


focused on the estimation of the PD. In [7], a Bayesian

estimation method for PD is introduced, although the study is

limited to single target tracking instances. The most common

method for estimating PD is to relate it to the target state. In

[8], predetermined PD values are assigned to different parts

of the sensor field, and the PD for each estimate is derived

based on where it is located in the sensor field. In [9], the

authors propose a feature-based Inverse Gamma Gaussian

Mixture (IGGM) distribution for PD tracking in PHD and

CPHD filters, where the feature is a part of the incoming

measurements and is independent from the tracked state. In

[10], the authors create a list that contains estimates with

lower weights below the pruning threshold and introduced

separate variables to track if subsequent recursion will re-

ceive any measurement to improve the associated weight,

but this study does not address the core problem of variable

PD rates. In a study conducted by [11], individual PD was

investigated, in which the PD was included in the state

space and tracked using a separate distribution. However, the

authors note that their approach is only effective for high PD

rates and comes with increased computational complexity.

In this paper we propose a modification of the GM-PHD

filter where each target’s PD is individually estimated at

run time, and PS is computed to reflect such an estimate.

The filter is tested on lab data in a multi-robot setup and

on field data collected with an Autonomous Surface Vehicle

(ASV). The rest of the paper is organized as follows. In

Section II we provide the necessary background on the GM-

PHD filter. In Section III we provide a description of the

methodology to estimate the PD and PS . Section IV presents

the experiments, while section V concludes the paper.

II. BACKGROUND

The background for the PHD filter and its equations are

based on [4], [12]. We assume that at time step k, there

are mk targets living in the state space Rn with states

x1,k, x2,k, ...xm,k ∈ X where X ⊆ Rn. A measurement

set z1,k, z2,k, .., zm,k ∈ Zk is obtained at time k which

represents a finite subset from an observation space Z ∈ Rm.

The goal of the Bayesian multi-target recursive filter is

to estimate the multi-target posterior fk|k(Xk|Z1:k) given a

set of observations up to time step k over the set Xk. Due

to implementation limitations of the Bayesian multi-target

filter, Mahler [4] proposed the first moments propagation of

the multi-target posterior fk|k(Xk|Z1:k), called PHD filter.

The PHD filter estimates the PHD of targets in X at time step

k where it is defined as an intensity function fk(x) such that

its integral over a subset S ⊆ X will provide the expected

number of targets N(S) in S, i.e., N(S) =
∫

S
fk(x)dx. The

PHD filter consists of two steps.

The prediction (time update) computes the PHD fk|k−1(x)
at step k given all the measurements up to step k−1 from the

PHD fk−1|k−1(x) at step k − 1 given all the measurements

up to step k − 1 (i.e., predicting over one time step):

fk|k−1(x) = γk(x)+
∫

[PS(x
′)fk|k−1(x|x

′)+bk|k−1(x|x
′)]fk−1|k−1(x

′)dx′,
(1)

where γk(x) is the probability that a new target appears in x

between times k − 1 and k, PS(x
′) is the probability that a

target in x′ at time k−1 will survive into step k, fk|k−1(x|x
′)

is the probability density that a target in x′ at time k − 1
moves to x at time k, and bk|k−1(x|x

′) is the probability

that a new target spawns in x at time k from a target in x′

at time k − 1.

The correction (measurement update) computes the PHD

fk|k(x) at step k given all the measurements up to step k

from the PHD fk|k−1(x) at step k given all the measurements

up to k − 1 (i.e., incorporating the measurement at time k):

fk|k(x) = fk|k−1(x) [1− PD(x)

+
∑

z∈Zk

PD(x)g(z|x)

λc(z) +
∫

PD(x′)g(z|x′)fk|k−1(x′)dx′

]

,
(2)

where PD(x) is the probability that a measurement is

collected from a target with state x, g(z|x) is the sensor

likelihood function, and λc(z) expresses the probability that

a given measurement z is a false positive.

