 1)–3) and 6) of Definition 1 by possibly deriving new

status atoms. Such status atoms must be necessarily contained

in any feasible status set containing the empty set, and thus

in every feasible status set (if any). Recall that lines 11-27

additionally check whether any of Conditions 4), 5), and 7)

of Definition 1 is violated. If a status set violates any of

such conditions, then every superset of it violates the same

conditions. Thus, Closure returns § when the set SS ′ of status

atoms currently computed (which must be included in every

feasible status set, if any) violates any of Conditions 4), 5),

and 7) (which will be violated by every superset of SS ′), that

is, there is no feasible status set. If Closure returns a status

set, the latter does not violate any of Conditions 4), 5), and 7)

and must be contained in every feasible status set, if any.

In the sequel, we use the following notation. For any

program P , we use gP (resp., χP , bP ) to denote the number

of ground rules of P (resp., the maximum number of atoms in

the condition χ of rules in P , the maximum number of status

atoms of rules in P ). For any set of constraints C , we use ||C ||
to denote the overall number of atoms in C . As customary, for

any set X , we use |X| to denote the cardinality of X . Finally,

we use A to denote the set of all ground actions.

Proposition 3. The worst-case time complexity of Algorithm 1

is O(|A| · gP · (χP · |St|+ |A| · (bP + lg |A|+ |St|+ ||DC ||))).

B. Baseline Algorithm

We now introduce a baseline algorithm (POSS baseline, cf.

Algorithm 2) to compute a Pareto-optimal feasible status set

(if one exists) with an arbitrary set of objective functions.

Given a set A of actions, we define SA(A) = {Op α | α ∈
A and Op ∈ {F,P,O,Do}}.

Algorithm 2 POSS baseline

Input: A state St, an agent program P ,
a set IC of integrity constraints,
a set AC of action constraints, a conc function,
a set OF of objective functions, and
a set A of ground actions.

Output: A Pareto-optimal feasible status set or §.
1: Let DC be the set of denial constraints in AC .
2: LSS = Closure(∅, St, P,DC ).
3: if LSS = § then
4: return §.
5: A := {α | α ∈ A and (Pre(α) is false in St or Fα ∈ LSS)}.
6: SA := ∪

α∈A{Doα,Oα,Pα}.
7: SA := SA(A) \ SA.
8: S = ∅.
9: for each SS s.t. LSS ¦ SS ¦ SA do

10: if SS is a feasible status set then
11: Add SS to S.
12: if S = ∅ then
13: return §.
14: else
15: return a Pareto-optimal (w.r.t. OF) element of S.

The algorithm first calls the Closure algorithm with the

empty status set, the current state, the agent program, and the

denial action constraints in AC , thereby getting LSS (lines 1–

2). If LSS is §, then there is no feasible status set and

the algorithm returns § (lines 3–4). Otherwise, there might

exist feasible status sets, and if any exists it has to contain

LSS . For this reason, lines 1–4 will be replicated in all our

algorithms reported in the following. Thus, the algorithm looks

for feasible status sets that are a superset of LSS (lines 8–

11), and if none exists § is returned (lines 12-13), otherwise

a Pareto-optimal one is returned (lines 14–15). Moreover, a

simple pruning is applied when searching for feasible status

sets containing LSS . The algorithm ignores status atoms that

cannot be in any feasible status set (lines 5–7): these are the

Doα, Oα, and Pα status atoms for which Pre(α) is false in

the current state (see Conditions 1)–3) and 5) of Definition 1)

or Fα belongs to LSS (see Conditions 1)–4) of Definition 1).

Such a pruning will be applied by all algorithms presented in

the following as well.

Theorem 2. Algorithm 2 correctly computes a Pareto-optimal

feasible status set.

Proof. By Proposition 2, if LSS = § in line 3, then there is

no feasible status set and the algorithm correctly returns §.

