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A GM-PHD Filter with Estimation of Probability of Detection and
Survival for Individual Targets

R.A. Thivanka Perera', Mingi Jeong?, Alberto Quattrini Li? and Paolo Stegagno'

Abstract— This paper proposes a modification of the Gaus-
sian mixture probability hypothesis density (GM-PHD) filter
to compute online the probability of detection (Pp) and
probability of survival (Ps) of targets. This eliminates the
need for predetermined and/or constant Pp and Ps values,
that may degrade the estimation. The proposed filter estimates
the Pp and Ps values for each individual target based on
newly introduced parameters, which are updated during the
measurement update process. The effectiveness of the proposed
filter was validated through an in-lab experiment using four
unmanned ground robots with varying Pp values and a real-
world lidar-based obstacle tracking system implemented on
an Automated Surface Vehicle operating in a lake with real-
time boat traffic. The results of the experiments demonstrate
that the proposed filter outperforms the standard PHD filter
with incorrect Pp and Ps values. These findings highlight the
potential benefits of the proposed filter in improving target
tracking performance in complex environments.

I. INTRODUCTION AND RELATED WORKS

This paper presents a multi-target tracking filter for the
detection of obstacles on an Autonomous Surface Vehicle
(ASV) within the context of a larger project for the develop-
ment of robotic tools for cyanobacteria monitoring in ponds
and lakes. In general, identification and tracking of obstacles
is one of the basic tasks for reliable autonomous navigation.
Often, obstacle avoidance algorithms are fed directly with
sensor readings, but sensor noise, missed detections, false
positives, and limited field of view can degrade the perfor-
mance of the system and compromise safety. Proper Multi-
Target Tracking (MTT) techniques [1] can be used to avoid or
mitigate these issues. The most popular approaches in MTT
are joint probabilistic data association filters [2], multiple
hypothesis tracking [3], and random finite set (RFS) [4], the
main difference being how data association is handled and
whether the number of tracked targets is known or estimated.

The Probability Hypothesis Density (PHD) filter [4] be-
longs to the RFS category, does not require explicit data
association, nor fixed or known number of targets. Therefore
it is possible to employ it in generic unknown environments
for obstacle avoidance purposes. It was originally developed
to take into account many sensor unidealities by modeling
the statistical properties of the occurrence of measurements
and target survivability through appropriate parameters. The
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Fig. 1: Robotic boat Catabot with Velodyne VLP-16 scanner
(top), measurements for the obstacle tracking, each obstacle
with a different color (bottom).

Probability of Detection (Pp) and Probability of Survival
(Pg) are two of such parameters, and their values affect
the performance of the filter. In general, Pp indicates the
confidence that a tracking filter has in the ability of the sensor
to detect the target, while Pg describes the probability that a
target disappears during a time update step. Incorrect values
for Pp and Pg can lead to poor and unreliable tracking
results, with the appearance of clutter in the estimates or
the disappearance of targets. Multiple factors can affect
the Pp and Ps of a target, including its state, clutter,
sensor flaws, non-uniformity, and observation environment.
Therefore, computing a global value for the Pp and Pgs
requires a complex combination that should take into account
all of these factors, most of which are target dependent and
unknown in real world. In the original formulation of the
PHD filter however, Pp and Pg are described through state
dependent functions that are the same for all targets.

In the context of ASV’s (Fig.e 1) the identification of
global Pp and Pg values associated with the sensor is made
even more difficult by the wide variety of obstacles that
can be encountered, including vessels, buoys, swimmers, and
birds among others. Additionally, the attitude of an ASV
constantly changes due to waves and wind disturbing the
sensor readings that becomes less reliable for obstacles that
are small, distant, and/or less elevated on the water surface
[5], [6]. To address these issues, in this paper we follow
a data-driven approach that, together with each target state,
computes an individual estimate of Pp based on the history
of the measurements associated to that target.