The Gaussian Mixture Probability Hypothesis Density

(GM-PHD) filter [12] and the Sequential Monte Carlo PHD

(SMC-PHD) filter [13], [14] are some of the variants of the

PHD filter that can be implemented in real-world systems.

In this study, we will focus on the GM-PHD filter, which

approximates all PHD’s in Equations (1) and (2) as sum of

weighted Gaussian functions:

f∗|∗(x) =
∑

i

f i
∗|∗(x) =

∑

i

wi
∗|∗N (x;mi

∗|∗, p
i
∗|∗), (3)

where the symbol wi
∗|∗N (x;mi

∗|∗, p
i
∗|∗) represents a Gaus-

sian function with weight wi
∗|∗, mean mi

∗|∗, and covariance

pi∗|∗. The time update in the GM-PHD filter becomes:

fk|k−1 = bk|k−1(x)+
∑

i

wi
k−1|k−1P

i
Sk

∫

fk|k−1(x|x
′)f i

k−1|k−1(x
′)dx′. (4)

The measurement update in the GM-PHD filter becomes:

fk|k(x) =
∑

i

f i
k|k−1(x)

(

1− P i
Dk

)

+

∑

i

∑

z∈Zk

P i
Dk

f i
k|k−1(x)g(z|x)

∑

i

∫

P i
Dk

g(z|x′)f i
k|k−1(x

′)dx′
.

(5)

At the end of the measurement update, a pruning and merg-

ing step is executed to remove components whose weight is

lower than a given threshold, and to merge components that

are close to each other. This is done to avoid exponential

computational complexity.

III. FORMULATION OF THE PARAMETERS ESTIMATION

The time and measurement update of the mean mi
∗|∗, co-

variance pi∗|∗, and weight wi
∗|∗ of the generic i-th component

f i
∗|∗(x) of the PHD follow the equations first presented in

[15], and are omitted here for brevity. In this section, we

focus on the modifications that are presented in this paper.

We refer the reader to [15] for the details about the system

and measurement models. This is also consistent with the



fact that the modification presented here is compatible with

any generic GM-PHD filter.

A. Introduction of new parameters

From the original formulation of the PHD filter, the

probability of detection P i
Dk

and the survival probability P i
Sk

of each component in Equations (4)-(5) are computed from

PD(x) as P i
Dk

= PD(mi
k|k) and PS(x) as P i

Sk
= PS(m

i
k|k)

respectively. Therefore, P i
Dk

and P i
Sk

depend only from the

state of each component due to the sensor characteristics,

and not from the target characteristics. However, in some

instances where the probability of detection is governed by

individual target characteristics, this assumption may not

hold. In this proposed method, three additional parameters

are introduced to the usual state of a target. We begin with

Equation (3), where we introduce the detection counter αi
k,

the missed detection counter βi
k and the number of missed

detection since last detected λi
k. As their names imply, αi

k

represents the number of times the target represented by the

component f i
k|k(x) has been detected since birth up to time

step k, βi
k represents the number of times the target has been

missed since birth up to time step k and λi
k represents the

number of times that this target has not been detected since

last time it was detected. Therefore, we define the expanded

component φi
k|∗(x) as the tuple

φi
k|k−1(x) = {f i

k|k−1(x), α
i
k−1, β

i
k−1, λ

i
k−1}

φi
k|k(x) = {f i

k|k(x), α
i
k, β

i
k, λ

i
k}.

(6)

Note that the values of αi
k, βi

k, λi
k will not change during the

time update step, but only during the measurement update.

B. Online PD Estimation

The probability of detection for the time step k will be

calculated based on each estimate’s αi
k−1, β

i
k−1 values as:

P i
Dk =

αi
k−1

βi
k−1 + αi

k−1

, (7)

where βi
k−1 + αi

k−1 is the total number of measurement

updates since the birth of component i up to time step k−1.