Otherwise, by Proposition 2, LSS is a status set that must
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be contained in every feasible status set, if one exists. The

algorithm looks for feasible status sets SS s.t. LSS ¦ SS ¦
SA, and returns a Pareto-optimal one among them, if at least

one feasible status set has been found. So, to prove correctness,

we need to show that no feasible status set is missed by the

algorithm, that is, there is no feasible status set SS s.t. SS ª

LSS or SS « SA. Proposition 2 implies that there cannot

be any feasible status set SS s.t. SS ª LSS . Notice that

each status atom Pα s.t. Pre(α) is false in St or Fα ∈ LSS

cannot be included in any feasible status set. For such Pα
status atoms, the status atoms Oα and Doα cannot be included

in any feasible status set too, because of Conditions 1) and 3)

of Definition 1. Thus, lines 5–7 safely disregard the status

atoms in SA, as they cannot belong to any feasible status set,

and hence there cannot be a feasible status set SS « SA.

Proposition 4. The worst-case time complexity of Algorithm 2

is O(|A|2 · gP · ||DC ||+ 22|A| · fOF (A) + 2|A| · (|A| · lg |A|+
|A| · |St|+gP ·(|St| ·χP + |A| ·bP )+ |A| · ||AC ||+ |St| · ||IC ||+
fconc(|A|, |St|))), where fOF (resp., fconc) is the function

measuring the worst-case time complexity of evaluating the

objective functions in OF (resp., conc).

The numbers of cars and lanes affect number of rules in the

program and the size of the constraints (gP , ||IC ||, ||DC ||) as

well as the number of actions (|A|). Such observations apply

also to the other algorithms presented in the following.

C. Weakly and Strongly Anti-Monotonic Algorithms

We propose algorithms to compute Pareto-optimal feasible

status sets in the presence of weakly (cf. Algorithm 3) and

strongly (cf. Algorithm 4) anti-monotonic objective functions.

Let us start with Algorithm 3. The basic idea of the

Algorithm 3 POSS weakly-anti-monotonic

Input: A state St, an agent program P ,
a set IC of integrity constraints,
a set AC of action constraints, a conc function,
a set OF of weakly anti-monotonic objective functions, and
a set A of ground actions.

Output: A Pareto-optimal feasible status set or §.
1: Let DC be the set of denial constraints in AC .
2: LSS = Closure(∅, St, P,DC ).
3: if LSS = § then
4: return §.
5: A := {α | α ∈ A and (Pre(α) is false in St or Fα ∈ LSS)}.
6: SA := ∪

α∈A{Doα,Oα,Pα}.
7: SA := SA(A) \ (SA ∪ LSS).
8: ToInspect := {LSS}.
9: while ToInspect ̸= ∅ do

10: Candidates := ToInspect .
11: ToInspect := ∅.
12: if Candidates has a feasible status set then
13: return a Pareto-optimal (w.r.t. OF) feasible status set of

Candidates .
14: else
15: for each Cand in Candidates do
16: for each Op α ∈ (SA \ Cand) do
17: if (Cand ∪ {Op α}) /∈ ToInspect then
18: Add Cand ∪ {Op α} to ToInspect .
19: return §.

algorithm is to traverse a lattice (w.r.t. set-inclusion) of status

sets where the bottom element is the set LSS computed in

lines 1–2. In particular, the lattice is traversed upwards starting

from LSS in a breadth-first fashion. In lines 1–6, the algorithm

applies the same pruning discussed before for the baseline

algorithm. Then, SA consists of the status atoms that might

be added to LSS (line 7). In lines 8–18, the algorithm performs

the aforementioned traversal of the lattice, one level at a

time, starting from LSS , where each level is built by adding

one status atom to each status set of the previous level (see

lines 15–18). When a feasible status set exists in a level, a

Pareto-optimal one is returned, otherwise the next level is

considered. It is worth noting that each level is built only

if needed and the lattice is not entirely materialized at once,

which yields computational benefits in terms of both run time

and memory usage. Eventually, if no feasible status set has

been encountered, § is returned (line 19).

Theorem 3. Algorithm 3 correctly computes a Pareto-optimal

feasible status set.

Proof. The same argument in the proof of Theorem 2 applies

to lines 1–6 of Algorithm 3. Thus, the status atoms in LSS ∪
SA are the only ones that can possibly belong to a feasible

status set. It is easy to see that (in lines 8–19) the algorithm

starts from LSS and then iteratively considers bigger status

sets, where at each iteration (of the while loop in lines 9–

18) status sets that are incomparable w.r.t. set-inclusion are

considered. At a generic iteration, if a feasible status is found

that is Pareto-optimal among those considered in that iteration,

then it must be Pareto-optimal also w.r.t. bigger status sets,

because objective functions are weakly anti-monotonic.

