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Fig. 1. Examples of our method handling demanding fluid simulation scenarios. In three dimensions, a two-sink setup draining a tank of water (left),
and generated waves hitting multiple solid objects (center). Our method achieves state-of-the-art performance amongst purely particle-based methods for
simulating dynamic vortical structures, such as two-dimensional leapfrogging (right).

This paper introduces a novel Lagrangian fluid solver based on covector
flow maps. We aim to address the challenges of establishing a robust flow-
map solver for incompressible fluids under complex boundary conditions.
Our key idea is to use particle trajectories to establish precise flow maps
and tailor path integrals of physical quantities along these trajectories to
reformulate the Poisson problem during the projection step. We devise a
decoupling mechanism based on path-integral identities from flow-map
theory. This mechanism integrates long-range flow maps for the main fluid
body into a short-range projection framework, ensuring a robust treatment
of free boundaries. We show that our method can effectively transform
a long-range projection problem with integral boundaries into a Poisson
problem with standard boundary conditions — specifically, zero Dirichlet on
the free surface and zero Neumann on solid boundaries. This transformation
significantly enhances robustness and accuracy, extending the applicability
of flow-map methods to complex free-surface problems.
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1 INTRODUCTION

Flow map methods have garnered increasing interest in both com-
putational physics and computer graphics communities in recent
years, as evidenced by the emergence of covector/impulse-based
[Deng et al. 2023; Nabizadeh et al. 2022] and vorticity-based [Mercier
et al. 2020; Yin et al. 2021, 2023] solvers that are known for their
exceptional preservation of vortical structures. The key to devel-
oping a flow-map method is constructing an efficient and accurate
representation that maps any given point from the initial to the
current frame (and vice versa if a bi-directional mapping process is
necessary). This flow map, or the relationship between the two end-
points of every mapping trajectory sample, was previously realized
by advecting the spatial coordinates [Deng et al. 2023; Hachisuka
2005; Sato et al. 2018, 2017; Tessendorf 2015], with improved accu-
racy later achieved by tracing particles backward over a recorded
spatiotemporal velocity field, both of which were implemented in a
fixed, Eulerian domain.

One of the main challenges in the impulse/covector fluid mod-
els with their flow-map-based implementations is addressing free-
surface boundaries. Existing approaches struggle to simulate free-
surface fluids due to inherent difficulties with free-surface boundary
conditions that are impractical to manage using traditional numeri-
cal solvers. In standard free-surface solvers built on velocity space,
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fluid incompressibility is enforced by solving a Poisson problem with
zero Dirichlet boundary conditions on the free surface (assuming
zero air pressure) and appropriate Neumann boundary conditions on
solid boundaries. In contrast, the free-surface boundary conditions
for a covector flow map model pose greater challenges. This diffi-
culty arises from the complexity of calculating the kinetic energy
integral on the free boundary over the entire flow map interval.

In typical liquid simulation scenarios in computer graphics, the
fluid surface undergoes extensive geometric and topological transi-
tions over time. Consequently, a fluid particle may appear on the
surface at a certain instant and then merge into the fluid body later.
This dynamics makes it impractical to track these particles’ statuses
consistently and determine whether they are on the free surface
at any given time over a high-dimensional spatiotemporal space.
However, the accuracy of the boundary condition depends on the
path integral of all particles currently on the free surface over the
entire flow-map period. Due to these challenges with traditional
numerical solutions, the covector/impulse frameworks and their
flow-map implementation are confined to solving fluid without a
free surface and can produce smoke animations only.

This paper makes the first step toward addressing the free-surface
boundary challenges for covector flow-map methods. We attack the
problem from the Lagrangian perspective by treating each flow-map
sample as a Lagrangian particle trajectory. Under this Lagrangian
view, we proposed a novel mathematical framework based on the
path integral identities in flow-map theory to decouple the mapping
and projection steps in a conventional covector flow-map algorithm.
Our key idea is to leverage these mathematical identities to flexibly
control the integral intervals for different physical quantities along
each Lagrangian path, and then transform the boundary conditions
from the long-range integral (through all flow map time steps) to a
short-range integral (within a single time step), and eventually to
a standard zero Dirichlet boundary to fit into the existing Poisson
solver. By doing so, we can decouple the long-range map for velocity,
which serves as the enabling mechanism for the vortical expres-
siveness of flow-map methods, and the pressure projection step,
which is fundamental for simulating incompressible flow, without
any model degeneration or artificial numerical blending.

