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Notation Type De�nition

Ĩ scalar Current time

ĩ scalar Initial time

ĩ′ scalar One time step before the current time

¨
Ę
ė vector Forward �ow map from time ė to Ę

«
ė
Ę

vector Backward �ow map from time Ę to ė

FĘ
ė matrix Jacobian of forward �ow map ¨

Ę
ė

Tė
Ę

matrix Jacobian of backward �ow map «
ė
Ę

ĦĪ scalar Pressure at time Ī

ąĪ scalar Lagrangian pressure calculated at time Ī

Λ
Ę
ė scalar Integration of ą from time ė to Ę

uĉ
ė→Ę

vector Mapped velocity at time Ę by covector �ow
map from time ė

uý
ė→Ę

vector Advected velocity at time Ę by particle ve-
locity from time ė

Table 1. Summary of important notations used in the paper.

xĨ = ¨
Ĩ
ĩ (xĩ ) and the backward �ow map xĩ = ÿ

ĩ
Ĩ (xĨ ), with Jaco-

bians F Ĩ
ĩ =

ĉ¨Ĩ
ĩ

ĉxĩ
and T ĩ

Ĩ =

ĉ«ĩ
Ĩ

ĉxĨ
. These two �ow maps satisfy the

equations ¨Ĩĩ ◦«
ĩ
Ĩ = idĩand «Ĩ

ĩ ◦¨
ĩ
Ĩ = idĨ , where idĩ and idĨ denote

the identity transformations in domains ¬ĩ and ¬Ĩ respectively.
Considering the domain ¬Ī ∈ RĤ (where Ĥ = 2, 3, . . .) at any

time Ī as a linear vector space, the �ow maps ¨Ĩĩ : ¬ĩ → ¬Ĩ and
«
ĩ
Ĩ : ¬Ĩ → ¬ĩ are mappings between these linear spaces. Given a

scalar �eld ħĩ at time ĩ , a scalar �eld «
ĩ
Ī
∗ħĪ on ¬Ī can be induced

via the map («ĩ
Ī
∗ħĩ ) (x)

�
= ħĩ («

ĩ
Ī (x)) (

∗ means induction, where a
map «

ĩ
Ī
∗ between �elds is induced by a map «

ĩ
Ī between domains).

This induced scalar �eld is called the pullback of ħĩ by the mapping
«
ĩ
Ī (x) (the pullback by ¨

Ī
ĩ (x) is similar).

Covector Preliminaries. In the domain ¬Ī at any time Ī , regarded
as a linear space, we can de�ne tangent spaces Đx¬Ī and cotangent
spaces Đ ∗

x ¬Ī at any point x within ¬Ī . For ¬Ī ¢ RĤ , the tangent
spaces Đx¬Ī = R

Ĥ encompass all vectors originating from x, while
the cotangent space Đ ∗

x ¬Ī comprises all linear functions (termed
cotangent vectors or covectors) de�ned on Đx¬Ī . Given an inner
product in ¬Ī ¢ RĤ , any tangent vector vx ∈ Đx¬Ī induces a

covector in Đ ∗
x ¬Ī , such that vox (w) = ïv,wð for all w ∈ Đx¬Ī . Here,

o denotes the conversion of a tangent vector to a covector, and q

signi�es the reverse conversion. A vector �eld v(x) (or covector �eld

vo (x)) is formed by selecting one vector vx = v(x) (or one covector

vox = vo (x)) from each tangent space Đx¬Ī (or the cotangent space
Đ ∗
x ¬Ī ) at every point x. The gradient Ěħ of a scalar �eld ħ can be
considered as a vector �eld. Refer to [Crane et al. 2013] for details.

Lie Advection. For any covector �eld voĩ taken from¬ĩ ,«ĩ
Ī induces

a covector �eld «ĩ
Ī
∗voĩ on ¬Ī as («ĩ

Ī
∗voĩ ) (x)

�
= [T ĩ

Ī
Đ (x)vĩ («

ĩ
Ī (x))]

o,

which is referred to as the pullback of the covector �eld voĩ by

«
ĩ
Ī . The pullback of voĩ at any time Ī satis�es an Lie advection

equation:
(
ĉ
ĉĪ + Lu

)
voĪ = 0, where Lu is the Lie derivative, and

in ¬Ĩ ¢ RĤ , it is given by (Luv
o
Ī )

q
= (u · ∇)vĪ + (∇u)Đ · vĪ . There-

fore if there is a vector �eld that satis�es this advection equation, at

any time Ī , voĪ can be described through the pullback of the initial

voĩ through pullback.