C. Online PS Calculation

In general, the probability of survival can be used as a

mechanism to remove estimates of targets that have likely

disappeared, based on the consecutive times that a target has

not been detected. However, targets with lower probability of

detection P i
D will experience longer streaks of consecutive

missed detections, as the probability of m consecutive misses

is (1 − P i
D)m. Therefore, we have implemented the PS of

each target as a function of the probability of detection PD
i
k

and the steps without measurements λi
k−1 as:

P i
Sk =

1

1.1 + 0.5λi
k−1P

i
Dk

·
1

1 + exp(3(λi
k−1 − C))

. (8)

The following assumptions were made in developing Equa-

tion (8). It is assumed that a component with higher PD

value have a positive correlation with PS and an inverse

correlation with λi. This assumption is reasonable in a

general tracking environment. For instance, if a higher PD

target is missed by the sensor for several time steps, it

indicates that the target is no longer viable and, thus PS
i
k

should decrease at a higher rate for every increment of λi

value. Conversely, lower PD components are expected to

be missed by the sensor for several time steps, and thus

they should persist into the next time step with higher

PS values. This behavior is captured in the first factor of

Equation (8). The second factor is a threshold to limit the

maximum number of missed measurements that are allowed

for any target, independently from the estimated probability

of detection. In fact, 1
1+exp(3(λi

k−1
−C))

is a sigmoid function

that is 1 for λi
k−1 < C, and 0 for λi

k−1 > C. The variable

C represents the maximum number of allowed consecutive

missed detections before a component is eliminated.

This structure for the P i
Sk

is needed to avoid a situation in

which a target’s estimated P i
Dk

tends to 0, and therefore the

component is never eliminated from the filter even though it

is never associated to a measurement. In practice, this could

more likely happen in environments with significant clutter,

therefore, when false positive measurements are expected

to be collected at higher rates, the parameter C should be

lower with respect to environments in which false positive

measurements are not expected.

D. Updating scheme for new parameters

The update of αi
k, βi

k, λi
k will be done only during

the measurement update in Equation (5) which includes

two terms. The first sum in the right hand side includes

the components originating from missed detections, i.e.,

it includes all components that are not associated to any

measurement at the time step k. These components are exact

copies of the components of fk|k−1 with weights multiplied

by (1 − P i
Dk

). Therefore, for these components we update

the counters as:

αi
k = αi

k−1, βi
k = βi

k−1 + 1, λi
k = λi

k−1 + 1. (9)

The αi
k will simply propagate the previous time step value,

while the counters βi
k and λi

k will be increased by one. In

the same Equation (5), the second sum in the right hand side

represents all the components that originates from associating

a measurement to all the components of the prior fk|k−1.

For these components, αi
k will be incremented by one to

represent the measurement association, λi
k will be reset to

zero which indicates that each of these components was

associated with a measurement, while βi
k will not be updated.

The update equations are:

αi
k = αi

k−1 + 1, βi
k = βi

k−1, λi
k = 0. (10)

E. Merging and Pruning

During the measurement update stage of the GM-PHD

filter, |Zk|+1 components are generated for each f i
k|k−1(x)

component of the prior through equations (5), (9) and

(10), where the symbol | ∗ | indicates the cardinality of

a set. To avoid exponential computational complexity, a



Fig. 2: (Left) The four UGVs used to generate tracks. (Right)

A Single UGV [15].

merging and pruning step is executed at the end of the

measurement update. In general, in the merging step, the

components f i
k|k(x) are partitioned into clusters of closely

spaced Gaussian components. We indicate with Ihk the set of

all indexes of the components belonging to the h-th cluster.

Therefore, the set of all components in the h-th cluster is

Fh = {φi
k|k(x) : i ∈ H}. These will be replaced with a

single component φH
k|k(x) such that:

wH
k|k =

∑

i∈H

wi
k|k, mH

k|k =
1

wH
k|k

∑

i∈H

wi
k|km

i
k|k (11)

pHk|k =
1

wH
k|k

∑

i∈H

wi
k|k(p

i
k|k+(mH

k|k−mi
k|k)(m

H
k|k−mi

k|k)
T )

αH
k =α

j
k, β

H
k = β

j
k, λ

H
k = λ

j
k, where j =argmax

i∈H

wi
k|k.