Our proposed Lagrangian covector solver comprises three com-
ponents: a Lagrangian model for long-range flow maps and path
integrals, a reformulated Poisson solver designed for handling com-
plex boundaries, and a Voronoi-based numerical implementation.
These components synergistically establish a particle-based frame-
work that facilitates integral-flexible flow maps for the first covector
solver capable of handling free surfaces.

We summarize our main contributions as follows:

e We proposed a novel Lagrangian flow map model character-
izing the path integral form of covector fluid.

e We proposed a novel mechanism to incorporate long-range
flow maps into a short-range projection step and reformulated
it into a standard Poisson problem.

e We proposed the first free-surface covector fluid model based
on a Voronoi implementation.
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2 RELATED WORK

Particle-based fluid simulation. [De Goes et al. 2015] introduced
power particles to simulate incompressible fluids. Their geometri-
cally inspired method offers precise pressure solving and an even
distribution of particles by describing the fluid motion as a series
of well-shaped power diagrams. [Zhai et al. 2018] accelerated the
construction of power diagrams on GPUs, adopting ghost particles
for fluid-air interactions, while [Lévy 2022] introduced a more pre-
cise technique to calculate free-surface interactions, framing it as
an optimal transport problem.

Flow-map methods. The method of characteristic mapping (MCM)
of Wiggert and Wylie [1976] was first introduced to the graphics
community by Tessendorf and Pelfrey [2011]. Due to its superiority
in dealing with numerical dissipation through long-range mapping,
some methods [Hachisuka 2005; Sato et al. 2018, 2017; Tessendorf
2015] trade off computational cost for better accuracy utilizing vir-
tual particles for tracking the mapping. Subsequently, Nabizadeh
et al. [2022] combined this with an impulse fluid model [Cortez
1996] and Qu et al. [2019] developed a bidirectional mapping to
prevent dissipation better. Deng et al. [2023] stores intermediate
velocity fields using a neural network for storage compression. We
track such mapping directly with particles. Compared to previous
flow map methods (e.g., [Sato et al. 2017]), our method relies on cal-
culating path integrals on particles directly without any backtrace
step, eliminating any extra velocity buffer.

Gauge-based fluid. The concept of the impulse variable was ini-
tially introduced in [Buttke 1992], reformulating the incompressible
Navier-Stokes Equation with a gauge variable and transformation
[Buttke 1993; Oseledets 1989; Roberts 1972]. Various gauges have
been proposed for applications like boundary treatment, numerical
stability, and turbulence simulation [Buttke 1993; Buttke and Chorin
1993; Cortez 1996; Summers 2000; Weinan and Liu 2003]. Saye [2016]
and Saye [2017] employed a different gauge for interfacial discon-
tinuity issues. In the graphics community, researchers like Feng
et al. [2022], Xiong et al. [2022], Yang et al. [2021], and Nabizadeh
et al. [2022] have explored this area, though facing challenges with
accurate advection. Flow maps, as shown in [Deng et al. 2023], are
effective for advecting such variables, and this method has been
adapted to particles in our research.

3 MATHEMATICAL FOUNDATION

Flow Maps. To
define the flow map,
we start with an
initial domain Qg
at time s and its
current domain Q,
at time r, with s <
r. A particle at ~ _ °  |TS=
Xs € Qg at time s
moves to X, € Q,
at time r by veloc-
ity us,t € [s,r]. The relationship between xg and x, is defined
through two flow map functions, including the forward flow map

—— t=rtot=s
- t=8tot=r1r

Fig. 2. Forward and backward flow maps de-
fined on a particle.
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Notation Type  Definition
r scalar  Current time
s scalar  Initial time
s’ scalar  One time step before the current time
@b vector  Forward flow map from time a to b
vy vector Backward flow map from time b to a
Tg matrix  Jacobian of forward flow map CDz
7 matrix Jacobian of backward flow map ¥}/
pr scalar  Pressure at time ¢
Ar scalar  Lagrangian pressure calculated at time #
AL scalar  Integration of A from time a to b
ulaV[_) b vector Mapped velocity at time b by covector flow
map from time a
uz‘_) b vector Advected velocity at time b by particle ve-

locity from time a

Table 1. Summary of important notations used in the paper.

xr = ®%(xs) and the backward flow map x; = ¥;(x,), with Jaco-
bians ¥ = ?}I:S; and 7,° = %Ilf. These two flow maps satisfy the
equations @ o ¥7 = idsand ¥] o ®; = id,, where ids and id, denote
the identity transformations in domains Qg and Q, respectively.
Considering the domain Q; € R"” (where n = 2,3,...) at any
time ¢ as a linear vector space, the flow maps ®} : Qs — Q, and
¥ : Q — Qg are mappings between these linear spaces. Given a
scalar field g at time s, a scalar field ‘I’f*qt on Q; can be induced

via the map (¥;"¢;)(x) a gs (¥} (x)) (* means induction, where a
map ¥;” between fields is induced by a map ¥; between domains).
This induced scalar field is called the pullback of g5 by the mapping
¥?(x) (the pullback by ®L(x) is similar).