4 PHYSICAL MODEL

Covector Incompressible Fluid. We model incompressible �ow us-
ing Euler equations by assuming viscosity zero and density one:




ĉu

ĉĪ
+ (u · ∇)u + ∇Ħ = 0,

∇ · u = 0,
(1)

with u and Ħ specifying the �uid velocity and pressure. The �rst
equation describes the momentum conservation, and the second
equation speci�es incompressibility. According to the covectormodel
proposed in [Nabizadeh et al. 2022], Equation 1 can be reformulated
into its covector form as ĉu

ĉĪ + (u · ∇)u + ∇uĐ · u + ∇(Ħ − 1

2
|u|2) = 0,

which can be further written with Lie advection as

(
ĉ

ĉĪ
+ Lu)u

o + Ě (Ħ −
1

2
|u|2) := (

ĉ

ĉĪ
+ Lu)u

o + Ěą = 0, (2)

where ą = Ħ − 1

2
|u|2 is de�ned as Lagrangian pressure.

Covector Fluid on Flow Maps. The solution uĨ of Equation 2 at Ĩ
includes terms obtained by pulling back the velocity �eld as a covec-
tor through the �ow map. This process is illustrated by integrating
both sides of Equation 2 from time ĩ to Ĩ , represented as a covector:

uoĨ = «
ĩ
Ĩ
∗uoĩ −

+ Ĩ

ĩ
(¨ăĩ ◦ «

ĩ
Ĩ )

∗ĚąăĚă,

= «
ĩ
Ĩ
∗uoĩ − Ě

+ Ĩ

ĩ
(¨ăĩ ◦ «

ĩ
Ĩ )

∗ąăĚă,

(3)

with the second line arising from the commutativity between the
di�erential operator ∇ (more accurately denoted as “d”) and the
pullback operator (Equation 7 in [Nabizadeh et al. 2022]), and com-
mutativity between ∇ and the integral sign.
Next, we can convert the covector forms and their pullbacks in

Equation 3 into their vector forms as:

u(x, Ĩ ) = T ĩ
Ĩ
Đ uĩ («

ĩ
Ĩ (x), ĩ)︸               ︷︷               ︸

mapping

−∇

+ Ĩ

ĩ
ą((¨ăĩ ◦ «

ĩ
Ĩ ) (x), ă)Ěă

︸                              ︷︷                              ︸
projection

, (4)

which constitutes two main steps to obtain velocity at (x, Ĩ ) using a
mapping-projection scheme. Initially, the mapping step calculates
T ĩ
Ĩ
Đ uĩ («

ĩ
Ĩ (x), ĩ) as the pullback of the velocity �eld uĩ by the �ow

map. In the projection step, the gradient of
+ Ī

ĩ
ą((¨ăĩ ◦ «

ĩ
Ĩ ) (x), ă)Ěă

is projected from the mapped velocity to enforce incompressibility.

5 PATH INTEGRAL ON LAGRANGIAN FLOW MAPS

Equation 4 can be written into a path integral form on a Lagrangian
trajectory. For a �uid particle ħ with position xħ (Ī) at any time Ī ,
the projection term in Equation 4 is the path integral of ą along its
trajectory from time ĩ to Ĩ , which is denoted as

Λ
Ĩ
ĩ,ħ

�
=

+ Ĩ

ĩ
ą((¨ăĩ ◦ «

ĩ
Ĩ ) (xħ (Ĩ )), ă)Ěă . (5)

Here the subscript ħ indicates that this quantity is carried by the
particle ħ. For the mapping part, uĩ («ĩ

Ĩ (xq (r)), ĩ) is the velocity of
particle ħ at time ĩ , and we simplify the notation as uĩ,ħ . Because
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T ĩ
Ĩ =

ĉxĩ
ĉxĨ

is determined by the positions of all particles in the �ow
�eld at time Ĩ and ĩ , it can be carried on �uid particles, denoted as
T ĩ
Ĩ,ħ . We obtain the reformulated Equation 4 as a path integral:

uĨ,ħ = T ĩ
Ĩ,ħ

Đ uĩ,ħ
︸    ︷︷    ︸
mapping

− ∇ΛĨĩ,ħ
︸︷︷︸

projection

. (6)