Algorithm 4 deals with strongly anti-monotonic objective

functions, and behaves like Algorithm 3, except that the lattice

is built w.r.t. set-inclusion of Doα status atoms.

Theorem 4. Algorithm 4 correctly computes a Pareto-optimal

feasible status set.

Proof. The same argument in the proof of Theorem 3 applies,

noting that status sets are compared w.r.t. Doα status atoms,

because objective functions are strongly monotonic.

The worst-case time complexity of Algorithms 3 and 4 is

the one stated in Proposition 4, as in the worst case, O(2|A|)
candidate status sets still need to be inspected. While this is

a theoretical analysis in the worst case, we will show in Sec-

tion VII that Algorithms 3 and 4 indeed provide computational

benefits over the baseline in practice.

D. Weakly and Strongly Monotonic Algorithms

In this section, we introduce approximation algorithms for

weakly and strongly monotonic objective functions.

Let us start with Algorithm 5, which deals with weakly-

monotonic objective functions. The basic idea is to start with

the biggest “possibly feasible” status sets, and then move

to smaller ones if needed (i.e., if no feasible status set has

been found). Lines 1–5 are analogous to the ones of the

algorithms discussed so far. In lines 6–14, the algorithm builds

the biggest possibly feasible status sets to start from, applying
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Algorithm 4 POSS strongly-anti-monotonic

Input: A state St, an agent program P ,
a set IC of integrity constraints,
a set AC of action constraints, a conc function,
a set OF of strongly anti-monotonic objective functions, and
a set A of ground actions.

Output: A Pareto-optimal feasible status set or §.
1: Let DC be the set of denial constraints in AC .
2: LSS = Closure(∅, St, P,DC ).
3: if LSS = § then
4: return §.
5: A := {α | α ∈ A and (Pre(α) is false in St or Fα ∈ LSS)}.
6: SA := ∪

α∈A{Doα,Oα,Pα}.
7: SA := SA(A) \ (SA ∪ LSS).
8: SA-Do := {Doα | Doα ∈ SA}.
9: SA-FPO := SA \ SA-Do.

10: ToInspect := {LSS ∪X | X ¦ SA-FPO}.
11: while ToInspect ̸= ∅ do
12: Candidates := ToInspect .
13: ToInspect := ∅.
14: if Candidates has a feasible status set then
15: return a Pareto-optimal (w.r.t. OF) feasible status set of

Candidates .
16: else
17: for each Cand in Candidates do
18: for each Doα ∈ (SA-Do \ Cand) do
19: if (Cand ∪ {Doα}) /∈ ToInspect then
20: Add Cand ∪ {Doα} to ToInspect .
21: return §.

different pruning strategies that rule out status sets that are

not feasible for sure. First, the algorithm rules out status

atoms of the form Oα, Doα, and Pα for which Pre(α) is

not satisfied in the current state or Fα belongs to LSS—

moreover, for such actions α, all Fα status atoms are included,

as they will not conflict for sure with any Oα, Doα, or Pα
status atom (line 6). Second, for actions α not satisfying the

aforementioned conditions, to construct the biggest status sets,

either {Fα} or {Oα,Doα,Pα} is considered (lines 7–14) to

avoid status sets that would not be feasible. The while loop

in lines 16–31 starts from the biggest status sets and moves

to smaller ones if no feasible one has been found. At each

iteration, only τ (randomly picked) status sets from ToInspect

are considered (see lines 17–18), where τ is an additional input

of the algorithm. The status sets in ToInspect that are not

chosen by the random sampling are still left in ToInspect for

later inspection. This allows the algorithm to move faster to

lower levels of the status set lattice, which pays off in terms of

running time, as we show in our experimental evaluation. Of

course, the algorithm might return sub-optimal feasible status

sets, because when a set of feasible status sets is considered

and a Pareto-optimal one is determined among them (lines 19–

20), some other better feasible status sets might have been

ignored (not being chosen by the random sampling).

Smaller status sets are built from the current ones by

deleting a single status atom (lines 23–30), following the

following criteria. A status atom of the form Doα is deleted

from a status set if the latter does not contain Oα (lines 27–

28), because otherwise the deletion would yield a non-feasible

status set—see Condition 2) of Definition 1. Likewise, a status

atom of the form Pα is deleted from a status set if the

Algorithm 5 POSS weakly-monotonic-approximate

Input: A state St, an agent program P ,
a set IC of integrity constraints,
a set AC of action constraints, a conc function,
a set OF of weakly monotonic objective functions,
a set A of ground actions, and
an integer τ (number of samples for randomly picking).