Covector Preliminaries. In the domain Q; at any time ¢, regarded
as a linear space, we can define tangent spaces TxQ; and cotangent
spaces T; Q; at any point x within Q;. For Q; c R", the tangent
spaces TxQ; = R" encompass all vectors originating from x, while
the cotangent space T; Q; comprises all linear functions (termed
cotangent vectors or covectors) defined on TxQ;. Given an inner
product in Q; C R”", any tangent vector vy € TxQ; induces a
covector in T Q;, such that VE’((W) = (v,w) for all w € TxQ;. Here,
b denotes the conversion of a tangent vector to a covector, and §
signifies the reverse conversion. A vector field v(x) (or covector field
v (x)) is formed by selecting one vector vy = v(x) (or one covector
VE)( = v"(x)) from each tangent space TxQ; (or the cotangent space
T Q;) at every point x. The gradient dg of a scalar field g can be
considered as a vector field. Refer to [Crane et al. 2013] for details.

Lie Advection. For any covector field VE taken from Qj, ‘I’ts induces
a covector field ‘I’f*v's’ on Q; as (‘I’f*vls’)(x) = [7;ST(X)VS(‘Pts(X))]b,
which is referred to as the pullback of the covector field VE by
¥;. The pullback of VE at any time ¢ satisfies an Lie advection

equationz(% + .Cu) v'; = 0, where L, is the Lie derivative, and

in Q, c R, it is given by (Luvlg)ﬁ = (u-V)v; + (Vu)T - v;. There-
fore if there is a vector field that satisfies this advection equation, at
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any time f, V't’ can be described through the pullback of the initial
VI; through pullback.

4 PHYSICAL MODEL

Covector Incompressible Fluid. We model incompressible flow us-
ing Euler equations by assuming viscosity zero and density one:

ou
" +(u-V)u+Vp=0, )
V-u=0,

with u and p specifying the fluid velocity and pressure. The first
equation describes the momentum conservation, and the second
equation specifies incompressibility. According to the covector model
proposed in [Nabizadeh et al. 2022], Equation 1 can be reformulated
into its covector form as % +(u-Vu+Vul -u+V(p- %|u|2) =0,
which can be further written with Lie advection as

9 b 1oy 9 b -
(24 Low’ +d(p = o) = (2 + Low’ +d2 =0, @)
where A = p — %IuI2 is defined as Lagrangian pressure.

Covector Fluid on Flow Maps. The solution u, of Equation 2 at r
includes terms obtained by pulling back the velocity field as a covec-
tor through the flow map. This process is illustrated by integrating
both sides of Equation 2 from time s to r, represented as a covector:

.
u2=wf*u2—/ (97 0 ¥2)*d],dr,
S
, 3)
=gyl —d/ (07 0 ¥$)* A.dr,
S

with the second line arising from the commutativity between the
differential operator V (more accurately denoted as “d”) and the
pullback operator (Equation 7 in [Nabizadeh et al. 2022]), and com-
mutativity between V and the integral sign.

Next, we can convert the covector forms and their pullbacks in
Equation 3 into their vector forms as:

uter) = 7 w009 -9 [T 2(@F 0 ) 0dn @
e ———— s
mapping

projection
which constitutes two main steps to obtain velocity at (x, r) using a
mapping-projection scheme. Initially, the mapping step calculates
75 Tus(‘Pﬁ (x), s) as the pullback of the velocity field ug by the flow
map. In the projection step, the gradient of /S ! A((®F 0 ) (x), 7)dT
is projected from the mapped velocity to enforce incompressibility.