Equation 6 forms the mathematical foundation of our Lagrangian
covector �uid model. This equation, in contrast to Equation 4, con-
siders the mapping and projection processes occurring on a particle
as it moves along its trajectory in the �ow �eld, which simpli�es the
formulation by eliminating the need for back-and-forth mappings
to identify a Lagrangian point. Thus, we reinterpret the mapping-
projection process on a moving particle ħ as follows: (1) calculate the
mapped velocity from the initial time ĩ as īĉĩ→Ĩ,ħ = T ĩ

Ĩ,ħ
Đ uĩ,ħ , and

(2) remove its irrotational component by subtracting the gradient
of the path integral of the Lagrangian pressure ∇ΛĨĩ,ħ .

6 INCOMPRESSIBILITY

6.1 Long-Range Mapping, Long-Range Projection

To determine the velocity of a particle ħ at time Ĩ , we initially con-
sider a straightforward method for solving Equation 6. We present
the method as a standard mapping-projection scheme:

(1) (Long-Range Mapping) Calculate the long-range mapped
velocity as: uĉĩ→Ĩ,ħ = T ĩ

Ĩ,ħ
Đ uĩ,ħ ;

(2) (Long-Range Projection) Solving the following Poisson
equation to obtain Λ

Ĩ
ĩ,ħ :




∇ · ∇ΛĨĩ = ∇ · uĉĩ→Ĩ , x ∈ ¬

uĨ = uĘ , x ∈ ĉĩ¬

Ħ = 0, x ∈ ĉĜ ¬

(7)

where uĘ denotes the velocity of the solid boundary, and
ĉĩ¬ and ĉĜ ¬ denote solid boundary and free surface bound-
ary respectively. Then, we carry out a projection as uĨ,ħ =

uĉĩ→Ĩ,ħ − ∇ΛĨĩ,ħ to ensure uĨ satis�es ∇ · uĨ = 0.

Here, uĉĩ→Ĩ,ħ is long-range mapped from the initial time ĩ and is
projected to uĨ by a gradient of long-range path integral of pressure
Λ
Ĩ
ĩ,ħ from time ĩ to Ī . Hence, the Poisson equation we solve in Equa-

tion 7 leads to a long-range projection of the rotational component
accumulated from time ĩ to time Ĩ . Given these, we refer to this
strategy as Long-RangeMapping Long-Range Projection (LMLP).

LMLP has two main issues regarding boundary and performance:

(1) Setting boundary conditions is challenging. Speci�cally, at
the free boundary ĉĜ ¬, to enforce the boundary condition

Ħ = 0, we de�ne Λ
Ĩ
ĩ,ħ =

+ Ĩ

ĩ
Ħă,ħ − 1

2
|uă,ħ |

2Ěă . This implies
the necessity of establishing a non-zero Dirichlet boundary
condition such that ΛĨĩ,ħ =

+ Ĩ

ĩ
− 1

2
|uă,ħ |

2Ěă . This condition re-
quires a comprehensive path integral of the kinematic energy
across a particle’s trajectory. Although seemingly feasible
from a Lagrangian perspective, it is crucial to recognize that
this path integral only constitutes a valid Dirichlet boundary
under the speci�c condition that the particle remains on the

free surface from time ĩ to Ī . However, in practical scenarios,

this condition is rarely met due to the dynamic topological
changes of the surface over time. In the interval from time
ĩ to Ĩ , particles may transition between the interior and the
surface, rendering the calculation of this integral impractical.

(2) The performance issue is notable. The term uĉĩ→Ĩ,ħ encom-
passes a substantial divergent component ∇ΛĨĩ,ħ , which in-
cludes an integral extending from time ĩ to Ī . Attempting
to eliminate this component through a single projection re-
sults in signi�cant computational expenses, primarily due to
the increased number of iterations required for solving the
Poisson equation.

6.2 Short-Range Mapping, Short-Range Projection

To address the two issues mentioned above, we devise a short-
range approach. By setting the �ow map’s start point to be only one

timestep before Ĩ , denoted as ĩ′, we can calculate the velocity at time
Ĩ with the following two steps:

(1) (Short-Range Mapping) Calculate the mapped velocity:

uĉĩ′→Ĩ,ħ = T ĩ′
Ĩ,ħ

Đ
uĩ′,ħ

(2) (Short-Range Projection) Solve the following Poisson equa-

tion to obtain ą̂ħ :




∇ · ∇ą̂ = ∇ · uĉĩ′→Ĩ , x ∈ ¬

uĨ = uĘ , x ∈ ĉĩ¬

Ħ = 0 ⇒ ą̂ = − 1

2
|u2Ĩ |�Ī, x ∈ ĉĜ ¬

(8)

where ą̂ħ = ąĨ,ħ�Ī is the numerical calculation of one step
integration Λ

Ĩ
ĩ′,ħ . Then, we conduct the divergence-free pro-

jection as uĨ,ħ = uĉĩ′→Ĩ,ħ − ∇ą̂ħ .

