Declarative Logic-based Pareto-Optimal
Agent Decision Making

Tonmoay Deb, Mingi Jeong, Cristian Molinaro, Andrea Pugliese,
Alberto Quattrini Li, Eugene Santos Jr., V.S. Subrahmanian, Youzhi Zhang

Abstract—There are many applications where an autonomous
agent can perform many sets of actions. It must choose one set
of actions based on some behavioral constraints on the agent.
Past work has used deontic logic to declaratively express such
constraints in logic, and developed the concept of a feasible status
set (FSS), a set of actions that satisfy these constraints. However,
multiple FSSs may exist and an agent needs to choose one in
order to act. As there may be many different objective functions
to evaluate status sets, we propose the novel concept of Pareto-
optimal feasible status sets or POSS. We show that checking if a
status set is a POSS is co-NP-hard. We develop an algorithm to
find a POSS and in special cases when the objective functions are
monotonic (or anti-monotonic), we further develop more efficient
algorithms. Finally, we conduct experiments to show the efficacy
of our approach and we discuss possible ways to handle multiple
Pareto-optimal Status Sets.

I. INTRODUCTION

Autonomous agents are becoming increasingly important in
the real-world. A good example is self-driving cars (SDC for
short) where agents already control several functions, such as
lane changes and speed changes in Tesla vehicles [1]. Another
example involves proposals for nuclear power plants involving
agents that can increase coolant pressure, temperature, and
more [2]. Autonomous agents are also being proposed for use
with implantable medical devices [3]. These are critical appli-
cations. They are characterized by certain common features:
Declarative Operating Rules. The agents involved need to
take actions while respecting declaratively specified behavioral
requirements, i.e., the desired behavior should be specified in
an easy to understand high-level language such as logic, not
code specifying how that desired behavior is to be accom-
plished. For instance, a self-driving car should be forbidden
to move into a lane when the location it is moving to is going
to be occupied by another vehicle. It may be obligatory for
an autonomous agent to shut off certain processes when the
coolant level in a power plant drops below some threshold. An
agent managing an implantable device may be permitted but
not obliged to warn the user when there is a danger of a non-
life threatening malfunction. All such behavioral requirements
should be stated in a declarative language that is easy to
understand for domain experts.

T. Deb and V.S. Subrahmanian are with Northwestern University, USA

M. Jeong, A. Quattrini Li, and E. Santos Jr. are with Dartmouth College,
USA.

C. Molinaro and A. Pugliese are with University of Calabria, Italy.

Y. Zhang is with the Centre for Artificial Intelligence and Robotics, Hong
Kong Institute of Science & Innovation, Chinese Academy of Sciences.

Concurrent Actions. The agents may perform zero, one or
more actions simultaneously, e.g., shut off a process, send
messages to other agents and/or human users.

Constraints on Actions. There are constraints on sets of
actions that can be done concurrently, e.g., coolant pressure
cannot be increased and decreased at the same time. Certain
combinations of actions may lead to impossible or undesirable
states (e.g., one where there is a nuclear leak). Such constraints
can be expressed easily in high-level logical languages.
Autonomy. The agents are autonomous, i.e., they can make
a conscious choice between different sets of actions that they
can take at a given time.

Multiple Objectives. The agents may measure the desirability
of a set of actions along multiple dimensions, e.g., annoyance
to user if she gets too many alerts, maximizing safety of the
environment considered, cost, time, and more.

Deontic logic [4], [5] has been studied for more than 50
years. It extends classical logic to support reasoning with the
effects of actions on the state of the world. In multi-agent
applications, agents should operate under certain behavioral
constraints. In self-driving cars, for instance, agents should
obey the rules of the road. They may be permitted to do
certain things in some conditions, forbidden from doing things
in other conditions, obliged to do some things in yet other
circumstances, and more. Deontic logic therefore studies the
permissions, obligations, and forbidden modalities and devel-
ops the logical foundations of their interactions both with each
other, with classical logic and actions.

A declarative deontic logic framework within which we can
express what the agent is permitted to do, obliged to do, and
forbidden to do in various situations has already been pro-
posed by [6], [7]. Their “IMPACT” framework defines “agent
programs” that encode desired declarative agent behaviors, the
syntactic concept of a status set, and the semantic concept of
a feasible status set (FSS). Intuitively, an FSS captures a set
of actions that the agent can perform, compatible with its op-
erating rules, constraints on actions, concurrency constraints,
and the deontic logic modalities. IMPACT was shown in [§]
to support easy articulation of desired high-level behavioral
requirements for 3 broad applications: transportation, supply
chain management, and an online store. However, IMPACT
does not incorporate any objective functions. Subsequently,
[9] proposed the concept of optimal status sets in which an
agent can choose a feasible status set (and hence a set of
actions to perform) that optimizes a single objective function,
but multiple objective functions are not allowed.

Real world agents may consider many factors. A nuclear

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/TCYB.2024.3394316

power monitoring agent may wish to minimize the number of
alerts sent to the engineering team while simultaneously max-
imizing safety. This requires consideration of two orthogonal
but incomparable objective functions. In general, no single
solution might simultaneously optimize all objective functions.
A typical approach to deal with this is Pareto-optimality [10]:
a solution is Pareto-dominated if there is another solution
that strictly improves some objective function value without
degrading the other objective functions’ values; and, a solution
is Pareto-optimal if it is not Pareto-dominated. The Pareto
frontier is the set of all Pareto-optimal solutions, all of which
are considered equally good. To the best of our knowledge,
the combination of logical methods and Pareto-optimality has
not been studied before.

In this paper, we combine deontic logic [11] and Pareto-
optimality. Specifically, we make the following contributions:

1) We propose the new concept of a Pareto-Optimal (Fea-
sible) Status Set, or POSS for short, which combines
deontic logic and Pareto optimality. It combines the
power of logic and the power of optimization. We show
that the problem of checking if a given status set is
Pareto-optimal is co-NP-hard, and it is co-NP-complete
under some reasonable assumptions.

2) We develop the first algorithm to find a POSS for a
given agent-state pair.

3) We develop the first algorithms to compute POSS’s
when the objective functions are monotonic (or anti-
monotonic).

4) We report on a prototype implementation of our frame-
work, showing that POSS works well on a realistic
collaborative SDC scenario, where we vary several pa-
rameters and assess their impact on performance.

The paper is organized as follows. Section II discusses
related work. Section III provides a motivating example of
a futuristic collaborative SDC scenario in which multiple cars
collaborate to achieve their objectives. Section IV provides a
brief overview of IMPACT [6], [7], [8]. Section V extends IM-
PACT so that agents consider multiple objective functions and
introduces Pareto-optimal (Feasible) Status Sets. It then studies
the complexity of the problem. Section VI presents exact and
heuristic algorithms to solve this problem. Section VII presents
an experimental assessment of these algorithms. Section VIII
discusses possible ways to handle the situation where a Pareto
front has multiple Pareto-optimal Status Sets. Section IX
describes limitations and outlook for future work. Section X
concludes the paper.

II. RELATED WORK

We build upon deontic logic based agents introduced by [6],
[8]. While there is plenty of previous work on multiagent
systems (e.g., see [12], [13], [14]), to the best of our knowl-
edge, there is only one effort [9] that tries to build agents
that optimize their actions in the presence of both deontic
behavioral rules and constraints. [9] is limited to one objective
function, while our approach can handle several. [15] proposes
the jJDALMAS system, which includes a preference structure
based on a theory of normative positions [16]. They consider

a partial ordering on actions to be taken by an agent, but do
not consider explicit numerical objective functions. [15] does
not consider objective functions. In addition, we develop novel
algorithms for weakly/strongly monotonic and anti-monotonic
objective functions, whereas neither [9] or [15] consider such
specialized objective functions.

[17] provides an excellent overview of logic-based agent
systems, but does not say much about deontic logic (except
for the jJDALMAS effort mentioned above) or optimization,
suggesting that there is a lot of room for work in this space.

There have been many numeric approaches to Pareto opti-
mization [18], [19], [20], [21], [22], [23] that do not involve
logic. All of these algorithms focus on searching for optimal
solutions over the feasible solution space, but they do not
consider how to generate feasible solutions over a logical
solution space, which is fundamental for the logical approach.
In multi-agent settings, [24] proposes a distributed approach
to find a Pareto-optimal solution. [25] looks at a very specific
scheduling problem where two agents compete to work on a
machine: one agent tries to minimize the number of delayed
jobs it initiated, while the other agent wants to maximize
a different quantity associated with its jobs. [26] studies a
similar situation. [27] combines deterministic policy gradients
with Pareto optimization to develop good recommender sys-
tems. [28] provides an excellent view of agent-based methods
for network traffic management. While these are important
efforts, none of them combine logic and optimization. The
behaviors of these agents are not declaratively specified and
in some cases, optimization focuses on very specific objective
functions. In contrast, we provide declarative deontic logic
based constraints' that are easy to explain to stakeholders and
show how our objective functions can be easily optimized. We
present different types of algorithms depending on the different
properties of the objective functions (e.g., no restrictions
on the objective function, weakly/strongly monotonic, and
weakly/strongly anti-monotonic). Additionally, we propose
approximation algorithms.

Future work could examine the use of probabilistic and/or
defeasible deontic rules in situations where there is uncertainty
about the state and/or where there is uncertainty in whether
certain behavioral norms can be relaxed [32], [33].

III. MOTIVATING EXAMPLE

Consider a divided highway as shown in Figure 1. Cars are
traveling from left to right on one side of the highway which
can be thought of as a matrix. For simplicity, in this example,

'A logical theory consists of a set of formulas (which include rules) in
logic. An interpretation is an assignment of truth values to atomic formulas.
A model of a logical theory is an interpretation that satisfies all the formulas
in the logical theory. We can therefore see an analogy between integer 0-1
constraints and logic. Just as numeric 0-1 constraints, such as z, + zp > 1,
constrain the space of solutions, logical formulas (including rules) constrain
the space of interpretations that can be models. For instance, considering the
logical formula (a V b), the models are the interpretations that make at least
one of a,b true. With the rule a — b acting as a constraint on the space
of interpretations, we limit interest to those interpretations that either make b
true or a false, or both. The articulation of how logical formulas and rules can
be viewed as constraints goes back several decades. We refer the reader to
[29], [30], [31] for a detailed exposition on why logical rules can be viewed
as constraints. That said, not all constraints can be viewed as logical rules.

}

<L
2 S >
(AN)
3
4 X X X EXIT: A, B X X X EXIT:B X

Fig. 1. A highway represented as a matrix (cars traveling from left to right).

the number of cars is fixed. Some cells are marked with an “X”
to indicate that there is no road there. Some cells are marked
“EXIT” to specify that there is an exit at that location. The
exit also shows the destination (location A or B). A car that
exits at location (4,4) can make it to both locations A and
B, while one that exits at (4,8) can only get to B. Initially,
the red car is traveling at 2 cells/second, while the green and
orange cars are traveling at 1 cell/second.