Output: A feasible status set or §.
1: Let DC be the set of denial constraints in AC .
2: LSS = Closure(∅, St, P,DC ).
3: if LSS = § then
4: return §.
5: A := {α | α ∈ A and (Pre(α) is false in St or Fα ∈ LSS)}.
6: ToInspect := {LSS ∪ {Fα | α ∈ A}}.
7: for each α ∈ (A \ A) do
8: Tmp := ∅.
9: for each SS ∈ ToInspect do

10: if Pα /∈ SS then
11: Add SS ∪ {Fα} to Tmp.
12: if Fα /∈ SS then
13: Add SS ∪ {Oα,Doα,Pα} to Tmp.
14: ToInspect := Tmp.
15: Done := ∅.
16: while ToInspect ̸= ∅ do
17: Candidates := random(τ,ToInspect).
18: ToInspect := ToInspect \ Candidates .
19: if Candidates has a feasible status set then
20: return a Pareto-optimal (w.r.t. OF) feasible status set of

Candidates .
21: else
22: for each Cand in Candidates do
23: for each Op α ∈ Cand do
24: if Op α /∈ LSS and (Cand \ {Op α}) /∈ ToInspect

and (Cand \ {Op α}) /∈ Done then
25: if Op = O or Op = F then
26: Add Cand \ {Op α} to ToInspect .
27: if Op = Do and Oα ̸∈ Cand then
28: Add Cand \ {Op α} to ToInspect .
29: if Op = P and Oα ̸∈ Cand and Doα ̸∈ Cand

then
30: Add Cand \ {Op α} to ToInspect .
31: Add Candidates to Done .
32: return §.

latter contains neither Oα nor Doα (lines 29–30), because

otherwise the deletion would yield a non-feasible status set—

see Conditions 1) and 3) of Definition 1. A status atom of the

form Oα or Fα is deleted without checking further conditions

(lines 25–26), as their deletion does not yield violations of

Conditions 1)–4) of Definition 1. The algorithm returns § if

no feasible status set is eventually found (line 32).

Let us consider now Algorithm 6. The algorithm starts from

“possibly feasible” status sets containing as many Doα status

atoms as possible, which are collected into ToInspect (lines 1–

9). The algorithm leverages the following ideas discussed

before: it moves to smaller status sets if no feasible one has

been found; it applies the sampling approach of Algorithm 5;

it reduces the number of status sets to be considered when

initializing ToInspect (in lines 7–9) and when a lower level

of the lattice has to be built (see lines 18–25).

The worst-case time complexity of Algorithms 5 and 6 is

the one stated in Proposition 4, as in the worst case, O(2|A|)
candidate status sets still need to be inspected. While this is a

theoretical analysis in the worst case, Section VII will show
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that Algorithms 5 and 6 provide computational benefits over

the baseline in practice.

Algorithm 6 POSS strongly-monotonic-approximate

Input: A state St, an agent program P ,
a set IC of integrity constraints,
a set AC of action constraints, a conc function,
a set OF of strongly monotonic objective functions,
a set A of ground actions, and
an integer τ (number of samples for randomly picking).

Output: A feasible status set or §.
1: Let DC be the set of denial constraints in AC .
2: LSS = Closure(∅, St, P,DC ).
3: if LSS = § then
4: return §.
5: A := {α | α ∈ A and (Pre(α) is false in St or Fα ∈ LSS)}.
6: A′ := A \ A.
7: SA-DPO :=

⋃
α∈A′{Doα,Pα,Oα}.

8: SA-F := {Fα | α ∈ A}.
9: ToInspect := {LSS ∪ SA-DPO ∪X | X ¦ SA-F}.