Given both mapping and projection are limited within a short inter-
val from time ĩ′ to Ĩ , we refer the scheme as Short-Range Mapping
Short-Range Projection (SMSP). It is worth noting that SMSP is
akin to the Semi-Lagrangian advection schme, as they both involve
computing a one-step mapping. The di�erence lies in the fact that
SMSP employs a mapping form based on the Lie advection equation

uĉĩ′→Ĩ,ħ = T ĩ′
Ĩ,ħ

Đ
uĩ′,ħ , whereas Semi-Lagrangian employs a mapping

form based on the ordinary advection equation uýĩ′→Ĩ,ħ = uĩ′,ħ .

SMSP ensures robustness by addressing the two issues above:
(1) The Neumann boundary can be set as ΛĨĩ′,ħ =

+ Ĩ

ĩ′
− 1

2
|uă,ħ |

2Ěă ,

namely, ą̂ħ = − 1

2
|uĩ′,ħ |

2
�Ī , which is robustly calculable (because of

only one timestep). (2) The Poisson solve converges fast thanks to
the small divergence on its right-hand side. However, SMSP forgoes
the advantages associated with employing a long-range �ow map
for vorticity conservation. Instead, it resolves to a reformulated
Euler equation in covector form, accompanied by a one-step particle
advection process. This approach results in the loss of the bene�ts
inherent in utilizing a �ow map to preserve vorticies.

6.3 Long-Range Mapping, Short-Range Projection

A natural next step is to combine the merits of LMLP and SMSP.
However, this is not mathematically intuitive. As shown in Equa-
tion 6, the mapping and projection steps require the same time
interval for their path integrals.
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To address this issue, we observe the following identity:

uĉĩ′→Ĩ,ħ
︸  ︷︷  ︸

SM

= uĉĩ→Ĩ,ħ
︸ ︷︷ ︸

LM

−∇Λĩ
′

ĩ,ħ . (9)

This identity can be simply proved as uĨ,ħ = uĉĩ→Ī,ħ − ∇ΛĨĩ,ħ =

uĉĩ′→Ī,ħ −∇ΛĨĩ′,ħ and ΛĨĩ,ħ = Λ
ĩ′
ĩ,ħ +Λ

Ĩ
ĩ′,ħ . It establishes a connection

between the long-range and short-range mappings, allowing us to
express a short-range mapping by adding the gradient of pressure
integral ∇Λĩ

′

ĩ,ħ to its long-range counterpart. This calculation is nu-

merically robust, because for each particle, Λĩ
′

ĩ,ħ is the path integral
of the Lagrangian pressure on its trajectory. Substituting Equation 9
into Equation 8, we obtain the following scheme:

(1) (Long-Range Mapping) Calculate mapped velocity by the
long-range �ow map: uĉĩ→Ĩ,ħ = T ĩ

Ĩ,ħ
Đ uĩ,ħ ;

(2) Calculate mapped velocity by short-range �ow map based on
the long-range mapped velocity as: uĉĩ′→Ĩ,ħ = uĉĩ→Ĩ,ħ −∇Λĩ

′

ĩ,ħ

(3) (Short-Range Projection) Solve the following Poisson equa-

tion to obtain ą̂ħ :




∇ · ∇ą̂ = ∇ · uĉĩ′→Ĩ , x ∈ ¬

uĨ = uĘ , x ∈ ĉĩ¬

Ħ = 0 ⇒ ą̂ = − 1

2
|u2Ĩ |�Ī, x ∈ ĉĜ ¬

(10)

where ą̂ħ = ąĨ,ħ�Ī is the numerical calculation of one step
integration Λ

Ĩ
ĩ′,ħ .

(4) Update the integral: ΛĨĩ,ħ = Λ
ĩ′
ĩ,ħ + ą̂ħ and project uĨ,ħ =

uĉĩ→Ĩ,ħ − ∇ΛĨĩ,ħ to ensure uĨ satis�es ∇ · uĨ = 0.