A. State

We assume the existence of an arbitrary but fixed logical
language within which the state can be expressed. We as-
sume readers are familiar with standard expressions such as
constants, variables, predicate symbols, atoms, and formulas
in logic [34]. Following Prolog convention [35], we denote
variables with upper case symbols—everything else will be
denoted via lower case symbols.

At any point ¢ in time, the state is a set of ground (i.e.,
containing constants only) logical atoms. In our motivating
example, we use atoms of the following form:

1) at(car,z,y,t) describes the location (z,y) of a car at
time ¢, e.g., at(red,1,1,1) says that at time 1, the red
car is at location (1,1).

2) speed(car,s,t) is the speed of a car at time ¢, e.g.,
speed(red,2,1) says that at time 1, the red car is
traveling at 2 cells/second.

3) dest(car,loc) specifies the destination of a car, e.g.,
dest(red, B) says that the red car’s destination is B.
This means the red car can take either exit in Figure 1.

4) exit(y,loc) specifies where there is an exit and the
location it leads to, e.g., exit(8, B) says that there is
an exit to B at location (4,8) (for simplicity, in this
example, we assume exits are always in the bottom lane
which is why the x value is not explicitly stated).

The table below shows the initial state Sy of our running
example—additionally, the initial state stores information on
two exits at locations (4, 4) and (4, 8) leading to A, B and B,
respectively. All three agents know this initial state.

car at speed | dest
red (1,1) 2 B
green | (2,2) 1 A
orange | (3,2) 1 B

Furthermore, we assume the existence of a derived predicate
pred_at(car, z,y, t+t') that predicts the location (z, y) of car
at time ¢ + ¢/, assuming inertia, i.e., that the car continues at
its current speed without making any changes. This predicate
can be readily derived from the at and speed predicates.

B. Agent Actions

We assume the existence of a language with a set of action
symbols, which generate action atoms (or simply actions)
using the constants and variables from the language used to
express a state above. In our motivating example, the cars are
capable of taking the following actions:

1) accel(car, s1,s2,t) says car accelerates from speed s;
to sy at time t. Here s1 < so.

2) decel(car, s1, s9,t) says car decelerates from speed s;
to so at time ¢. Here s1 > so.

3) continue(car,t) keeps car going at its current speed
at time ¢. So if the red car executes the action
continue(red, 1) at time 1, it will end up at location
(1,3) at time 2.

4) go_left(car,t) moves car one lane to the left. So if the
green car performs this action in its initial state, then
it will end up at time 2 at (1,3) (which would lead to
a collision if the red car performed the action in the
preceding bullet).

5) go_right(car,t) moves car one lane to the right. So if
the green car performs this action in its initial state, then
it will end up at time 2 at (3, 3) (which would lead to a
collision with the orange car if that car were to execute
the “continue” action at time 1).

6) exit(car,x,y,t) says car is going to exit the highway
at location (x,y) at time ¢.

7) req(carl, car2,action,t) says that carl requests car2
for permission to perform action at time ¢. For instance,
req(green, red, go_left(green,2,2,1,1),1) has green
telling red that it would like to shift lanes to the left
at time 1 from location (2,2) going to a current speed
of 1. This is like a turn signal. But green can perform
this action only if red responds that it will slow down
or shift to the right in order to avoid a collision.

8) ok(carl, car2,action,t). Here car2 agrees to the re-
quest by car! to perform action at time ¢.

9) deny(carl, car2,action,t) is the opposite situation:
car?2 does not agree to the request by carl to perform
action at time .

Assumption. Without loss of generality, we assume that one
tick of time is enough for a car to make a request and receive
a response and take an action.’

Each action « has a precondition Pre(«) which is a logical
condition, an add list Add(«), and a delete list Del(a), both
of which are sets of ground atoms. Action « is executable in
state Sy if Pre(«) is true in S;—if it is executed, then Del(«)
is deleted from S; while Add(«) is added to S; in order to
yield the new state.

As an example, for the action o = accel(car, s1, s2,t), we
have Pre(a) = speed(car,s1,t) & (s1 < s2), Del(a) =
speed(car, s1,t), and Add(a) = speed(car, s2,t + 1).

Autonomy. Cars can make decisions autonomously. One car
may deny (or not respond) to a request from another car.

2One time unit ¢ can be thought as having three parts: by (¢ +0.33), a car
sends one or more messages to other cars, by (t+0.67) it receives responses,
and it decides what to do before (¢ + 1) and does it exactly at (¢ + 1).

Collaboration. The messaging actions (req, ok, deny) en-
able agents to collaborate.

In general, we assume that an application domain has an
associated set of action symbols and that we can define a
notion of (ground) action atoms in the usual way [8], [36],
[37]. The above shows a specific set of action symbols and
action atoms in our running SDC example.

IV. BACKGROUND: IMPACT AGENTS

We assume that arbitrary but fixed sets of actions and
predicate symbols describing the state have been chosen as
illustrated via the SDC example in the preceding section.

A. Agent Program

Every agent has an associated “agent program” that governs
what the agent can and cannot do. In this section, we recall
these definitions from [8]. If « is an action, then Fa, Pa, O,
Do« are status atoms indicating that an action is forbidden,
permitted, obligatory, and to be done, respectively.

An operating rule (or just rule) is an expression of the form

SA+ y & SA; & ... & SA,

where SA,SA;,...,SA, are status atoms and x is a logical
condition (expressed using the predicate symbols). Intuitively,
this rule says that if x is true in the current state and if status
atoms SA;,...,SA, are all true, then SA must also be true.
These rules impose constraints—for example, the rule Fa
Dof imposes the logical constraint that if action § is done,
then action « is forbidden.
An agent program is a finite set of rules.

Example 1. The red car’s allowed behavior can be expressed
by the rules reported in Figure 2.

Paccel(red, S1,52,T) <+ 1<S52<3.
Pcontinue(red, T) <+ speed(red,S,T)&1< S <3
Pdecel(red, S1,52,T) <+ 1<52<3.
Faccel(red, S1,52,T) <+ 52> 3.
Fdecel(red, S1,S52,T) <« S2<1.
Fcontinue(red,T) <« speed(red,S,T)& S > 3.
Fcontinue(red, T) < speed(red,S,T)& S < 1.
Pexit(red, 4,4, T) < at(red,3,4,T).
Pexit(red, 4,8, T) <+ at(red,3,8,T).
Fgo_left(red,T) <+ at(red, X,Y,T)& X = 1.
Fgo_right(red,T) <+ at(red, X,Y,T)& X = 3.
Pgo_left(red, T) <+ at(red, X, Y, T)& X > 1.
Pgo_right(red, T) <+ at(red, X,Y,T)& X < 3.
Odeny(Carl, red,
go_left(Car1, X,Y,S,T),T) <+ pred_at(red, X', Y', T +1)&

pred_at(Carl, X', Y', T+ 1) &
Doreq(Carl, red,
go_left(Car1,X,Y,S,T),T).

Fig. 2. Red car’s agent program.

The first seven rules say that the red car is allowed to have
a speed in the range [1,3]. This is a logical constraint which
ensures that the red car cannot have a speed outside such a
range. The next two rules say that the red car can take either of
the two exits on the highway (as both lead to its destination, B)
when it is near the exits. The following four rules say the car
cannot go left from the leftmost lane, nor can it go right from
the rightmost lane (exit action is not considered a right turn
but a different action), while it is permitted to go left (resp.,

right) when there is a lane on the left (resp., right). The last
rule for the red car exhibits selfish behavior. It always denies
requests that cause it to change its current behavior. All of
these rules thus operate as logical constraints on actions.

The agent program for the green car is identical to that of
the red car except for three differences: (i) it cannot reach a
speed greater than 2, (ii) it is obliged to take the first possible
exit, and (iii) the last rule makes the green car’s behavior
kinder and more cooperative as it is willing to adjust its own
behavior when other cars request a move.

The agent program for the orange car is identical to that
of the green car but it must stick to a constant speed of 1 and
it is permitted to exit at either of the two exits.

An agent program specifies constraints on the agent’s be-
havior: what the agent is obliged to do or forbidden from
doing in certain situations and what it is permitted but not
required to do. Of course, the precondition of any permitted
action must be true in a given state. Thus, these rules act as
logical constraints on the agent’s behavior.

B. Concurrent Action

An agent might choose to simultaneously do multiple things
in a given state (e.g., a car may both accelerate and change
lanes at the same time). In this case, we define a function
called conc(A, S;) which takes a set of actions A and state
S as input and returns a new state S;;1. [8] defines multiple
possible ways of defining concurrent action execution.

C. Integrity Constraints

We can also write a set of integrity constraints defining
valid states. Agents must not to take actions which would lead
to a state that violates the integrity constraints. For instance,
we would like an integrity constraint which says that an
agent must not enter the same place as another agent. In
general, an integrity constraint is either a denial constraint
or a definite constraint, which we define below. If A;,..., A,
are atoms (including atoms involving comparison operators),
then a denial constraint has the form

— A & & A,

This denial constraint says that not all of A, .
true in a given state. For example,

+— at(Carl , XY, T) & at(Car2, X,Y,T) & Carl # Car2

.., A, can be

is a denial constraint that says that two different cars cannot
be in the same place at the same time (as this would be a
collision). Many other denial constraints can be written for our
sample SDC scenario. Again, these are all logical constraints
on what can and cannot be done in a given state.

If Ag, Aq,..., A, are atoms (atoms involving comparison
operators are also allowed), then a definite constraint is an
expression of the form

Ao(—Al&&An

Intuitively, a definite constraint says that if A;,..., A, are
all true in a given state, then Ay must also be true in that

state. For example, the definite constraint Locl = Loc2 <
dest(Car, Locl) & dest(Car, Loc2) says that a given car has
only one destination.

D. Action Constraints

Finally,
logical constraints
same syntax of

we allow the specification of a form of
called action constraints with the
the integrity constraints previously
introduced, but involving action atoms instead of
ordinary atoms. For instance, in our SDC scenario,
+— go_left(Car,T) & go_right(Car,T) says that a car
cannot try to move both left and right at the same time,
+ accel(Car,S1,52,T) & decel(Car,S1,52',T) says it
cannot both accelerate and decelerate at the same time, and <+
ok(Carl, Car2, Action, T) & deny(Carl, Car2, Action,T)
says it cannot both OK and deny the same request.

E. Status Set Semantics

In this section, we describe the semantics of agent programs
from [6]. A status set SS is a finite set of ground status atoms.
There are many status sets that can be consistent with a given
state and a given agent program. We call such status sets
feasible and they are defined as follows.