10: Done := ∅.
11: while ToInspect ̸= ∅ do
12: Candidates := random(τ,ToInspect).
13: ToInspect := ToInspect \ Candidates .
14: if Candidates has a feasible status set then
15: return a Pareto-optimal (w.r.t. OF) feasible status set of

Candidates .
16: else
17: for each Cand in Candidates do
18: for each Doα ∈ Cand do
19: if Doα /∈ LSS then
20: if (Cand \ {Doα,Pα,Oα}) /∈ ToInspect and

(Cand \ {Doα,Pα,Oα}) /∈ Done then
21: Add Cand \ {Doα,Pα,Oα} to ToInspect .
22: if (Cand \{Doα,Oα}) /∈ ToInspect and (Cand \

{Doα,Oα}) /∈ Done then
23: Add Cand \ {Doα,Oα} to ToInspect .
24: if ((Cand∪{Fα})\{Doα,Pα,Oα}) /∈ ToInspect

and ((Cand ∪ {Fα}) \ {Doα,Pα,Oα}) /∈ Done
then

25: Add (Cand ∪ {Fα}) \ {Doα,Pα,Oα} to
ToInspect .

26: Add Candidates to Done .
27: return §.

VII. EXPERIMENTAL ASSESSMENT

We varied the parameters reported in Table I, where the

default value we fixed for a parameter when varying another

parameter is highlighted in bold.

TABLE I
VARYING PARAMETERS (DEFAULT VALUES IN BOLD).

Parameter Values

Number of red cars {1, 10, 20, 30}
Number of orange cars {1, 10, 20, 30}
Number of green cars {1, 10, 20, 30}

Number of lanes {6, 8, 10} (plus exit lane)
Highway length {40, 60, 80, 100}

In addition:

• We randomly picked the initial position of each car,

ensuring that (i) two cars are not in the same cell and

(ii) all initial positions are before the 10th cell.

• We fixed the speed of each car as follows:

– For red cars, randomly picking from {1, 2, 3}.
– For green cars: randomly picking from {1, 2}.
– For orange cars: equal to 1.

• We randomly picked the destination of each car from

{A,B,C,D,E}.
• We fixed the number of exits to a tenth of the highway

length, with the first exit positioned at the 10th cell and

with a distance of 10 cells between two consecutive exits.

• We randomly picked the destinations associated with each

exit from {A,B,C,D,E}, ensuring that each destination

has at least one associated exit.

• For the approximation algorithms, τ was set to 10 (early

experiments showed this to be a good value).

• We used three objective functions: Lane Shift Penalty

(LSP), which penalizes lane shifts in a status set, Exit

Miss Penalty (EMP), which penalizes a status set that

makes cars miss the exit (in two time steps), and Change

Speed Penalty (CSP), which penalizes a status set that

does not speed up when the exit is too far or does not slow

down when the exit is very close. All objective functions

are weakly and strongly anti-monotonic; as weakly and

strongly monotonic objective functions, we used the same

ones but with a flipped sign.

All experiments were performed on a machine with 36 Intel

Core i9-10980XE CPUs, 256GB RAM, running Ubuntu 18.04.

A. Runtime

Figure 3 reports the average time needed to compute a

POSS when varying the number of cars of each color. In all

the figures, (i) POSS Baseline (M) and POSS Baseline (A-M)

correspond to Baseline using monotonic and anti-monotonic

objective functions, respectively, (ii) orange lines represent

algorithms using monotonic objective functions, and (iii)

blue lines represent algorithms using anti-monotonic objective

functions. The results show that the runtime of POSS W-A-

M is the best, followed by POSS S-M-approx. As POSS

W-A-M is an exact algorithm, this suggests that we should try

to convert true objective functions into similar weakly anti-

monotonic ones.

Figures 4 and 5 report the average time needed to compute a

POSS when varying the number of lanes and highway length.

Again, we see that POSS W-A-M is the fastest approach.

In all, we compared our 4 proposed algorithms with Base-

line (i) in 48 cases when varying the number of cars of each

color (4 algorithms × 4 parameter values × 3 colors), (ii)

in 12 cases when varying the number of lanes (4 algorithms

× 3 parameter values), and (iii) in 16 cases when varying

the highway length (4 algorithms × 4 parameter values).

The results show that (i) our proposed algorithms are faster

than Baseline in all of the 76 cases and (ii) on average,

our proposed algorithms run much faster than Baseline—see

Table II, where the performance gain of each algorithm Alg

is computed as 1− time(Alg)
time(Baseline) .

B. Solution Quality for Approximate Algorithms

We also assessed the quality of the solutions computed

by our approximate algorithms POSS W-M-approx. and
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Fig. 3. Runtimes obtained when varying the number of cars of each color.