We name it asLong-RangeMapping Short-RangeProjection(LMSP).
In LMSP, the Λĩ

′

ĩ in Step (2) is calculated in the previous time step,

and this value is updated in Step (4) by ΛĨĩ,ħ = Λ
ĩ′
ĩ,ħ + ą̂ħ to the value

in the current time step. This accumulation might lead to a concern
that accumulating pressure ΛĨĩ could potentially lead to the accu-
mulation of numerical errors, thereby diminishing the long-range
map’s ability to preserve vorticity when calculating uĉĩ→Ĩ,ħ − ∇Λĩ

′

ĩ

in Step (2). We show this is not an issue. Because ∇Λĩ
′

ĩ is a gradient
�eld, it only a�ects the divergence component of uĉĩ→Ĩ,ħ . Any nu-

merical error accumulated in Λ
ĩ′
ĩ goes directly into the rotational

part uĉĩ→Ĩ,ħ , which will be removed after projection.
We further demonstrate this with the following proposition:

Proposition 6.1. Poission Equation 10 with initial guess ą̂ = 0 is

equivalent to Poission Equation 7 with initial guess ΛĨĩ = Λ
ĩ′
ĩ

Proof: Substitute Equation 9 into Equation 10, we obtain ∇ · ∇ą̂ =

∇ · [∇uĉĩ→Ĩ,ħ − ∇Λĩ
′

ĩ,ħ], which is equivalent to ∇ · ∇(ą̂ + Λ
ĩ′
ĩ,ħ) =

∇ · ∇uĉĩ→Ĩ,ħ . Use Λ
Ĩ
ĩ to substitute ą̂ + Λ

ĩ′
ĩ,ħ , and we get Equation 7.

Also, for the initial guess, when ą̂ = 0, Λ = Λ
ĩ′
ĩ,ħ .

7 ADAPTING TO CLASSICAL ADVECTION-PROJECTION

In the �nal movement, we further adapt the LMSP scheme to a
classical advection-projection scheme by solving the Poisson equa-
tion with standard Neumann and Dirichlet boundary conditions,
namely Ħ = 0 on ĉĜ ¬ and ī = īĘ on ĉĩ¬. This modi�cation is

motivated by the desire to circumvent any inaccuracies arising from
the approximation of T Ĩ

ĩ for a particle on the surface (due to the
lack of su�cient neighboring particles to approximate the Jacobian),
which could potentially lead to numerical instabilities during the
simulation. We showed an ablation test for this issue in Fig. 11.

We observe the following identity regarding a particle’s velocity
on a one-step �ow map:

uýĩ′→Ĩ,ħ = uĉĩ′→Ĩ,ħ + �Ī∇(
1

2
|uĩ′,ħ |

2) (11)

where uýĩ′→Ĩ,ħ represents the passively advected velocity on the

particle’s trajectory, namely, to move the particle to a new position
and keep its velocity as it is, as seen in all traditional particle-based
advection schemes. We show a brief proof in the Appendix A.
Combining Equation 9 and Equation 11, we obtain our �nal

advection-projection scheme as:

(1) (Long-Range Mapping) For the interior particles, calculate
the long-�ow-map mapped velocity: uĉĩ→Ĩ,ħ = T ĩ

Ĩ,ħ
Đ uĩ,ħ .

(2) For an interior particle, calculate its velocity as the advected
velocity expressedwith long-�ow-mapmapped velocity (Eq. 11):
uýĩ′→Ĩ,ħ = uĉĩ→Ĩ − ∇Λĩ

′

ĩ + ∇( 1
2
|uĩ′,ħ |

2)�Ī .

(3) For a boundary particle (refer to Figure 4), calculate its veloc-
ity as the advected velocity: uýĩ′→Ĩ,ħ = uĩ′,ħ .

(4) (Classical Projection) Solve the classical Poisson equation
to obtain Ħħ :




∇ · ∇Ħ = ∇ · uýĩ′→Ĩ , x ∈ ¬

uĨ = uĘ , x ∈ ĉĩ¬

Ħ = 0. x ∈ ĉĜ ¬

(12)

(5) Update the integral: ΛĨĩ,ħ = Λ
ĩ′
ĩ,ħ + �Ī (Ħħ − 1

2
|uĩ′,ħ |

2) and

do projection uĨ,ħ = uĉĩ→Ĩ,ħ − ∇ΛĨĩ,ħ for interior part, and

uĨ,ħ = uýĩ′→Ĩ,ħ − ∇Ħħ�Ī for the part near free surface.