In literature, there has been a significant body of research
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focused on the estimation of the Pp. In [7], a Bayesian
estimation method for Pp is introduced, although the study is
limited to single target tracking instances. The most common
method for estimating Pp is to relate it to the target state. In
[8], predetermined Pp values are assigned to different parts
of the sensor field, and the Pp for each estimate is derived
based on where it is located in the sensor field. In [9], the
authors propose a feature-based Inverse Gamma Gaussian
Mixture (IGGM) distribution for Pp tracking in PHD and
CPHD filters, where the feature is a part of the incoming
measurements and is independent from the tracked state. In
[10], the authors create a list that contains estimates with
lower weights below the pruning threshold and introduced
separate variables to track if subsequent recursion will re-
ceive any measurement to improve the associated weight,
but this study does not address the core problem of variable
Pp rates. In a study conducted by [11], individual Pp was
investigated, in which the Pp was included in the state
space and tracked using a separate distribution. However, the
authors note that their approach is only effective for high Pp
rates and comes with increased computational complexity.

In this paper we propose a modification of the GM-PHD
filter where each target’s Pp is individually estimated at
run time, and Pgs is computed to reflect such an estimate.
The filter is tested on lab data in a multi-robot setup and
on field data collected with an Autonomous Surface Vehicle
(ASV). The rest of the paper is organized as follows. In
Section II we provide the necessary background on the GM-
PHD filter. In Section III we provide a description of the
methodology to estimate the Pp and Pg. Section IV presents
the experiments, while section V concludes the paper.

II. BACKGROUND

The background for the PHD filter and its equations are
based on [4], [12]. We assume that at time step k, there
are my targets living in the state space R™ with states
L1k, T2k, T,k € X where X C R™. A measurement
set 21k, 22,k, - 2m,k € Zy is obtained at time k which
represents a finite subset from an observation space Z € R™.

The goal of the Bayesian multi-target recursive filter is
to estimate the multi-target posterior fyx(Xx|Z1.x) given a
set of observations up to time step k over the set Xj. Due
to implementation limitations of the Bayesian multi-target
filter, Mahler [4] proposed the first moments propagation of
the multi-target posterior fy;(Xx|Z1.1), called PHD filter.
The PHD filter estimates the PHD of targets in X at time step
k where it is defined as an intensity function fi(x) such that
its integral over a subset S C X will provide the expected
number of targets N (S) in S, i.e., N(S) = [ fu(z)dz. The
PHD filter consists of two steps.

The prediction (time update) computes the PHD fj, ;1 (z)
at step k given all the measurements up to step k—1 from the
PHD f;._y k—1(z) at step k — 1 given all the measurements
up to step k — 1 (i.e., predicting over one time step):

Treje—1(z) = e(x)+

1
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where v (z) is the probability that a new target appears in x
between times k — 1 and k, Ps(2') is the probability that a
target in 2’ at time k—1 will survive into step &, fjx—1(z[2")
is the probability density that a target in 2’ at time k — 1
moves to x at time k, and by,_1(z|2’) is the probability
that a new target spawns in z at time k from a target in z’
at time k — 1.

The correction (measurement update) computes the PHD
Jrik(x) at step k given all the measurements up to step &
from the PHD fy.—1 (z) at step k given all the measurements
up to k — 1 (i.e., incorporating the measurement at time k):

Jek() = frpp—1(x) [1 — Pp(x)
Pp(z)g(z|z) )
' Ac(2) + J Pp(x")g(z|") frjp—1(2')da’

where Pp(z) is the probability that a measurement is
collected from a target with state x, g(z|z) is the sensor
likelihood function, and Ac(z) expresses the probability that
a given measurement z is a false positive.