Fig. 4. Runtimes obtained when varying the number of lanes.

TABLE II
AVERAGE PERFORMANCE GAIN VS. BASELINE.

Varying POSS POSS POSS POSS
parameter W-A-M S-A-M W-M-approx. S-M-approx.
# red cars 95.98% 46.31% 51.58% 79.18%

# orange cars 96.02% 50.60% 56.78% 78.50%
# green cars 94.76% 43.90% 56.47% 80.28%

# lanes 96.17% 43.51% 59.77% 77.52%
Highw. len. 95.98% 60.61% 48.86% 80.90%

Fig. 5. Runtimes obtained when varying the highway length.

POSS S-M-approx. Inverted generational distance (IGD) and

hypervolume (HV) are two popular approaches for measuring

the solution quality of approximate algorithms for multi-

objective problems [38]. IGD measures the distance between

the objective values obtained by the approximate algorithm

and the values in the Pareto front (i.e., the set of objective

values corresponding to a set of Pareto-optimal feasible status

sets), and HV measures the diversity and convergence by

calculating the volume between the objective values obtained

from the approximate algorithms and specified reference

points. Here, our objective functions are weakly or strongly

anti-monotonic/monotonic, and the optimal objective values

do not vary much. Therefore, we use the IGD approach

to measure the quality of the solutions computed by our

approximate algorithms. Instead of simply calculating the

distance, we looked at the relative quality
value(objf ,Alg)

value(objf ,Baseline) ,

where value(objf ,Alg) is the value obtained for objective

function objf using Alg. Table III reports the average values

of the objective functions introduced above, when varying the

various parameters. The results show that both POSS W-M-

TABLE III
AVERAGE RELATIVE QUALITY VS. BASELINE.

LSP IS LANE SHIFT PENALTY, EMP IS EXIT MISS PENALTY,
AND CSP IS CHANGE SPEED PENALTY.

Varying POSS W-M-approx. POSS S-M-approx.
parameter LSP EMP CSP LSP EMP CSP

# red cars 64.0% 67.9% 77.4% 95.0% 98.1% 92.1%
# orange cars 66.2% 70.5% 75.3% 95.9% 99.0% 97.9%
# green cars 63.0% 61.8% 76.6% 83.6% 93.1% 76.5%

# lanes 62.9% 74.3% 60.0% 96.3% 97.5% 98.9%
Highw. len. 66.5% 64.4% 38.2% 98.4% 99.0% 88.5%

approx. and POSS S-M-approx. are able to provide good

quality solutions. The average relative quality using POSS W-

M-approx. ranged from 62.9% to 66.5% for LSP, from 61.8%

to 74.3% for EMP, and from 38.2% to 77.4% for CSP. POSS

S-M-approx. provided even better results—its average relative

quality ranged from 83.6% to 98.4% for LSP, from 93.1% to

99.0% for EMP, and from 76.5% to 98.9% for CSP. Compared

to a fully random approximation algorithm, the overall relative

quality provided by POSS W-M-approx. and POSS S-M-

approx. was much higher (on average, 34.6% for LSP, 32.9%

for EMP, and 42.6% for CSP).
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VIII. CHOOSING AN OPTIMAL FEASIBLE STATUS SET

There can be situations where the Pareto frontier contains

many Pareto-optimal status sets PF = {SS 1, . . . ,SSn}.
When this happens, the agent in question must choose one of

these status sets even though all of these are deemed optimal

according to the set of objective functions that were explicitly

stated. In this case, many solutions are possible. We briefly

discuss these below.

Random Choice. One possibility is for the agent to randomly

choose one of the SS j’s and take the actions articulated

therein. This method is fast and may be appropriate in cases

where the agent needs to act very quickly and a near real-time

choice must be made.

Weighted Objective Functions. [39], [40] have suggested that

a Pareto-optimal solution be chosen according to weights that

the system designer associates with each objective function.

In this case, we associate a score with each SS j in the Pareto

frontier which is set to a linear combination (using the weights)

of each objective function value. The SS j with the highest

score is then chosen.