We name it asLong-RangeMappingClassical Projection (LMCP).
In this scheme, the calculation of the Poisson equation is performed
for īýĩ′→Ī throughout the entire domain, ensuring the mathematical

consistency of the �nal velocity by the covector �ow map īĉĩ→Ĩ,ħ

and the advected velocity īýĩ→Ĩ,ħ after projection. At the same time,

for interior particles, the advected velocity īýĩ′→Ī is calculated by

uýĩ′→Ĩ,ħ = uĉĩ→Ĩ,ħ − ∇Λĩ
′

ĩ,ħ + ∇( 1
2
|uĩ′,ħ |

2)�Ī with long-range map-

ping for vorticity preserving. Again, because only the gradient
−∇Λĩ

′

ĩ + ∇( 1
2
|uĩ′ |

2)�Ī is added to uĉĩ→Ĩ , similar to subsection 6.3,

the process of adding −∇Λĩ
′

ĩ +∇( 1
2
|uĩ′ |

2)�Ī to uĉĩ→Ĩ to obtain u
ý
ĩ′→Ĩ

keeps the long-range �ow map’s ability to preserve vorticity.
Summary.We establish a long-range, Lagrangian �owmap based

on Equation 6 and incorporate it in a classical projection step with
zero Neumann boundary by leveraging Equation 9 and 11.

8 TIME INTEGRATION

We adopt the LMCP scheme in our simulation and summarize the
time integration scheme of our approach in Algorithm 1.We provide
further implementation details in the Appendix B.
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before merging. As illustrated in Fig. 6, our method shows a better
preservation of the vortical structures than PPM; vortices simulated
with our method stay separated at the point where the vortices
in the PPM simulation already merged. (2) Taylor Vortices. We
benchmark our method by simulating two Taylor vortices placed
0.815 apart from each other (Fig. 16). Their velocity �eld is given by
Ĉ (x) = đ /ė(2−Ĩ2/ė2)ěĮĦ ((1−Ĩ2/ė2)/2), where we useđ = 1 and
ė = 0.3, and Ĩ denotes the distance from x to the vortex center.Using
our method, we observe the vortices staying separate, whereas us-
ing PPM, they merge at the center. (3) Taylor-Green Vortices.

Fig. 10 shows a simulation started with a symmetric divergence-free
velocity �eld. The �uid is expected to maintain symmetry along the
two axes in 2D while rotating. We observe our method producing
less noise in terms of vorticity magnitude carried by the particles
as compared to PPM (Fig. 10a-b), with our method presenting a far
better energy dissipation curve (Fig. 10c). (4) 3D Dam Break. In
Fig. 8, we validate our method with the classical 3D benchmark case
for veri�cation of solid boundary and free surface �ow handling.

Ablation Study. We illustrate (1) the robustness of our LMCP
scheme in handling free surface boundary and (2) the subtraction
of accumulated pressure gradient signi�cantly accelerating the con-
vergence rate. Fig. 11 illustrates a robust interface achieved using
our scheme, in contrast to instabilities that occur without it. Fig. 7
shows that the subtraction of the accumulated pressure gradient
can accelerate the convergence of the Poisson equation solver.

Examples. We show additional 2D and 3D examples to demon-
strate the robustness and correctness of our method. We use Taichi
[Hu et al. 2019] for our implementation, and experiments are run on
Tesla V100 GPUs. We use at most 200 000 particles in all experiments
to represent �uid, air, and solids. Voronoi diagrams are created using
Scipy [Virtanen et al. 2020] and Qhull [Barber et al. 1996]. Kármán

Vortex Street. Fig. 15 shows alternating vortices forming down-
stream from a blunt object caused by the unsteady separation of
the �uid. 2D Moving and Rotating Board Fig. 5 shows an object
exhibiting �apping motion by traversing the rectangular domain
from left to right, and back while generating vortices in its wake.
3D Single & Double Sink In these examples, we illustrate our
method’s ability for accurate vorticity perservation combining with
free-surface treatment. For single vortex example, we place an initial
vorticity �eld at the center of the tank. A hole is opened as the sink
for the tank and water drains out through the hole. Similar settings
are adopted for two sink but the sinks have opposite direction of ro-
tation in order to create interesting surface motion. We can observe
spiral patterns on the surface in both examples. Results are shown
in Fig. 12, Fig. 17 and Fig. 13 3D Rotating Board As illustrated in
Fig. 9, a board is placed at the center of the scene and set to rotate
at a constant speed. We show our method can handle drastic free-
surface change and we deal moving solid boundaries in a robust and
e�ective way. Splashes and detailed water surfaces can be observed.
3DWave Generator. In this example, we demonstrate the scenario
of waves crashing against several pillars. We observe the dynamic
water �ow behind the pillars and the interaction between the waves.
We show particle view for this example in Fig. 14.