The Gaussian Mixture Probability Hypothesis Density
(GM-PHD) filter [12] and the Sequential Monte Carlo PHD
(SMC-PHD) filter [13], [14] are some of the variants of the
PHD filter that can be implemented in real-world systems.
In this study, we will focus on the GM-PHD filter, which
approximates all PHD’s in Equations (1) and (2) as sum of
weighted Gaussian functions:
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sian function with weight (L e and covariance
pi|*. The time update in the GM-PHD filter becomes:
Jrlk—1 = bgjp—1(z)+
Zwi—ukqpék / fklk—l(x\xl)fii—1|k—1(x/)d$/- @

The measurement update in the GM-PHD filter becomes:

Tr(z) = Zf;iucq(x) (1 - Pli?k) +
1 P flyr (2)g(2]2) 5)
Z Z ZifP,kag(z|:E’)f,i‘k71(;v/)dx"
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At the end of the measurement update, a pruning and merg-
ing step is executed to remove components whose weight is
lower than a given threshold, and to merge components that
are close to each other. This is done to avoid exponential
computational complexity.

III. FORMULATION OF THE PARAMETERS ESTIMATION
The time and measurement update of the mean mi‘*,
variance pil*, and weight wil* of the generic i-th component
+«(@) of the PHD follow the equations first presented in
[15], and are omitted here for brevity. In this section, we
focus on the modifications that are presented in this paper.
We refer the reader to [15] for the details about the system
and measurement models. This is also consistent with the
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fact that the modification presented here is compatible with
any generic GM-PHD filter.

A. Introduction of new parameters

From the original formulation of the PHD filter, the
probability of detection P% .. and the survival probability P} &
of each component in Equations (4)-(5) are computed from
Pp(x) as Pp,, = PD(m?ﬂIk) and PSI(Z‘) as Py, = Pg(mfc‘k)
respectively. Therefore, Pp, and Pg, depend only from the
state of each component due to the sensor characteristics,
and not from the target characteristics. However, in some
instances where the probability of detection is governed by
individual target characteristics, this assumption may not
hold. In this proposed method, three additional parameters
are introduced to the usual state of a target. We begin with
Equation (3), where we introduce the detection counter oz}'c,
the missed detection counter ﬁ,’c and the number of missed
detection since last detected \i. As their names imply, o,
represents the number of times the target represented by the
component f/i| () has been detected since birth up to time
step k, (3. represents the number of times the target has been
missed since birth up to time step k and A represents the
number of times that this target has not been detected since
last time it was detected. Therefore, we define the expanded
component qﬁzl*(x) as the tuple

¢Z|k‘71<x) = {fé\k71($)>‘a2f1»5£71a )‘271}
G () = {fxn(2), ak, Brs Ak }-

Note that the values of a};, ﬁ,i, }C will not change during the
time update step, but only during the measurement update.

(6)

B. Online Pp Estimation

The probability of detection for the time step k& will be
calculated based on each estimate’s aifl, 5271 values as:

i
Q1

PL =—"F1
Dk 4 i
Br1 T

. (7
where 3}, 4+ «j_, is the total number of measurement
updates since the birth of component ¢ up to time step k — 1.

C. Online Pg Calculation

In general, the probability of survival can be used as a
mechanism to remove estimates of targets that have likely
disappeared, based on the consecutive times that a target has
not been detected. However, targets with lower probability of
detection P!, will experience longer streaks of consecutive
missed detections, as the probability of m consecutive misses
is (1 — P})™. Therefore, we have implemented the Pg of
each target as a function of the probability of detection PDZ
and the steps without measurements )\271 as:

1 1

Pi, = : . : . (8
Sk 11405, Ph, L+exp(3(\,_, — C)) ®

The following assumptions were made in developing Equa-
tion (8). It is assumed that a component with higher Pp
value have a positive correlation with Pg and an inverse

correlation with A’. This assumption is reasonable in a
general tracking environment. For instance, if a higher Pp
target is missed by the sensor for several time steps, it
indicates that the target is no longer viable and, thus Psi
should decrease at a higher rate for every increment of A’
value. Conversely, lower Pp components are expected to
be missed by the sensor for several time steps, and thus
they should persist into the next time step with higher
Pgs values. This behavior is captured in the first factor of
Equation (8). The second factor is a threshold to limit the
maximum number of missed measurements that are allowed
for any target, independently from the estimated probability

. 1 _ . . . .
of detection. In fact, TGO =) is a sigmoid function

that is 1 for /\271 < C, and 0 for )\};71 > (. The variable
C represents the maximum number of allowed consecutive
missed detections before a component is eliminated.