Note that the merging of the components follows the

standard merging of the GM-PHD filter proposed in [12].

For the additional variables αH
k , βH

k , λH
k , we use the value

of the component with the highest weight. Other merging

procedures were tested during the development of the filter,

particularly the weighted mean. However, it is possible to

prove that such choice would result in underestimating the

probability of detection, due to the overestimation of the

parameter βH
k . This happens because a missed measurement

generates only a component with increased βH
k , while a

collected measurement generates two components, one with

increased βH
k and one with increased αH

k .

The estimation of the PD can be performed with infinite

memory to obtain more stable estimates, or with limited

memory considering only the latest N steps, to obtain a

more reactive system. The latter approach is useful in case of

obstacles with variable PD. Further, an initial value greater

than zero must be assigned to αi, βi at initialization to avoid

an indeterminate value for PD (Equation (7)).

IV. EXPERIMENTS

A. In-lab Experiment

Experiments were conducted in laboratory to test the

proposed filter using four unmanned ground vehicles (UGVs)

(Fig. 2), which allowed us to evaluate the filter performance

with ground truth from a motion capture system. The UGVs

were built using a commercially available differential drive

platform, the DFRobot Cherokey (22.5cm x 17.5cm). Each

UGV was equipped with wheel encoders, an Arduino Romeo

V2 with a motor driver for low level control, and an

Odroid-XU4 to manage sensor data collection. In a typical

experiment, the UGVs perform a pseudo-random motion

with obstacle avoidance within a testing area equipped with

an Opti-track motion capture system. Odometry and tracking

information was recorded to a ROS bag.

The robot locations collected by the Opti-track system

were used to simulate measurements and as ground truth.

In the experiment presented in this section, the four robots

were assigned a true probability of detection of 0.3, 0.5, 0.7,

0.9, respectively. At this aim, a separate algorithm extracted

each robot’s position from the recorded ROS bag and provide

it to the filter based on the assigned PD. For example, a

robot assigned with 0.7 PD will provide it’s measurement

to the filter 7 out of 10 time steps. Further, a Gaussian zero

mean white noise with standard deviation 0.02m was added

to each robot coordinate to simulate sensor noise. As the

filter estimated the position of the robots in the Opti-track

fixed frame of reference, the ego-motion of the estimator

required in [15] is always selected as zero.

To highlight the benefits of the proposed filter, we simul-

taneously ran a standard PHD filter with a predetermined

constant PD value, and our modified PHD filter with online

estimation of the PD. We processed the recorded dataset

three times using the standard PHD filter with constant

PD values of 0.9, 0.5, 0.2 as shown in Fig. 3(a), (b) and

(c), respectively. Note that the results of different runs of

the adaptive PHD filter present slight variations because,

while the ground truth data is the same for each run from

the ROS bag, the simulated measurement were created at

run time, and therefore have different noise samples and

different sequences of collected and missed measurements.

The values for the PD were selected to represent a good

estimate of the actual PD (0.5), and two situations in which

the PD was either overestimated (0.9) or underestimated

(0.2). The variable C was selected as 20 and each estimate

was initialized with αi = 3, βi = 1, which result in an initial

PD = 0.75. We generated four different plots: the moving

average of the sum of estimate’s weights for each time steps

(Fig. 3 Row 1), the estimated values for P i
D (Fig. 3 Row

2), the XY Cartesian plot with the estimates and the ground

truth positions (Fig. 3 Row 3), and the moving average of

the estimation error (Fig. 3 Row 4). In Fig. 3, the standard

filter results are plotted in red, while the adaptive PHD filter

results are plotted in green. In the XY Cartesian plot, the

ground truth is plotted in yellow.