Clustering-based Approaches. The clustering-based ap-

proach [40], [41], [42], [43] is also an important approach for

selecting Pareto-optimal solutions. [41], [42] develop theories

and procedures for selecting and clustering multiple criteria so-

lutions. They proposed that the mutually exclusive clusters are

determined by (i) the similarities between the solutions, and

(ii) the decision-maker’s preference structure. The procedures

for making a decision include (i) generating optimal solutions,

(ii) clustering solutions based on their similarities, and (iii)

selecting one or more solutions from each cluster. Specifically,

[41] used artificial neural networks (ANN) with variable

weights for clustering and then feedforward ANN for selecting

the best solution for each cluster. In their procedures [41],

[42], the decision-maker is actively involved by comparing and

contrasting solutions. [43] extended the clustering approaches

formalizing the concept of k representative points of the Pareto

front, where Pareto optimal solutions are clustered, and then

the Pareto frontier is divided into k clusters. The k-means

algorithms are used in [40], [43] for clustering. Recently, a

graph-theoretical clustering approach was proposed for finding

a reduced set of Pareto optimal solutions [44], where they

construct a contact network by mapping each point in the

objective space to a node, and connecting nodes that are within

a certain distance of each other. One way to use the idea

of clustering is to use an off-the-shelf clustering algorithm

to cluster PF . Within a cluster CLh ¦ PF , we choose the

status set SS [h] ∈ CLh that minimizes the distance to the

other members of the cluster (according to a selected distance

metric). Such a status set would be like a pseudo-centroid

for that cluster. We can then create a graph whose nodes are

these pseudo-centroids and whose edges are labeled according

to the distance metric and choose the pseudo-centroid with

the highest centrality (e.g., betweenness centrality [45] or

Pagerank [46]).

IX. LIMITATIONS AND FUTURE WORK

We now describe a few limitations of our work that can also

lead to potential future work.

Scalability. In the real-world, there can be thousands of agents

(e.g., thousands of cars on a single highway or road at a given

point in time) and the responses to the actions of other cars

has to be done at lightning speed. While the experiments show

that POSS can be solved in 200 milliseconds to 1 second

in several cases, there are some important cases where the

computation time can be a few seconds. Fast approximation

algorithms that provide solutions within milliseconds, yet are

guaranteed to be within some approximation error bound of

the optimal solution, need to be developed.

Scalable Choice of a Pareto-Optimal Status Set. One of the

strengths of this paper is that we can find a Pareto-Optimal Sta-

tus Set without computing the entire Pareto frontier. Though

we have outlined some methods to choose from a Pareto

frontier in Section VIII, it is important to adapt our proposed

algorithms to find such Pareto-Optimal Status Sets without

computing the entire Pareto frontier as that could compromise

scalability. We also need to look at methods to extend the

approximation algorithms mentioned above to this case.

Error-Tolerance. When multiple agents are operating in the

real world, there will be noise and errors, e.g., errors due to

sensor malfunction and/or due to communication latency or

dropped packets between agents. What does it mean for a

Pareto-Optimal Feasible Status Set to be robust to some kind

of noise or error? How should our algorithms be changed

in order to achieve such robustness without compromising

scalability? It is critical to investigate this question further.

Long-Horizon Decision Making. Our proposed approach can

effectively find a POSS for the next time step. It is worth

investigating how to extend our approach for long-horizon

decision making to improve the overall quality of the solution,

considering potential actions of other agents, but without

compromising scalability.

X. CONCLUSIONS

In this paper, we have developed the concept of a multi-

agent system in which multiple agents each try to optimize

multiple objectives in accordance with an input set of behav-

ioral models and objectives. We specified the behavioral con-

straints in a high-level deontic logic, so that users and appli-

cation developers can express their desired logical constraints

easily in symbolic form, while simultaneously expressing their

objective functions numerically. Our agents can work with any

behavior model expressed in the deontic logic used here and

any set of objective functions.

This paper makes several novel contributions. It is the first

paper to consider multiple objective functions when deciding

what actions a deontic logic agent should take. Second, we

are the first to show co-NP-hardness of deciding whether a

given status set is a POSS. Third, we are the first to develop

(multiple) algorithms for solving the POSS problem both

exactly as well as approximately under varying assumptions on

the form of the objective functions and conducted an extensive

set of experiments.