Definition 1. A status set SS is feasible w.r.t. a state S;, an
agent program P, a set of integrity constraints IC, and a set
of action constraints AC, iff:

1) Oa e SS — Pa € SS;

2) Oa € SS — Doo € SS;

3) Do € SS — Pa € SS;

4) Pae SS — Fa ¢ SS;

5) Pa € SS — Pre(a) is true in Sy,

6) If SA«+ x & SA; & ... & SA,, is a ground instance of
an operating rule in the agent program P and x is true
in state Sy and {SA;,...,SA,} C SS, then SA € SS.

7) {«a | Do« € 5SS} satisfies the action constraints in AC;

8) If S; satisfies IC, then the new state conc({« | Do €
SS}, St) satisfies IC.

Given a set of numeric constraints, a ‘“solution” is an
assignment of values to the variables in those constraints that
ensures that all the numeric constraints are satisfied. Feasible
status sets are sets of ground status atoms which are assigned
a 0-1 truth value (those in the set are 1, those not in the set
are 0) which satisfy a given agent program in a given state.
Thus, the rules in the agent program and the state act as logical
constraints that determine which status sets are feasible and
which ones are not.

Example 2. Consider the (initial) state presented in Sec-
tion IlI-A, the red car agent program in Example 1, and the
integrity and action constraints discussed in Sections IV-C
and IV-D, respectively. Let’s focus on the red car. Suppose the
red car has not received any request by other cars, and conc
performs all actions in parallel determining the new positions
of the red car given its speed, lane, etc.

The status set SS consisting of the following status atoms
is feasible:
Paccel(red, 2,3,1), Pcontinue(red, 1), Pdecel(red, 2,1, 1),
Fgo_left(red, 1), Pgo_right(red, 1), Do continue(red, 1),
Faccel(red, S1,52,1) for every S1 and every S2 > 3,
Fdecel(red, S1,52,1) for every S1 and every S2 < 1.
In fact, as per Definition 1, the status set SS above satisfies
o Conditions 1)-4), which can be easily verified;
o Condition 5), assuming that for each Pa in SS, the
current state satisfies o’s preconditions;
e Condition 6), as each status atom that should be derived
from the agent program is indeed in SS;
o Condition 7), as all action constraints are satisfied by the
Do« status atoms in SS;
o Condition 8), as the new state satisfies the ICs.

V. PARETO-OPTIMAL (FEASIBLE) STATUS SETS

In any given state, an agent might have 0, 1, or several
feasible status sets. Each feasible status (FSS) set SS has an
associated set Do(SS) = {« | Do € SS} of actions to be
done if the agent chooses SS. Given an agent program, state,
action and integrity constraints, FSSs are like solutions, just as
sets of numeric constraints have solutions. Which FSS should
an agent choose and act in accordance with?

In our SDC scenario, there can be different criteria a car
might follow, e.g., a first criterion might minimize lane shifts
(to increase safety); a second criterion might be to leave the
highway at the exit closest to the destination. One feasible
status set 551 might have it stay in the current lane, feasible
status set SS9 might make the car change lane on the right
bringing it closer to the exit, while feasible status set SS3
might make the car change lane on the left, making it further
from the exit. Thus, SS; and SS5 are incomparable in that
SS1 optimizes the first criterion but not the second, while the
opposite holds for SS5. On the other hand, SS3 is strictly
worse than both SS; and SS5 and should be ruled out. Thus,
an agent may use one or more criteria to select which of the
several feasible status sets to base its actions on; such criteria
are expressed via objective functions, defined below.

Definition 2. An objective function objf is a mapping that
assigns a real number to any given feasible status set SS.
objf is said to be:

1) weakly monotonic iff for any pair SS1, 552 of feasible
status sets, SS1 C SS2 — 0bjf(SS1) < 0bjf(5S2);

2) strongly monotonic iff for any pair SS1, SS2 of feasible
status sets, {a|Doa € SS1} C {a| Do € 552} —
objf(551) < 0bjf(S5S2);

3) weakly anti-monotonic iff for any pair S51,S5S2 of fea-
sible status sets, SS1 C 5SS — 0bjf(SS2) < 0bjf(SS1);

4) strongly anti-monotonic iff for any pair S5S1,552 of
feasible status sets, {a|Doa € SS1} C {a | Doa €

In the previous definition, the higher objf(SS), the better
SS. As an example, an objective function that minimizes the
number of lane shifts is defined as follows:

objf(S8S) = —| {Do go_left(car,t) € SS} U
{Do go_right(car’,t') € SS}|.

We assume that each agent has an associated non-empty,
finite set OF of objective functions. An agent will act in
accordance with a feasible status set that is Pareto-optimal
w.r.t. this set of functions.

Definition 3. A feasible status set SS™ is Pareto-optimal w.r.1.
a set OF of objective functions iff there is no other feasible
status set SS such that for all objf € OF objf(SS) > objf(SS™)
and for some objf € OF objf(SS) > objf(55™).

It is important to note that the above definition is key—it
ties together the logical notion of a feasible status set (which
is like a “solution” over a numeric domain) with the numeric
notion of an objective function.

When only one objective function is present (i.e., |OF| = 1),
Pareto-optimality coincides with the classical formulation of
a (single objective function) optimization problem over the
logical domain. That is, an optimal solution is a solution such
that there is no other solution with a strictly better value for
the objective function. In fact, with only one objective function
objf, Definition 3 states that a feasible status set SS™ is Pareto-
optimal iff there is no other feasible status set SS such that
objf(SS) > objf(SS™).

In general, there could be zero, one, or many Pareto-optimal
feasible status sets. In this case, we can choose one in several
ways. One possibility is to choose any solution randomly—this
is what is done in classical numerical optimization. However,
additional options are also possible. We discuss these in
Section VIIIL.

We investigated the complexity of the central problem of
deciding whether a given status set is a Pareto-optimal feasible
status set. We start with the following proposition, which
establishes an upper-bound under reasonable conditions.

Proposition 1. If the agent program, the integrity constraints,
the action constraints, and the action predicate names are
fixed, and conc and the objective functions can be computed
in polynomial time, then deciding whether a given status set
SS is a Pareto-optimal feasible status set is in co-NP.

Proof. We first show that deciding whether a status set S5 is
feasible can be done in polynomial time under the assumptions
in the statement. Conditions 1)-5) of Definition 1 can be
clearly verified in polynomial time. Condition 6) can be
verified in polynomial time because the agent program is
fixed (and thus, there is a polynomial number of ground
instances of operating rules). Condition 7) can be verified
in polynomial time because the action constrains are fixed.
Condition 8) can be verified in polynomial time because
(i) conc can be computed in polynomial time, (ii) checking
constraint satisfaction can be done in polynomial time, since
the integrity constrains are fixed.

We now show that the complementary problem, that is,
deciding whether SS' is not a Pareto-optimal feasible status
set, is in NP. We first check whether SS is feasible; if not,
then answer yes. As shown above this check can be done in
polynomial time. If SS is feasible, then we guess a status
set SS’, and check that (i) SS’ is feasible, and (ii) for all
objective functions objf, objf(SS") > objf(SS), and for some
objective function objf, objf(SS’) > objf(SS). Check (i) can

be done in polynomial time, as shown above. Check (ii) can be
done in polynomial time because the objective functions can
be computed in polynomial time. Also, SS’ has polynomial
size, since the actions’ predicates are fixed. O

We now turn our attention to the lower-bound and show
that deciding whether a given status set is a Pareto-optimal
feasible one is co-NP-hard. In particular, co-NP-hardness
holds even if the agent program, the integrity constraints,
the action constraints (whose set is indeed empty), the action
predicate names, and conc are fixed, there is only one fixed
objective function, and conc and the objective functions can
be computed in polynomial time.

Theorem 1. Deciding whether a given status set is a Pareto-
optimal feasible status set is co-NP-hard.

Proof. We reduce the NP-hard 3-colorability problem to the
complement of our problem, that is, deciding whether a status
set SS is not a Pareto-optimal feasible status set. An instance
of 3-colorability is an undirected graph (V, E), for which it
has to be decided whether there exists a 3-coloring, that is, a
way of assigning exactly one of three colors to every vertex
in V' so that no two adjacent (w.r.t. E) vertices have the same
color. We derive an instance of the complement of our problem
as follows. The initial state is Sp = {vertex(v) | v € V} U
{edge(v,v") | (v,v") € E} U{color(cy), color(cz), color(cs)}.
The actions are as follows:

o« For v € V, we have action dummycol,(v,c;) with
Pre(dummycol,(v,¢1)) = true, Del(dummycol,(v,
c1)) =0, and Add(dummycol,(v,¢1)) = {dummycol(v,
¢1), colored(v)}.

o For v € V, ¢ € {¢1,c¢2,c3}, action coloring, (v, c) with
Pre(coloring,, (v, ¢)) = true, Del(coloring,(v,c)) = 0,
and Add(coloring, (v, c)) = {coloring(v, ¢), colored(v)}.

e For each v € V, action vertex,(v) with
Pre(vertex,(v)) = true, Del(vertex,(v)) = 0, and
Add(vertexq(v)) = {vertexs(v)}.

The agent program contains Do vertex,(X) <« vertex(X).
The integrity constraints are:

+ coloring(X, Cy) & dummycol(Y, C2)

+ edge(X,Y) & coloring(X, C) & coloring(Y, C)
<+ coloring(X, ¢1) & coloring (X, cz)

<« coloring(X, ¢1) & coloring(X, ¢3)

< coloring(X, ¢2) & coloring(X, ¢3)

colored(X) « vertex,(X)

The set of action constraints is empty. We also have
conc(A,St) = St \ (Ugena Pel(a)) U Uyea Add(a) and
objf(SS) = |{Docoloring,(v,c) € SS}|. The status set SS
contains Do vertex, (v), Pvertex,(v), Dodummycol,(v,c1),
P dummycol, (v, c1), for each v € V. We now show that
(V, E) has a 3-coloring iff SS is not a Pareto-optimal feasible
status set. First of all, we point out that SS is feasible and
objf(5S) = 0, which can be easily verified.

(=) Let ¢ : V. — {c1,c¢2,c3} be a 3-coloring of (V, E).
We first show that the following status set is feasible:

858" = U,ecy {Dovertex,(v), Pvertex,(v)} U

UveV{DO coloring,, (v, ¢(v)), P coloring,, (v, ¢(v))}

Conditions 1)-4) of Definition 1 are clearly satisfied by 55’.
Condition 5) is satisfied, as all action preconditions are trivially
true. Condition 6) is satisfied since for each vertex(v) in Sy,
Do vertex,(v) is included in SS’. Condition 7) is satisfied
because there are no action constraints. Let us now discuss
Condition 8). Notice that Sy satisfies the ICs. We need to show
that S; = conc({a|Doa € 55}, S,) satisfies the ICs. By def-
inition of conc, and the actions’ Del and Add sets, S; = SqU
{vertex;(v) | v € V} U,y {coloring(v, #(v)), colored(v) }.
Since ¢ is a 3-coloring, it can be easily verified that all ICs
are satisfied by S;. Hence, SS’ is a feasible status set and
objf(SS’") = |V|. W.lLo.g. we can assume the original graph
has at least one vertex and thus objf(SS’) > 1, and thus SS
is not Pareto-optimal.