5 PATH INTEGRAL ON LAGRANGIAN FLOW MAPS

Equation 4 can be written into a path integral form on a Lagrangian
trajectory. For a fluid particle g with position x4(t) at any time ¢,
the projection term in Equation 4 is the path integral of A along its
trajectory from time s to r, which is denoted as

Ajg 2 /S A((25 0 %7) (x4(r)), T)dr. )

Here the subscript q indicates that this quantity is carried by the
particle g. For the mapping part, us (¥} (xq (1)), s) is the velocity of
particle q at time s, and we simplify the notation as u; 4. Because
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7° = % is determined by the positions of all particles in the flow
field at time r and s, it can be carried on fluid particles, denoted as
Tr.q- We obtain the reformulated Equation 4 as a path integral:

s T r
Urg=Trq Usg— VAsq | (6)
— S~——
mapping  projection

Equation 6 forms the mathematical foundation of our Lagrangian
covector fluid model. This equation, in contrast to Equation 4, con-
siders the mapping and projection processes occurring on a particle
as it moves along its trajectory in the flow field, which simplifies the
formulation by eliminating the need for back-and-forth mappings
to identify a Lagrangian point. Thus, we reinterpret the mapping-
projection process on a moving particle g as follows: (1) calculate the
mapped velocity from the initial time s as uﬁw_)r’q = ﬁquuslq, and
(2) remove its irrotational component by subtracting the gradient
of the path integral of the Lagrangian pressure VA{ ;.

6 INCOMPRESSIBILITY
6.1 Long-Range Mapping, Long-Range Projection
To determine the velocity of a particle g at time r, we initially con-
sider a straightforward method for solving Equation 6. We present
the method as a standard mapping-projection scheme:
(1) (Long-Range Mapping) Calculate the long-range mapped
velocity as: uﬁ‘an = ﬁquus,q;
(2) (Long-Range Projection) Solving the following Poisson
equation to obtain Ag ;:

V-VA,=V-uM,,, x€Q
ur = uy, X € 95sQ (7)
p=0, xei)fQ

where u;, denotes the velocity of the solid boundary, and
9sQ and 97 Q) denote solid boundary and free surface bound-
ary respectively. Then, we carry out a projection as uy,g =
uﬁw_,r,q — VA§ 4 to ensure u, satisfies V - ur = 0.

Here, uéw_)r,q is long-range mapped from the initial time s and is
projected to u, by a gradient of long-range path integral of pressure
A% 4 from time s to ¢. Hence, the Poisson equation we solve in Equa-
tion 7 leads to a long-range projection of the rotational component
accumulated from time s to time r. Given these, we refer to this
strategy as Long-Range Mapping Long-Range Projection (LMLP).

LMLP has two main issues regarding boundary and performance:

(1) Setting boundary conditions is challenging. Specifically, at
the free boundary 97Q, to enforce the boundary condition
p =0, we define Ag, = fsr Prg — %|ur,q|2dr. This implies
the necessity of establishing a non-zero Dirichlet boundary
condition such that Ag , = /S : —% [ur,q|?dz. This condition re-
quires a comprehensive path integral of the kinematic energy
across a particle’s trajectory. Although seemingly feasible
from a Lagrangian perspective, it is crucial to recognize that
this path integral only constitutes a valid Dirichlet boundary
under the specific condition that the particle remains on the
free surface from time s to t. However, in practical scenarios,
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this condition is rarely met due to the dynamic topological
changes of the surface over time. In the interval from time
s to r, particles may transition between the interior and the
surface, rendering the calculation of this integral impractical.

(2) The performance issue is notable. The term uéw_),,q encom-

i
s,q°
cludes an integral extending from time s to t. Attempting

to eliminate this component through a single projection re-
sults in significant computational expenses, primarily due to
the increased number of iterations required for solving the
Poisson equation.

passes a substantial divergent component VA ,, which in-

6.2 Short-Range Mapping, Short-Range Projection

To address the two issues mentioned above, we devise a short-
range approach. By setting the flow map’s start point to be only one
timestep before r, denoted as s’, we can calculate the velocity at time
r with the following two steps:

(1) (Short-Range Mapping) Calculate the mapped velocity:
M

s’'—r,q

(2) (Short-Range Projection) Solve the following Poisson equa-
tion to obtain Ag:

' T
—_ S
u = 7;,q Uy g

7 _ M
V~V}L—V~us,_)r, x€Q
u, = uy, X € 95Q2 8)

p=0=i=-11?As X €9rQ

where iq = Ar,g/At is the numerical calculation of one step
integration A, . Then, we conduct the divergence-free pro-
- Viq.