This structure for the Pék is needed to avoid a situation in
which a target’s estimated P’Dk tends to 0, and therefore the
component is never eliminated from the filter even though it
is never associated to a measurement. In practice, this could
more likely happen in environments with significant clutter,
therefore, when false positive measurements are expected
to be collected at higher rates, the parameter C' should be
lower with respect to environments in which false positive
measurements are not expected.

D. Updating scheme for new parameters

The update of «f, Bi, AL will be done only during
the measurement update in Equation (5) which includes
two terms. The first sum in the right hand side includes
the components originating from missed detections, i.e.,
it includes all components that are not associated to any
measurement at the time step k. These components are exact
copies of the components of fy,_1 with weights multiplied
by (1 — P} .)- Therefore, for these components we update
the counters as:

Bi.=Bt_1+1, P=Xi 1l 9

The of will simply propagate the previous time step value,
while the counters 3; and A, will be increased by one. In
the same Equation (5), the second sum in the right hand side
represents all the components that originates from associating
a measurement to all the‘components of the prior frr_1-
For these components, o, will be incremented by one to
represent the measurement association, )\2 will be reset to
zero which indicates that each of these components was
associated with a measurement, while ﬁi will not be updated.
The update equations are:

i
Qp = g1,

Bi=Bi_4, AL=0.  (10)

ol =ab |+ 1,
E. Merging and Pruning

During the measurement update stage of the GM-PHD
filter, |Zy| + 1 components are generated for each f,il e1(T)
component of the prior through equations (5), (9) and
(10), where the symbol | x | indicates the cardinality of
a set. To avoid exponential computational complexity, a



Fig. 2: (Left) The four UGV used to generate tracks. (Right)
A Single UGV [15].

merging and pruning step is executed at the end of the
measurement update. In general, in the merging step, the
components f,i‘ . () are partitioned into clusters of closely
spaced Gaussian components. We indicate with [, ,@ the set of
all indexes of the components belonging to the h-th cluster.
Therefore, the set of all components in the h-th cluster is
Fh = {qﬁilk(x) : 4 € H}. These will be replaced with a
single component ¢kH| () such that:

H _ i
Wk = § :wk|k’
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Mk = wH E Wi ™Mk |k
klk icH
1 ) ) ) )
H 7 7 H 7 H 7 T
Pelk= @ E Wi (P + (Mg — M) (M — M) ™)
Wi,
k|k: 1€EH
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o =0y, B =B Ay = AL, where]—argnf}axwklk.
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Note that the merging of the components follows the
standard merging of the GM-PHD filter proposed in [12].
For the additional variables akH R ﬂf , M we use the value
of the component with the highest weight. Other merging
procedures were tested during the development of the filter,
particularly the weighted mean. However, it is possible to
prove that such choice would result in underestimating the
probability of detection, due to the overestimation of the
parameter B,f . This happens because a missed measurement
generates only a component with increased Bf/, while a
collected measurement generates two components, one with
increased 3f and one with increased af.

The estimation of the Pp can be performed with infinite
memory to obtain more stable estimates, or with limited
memory considering only the latest N steps, to obtain a
more reactive system. The latter approach is useful in case of
obstacles with variable Pp. Further, an initial value greater
than zero must be assigned to o, 7 at initialization to avoid
an indeterminate value for Pp (Equation (7)).