(<) Suppose (V, E) has no 3-coloring. We show that there
is no feasible status set SS’ containing at least one status
atom of the form Do coloring,, (v, ¢)—which implies that SS is
Pareto-optimal. Reasoning by contradiction, suppose S5’ ex-
ists. In order for SS’ to be feasible, it must satisfy Condition 6)
of Definition 1, and thus SS’ must include {Do vertex,(v) |
v € V}. This means that the new state S; will include
{vertexs(v) | v € V'}, as per definition of conc and the Add
sets for vertex,(v) actions. In order for S to satisfy the last
IC, S; must include {colored(v) | v € V'}. Since S5’ includes
at least one status atom of the form Do coloring,(v,c), Si
includes coloring(v, ¢), and thus SS’ cannot include any status
atom of the form Dodummycol,(v’,c1), because otherwise
dummycol(v’, ¢1) would be in S violating the first IC. Thus,
the only way for S; to have an atom colored(v) for each
vertex v € V is that SS’ has at least one Do coloring,, (v, ¢)
status atom for each vertex v € V. Notice that each status
atom Do coloring,, (v, ¢) yields the atom coloring(v, ¢) in 5.
In order for S to satisfy the third to fifth ICs, .S; must contain
at most one coloring(v,c) atom for each vertex v. Thus, S}
contains exactly one coloring(v,c) atom for each vertex v.
Notice that S7 must satisfy also the second IC. Now it is easy
to see that the function assigning to each vertex v the color
c iff coloring(v, ¢) belongs to Sy is a 3-coloring, which is a
contradiction. O

From the results above, we get the following corollary.

Corollary 1. If the agent program, the integrity constraints,
the action constraints, and the action predicate names are
fixed, and conc and the objective functions can be computed
in polynomial time, then deciding whether a given status set
is a Pareto-optimal feasible status set is co-NP-complete.

VI. ALGORITHMS

In this section, we introduce several algorithms to compute
Pareto-optimal feasible status sets.

First, we present a “helper” algorithm (used by all other
algorithms) to compute the “closure” of a status set (Algo-
rithm 1). Then, we propose a baseline algorithm that can be
used with arbitrary sets of objective functions (Algorithm 2).
Next, we develop exact algorithms for weakly/strongly anti-
monotonic objective functions (Algorithms 3—4). These meth-
ods leverage anti-monotonicity to improve on the baseline.

Their basic idea is to traverse up a lattice of status sets in
a breadth-first fashion, where the lattice is defined w.r.t. set-
inclusion (resp., set-inclusion of Do« atoms) for weakly (resp.,
strongly) anti-monotonic objective functions. This strategy
allows the algorithms to start from the “smallest” possibly
feasible status sets, look for a Pareto-optimal feasible one,
and move to bigger status sets only if needed.

A similar idea can be applied to weakly and strongly
monotonic objective functions, but the lattice is traversed
downwards starting from the “biggest” possibly feasible status
sets. We found this strategy less effective compared to the anti-
monotonic case, because the biggest status sets to start from
may contain many contradictory status atoms (e.g., violating
action constraints) and moving to smaller feasible ones might
require traversing several levels of the lattice. For this reason,
with weakly/strongly monotonic objective functions, in order
to significantly improve on the baseline algorithm, we intro-
duced heuristics leading to the two approximation algorithms
presented in the following (Algorithms 5 and 6).

All algorithms in this section except for the “helper” one
take as input: a state .Sy, an agent program P, a set IC of
integrity constraints, a set AC' of action constraints, a conc
function, a set OF of objective functions, and a set A of ground
actions. Algorithms 5 and 6 have an additional input 7, which
is used for the heuristic search and will be discussed later.

A. Helper Algorithm

The Closure algorithm (cf. Algorithm 1) takes as input a
status set S5, a current state S;, an agent program P, and a
set DC' of denial action constraints. The goal of the algorithm
is to compute a status set that includes SS and satisfies
Conditions 1)-6) of Definition 1, as well as Condition 7) w.r.t.
denial action constraints only, if such a status set exists. If a
status set is returned, it might not be feasible, as Condition 7)
of Definition 1 w.r.t. definite action constraints, as well as the
last condition of Definition 1, still need to be verified.

The algorithm first “closes” S5 w.r.t. Conditions 1)-3) of
Definition 1 (lines 1-6). It then checks if Conditions 4), 5),
and 7) are all satisfied (lines 7-10). If any of them is
not satisfied, then L is returned. Otherwise, the algorithm
iteratively enforces Condition 6) of Definition 1 (lines 11—
26), thereby possibly deriving further ground status atoms.
While doing so, the algorithms enforces Conditions 1)-3) of
Definition 1 (lines 18-21) and checks that Conditions 4)-5)
and Condition 7) (w.r.t. the denial action constraints in DC') of
Definition 1 remain satisfied w.r.t. the ground status atoms that
are being derived (lines 22-25)—once again, if any condition
is violated, 1 is returned, otherwise the algorithms keeps
adding new ground status atoms until a fixpoint is reached
and the resulting set is returned (line 27).

It is worth noting that every ground status atom derived by
the algorithm must be in any status set SS’ extending SS in
order for SS’ to be possibly feasible. A status set returned by
the algorithm that satisfies also Condition 7) of Definition 1
w.r.t. all action constraints as well as Condition 8) is feasible.

The proposition below states an important property that will
be leveraged by the algorithms introduced in the following.

Algorithm 1 Closure

Input: A status set S5, a state S, an agent program P, and
a set DC of denial action constraints.
QOutput: A status set or L.
1: for each Oa € SS s.t. Pa ¢ SS do
2: Add Pa to SS.
3: for each O« € SS s.t. Doa ¢ SS do
4 Add Do« to SS.
5: for each Doa € SS s.t. Pa ¢ SS do
6.
7

: Add Pa to SS.
: if there exists « s.t. (i) {Pa,Fa} C SS or (i1) Pa € SS and
Pre(a) is false in S; then
8: return L.
9: if {a | Doa € 5SS} does not satisfy DC' then
10: return L.

11: 88" :=S8S.

12: repeat

13: 88" := 85"

14: for each ground rule r of P do

15: Let 7 be SA+ x & SA; & ... & SA,.

16: if is true in S; and {SA;,...,SA,} C SS’ then

17: Add SA to SS'.

18: if SA = O« then

19: Add Pa and Doa to SS’.

20: else if SA = Doa then

21: Add Pa to SS”.

22: if there exists a s.t. (i) {Pa,Fa} C SS’ or (ii) Pa €
SS’ and Pre(a) is false in S; then

23: return .

24: if {a | Do € 5SS’} does not satisfy DC' then

25: return .

26: until 5SS’ = 58"

27: return SS’.

Proposition 2. Ler LSS = Closure((),S;, P, DC) for any
status Sy, agent program P, and set of denial action con-
straints DC. If LSS = L, then there is no feasible status set.
If LSS # 1, every feasible status set (if any) contains LSS.

Proof. When Closure is called with SS = (, lines 1-10 have
no effect. Then, lines 11-27 are executed, enforcing Condi-
tions 1)-3) and 6) of Definition 1 by possibly deriving new
status atoms. Such status atoms must be necessarily contained
in any feasible status set containing the empty set, and thus
in every feasible status set (if any). Recall that lines 11-27
additionally check whether any of Conditions 4), 5), and 7)
of Definition 1 is violated. If a status set violates any of
such conditions, then every superset of it violates the same
conditions. Thus, Closure returns L when the set SS’ of status
atoms currently computed (which must be included in every
feasible status set, if any) violates any of Conditions 4), 5),
and 7) (which will be violated by every superset of SS’), that
is, there is no feasible status set. If Closure returns a status
set, the latter does not violate any of Conditions 4), 5), and 7)
and must be contained in every feasible status set, if any. [J

In the sequel, we use the following notation. For any
program P, we use gp (resp., xp, bp) to denote the number
of ground rules of P (resp., the maximum number of atoms in
the condition x of rules in P, the maximum number of status
atoms of rules in P). For any set of constraints C, we use ||C/|
to denote the overall number of atoms in C'. As customary, for

any set X, we use | X| to denote the cardinality of X. Finally,
we use A to denote the set of all ground actions.

Proposition 3. The worst-case time complexity of Algorithm 1
is O(JA|-gp - (xp - [Se| + Al - (bp + lg|A| 4 [Se| + [DC])))-

B. Baseline Algorithm

We now introduce a baseline algorithm (POSS baseline, cf.
Algorithm 2) to compute a Pareto-optimal feasible status set
(if one exists) with an arbitrary set of objective functions.

Given a set A of actions, we define SA(A) ={Opa | a €
A and Op € {F,P,0,Do}}.

Algorithm 2 POSS baseline

Input: A state S;, an agent program P,
a set IC' of integrity constraints,
a set AC of action constraints, a conc function,
a set OF of objective functions, and
a set A of ground actions.
Output A Pareto-optimal feasible status set or L.
: Let DC be the set of denial constraints in AC.
: LSS = Closure(0, S¢, P, DC).
: if LSS = L then
return L.
A:={a|ac Aand (Pre(a)is false in S; or Fa € LSS)}.
SA :=U,z{Doa, Oca,Pa}.
0 SA = SA(A) \ SA.
0

: for each SS s.t. LSS C SS C SA do
if SS is a feasible status set then
Add SS to S.
. if S = () then
return .
: else
return a Pareto-optimal (w.r.t. OF) element of S.

—_—— = ==
A e

The algorithm first calls the Closure algorithm with the
empty status set, the current state, the agent program, and the
denial action constraints in AC, thereby getting LSS (lines 1—
2). If LSS is L, then there is no feasible status set and
the algorithm returns | (lines 3-4). Otherwise, there might
exist feasible status sets, and if any exists it has to contain
LSS. For this reason, lines 1-4 will be replicated in all our
algorithms reported in the following. Thus, the algorithm looks
for feasible status sets that are a superset of LSS (lines 8-
11), and if none exists L is returned (lines 12-13), otherwise
a Pareto-optimal one is returned (lines 14-15). Moreover, a
simple pruning is applied when searching for feasible status
sets containing LSS. The algorithm ignores status atoms that
cannot be in any feasible status set (lines 5-7): these are the
Doa, Oa, and Pa status atoms for which Pre(«) is false in
the current state (see Conditions 1)-3) and 5) of Definition 1)
or Fa belongs to LSS (see Conditions 1)-4) of Definition 1).
Such a pruning will be applied by all algorithms presented in
the following as well.