While there are opportunities for future research as dis-

cussed in Section IX, our work represents a first contribution

to the science that integrates deontic logic for high level
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reasoning and Pareto optimization methods for lower-level rea-

soning, which can be applied in several real-world applications

involving multiple agents.
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APPENDIX: PROOFS

Proof of Proposition 3. In the following, the worst-case time

complexity is always understood. Lines 1–4 can be executed

as follows: the status atoms in SS are sorted by their action

α, and then the resulting sorted list is scanned checking the

condition of the for each loops for each traversed element—

checking such a condition for a single element can now be

done in constant time, since there is a constant number of

status atoms with the same action. Assuming that the addition

of a new element to SS takes constant time (e.g., using a list),

the overall time taken by lines 1–4 is O(|SS | · lg |SS |). The

same reasoning applies to lines 5–6, even though the updated

set SS needs to be traversed, whose cardinality is at most

three times the cardinality of the original set SS , and thus the

overall time taken by lines 5–6 is O(|SS | · lg |SS |) too.

On line 7, condition (i) can be checked in O(|SS | · lg |SS |)
time (again, by first sorting SS as discussed above), while

condition (ii) can be checked in O(|SS | · |St|) time (here we

are considering the size of Pre(α) to be a constant, as the set

of actions is fixed). Line 8 takes constant time.

Line 9 takes O(|SS | · ||DC ||) time. Lines 10–11 take

constant time.

We now consider lines 12–26, which consist of two nested

loops. The number of times lines 15–25 are executed is

O(|A| · gP ), because the outer loop can make at most |A|
iterations, and the inner loop clearly makes gP iterations.

Let us focus on the complexity of lines 15–25 (when ex-

ecuted once). Line 15 takes constant time. Line 16 takes

O(χP · |St| + bP · |SS
′|) time. Lines 17–21 take constant

time (again, here we consider an addition to SS ′ to take

constant time). On line 22, condition (i) can be checked in

O(|SS ′| · lg |SS ′|) time, while condition (ii) can be checked

in O(|SS ′| · |St|) time. Line 23 takes constant time. Line 24

takes O(|SS ′| · ||DC ||) time. Line 25 takes constant time. So,

the overall time complexity of lines 12–26 is O(|A| ·gP · (χP ·
|St|+bP · |SS

′|+ |SS ′| · lg |SS ′|+ |SS ′| · |St|+ |SS
′| · ||DC ||)),

which can be rewritten as O(|A| ·gP · (χP · |St|+ |SS
′| · (bP +

lg |SS ′|+ |St|+ ||DC ||))). Notice that |SS ′| is O(|A|). Thus,

the overall time complexity of lines 12–26 can be rewritten as

O(|A| · gP · (χP · |St|+ |A| · (bP + lg |A|+ |St|+ ||DC ||))).
Line 27 takes constant time.

From the analysis above, the worst-case time complexity

of Algorithm 1 is O(|A| · gP · (χP · |St|+ |A| · (bP + lg |A|+
|St|+ ||DC ||))). 2

Proof of Proposition 4. In the following, the worst-case

time complexity is always understood. The worst-case time

complexity of line 2 is as per Proposition 3. Lines 3–4 take

constant time. Lines 5–7 take O(|A| · (|St| + gP )) time,

since the cardinality of LSS is O(gP ). Notice that |SA|
is O(|A|). Line 8 takes constant time. Checking whether a

status set SS is feasible as per Definition 1 takes O(|SS | ·
lg |SS | + |SS | · |St| + gP · (|St| · χP + |SS | · bP ) + |SS | ·
||AC || + |St| · ||IC || + fconc(|SS |, |St|)) time. Lines 9–11

take O(2|A| · (|A| · lg |A| + |A| · |St| + gP · (|St| · χP +
|A| · bP ) + |A| · ||AC || + |St| · ||IC || + fconc(|A|, |St|)))
time, since, for any status set SS s.t. LSS ¦ SS ¦ SA,

we have |SS | = O(|A|). Lines 12–13 take constant time.

Lines 14–15 take O(22|A| · fOF (|A|)). From the analysis

above, the overall (worst-case) time complexity of Algorithm 2

is O(|A|2 · gP · ||DC ||+ 22|A| · fOF (A) + 2|A| · (|A| · lg |A|+
|A| · |St|+gP ·(|St| ·χP + |A| ·bP )+ |A| · ||AC ||+ |St| · ||IC ||+
fconc(|A|, |St|))), where |A|2 · gP · ||DC || is the part of the

complexity of Algorithm 1 (see line 2) that is not dominated

by the complexity of the rest of Algorithm 2. 2
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