IV. EXPERIMENTS
A. In-lab Experiment

Experiments were conducted in laboratory to test the
proposed filter using four unmanned ground vehicles (UGVs)
(Fig. 2), which allowed us to evaluate the filter performance
with ground truth from a motion capture system. The UGVs
were built using a commercially available differential drive
platform, the DFRobot Cherokey (22.5cm x 17.5cm). Each
UGV was equipped with wheel encoders, an Arduino Romeo
V2 with a motor driver for low level control, and an

Odroid-XU4 to manage sensor data collection. In a typical
experiment, the UGVs perform a pseudo-random motion
with obstacle avoidance within a testing area equipped with
an Opti-track motion capture system. Odometry and tracking
information was recorded to a ROS bag.

The robot locations collected by the Opti-track system
were used to simulate measurements and as ground truth.
In the experiment presented in this section, the four robots
were assigned a true probability of detection of 0.3, 0.5, 0.7,
0.9, respectively. At this aim, a separate algorithm extracted
each robot’s position from the recorded ROS bag and provide
it to the filter based on the assigned Pp. For example, a
robot assigned with 0.7 Pp will provide it’s measurement
to the filter 7 out of 10 time steps. Further, a Gaussian zero
mean white noise with standard deviation 0.02m was added
to each robot coordinate to simulate sensor noise. As the
filter estimated the position of the robots in the Opti-track
fixed frame of reference, the ego-motion of the estimator
required in [15] is always selected as zero.

To highlight the benefits of the proposed filter, we simul-
taneously ran a standard PHD filter with a predetermined
constant Pp value, and our modified PHD filter with online
estimation of the Pp. We processed the recorded dataset
three times using the standard PHD filter with constant
Pp values of 0.9, 0.5, 0.2 as shown in Fig. 3(a), (b) and
(c), respectively. Note that the results of different runs of
the adaptive PHD filter present slight variations because,
while the ground truth data is the same for each run from
the ROS bag, the simulated measurement were created at
run time, and therefore have different noise samples and
different sequences of collected and missed measurements.
The values for the Pp were selected to represent a good
estimate of the actual Pp (0.5), and two situations in which
the Pp was either overestimated (0.9) or underestimated
(0.2). The variable C was selected as 20 and each estimate
was initialized with o = 3, 3% = 1, which result in an initial
Pp = 0.75. We generated four different plots: the moving
average of the sum of estimate’s weights for each time steps
(Fig. 3 Row 1), the estimated values for P,’g (Fig. 3 Row
2), the XY Cartesian plot with the estimates and the ground
truth positions (Fig. 3 Row 3), and the moving average of
the estimation error (Fig. 3 Row 4). In Fig. 3, the standard
filter results are plotted in red, while the adaptive PHD filter
results are plotted in green. In the XY Cartesian plot, the
ground truth is plotted in yellow.

The proposed filter was able to accurately estimate the
Pp of three robots in all three instances. The lowest Pp 0.3
was estimated during several time steps but overall its Pp
was overestimated. This was expected as the estimates with
lowest Pp were often removed from the filter during the
pruning, and the relative component were often reinitialized.
Overall, the adaptive PHD filter was able to track four robots
as seen from the overall sum of weights (Fig. 3 Row 1),
whereas the number of robots estimated by the standard PHD
filter depends on the selected probability of detection.

The Cartesian plot (Row 4) shows that the robots were
properly tracked by the proposed filter, whereas the quality



Sum of Weights (No of Targets)
o
Sum of Weights (No of Targets)

Sum of Weights (No of Targets)

— Adaptive

Standard
- — Ground Truth

08

Probability of Detection (P} )
Probability of Detection (P} )

+  Adaptive
+ Standard
- — Ground Truth

+  Adaptive
+  Standard
~ — Ground Truth

06

04

Probability of Detection (P} )
T

02
+  Adaptive

00

a0
0 200 400 600 80 1000
Time Steps (k)

Time Steps (k)

X Coordinates (m)

»
=3
>
>
»>
>
.