Theorem 2. Algorithm 2 correctly computes a Pareto-optimal
feasible status set.

Proof. By Proposition 2, if LSS = L in line 3, then there is
no feasible status set and the algorithm correctly returns L.
Otherwise, by Proposition 2, LSS is a status set that must

be contained in every feasible status set, if one exists. The
algorithm looks for feasible status sets SS s.t. LSS C 5SS C
SA, and returns a Pareto-optimal one among them, if at least
one feasible status set has been found. So, to prove correctness,
we need to show that no feasible status set is missed by the
algorithm, that is, there is no feasible status set SS s.t. SS C
LSS or S§ 2 SA. Proposition 2 implies that there cannot
be any feasible status set SS s.t. SS C LSS. Notice that
each status atom Pa s.t. Pre(a) is false in S; or Fa € LSS
cannot be included in any feasible status set. For such P«
status atoms, the status atoms O« and Do« cannot be included
in any feasible status set too, because of Conditions 1) and 3)
of Definition 1. Thus, lines 5-7 safely disregard the status
atoms in SA, as they cannot belong to any feasible status set,
and hence there cannot be a feasible status set 5SS 2 SA. O

Proposition 4. The worst-case time complexity of Algorithm 2
is O(|A]? - gp - || DO|| + 2241 for(A) + 241 (|A] - lg|A| +
[Al-1Sel+gp- (IS¢ - xp+[Al-bp)+| Al [[AC][+[St| - [IC] |+
feonc(|A],1St]))), where for (resp., feonc) is the function
measuring the worst-case time complexity of evaluating the
objective functions in OF (resp., conc).

The numbers of cars and lanes affect number of rules in the
program and the size of the constraints (gp, ||IC||, || DC||) as
well as the number of actions (]A|). Such observations apply
also to the other algorithms presented in the following.

C. Weakly and Strongly Anti-Monotonic Algorithms

We propose algorithms to compute Pareto-optimal feasible
status sets in the presence of weakly (cf. Algorithm 3) and
strongly (cf. Algorithm 4) anti-monotonic objective functions.

Let us start with Algorithm 3. The basic idea of the

Algorithm 3 POSS weakly-anti-monotonic

Input: A state S, an agent program P,
a set IC' of integrity constraints,
a set AC of action constraints, a conc function,
a set OF of weakly anti-monotonic objective functions, and
a set A of ground actions.
Output A Pareto-optimal feasible status set or L.
: Let DC be the set of denial constraints in AC.
: LSS = Closure(0, S¢, P, DC).
if LSS = L then
return L.
A:={a|a € Aand (Pre(a) is false in S; or Fa € LSS)}.
SA :=U,z{Doc, Oa,Pa}.
: SA:= SA(A)\ (SAU LSS).
: Tolnspect := {LSS}.
: while Tolnspect # () do
10: Candidates := Tolnspect.
11: Tolnspect := ().
12: if Candidates has a feasible status set then

NeJ

13: return a Pareto-optimal (w.r.t. OF) feasible status set of
Candidates.

14: else

15: for each Cand in Candidates do

16: for each Op o € (SA\ Cand) do

17: if (Cand U {Op a}) ¢ Tolnspect then

18: Add Cand U {Op a} to Tolnspect.

19: return .

algorithm is to traverse a lattice (w.r.t. set-inclusion) of status

sets where the bottom element is the set LSS computed in
lines 1-2. In particular, the lattice is traversed upwards starting
from LSS in a breadth-first fashion. In lines 1-6, the algorithm
applies the same pruning discussed before for the baseline
algorithm. Then, SA consists of the status atoms that might
be added to LSS (line 7). In lines 818, the algorithm performs
the aforementioned traversal of the lattice, one level at a
time, starting from LSS, where each level is built by adding
one status atom to each status set of the previous level (see
lines 15-18). When a feasible status set exists in a level, a
Pareto-optimal one is returned, otherwise the next level is
considered. It is worth noting that each level is built only
if needed and the lattice is not entirely materialized at once,
which yields computational benefits in terms of both run time
and memory usage. Eventually, if no feasible status set has
been encountered, L is returned (line 19).

Theorem 3. Algorithm 3 correctly computes a Pareto-optimal
feasible status set.

Proof. The same argument in the proof of Theorem 2 applies
to lines 1-6 of Algorithm 3. Thus, the status atoms in LSS U
SA are the only ones that can possibly belong to a feasible
status set. It is easy to see that (in lines 8§-19) the algorithm
starts from LSS and then iteratively considers bigger status
sets, where at each iteration (of the while loop in lines 9-
18) status sets that are incomparable w.r.t. set-inclusion are
considered. At a generic iteration, if a feasible status is found
that is Pareto-optimal among those considered in that iteration,
then it must be Pareto-optimal also w.r.t. bigger status sets,
because objective functions are weakly anti-monotonic. O

Algorithm 4 deals with strongly anti-monotonic objective
functions, and behaves like Algorithm 3, except that the lattice
is built w.r.t. set-inclusion of Do« status atoms.

Theorem 4. Algorithm 4 correctly computes a Pareto-optimal
feasible status set.

Proof. The same argument in the proof of Theorem 3 applies,
noting that status sets are compared w.r.t. Doa status atoms,
because objective functions are strongly monotonic. O

The worst-case time complexity of Algorithms 3 and 4 is
the one stated in Proposition 4, as in the worst case, O(2|A|)
candidate status sets still need to be inspected. While this is
a theoretical analysis in the worst case, we will show in Sec-
tion VII that Algorithms 3 and 4 indeed provide computational
benefits over the baseline in practice.

D. Weakly and Strongly Monotonic Algorithms

In this section, we introduce approximation algorithms for
weakly and strongly monotonic objective functions.

Let us start with Algorithm 5, which deals with weakly-
monotonic objective functions. The basic idea is to start with
the biggest “possibly feasible” status sets, and then move
to smaller ones if needed (i.e., if no feasible status set has
been found). Lines 1-5 are analogous to the ones of the
algorithms discussed so far. In lines 6-14, the algorithm builds
the biggest possibly feasible status sets to start from, applying

Algorithm 4 POSS strongly-anti-monotonic

Algorithm 5 POSS weakly-monotonic-approximate

Input: A state S;, an agent program P,
a set /C of integrity constraints,
a set AC of action constraints, a conc function,
a set OF of strongly anti-monotonic objective functions, and
a set A of ground actions.
Output A Pareto-optimal feasible status set or L.
: Let DC be the set of denial constraints in AC'.
: LSS = Closure(0, S¢, P, DC).
if LSS = L then
return 1.
A:={a|ac€ Aand (Pre(a) is false in S; or Fa € LSS)}.
SA :=U,x{Doqa, Oc, Pa}.
0 SA:= SA(A)\ (SAU LSS).
: SA-Do := {Do« | Do € SA}.
: SA-FPO := SA\ SA-Do.
10: Tolnspect := {LSSU X | X C SA-FPO}.
11: while TolInspect # () do
12: Candidates := Tolnspect.
13: Tolnspect := (.
14: if Candidates has a feasible status set then

w“@?’.‘ﬂ?&’““

Ne]

15: return a Pareto-optimal (w.r.t. OF) feasible status set of
Candidates.

16: else

17: for each Cand in Candidates do

18: for each Doa € (SA-Do \ Cand) do

19: if (Cand U {Doa}) ¢ Tolnspect then

20: Add Cand U {Doa} to Tolnspect.

21: return .

different pruning strategies that rule out status sets that are
not feasible for sure. First, the algorithm rules out status
atoms of the form Oc«, Dow, and Pa for which Pre(a) is
not satisfied in the current state or Fa belongs to LSS—
moreover, for such actions «, all Fo status atoms are included,
as they will not conflict for sure with any Oc«, Doa, or Pa
status atom (line 6). Second, for actions « not satisfying the
aforementioned conditions, to construct the biggest status sets,
either {Fa} or {Oa,Doa, Pa} is considered (lines 7-14) to
avoid status sets that would not be feasible. The while loop
in lines 16-31 starts from the biggest status sets and moves
to smaller ones if no feasible one has been found. At each
iteration, only 7 (randomly picked) status sets from Tolnspect
are considered (see lines 17-18), where 7 is an additional input
of the algorithm. The status sets in Tolnspect that are not
chosen by the random sampling are still left in TolInspect for
later inspection. This allows the algorithm to move faster to
lower levels of the status set lattice, which pays off in terms of
running time, as we show in our experimental evaluation. Of
course, the algorithm might return sub-optimal feasible status
sets, because when a set of feasible status sets is considered
and a Pareto-optimal one is determined among them (lines 19—
20), some other better feasible status sets might have been
ignored (not being chosen by the random sampling).

Smaller status sets are built from the current ones by
deleting a single status atom (lines 23-30), following the
following criteria. A status atom of the form Do« is deleted
from a status set if the latter does not contain O« (lines 27—
28), because otherwise the deletion would yield a non-feasible
status set—see Condition 2) of Definition 1. Likewise, a status
atom of the form P« is deleted from a status set if the

Input: A state S;, an agent program P,
a set /C of integrity constraints,
a set AC of action constraints, a conc function,
a set OF of weakly monotonic objective functions,
a set A of ground actions, and
an integer 7 (number of samples for randomly picking).
QOutput: A feasible status set or L.
Let DC be the set of denial constraints in AC'.
LSS = Closure(®, S, P, DC).
if LSS = L then
__return L.
A:={a|ae€ Aand (Pre(a) is false in Sy or Fa € LSS)}.
. Tolnspect := {LSS U{Fa | a € A}}.
: for each o € (A\ A4) do
Tmp := (.
9: for each SS € Tolnspect do
10: if Pa ¢ SS then
11: Add SS U {Fa} to Tmp.
12: if Fa ¢ SS then
13: Add SS U {O«, Doc, Pa} to Tmp.
14: Tolnspect := Tmp.
15: Done := (.
16: while TolInspect # () do
17: Candidates := random(t, ToInspect).
18: Tolnspect := Tolnspect \ Candidates.
19: if Candidates has a feasible status set then

W N =

A

20: return a Pareto-optimal (w.r.t. OF) feasible status set of
Candidates.
21: else
22: for each Cand in Candidates do
23: for each Op a € Cand do
24: if Opa ¢ LSS and (Cand \ {Op a}) ¢ TolInspect
and (Cand \ {Op a}) ¢ Done then
25: if Op = O or Op = F then
26: Add Cand \ {Op a} to Tolnspect.
27: if Op = Do and Oa ¢ Cand then
28: Add Cand \ {Op a} to Tolnspect.
29: if Op = P and Oa € Cand and Doa ¢ Cand
then
30: Add Cand \ {Op a} to Tolnspect.
31: Add Candidates to Done.
32: return L.

latter contains neither O« nor Doa (lines 29-30), because
otherwise the deletion would yield a non-feasible status set—
see Conditions 1) and 3) of Definition 1. A status atom of the
form O« or Fa is deleted without checking further conditions
(lines 25-26), as their deletion does not yield violations of
Conditions 1)—4) of Definition 1. The algorithm returns L if
no feasible status set is eventually found (line 32).