The proposed filter was able to accurately estimate the

PD of three robots in all three instances. The lowest PD 0.3

was estimated during several time steps but overall its PD

was overestimated. This was expected as the estimates with

lowest PD were often removed from the filter during the

pruning, and the relative component were often reinitialized.

Overall, the adaptive PHD filter was able to track four robots

as seen from the overall sum of weights (Fig. 3 Row 1),

whereas the number of robots estimated by the standard PHD

filter depends on the selected probability of detection.

The Cartesian plot (Row 4) shows that the robots were

properly tracked by the proposed filter, whereas the quality







requirements, our method converts the 3D point cloud into

a 2D spherical projection image. The algorithm used for

segmentation integrates a breadth-first search with a variant

of hierarchical agglomerative clustering to segment the points

based on the different objects present in the environment.

This approach addresses the sparsity of the point cloud in the

aquatic domain, which is a characteristic that makes methods

developed for self-driving cars unsuitable for in-water obsta-

cle segmentation. Once the segmentation is complete, our

algorithm computes the centroids of the segmented output

and provides it to the PHD filter for the measurement update.

Ego-motion measurements of the Catabot for the time update

were provided directly from the onboard localization module.

Similar to in-lab experiments we simultaneously ran the

standard PHD filter with different predetermined PD (0.9,

0.7, 0.5) and PS (0.9, 0.9, 0.8) values along with our adaptive

PHD filter in a single sequence. The variable C was selected

as 5. Each estimate was initialized with PD = 0.75 by

assigning initial value as αi = 3 , βi = 1. The results of

the three executions are presented in Fig. 5 with two plots:

the moving average of the sum of the weights (Fig. 5 Row 1),

and the estimated values for P i
D (Fig. 5 Row 2). In average,

the lidar tracked 5 to 6 targets including a sail boat, a medium

motor boat, kayak and several other objects as counted from

the recorded video and lidar blobs during the experiment.

As seen in Fig. 5 Row 1, our filter was able to track an

average of 6 targets. The number of targets tracked by the

standard PHD filter instead depends on the PD, with the

filters with PD 0.9 and 0.5 (columns a and c respectively)

underestimating and overestimating the number of targets,

and the filter with PD 0.7 showing similar results to our

filter. The estimated PD shows a few tracks with high values

(0.8 and up) in the proposed adaptive filter in Fig. 5 Row 2

which could be explained by the sail boat and the medium

size motor boat, that due to their larger sized produced more

stable point clusters in the pointcloud.

Overall, these results corroborates the fact that manually

selecting values for PD and PS in the standard PHD filter

will change the results of the estimation, while using an

estimation method to compute individualized PD and PS

values for each target produces more consistent results.

V. CONCLUSIONS

This paper introduces a modification of the GM-PHD filter

with adaptive probability of detection (PD) and probability

of survival (PS), thereby eliminating the need for predeter-

mined and constant PD and PS values. The proposed filter

estimates the PD and PS values for each individual target

based on newly introduced parameters, which are updated

during the measurement update process. We performed in-lab

experiments using four unmanned ground robots, each with

a unique PD value, and compared against the standard PHD

filter with several fixed PD values. The results shows that our

modified filter outperforms the standard PHD filter when the

selected PD and PS are not accurate. This is evident both

in the number of the estimated targets, as well as in the

tracking error which is greatly reduced. On the other hand,

accurate values of PD and PS in the standard PHD filter may

lead to comparable or slightly better results. These findings

corroborate the fact that our system is suitable and provide an

advantage when the values for PD and PS are unknown and

should be guessed and/or tuned, as is for example the case

of obstacle tracking on small ASV vehicles. Following this

analysis, the proposed filter was applied to a dataset collected

by an ASV operating in a real-world lake environment with

boat traffic showing promising results.

In the future, we plan to extend the system to multi-sensor

setup and perform live testing of the estimation system with

live boat traffic and automated obstacle avoidance.
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