0 400
Time Steps (k) Time

- FORTC N S
>

Soh b B B

600 800 1000 800 1000

Steps (k)

(a) (b) (©)
Fig. 3: Results of in-lab experiments: adaptive PHD filter (green) vs standard PHD filter (red) with Pp 0.9 (a), 0.5 (b) and
0.2 (¢). Row 1: moving average of sums of weights for each time step; row 2: Pp values of every estimate; row 3: XY
Cartesian plot with estimates and ground truth; row 4: sum of estimation errors.

of the tracking in the standard PHD filter depends on the
selected Pp value. In particular, the filters with Pp 0.9
and 0.2 show considerable amount of estimation error along
the robot’s paths. The standard PHD filter with Pp = 0.2
exhibited significant error between the x-coordinates 0.5-
1.5m and y-coordinates 0-1m, where a moving robot passed
by a stationary robot. This error was attributed to the standard
PHD filter mistakenly estimating one robot instead of two
at this time, leading to larger tracking errors. Overall these
comparisons clearly shows the advantage of proposed filter.

This is further corroborated by the error plot depicted in
Fig. 3 Row 5. The overall error was computed by summing
the individual robot estimation error. The estimates were
assigned to the closest robot through a clustering algorithm,
ensuring that each estimate was only associated with a single

robot. In the case where an estimate was not available for a
particular robot, a maximum error of 1 meter was assigned,
so that a maximum error of 4m is possible. The error plots of
the standard PHD filter with Pp 0.2 and 0.9 are outperformed
by the adaptive PHD filter, which has 2.76 and 1.41 times
less error respectively. However, the standard PHD filter with
Pp = 0.5 shows better performance with respect to our
proposed filter, due to the more frequent re-initializations
of one of the estimates. This behavior is expected as the
average actual Pp of the four robots is 0.6, which makes a
constant overall Pp of 0.5 a good estimate. The mean error
values are proposed in Table I.

Figure 4 displays the results of another experiment in
which the Pp of the four robot is reduced over time, from
1, 0.9, 0.8, 0.7, at the beginning of the experiment to 0.75,
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Filter Type | Standard | Adaptive | percentage
Pp =09 0.737 0.267 2.76
Pp =05 0.156 0.256 0.6
Pp =02 0.337 0.239 1.41

TABLE I: Mean error values in the various experiments.

0.65, 0.55, and 0.45 at the end. The adaptive filter was
run with a memory window for the Pp estimation of 50
steps, and was compared with the standard PHD filter with
a fixed Pp of 0.8. The plots present the sum of weights,
the estimated Pp, and the overall error, demonstrating that
both filters have similar performance at the beginning, but
as the Pp decreased the adaptive filter was able to maintain
its performance, while the performance of the standard PHD
filter deteriorated.

B. Real-world ASV Obstacle Tracking Experiment

We have tested our proposed filter on data collected by
a small ASV in a lake environment, where Pp and Pg
are unknown. We utilized our custom-designed 25 kg ASV
Catabot (Fig. 1), measuring 2.4 m in length and 1.4 m in
width [16]. The ASV is equipped with a Velodyne VLP-16
LiDAR for 3D measurements, offering a 360° horizontal and
30° vertical field of view, as well as other components like an

Intel NUC onboard computer, an RGB camera, GPS, IMU,
and sonar. The LiDAR was installed at the center of the ASV
minimizing occlusion caused by other fixed components.
Note that the proposed tracking method can function with
any LiDAR sensor that can generate a point cloud with x, vy,
and z geometric data.

We collected a vast array of data during the ice-out
season from Apr. 2020 to Sep. 2022 in Lake Sunapee in
NH and Lake China, Sabattus, and Auburn in ME. The
objects we encountered during this time were diverse, rang-
ing from swimmers and various types of buoys to power
boats, water skiers, kayaks, floating docks, and sailboats with
encounters in different situations (such as head-on, crossing,
overtaking, and overtaken) and various ASV ego-motions
(such as stopping, translating, turning). Targets tracked in
this experiment are from real lake traffic on which we did
not have control. Therefore, no ground truth is available
to compute the estimation error, and the best indicator for
success is the estimated number of targets.