Let us consider now Algorithm 6. The algorithm starts from
“possibly feasible” status sets containing as many Do« status
atoms as possible, which are collected into Tolnspect (lines 1—
9). The algorithm leverages the following ideas discussed
before: it moves to smaller status sets if no feasible one has
been found; it applies the sampling approach of Algorithm 5;
it reduces the number of status sets to be considered when
initializing TolInspect (in lines 7-9) and when a lower level
of the lattice has to be built (see lines 18-25).

The worst-case time complexity of Algorithms 5 and 6 is
the one stated in Proposition 4, as in the worst case, O(2/4/)
candidate status sets still need to be inspected. While this is a
theoretical analysis in the worst case, Section VII will show

that Algorithms 5 and 6 provide computational benefits over
the baseline in practice.

Algorithm 6 POSS strongly-monotonic-approximate

Input: A state S;, an agent program P,
a set IC' of integrity constraints,
a set AC of action constraints, a conc function,
a set OF of strongly monotonic objective functions,
a set A of ground actions, and
an integer 7 (number of samples for randomly picking).
Output: A feasible status set or L.
: Let DC be the set of denial constraints in AC.
: LSS = Closure(0, S¢, P, DC).
if LSS = L then
__return L.
A:={a|a€ Aand (Pre(a) is false in Sy or Fa € LSS)}.
A=A\ A
SA-DPO := |, 4 {Doc, Pa, Oa}.
. SA-F := {Fa | a € A}.
: Tolnspect := {LSS U SA-DPO U X | X C SA-F'}.
: Done := 0.
: while Tolnspect # () do
12: Candidates := random(r, ToInspect).
13: Tolnspect := Tolnspect \ Candidates.
14: if Candidates has a feasible status set then

A ol s

—_
— O O

15: return a Pareto-optimal (w.r.t. OF) feasible status set of
Candidates.

16: else

17: for each Cand in Candidates do

18: for each Doa € Cand do

19: if Do ¢ LSS then

20: if (Cand \ {Doa,Pa,0a}) ¢ Tolnspect and
(Cand \ {Doa, Pa, Oa}) ¢ Done then

21: Add Cand \ {Doa,Pa, Oca} to Tolnspect.

22: if (Cand\ {Doa, Oa}) ¢ Tolnspect and (Cand \
{Doc,0a}) ¢ Done then

23: Add Cand \ {Doc, Oa} to Tolnspect.

24: if ((CandU{Fa})\{Doca, Pa,Oa}) ¢ Tolnspect
and ((Cand U {Fa}) \ {Doc,Pa,O0a}) ¢ Done
then

25: Add (Cand U {Fa}) \ {Do«,Pa,Oa} to

Tolnspect.
26: Add Candidates to Done.
27: return L.

VII. EXPERIMENTAL ASSESSMENT

We varied the parameters reported in Table I, where the
default value we fixed for a parameter when varying another
parameter is highlighted in bold.

TABLE 1
VARYING PARAMETERS (DEFAULT VALUES IN BOLD).
Parameter Values
Number of red cars {1,10,20,30}
Number of orange cars {1,10,20,30}
Number of green cars {1,10,20,30}
Number of lanes {6,8,10} (plus exit lane)
Highway length {40, 60, 80, 100}

In addition:

e« We randomly picked the initial position of each car,
ensuring that (i) two cars are not in the same cell and
(ii) all initial positions are before the 10th cell.

o We fixed the speed of each car as follows:

— For red cars, randomly picking from {1, 2, 3}.
— For green cars: randomly picking from {1, 2}.
— For orange cars: equal to 1.

o We randomly picked the destination of each car from
{A,B,C,D,FE}.

o We fixed the number of exits to a tenth of the highway
length, with the first exit positioned at the 10th cell and
with a distance of 10 cells between two consecutive exits.

« We randomly picked the destinations associated with each
exit from {A, B, C, D, E'}, ensuring that each destination
has at least one associated exit.

o For the approximation algorithms, 7 was set to 10 (early
experiments showed this to be a good value).

e We used three objective functions: Lane Shift Penalty
(LSP), which penalizes lane shifts in a status set, Exit
Miss Penalty (EMP), which penalizes a status set that
makes cars miss the exit (in two time steps), and Change
Speed Penalty (CSP), which penalizes a status set that
does not speed up when the exit is too far or does not slow
down when the exit is very close. All objective functions
are weakly and strongly anti-monotonic; as weakly and
strongly monotonic objective functions, we used the same
ones but with a flipped sign.

All experiments were performed on a machine with 36 Intel
Core 19-10980XE CPUs, 256GB RAM, running Ubuntu 18.04.

A. Runtime

Figure 3 reports the average time needed to compute a
POSS when varying the number of cars of each color. In all
the figures, (i) POSS Baseline (M) and POSS Baseline (A-M)
correspond to Baseline using monotonic and anti-monotonic
objective functions, respectively, (ii) orange lines represent
algorithms using monotonic objective functions, and (iii)
blue lines represent algorithms using anti-monotonic objective
functions. The results show that the runtime of POSS W-A-
M is the best, followed by POSS S-M-approx. As POSS
W-A-M is an exact algorithm, this suggests that we should try
to convert true objective functions into similar weakly anti-
monotonic ones.

Figures 4 and 5 report the average time needed to compute a
POSS when varying the number of lanes and highway length.
Again, we see that POSS W-A-M is the fastest approach.

In all, we compared our 4 proposed algorithms with Base-
line (i) in 48 cases when varying the number of cars of each
color (4 algorithms x 4 parameter values x 3 colors), (ii)
in 12 cases when varying the number of lanes (4 algorithms
X 3 parameter values), and (iii) in 16 cases when varying
the highway length (4 algorithms x 4 parameter values).
The results show that (i) our proposed algorithms are faster
than Baseline in all of the 76 cases and (ii) on average,
our proposed algorithms run much faster than Baseline—see
Table II, where the performance gain of each algorithm Alg
is computed as 1 — #%.

B. Solution Quality for Approximate Algorithms

We also assessed the quality of the solutions computed
by our approximate algorithms POSS W-M-approx. and

—8—PO05S Baseline (A-M) —8—P0S5 W-A-M
—8—PO05S Baseline (M) —#—P0S5 W-M-approx.

5000

4000

3000

Runtime (ms)

2000

1000

0

5000

4000

3000

2000

1000

Runtime (ms)

7000
6000
5000
4000
3000
2000
1000

Runtime {ms)

Fig. 3. Runtimes obtained when varying the number of cars of each color.

=8==P05S Baseline (A-M) =8=P0SS W-A-M
=8=PQ05SS Baseline (M) =#=P0SS W-M-approx.

4000
3500
3000
2500
2000
1500
1000
500
0

Runtime (ms)

POSS S-A-M
POSS S-M-approx.

10

20

Number of red cars

//\
——

30

10

20

Number of orange cars

30

M

10

20

Number of green cars

30

POSS S-A-M
POSS S-M-approx.

6

8

Number of lanes (exit lane not included)

10

Fig. 4. Runtimes obtained when varying the number of lanes.

TABLE II
AVERAGE PERFORMANCE GAIN VS. BASELINE.

Varying POSS | POSS POSS POSS
parameter W-A-M | S-A-M | W-M-approx. | S-M-approx.
red cars 95.98% | 46.31% 51.58% 79.18%

orange cars | 96.02% | 50.60% 56.78% 78.50%
green cars 94.76% | 43.90% 56.47% 80.28%
lanes 96.17% | 43.51% 59.77% 77.52%
Highw. len. 95.98% | 60.61% 48.86% 80.90%

—8—P05S Baseline (A-M) —8=P0SS W-A-M POSS 5-A-M

—8—P05S Baseline (M) —#—P0SS W-M-approx. POSS 5-M-approx.
6000
5000
4000

3000

Runtime (ms)

2000

e

1000

0

40 60 80 100

Highway length

Fig. 5. Runtimes obtained when varying the highway length.

POSS S-M-approx. Inverted generational distance (IGD) and
hypervolume (HV) are two popular approaches for measuring
the solution quality of approximate algorithms for multi-
objective problems [38]. IGD measures the distance between
the objective values obtained by the approximate algorithm
and the values in the Pareto front (i.e., the set of objective
values corresponding to a set of Pareto-optimal feasible status
sets), and HV measures the diversity and convergence by
calculating the volume between the objective values obtained
from the approximate algorithms and specified reference
points. Here, our objective functions are weakly or strongly
anti-monotonic/monotonic, and the optimal objective values
do not vary much. Therefore, we use the IGD approach
to measure the quality of the solutions computed by our
approximate algorithms. Instead of simply calculating the
distance, we looked at the relative quality %,
where wvalue(objf,Alg) is the value obtained for objective
function objf using Alg. Table III reports the average values
of the objective functions introduced above, when varying the
various parameters. The results show that both POSS W-M-

TABLE III
AVERAGE RELATIVE QUALITY VS. BASELINE.
LSP 1S LANE SHIFT PENALTY, EMP 1s EXIT MISS PENALTY,
AND CSP 1s CHANGE SPEED PENALTY.

Varying POSS W-M-approx. POSS S-M-approx.
parameter LSP EMP CSP LSP EMP CSP
red cars 64.0% | 67.9% | 77.4% | 95.0% | 98.1% | 92.1%

orange cars | 66.2% | 70.5% | 753% | 95.9% | 99.0% | 97.9%
green cars | 63.0% | 61.8% | 76.6% | 83.6% | 93.1% | 76.5%

lanes 629% | 743% | 60.0% | 96.3% | 97.5% | 98.9%

Highw. len. 66.5% | 64.4% | 382% | 984% | 99.0% | 88.5%

approx. and POSS S-M-approx. are able to provide good
quality solutions. The average relative quality using POSS W-
M-approx. ranged from 62.9% to 66.5% for LSP, from 61.8%
to 74.3% for EMP, and from 38.2% to 77.4% for CSP. POSS
S-M-approx. provided even better results—its average relative
quality ranged from 83.6% to 98.4% for LSP, from 93.1% to
99.0% for EMP, and from 76.5% to 98.9% for CSP. Compared
to a fully random approximation algorithm, the overall relative
quality provided by POSS W-M-approx. and POSS S-M-
approx. was much higher (on average, 34.6% for LSP, 32.9%
for EMP, and 42.6% for CSP).