CFL. In all of our examples, we set the CFL number to 1 due to
constraints imposed by the Voronoi particles. Larger CFL numbers
could lead to drastic changes in the neighbors of particles, potentially
causing stability issues. Grid-based methods [Nabizadeh et al. 2022]
do not encounter these issues.

Table 2. Performance timing. We measure the time each substep takes, and

also how much of this was taken up by constructing the Voronoi diagram.

Although our simulation method runs on the GPU, the Voronoi diagram

calculation takes place on the CPU.

Average Time Cost per Substep

Scene name Particles Total (Voronoi)

2D Leapfrog 480k 12.5s (8.8s)

2D Taylor Vortices 360k 9.8s (6.4s)

2D Taylor-Green Vortices 156k 5.96s (2.7s)

3D Dam Break 211k 20.9s (18.12s)

2D Kármán Vortex Street 381k 9.56s (6.74s)

2D Moving and Rotating Board 150k 5.92s (2.66s)

3D Sink 180k 29s (25.7s)

3D Rotating Board 150k 5.9s (2.6s)

3D Wave Generator 403k 35s (32.84s)

11 LIMITATIONS AND FUTURE WORK

In summary, this paper presents a novel Lagrangian approach to es-
tablishing covector �ow maps under complex boundary conditions.
The developed decoupling mechanism, rooted in �ow-map theory,
e�ectively combines long-range �ow maps with short-range (and
classical) projections, ensuring robust handling of free boundaries.

A signi�cant limitation of our approach lies in its exclusive treat-
ment of inviscid �ows. Addressing viscous �ows, as well as other
interfacial phenomena, represents a promising direction for future
research. Currently, the speed of our �uid simulation code is con-
strained by the single-threaded Qhull algorithm used for generating
Voronoi cells in each frame. We plan to investigate more e�cient
schemes for solving incompressibility on particles. In our future
work, we aim to delve further into �ow-map theories within a
weakly compressible framework, enhancing meshfree Lagrangian
methods such as SPH. Additionally, we are interested in applying
our decoupled mapping-projection scheme to other free-surface
problems, including levelset-based and particle-grid methods.
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A PROOF OF EQ. 11

Proof: Consider one step advection from time ĩ′ to Ĩ and we

have xĨ,ħ = xĩ′,ħ + �Īuĩ′,ħ . Thus the Jacobian T ĩ′
Ĩ =

ĉxĩ′,ħ
ĉxĨ,ħ

can be

calculated as T ĩ′
Ĩ =

ĉxĩ′,ħ
ĉxĨ,ħ

=

ĉ (xĨ,ħ−�Īuĩ′,ħ )

ĉxĨ,ħ
= ą − �Ī∇uĩ′,ħ , where

ą denotes identity matrix. Thus uĉĩ′→Ĩ,ħ = T ĩ′

ĩ′,ħ

Đ
uĩ′,ħ = uĩ′,ħ −
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�Ī∇uĐĩ′,ħ · uĩ′,ħ . In the particle method, uýĩ′→Ĩ,ħ = uĩ′,ħ . Due to

∇uĐ · u = ∇( 1
2
|u|2), we have uýĩ′→Ĩ,ħ = uĉĩ′→Ĩ,ħ +∇(

1

2
|us′,q |

2)�Ī .□

B IMPLEMENTATION DETAILS OF ALGO. 1

Reinitialization.We employ a simple reinitialization decision strat-
egy R triggered every Ĥ substeps (Ĥ = 20 in our implementation).

Boundary particle checking.We employ the following strategy
to obtain the boundary particle set J : At the initial time ĩ , set
the �ag ÿğ to False; at each step, check if the particle is in the ġ
layers of particles near the free surface at current time Ĩ . If it is, we
update the �ag ÿğ to True; Ć (ğ) returns the value of ÿğ .(ġ = 3 in our
implementation).
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