To ensure that our proposed tracking approach is effective
in real-world scenarios, we employed a model-free segmen-
tation algorithm that we had developed in our previous work
[6] as a pre-processing step. To minimize computational



requirements, our method converts the 3D point cloud into
a 2D spherical projection image. The algorithm used for
segmentation integrates a breadth-first search with a variant
of hierarchical agglomerative clustering to segment the points
based on the different objects present in the environment.
This approach addresses the sparsity of the point cloud in the
aquatic domain, which is a characteristic that makes methods
developed for self-driving cars unsuitable for in-water obsta-
cle segmentation. Once the segmentation is complete, our
algorithm computes the centroids of the segmented output
and provides it to the PHD filter for the measurement update.
Ego-motion measurements of the Catabot for the time update
were provided directly from the onboard localization module.

Similar to in-lab experiments we simultaneously ran the
standard PHD filter with different predetermined Pp (0.9,
0.7, 0.5) and Pg (0.9, 0.9, 0.8) values along with our adaptive
PHD filter in a single sequence. The variable C' was selected
as 5. Each estimate was initialized with Pp = 0.75 by
assigning initial value as o’ = 3, 3* = 1. The results of
the three executions are presented in Fig. 5 with two plots:
the moving average of the sum of the weights (Fig. 5 Row 1),
and the estimated values for P}, (Fig. 5 Row 2). In average,
the lidar tracked 5 to 6 targets including a sail boat, a medium
motor boat, kayak and several other objects as counted from
the recorded video and lidar blobs during the experiment.
As seen in Fig. 5 Row 1, our filter was able to track an
average of 6 targets. The number of targets tracked by the
standard PHD filter instead depends on the Pp, with the
filters with Pp 0.9 and 0.5 (columns a and c respectively)
underestimating and overestimating the number of targets,
and the filter with Pp 0.7 showing similar results to our
filter. The estimated Pp shows a few tracks with high values
(0.8 and up) in the proposed adaptive filter in Fig. 5 Row 2
which could be explained by the sail boat and the medium
size motor boat, that due to their larger sized produced more
stable point clusters in the pointcloud.

Overall, these results corroborates the fact that manually
selecting values for Pp and Pg in the standard PHD filter
will change the results of the estimation, while using an
estimation method to compute individualized Pp and Pg
values for each target produces more consistent results.

V. CONCLUSIONS

This paper introduces a modification of the GM-PHD filter
with adaptive probability of detection (Pp) and probability
of survival (Pg), thereby eliminating the need for predeter-
mined and constant Pp and Pg values. The proposed filter
estimates the Pp and Pg values for each individual target
based on newly introduced parameters, which are updated
during the measurement update process. We performed in-lab
experiments using four unmanned ground robots, each with
a unique Pp value, and compared against the standard PHD
filter with several fixed Pp values. The results shows that our
modified filter outperforms the standard PHD filter when the
selected Pp and Pg are not accurate. This is evident both
in the number of the estimated targets, as well as in the
tracking error which is greatly reduced. On the other hand,

accurate values of Pp and Pg in the standard PHD filter may
lead to comparable or slightly better results. These findings
corroborate the fact that our system is suitable and provide an
advantage when the values for Pp and Pg are unknown and
should be guessed and/or tuned, as is for example the case
of obstacle tracking on small ASV vehicles. Following this
analysis, the proposed filter was applied to a dataset collected
by an ASV operating in a real-world lake environment with
boat traffic showing promising results.

In the future, we plan to extend the system to multi-sensor
setup and perform live testing of the estimation system with
live boat traffic and automated obstacle avoidance.
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