VIII. CHOOSING AN OPTIMAL FEASIBLE STATUS SET

There can be situations where the Pareto frontier contains
many Pareto-optimal status sets PF = {S551,...,5959,}.
When this happens, the agent in question must choose one of
these status sets even though all of these are deemed optimal
according to the set of objective functions that were explicitly
stated. In this case, many solutions are possible. We briefly
discuss these below.

Random Choice. One possibility is for the agent to randomly
choose one of the SS;’s and take the actions articulated
therein. This method is fast and may be appropriate in cases
where the agent needs to act very quickly and a near real-time
choice must be made.

Weighted Objective Functions. [39], [40] have suggested that
a Pareto-optimal solution be chosen according to weights that
the system designer associates with each objective function.
In this case, we associate a score with each SS; in the Pareto
frontier which is set to a linear combination (using the weights)
of each objective function value. The SS; with the highest
score is then chosen.

Clustering-based Approaches. The -clustering-based ap-
proach [40], [41], [42], [43] is also an important approach for
selecting Pareto-optimal solutions. [41], [42] develop theories
and procedures for selecting and clustering multiple criteria so-
lutions. They proposed that the mutually exclusive clusters are
determined by (i) the similarities between the solutions, and
(ii) the decision-maker’s preference structure. The procedures
for making a decision include (i) generating optimal solutions,
(i) clustering solutions based on their similarities, and (iii)
selecting one or more solutions from each cluster. Specifically,
[41] used artificial neural networks (ANN) with variable
weights for clustering and then feedforward ANN for selecting
the best solution for each cluster. In their procedures [41],
[42], the decision-maker is actively involved by comparing and
contrasting solutions. [43] extended the clustering approaches
formalizing the concept of k representative points of the Pareto
front, where Pareto optimal solutions are clustered, and then
the Pareto frontier is divided into %k clusters. The k-means
algorithms are used in [40], [43] for clustering. Recently, a
graph-theoretical clustering approach was proposed for finding
a reduced set of Pareto optimal solutions [44], where they
construct a contact network by mapping each point in the
objective space to a node, and connecting nodes that are within
a certain distance of each other. One way to use the idea
of clustering is to use an off-the-shelf clustering algorithm
to cluster PF. Within a cluster CL;, C PF, we choose the
status set SS[h] € CL; that minimizes the distance to the
other members of the cluster (according to a selected distance
metric). Such a status set would be like a pseudo-centroid
for that cluster. We can then create a graph whose nodes are
these pseudo-centroids and whose edges are labeled according
to the distance metric and choose the pseudo-centroid with
the highest centrality (e.g., betweenness centrality [45] or
Pagerank [46]).

IX. LIMITATIONS AND FUTURE WORK

We now describe a few limitations of our work that can also
lead to potential future work.

Scalability. In the real-world, there can be thousands of agents
(e.g., thousands of cars on a single highway or road at a given
point in time) and the responses to the actions of other cars
has to be done at lightning speed. While the experiments show
that POSS can be solved in 200 milliseconds to 1 second
in several cases, there are some important cases where the
computation time can be a few seconds. Fast approximation
algorithms that provide solutions within milliseconds, yet are
guaranteed to be within some approximation error bound of
the optimal solution, need to be developed.

Scalable Choice of a Pareto-Optimal Status Set. One of the
strengths of this paper is that we can find a Pareto-Optimal Sta-
tus Set without computing the entire Pareto frontier. Though
we have outlined some methods to choose from a Pareto
frontier in Section VIII, it is important to adapt our proposed
algorithms to find such Pareto-Optimal Status Sets without
computing the entire Pareto frontier as that could compromise
scalability. We also need to look at methods to extend the
approximation algorithms mentioned above to this case.
Error-Tolerance. When multiple agents are operating in the
real world, there will be noise and errors, e.g., errors due to
sensor malfunction and/or due to communication latency or
dropped packets between agents. What does it mean for a
Pareto-Optimal Feasible Status Set to be robust to some kind
of noise or error? How should our algorithms be changed
in order to achieve such robustness without compromising
scalability? It is critical to investigate this question further.
Long-Horizon Decision Making. Our proposed approach can
effectively find a POSS for the next time step. It is worth
investigating how to extend our approach for long-horizon
decision making to improve the overall quality of the solution,
considering potential actions of other agents, but without
compromising scalability.

X. CONCLUSIONS

In this paper, we have developed the concept of a multi-
agent system in which multiple agents each try to optimize
multiple objectives in accordance with an input set of behav-
ioral models and objectives. We specified the behavioral con-
straints in a high-level deontic logic, so that users and appli-
cation developers can express their desired logical constraints
easily in symbolic form, while simultaneously expressing their
objective functions numerically. Our agents can work with any
behavior model expressed in the deontic logic used here and
any set of objective functions.

This paper makes several novel contributions. It is the first
paper to consider multiple objective functions when deciding
what actions a deontic logic agent should take. Second, we
are the first to show co-NP-hardness of deciding whether a
given status set is a POSS. Third, we are the first to develop
(multiple) algorithms for solving the POSS problem both
exactly as well as approximately under varying assumptions on
the form of the objective functions and conducted an extensive
set of experiments.

While there are opportunities for future research as dis-
cussed in Section IX, our work represents a first contribution
to the science that integrates deontic logic for high level

reasoning and Pareto optimization methods for lower-level rea-
soning, which can be applied in several real-world applications
involving multiple agents.

ACKNOWLEDGMENTS

We thank the reviewers for their very helpful com-
ments. Subrahmanian was partly funded by ARO Grant No.
WOI11NF2320240 and ran some experiments using equipment
funded by ONR Grant No. N00014-20-1-2407. Jeong and
Quattrini acknowledge NSF grants 1923004 and 2144624.
Molinaro and Pugliese acknowledge support from Project
SERICS (PE00000014) funded under the MUR National Re-
covery and Resilience Plan by the European Union — NextGen-
erationEU. Zhang is supported by the InnoHK Fund.

APPENDIX: PROOFS

Proof of Proposition 3. In the following, the worst-case time
complexity is always understood. Lines 1-4 can be executed
as follows: the status atoms in SS are sorted by their action
«, and then the resulting sorted list is scanned checking the
condition of the for each loops for each traversed element—
checking such a condition for a single element can now be
done in constant time, since there is a constant number of
status atoms with the same action. Assuming that the addition
of a new element to SS takes constant time (e.g., using a list),
the overall time taken by lines 1-4 is O(|SS] - lg|SS|). The
same reasoning applies to lines 5-6, even though the updated
set SS needs to be traversed, whose cardinality is at most
three times the cardinality of the original set SS, and thus the
overall time taken by lines 5-6 is O(|SS| - lg|SS]) too.

On line 7, condition (i) can be checked in O(|SS| - lg|SS])
time (again, by first sorting SS as discussed above), while
condition (ii) can be checked in O(]|SS] - |S¢|) time (here we
are considering the size of Pre(«) to be a constant, as the set
of actions is fixed). Line 8 takes constant time.

Line 9 takes O(]|SS]| - ||DC||) time. Lines 10-11 take
constant time.

We now consider lines 12-26, which consist of two nested
loops. The number of times lines 15-25 are executed is
O(]A4] - gp), because the outer loop can make at most |A|
iterations, and the inner loop clearly makes gp iterations.
Let us focus on the complexity of lines 15-25 (when ex-
ecuted once). Line 15 takes constant time. Line 16 takes
O(xp - |S¢| + bp - |SS’|) time. Lines 17-21 take constant
time (again, here we consider an addition to SS’ to take
constant time). On line 22, condition (i) can be checked in
O(|SS’| - 1g|SS']) time, while condition (ii) can be checked
in O(|SS’| - |S¢|) time. Line 23 takes constant time. Line 24
takes O(|SS’|-||DC||) time. Line 25 takes constant time. So,
the overall time complexity of lines 12-26 is O(|A|-gp - (xp -
Sl +0p - [SS'|+8S"|- 1g]SS"|+ 98] - |Se| + 185" [| DCY|)),
which can be rewritten as O(|A|-gp - (xp - |S¢| +|SS’| - (bp +
1g|SS’| + |S¢| + ||DC|))). Notice that |SS’| is O(|Al). Thus,
the overall time complexity of lines 12-26 can be rewritten as
O(Al-gp - (xp - Si] + Al (bp + lg| Al + |S:] + [DC]]))).

Line 27 takes constant time.

From the analysis above, the worst-case time complexity
of Algorithm 1 is O(|A[- gp - (xp - [St| +[A] - (bp + lg|A| +
|Se] +[IDCT))). O

Proof of Proposition 4. In the following, the worst-case
time complexity is always understood. The worst-case time
complexity of line 2 is as per Proposition 3. Lines 3—4 take
constant time. Lines 5-7 take O(|A| - (|S¢| + gp)) time,
since the cardinality of LSS is O(gp). Notice that |SA|
is O(|A|). Line 8 takes constant time. Checking whether a
status set SS is feasible as per Definition 1 takes O(|SS] -
lg|SS| + |SS] - |Se| + gp - (ISe] - xp + |8S] - bp) + [SS] -
IAC| + [Se| - [ITC]| + feonc(ISS], |S[)) time. Lines 9-11
take O(241 - (|A| - lg|A] + [A] - |Si] + gp - (ISi] - xp +
A - bp) + A - JAC| + |Si] - |[IC]| + feone(|AL,1S4])))
time, since, for any status set SS s.t. LSS C SS C SA,
we have |SS| = O(|A]). Lines 12-13 take constant time.
Lines 14-15 take O(2241 . for(]A])). From the analysis
above, the overall (worst-case) time complexity of Algorithm 2
is O(|AI2 - gp - [[DC]| + 2241 fop(A) + 2141 (|A] - 1g]4] +
] |Sel+gp- (14| xp+]A]-bp) + | A]- | AC||+|S.] | [1C] |+
feonc(|A],15:]))), where |A|? - gp - ||DC|] is the part of the
complexity of Algorithm 1 (see line 2) that is not dominated
by the complexity of the rest of Algorithm 2. O

REFERENCES

[1] M. Dikmen and C. M. Burns, “Autonomous driving in the real world:
Experiences with tesla autopilot and summon,” in AutomotiveUl Con-
ference, 2016.

[2] D. Lee, H. Kim, Y. Choi, and J. Kim, “Development of autonomous
operation agent for normal and emergency situations in nuclear power
plants,” in ICSRS Conference, 2021.

[3] T. Drew and M. Gini, “Implantable medical devices as agents and part
of multiagent systems,” in AAMAS Conference, 2006.

[4] D. Fgllesdal and R. Hilpinen, “Deontic logic: An introduction,” in
Deontic logic: Introductory and systematic readings. Springer, 1971,
vol. 33, pp. 1-35.

[5] M. Olszewski, X. Parent, and L. Van der Torre, “Permissive and
regulative norms in deontic logic,” Journal of Logic and Computation,
p. exad024, 2023.

[6] T. Eiter, V. Subrahmanian, and G. Pick, “Heterogeneous active agents, i:
Semantics,” Artificial Intelligence, vol. 108, no. 1-2, pp. 179-255, 1999.

[7]1 T. Eiter, V. Subrahmanian, and T. J. Rogers, “Heterogeneous active
agents, iii: Polynomially implementable agents,” Artificial Intelligence,
vol. 117, no. 1, pp. 107-167, 2000.

[8] V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, R. Ross, F. Ozcan,
and J. Dix, Heterogeneous agent systems. MIT press, 2000.

[9] B. Stroe, V. Subrahmanian, and S. Dasgupta, “Optimal status sets of

heterogeneous agent programs,” in AAMAS Conference, 2005.

P. M. Pardalos, A. Migdalas, and L. Pitsoulis, Pareto optimality, game

theory and equilibria. ~ Springer Science & Business Media, 2008,

vol. 17.

D. Ronnedal, An introduction to deontic logic. CreateSpace Independent

Publishing Platform, 2010.

Y. Cai, H. Zhang, H. Su, J. Zhang, and Q. He, “The bipartite edge-

based event-triggered output tracking of heterogeneous linear multiagent

systems,” IEEE Trans. Cybern., vol. 53, no. 2, pp. 967-978, 2023.

H. Shi, M. Wang, and C. Wang, “Leader-follower formation learning

control of discrete-time nonlinear multiagent systems,” [EEE Trans.

Cybern., vol. 53, no. 2, pp. 1184-1194, 2023.

Y. Hao, L. Liu, and G. Feng, “Event-triggered cooperative output

regulation of heterogeneous multiagent systems under switching directed

topologies,” IEEE Trans. Cybern., vol. 53, no. 2, pp. 1026-1038, 2023.

M. Hjelmblom and J. Odelstad, “jDALMAS: A java/prolog framework

for deontic action-logic multi-agent systems,” in KES-AMSTA Sympo-

sium, 2009.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]
[31]

[32]

[33]

[34]
[35]
[36]
[371
[38]

(391
[40]

[41]

L. Lindahl and J. Odelstad, “Normative positions within an algebraic
approach to normative systems,” Journal of Applied Logic, vol. 2, no. 1,
pp. 63-91, 2004.

R. Calegari, G. Ciatto, V. Mascardi, and A. Omicini, “Logic-based
technologies for multi-agent systems: Summary of a systematic literature
review,” in AAMAS Conference, 2021.

Y. Liu, N. Zhu, and M. Li, “Solving many-objective optimization
problems by a pareto-based evolutionary algorithm with preprocessing
and a penalty mechanism,” /IEEE Trans. Cybern., vol. 51, no. 11, pp.
5585-5594, 2021.

J. J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo, and L. Wang,
“Utilizing the relationship between unconstrained and constrained pareto
fronts for constrained multiobjective optimization,” IEEE Trans. Cy-
bern., vol. 53, no. 6, pp. 3873-3886, 2023.

L. Ma, M. Huang, S. Yang, R. Wang, and X. Wang, “An adaptive lo-
calized decision variable analysis approach to large-scale multiobjective
and many-objective optimization,” IEEE Trans. Cybern., vol. 52, no. 7,
pp. 6684-6696, 2022.

L. Ma, N. Li, Y. Guo, X. Wang, S. Yang, M. Huang, and H. Zhang,
“Learning to optimize: Reference vector reinforcement learning adaption
to constrained many-objective optimization of industrial copper burden-
ing system,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 12698-12711,
2022.

Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712-731, 2007.

K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: solving problems with box constraints,” IEEE Trans. Evol.
Comput., vol. 18, no. 4, pp. 577-601, 2014.

J. Chen and A. H. Sayed, “Distributed pareto optimization via diffusion
strategies,” IEEE J. Sel. Top. Signal Process., vol. 7, no. 2, pp. 205-220,
2013.

L. Wan, J. Yuan, and L. Wei, “Pareto optimization scheduling with
two competing agents to minimize the number of tardy jobs and the
maximum cost,” Applied Mathematics and Computation, vol. 273, pp.
912-923, 2016.

Y. Zhang, J. Yuan, C. T. Ng, and T. C. E. Cheng, “Pareto-optimization of
three-agent scheduling to minimize the total weighted completion time,
weighted number of tardy jobs, and total weighted late work,” Naval
Research Logistics, vol. 68, no. 3, pp. 378-393, 2021.

X. Chen, Y. Du, L. Xia, and J. Wang, “Reinforcement recommendation
with user multi-aspect preference,” in WWW Conference, 2021.

F.-Y. Wang, “Agent-based control for networked traffic management
systems,” IEEE Intelligent Systems, vol. 20, no. 5, pp. 92-96, 2005.

C. Bell, A. Nerode, R. T. Ng, and V. Subrahmanian, “Implementing
deductive databases by linear programming,” in PODS, 1992.

——, “Mixed integer programming methods for computing nonmono-
tonic deductive databases,” J. ACM, vol. 41, no. 6, pp. 1178-1215, 1994.
V. Chandru and J. N. Hooker, “Extended Horn Sets In Propositional
Logic,” J. ACM, vol. 38, no. 1, pp. 205-221, 1991.

V. de Wit, D. Doder, J. J. Meyer et al., “Probabilistic deontic logics for
reasoning about uncertain norms,” Journal of Applied Logics, vol. 2631,
no. 2, p. 193, 2023.

F. Olivieri, G. Governatori, M. Cristani, A. Rotolo, and A. Sattar,
“Deontic meta-rules,” Journal of Logic and Computation, vol. 34, no. 2,
pp. 261-314, 2024.

J. W. Lloyd, Foundations of logic programming.
Business Media, 2012.

W. FE. Clocksin and C. S. Mellish, Programming in PROLOG. Springer
Science & Business Media, 2003.

S. Costantini and A. Tocchio, “A logic programming language for multi-
agent systems,” in JELIA Conference, 2002.

J. J. Alferes, F. Banti, and A. Brogi, “An event-condition-action logic
programming language,” in JELIA Conference, 2006.

C. A. C. Coello, Evolutionary algorithms for solving multi-objective
problems. Springer, 2007.

M. Ehrgott, Multicriteria Optimization. Springer, 2005.

H. A. Taboada, F. Baheranwala, D. W. Coit, and N. Wattanapongsakorn,
“Practical solutions for multi-objective optimization: An application to
system reliability design problems,” Reliability Engineering & System
Safety, vol. 92, no. 3, pp. 314-322, 2007.

B. Malakooti and V. Raman, “Clustering and selection of multiple
criteria alternatives using unsupervised and supervised neural networks,”
J. Intell. Manuf., vol. 11, pp. 435-453, 2000.

Springer Science &

[42]

[43]

[44]

[45]

[46]

{

15

B. Malakooti and Z. Yang, “Clustering and group selection of multiple
criteria alternatives with application to space-based networks,” IEEE
Trans. Syst. Man Cybern. Part B, vol. 34, no. 1, pp. 40-51, 2004.

M. Cheikh, B. Jarboui, T. Loukil, and P. Siarry, “A method for selecting
pareto optimal solutions in multiobjective optimization,” Journal of
Informatics and mathematical sciences, vol. 2, no. 1, pp. 51-62, 2010.
S. D. Kahagalage, H. H. Turan, F. Jalalvand, and S. E. Sawah, “A novel
graph-theoretical clustering approach to find a reduced set with extreme
solutions of pareto optimal solutions for multi-objective optimization
problems,” J. Glob. Optim., vol. 86, no. 2, pp. 467-494, 2023.

U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
mathematical sociology, vol. 25, no. 2, pp. 163-177, 2001.

M. Brinkmeier, “Pagerank revisited,” ACM Trans. Internet Techn., vol. 6,
no. 3, pp. 282-301, 2006.

Tonmoay Deb is a third-year Ph.D. student at
the Department of Computer Science, Northwestern
University. He is doing research under the supervi-
sion of Professor VS Subrahmanian at Northwestern
Security and AI Lab. His research interests are
in the intersection of Machine Learning, Computer
Vision, Natural Language Processing, and Multi-
Agent Systems.

Mingi Jeong is a Ph.D. candidate of Reality and
Robotics Lab in the Department of Computer Sci-
ence at Dartmouth College, USA. His current inter-
ests are autonomous navigation, multi-robot system,
and maritime collision avoidance decision-making.

Cristian Molinaro is an Associate Professor in the
DIMES Department at University of Calabria. His
main research interests include knowledge represen-
tation and reasoning and explainable Al.

Andrea Pugliese is an Associate Professor in the
DIMES Department at University of Calabria. His
main research interests include computer security
and graph data management.

Alberto Quattrini Li is an assistant professor at the
Computer Science Department at Dartmouth College
and co-director of the Reality and Robotics Lab.
His research interests include autonomous mobile
robotics, artificial intelligence, and agents and mul-
tiagent systems.

Eugene Santos Jr. (M’93-SM’04-F’12) is the Syd-
ney E. Junkins 1887 Professor of Engineering at the
Thayer School of Engineering and Adjunct Professor
of Computer Science at Dartmouth College. His
current focus is on computational intent, dynamic
human behavior, and decision-making with an em-
phasis on learning nonlinear and emergent behaviors
and explainable Al

V.S. Subrahmanian is the Walter P. Murphy Pro-
fessor of Computer Science and a Fellow in the
Buffett Institute for Global Affairs at Northwestern
University. He works at the intersection of Al and
security issues.

Youzhi Zhang is an Assistant Professor at the
Centre for Artificial Intelligence and Robotics, Hong
Kong Institute of Science & Innovation, Chinese
Academy of Sciences. His research interests include
Al, multi-agent systems, and computational game
theory.

16

	Introduction
	Related Work
	Motivating Example
	State
	Agent Actions

	Background: IMPACT Agents
	Agent Program
	Concurrent Action
	Integrity Constraints
	Action Constraints
	Status Set Semantics

	Pareto-optimal (Feasible) Status Sets
	Algorithms
	Helper Algorithm
	Baseline Algorithm
	Weakly and Strongly Anti-Monotonic Algorithms
	Weakly and Strongly Monotonic Algorithms

	Experimental Assessment
	Runtime
	Solution Quality for Approximate Algorithms

	Choosing an Optimal Feasible Status Set
	Limitations and Future Work
	Conclusions
	References
	Biographies
	Tonmoay Deb
	Mingi Jeong
	Cristian Molinaro
	Andrea Pugliese
	Alberto Quattrini Li
	Eugene Santos Jr.
	V.S. Subrahmanian
	Youzhi Zhang