iacti M
jection as ur g = Uy g

Given both mapping and projection are limited within a short inter-
val from time s’ to r, we refer the scheme as Short-Range Mapping
Short-Range Projection (SMSP). It is worth noting that SMSP is
akin to the Semi-Lagrangian advection schme, as they both involve
computing a one-step mapping. The difference lies in the fact that
SMSP employs a mapping form based on the Lie advection equation

M —
Uy —rq
. . LA _

form based on the ordinary advection equation uS,_)r,q =uy q.
SMSP ensures robustness by addressing the two issues above:

(1) The Neumann boundary can be set as A;,)q = /S,r —% |uT,q|2dT,

' T . . .
Tr3q Us',g, Whereas Semi-Lagrangian employs a mapping

namely, iq = —%|us')q|2At, which is robustly calculable (because of
only one timestep). (2) The Poisson solve converges fast thanks to
the small divergence on its right-hand side. However, SMSP forgoes
the advantages associated with employing a long-range flow map
for vorticity conservation. Instead, it resolves to a reformulated
Euler equation in covector form, accompanied by a one-step particle
advection process. This approach results in the loss of the benefits
inherent in utilizing a flow map to preserve vorticies.

6.3 Long-Range Mapping, Short-Range Projection

A natural next step is to combine the merits of LMLP and SMSP.
However, this is not mathematically intuitive. As shown in Equa-
tion 6, the mapping and projection steps require the same time
interval for their path integrals.
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To address this issue, we observe the following identity:

M _ .M s’
us’—>r,q =Usorg _VAs,q - )
——— ———
SM LM
This identity can be simply proved as Upg = uéw ot T VAgjq =
M _ r roo_ AS r : :
U g VAS,’q and AY g = A5 g+ As,,q. It establishes a connection

between the long-range and short-range mappings, allowing us to
express a short-range mapping by adding the gradient of pressure
integral VAﬁjq to its long-range counterpart. This calculation is nu-
merically robust, because for each particle, Ai:q is the path integral
of the Lagrangian pressure on its trajectory. Substituting Equation 9
into Equation 8, we obtain the following scheme:
(1) (Long-Range Mapping) Calculate mapped velocity by the
long-range flow map: u?’f_},’q = ﬁquus,q;
(2) Calculate mapped velocity by short-range flow map based on
the long-range mapped velocity as: u?fr_)r’q = ué\Lr’ q= VA?:q
(3) (Short-Range Projection) Solve the following Poisson equa-
tion to obtain iq:

V.-Vi=V.uM

s/ —r

x€Q
u, = uy, X € 9sQ (10)
p=0=A=-1udAt, xe€arQ
where iq = Ar,g/At is the numerical calculation of one step
integration A;,, 7
(4) Update the integral: A{, = Ai:q + /iq and project uy 4 =

u?’l_,,,q — VA{ 4 to ensure u, satisfies V- u, = 0.

We name it as Long-Range Mapping Short-Range Projection(LMSP).

In LMSP, the A“s" in Step (2) is calculated in the previous time step,
and this value is updated in Step (4) by AY ; = Ai:q + /iq to the value
in the current time step. This accumulation might lead to a concern
that accumulating pressure A could potentially lead to the accu-
mulation of numerical errors, thereby diminishing the long-range
map’s ability to preserve vorticity when calculating uQ’L,,q - VAﬁ'
in Step (2). We show this is not an issue. Because VA? is a gradient
field, it only affects the divergence component of uéw_mq. Any nu-
merical error accumulated in Ai/ goes directly into the rotational
part uéw_)r,q, which will be removed after projection.
We further demonstrate this with the following proposition:

PROPOSITION 6.1. Poission Equation 10 with initial guessi =0is
equivalent to Poission Equation 7 with initial guess AT = AS

Proof: Substitute Equation 9 into Equation 10, we obtain V - Vi=
V. [Vuéw_,r’q - VA_ngq], which is equivalent to V - V(4 + Ai:q) =
V. vuM orq- Use A to substituth: A+ Ag:q, an/d we get Equation 7.
Also, for the initial guess, when A =0, A = Ai,q.

7 ADAPTING TO CLASSICAL ADVECTION-PROJECTION

In the final movement, we further adapt the LMSP scheme to a
classical advection-projection scheme by solving the Poisson equa-
tion with standard Neumann and Dirichlet boundary conditions,
namely p = 0 on 9yQ and u = u;, on 95Q. This modification is
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motivated by the desire to circumvent any inaccuracies arising from
the approximation of 75" for a particle on the surface (due to the
lack of sufficient neighboring particles to approximate the Jacobian),
which could potentially lead to numerical instabilities during the
simulation. We showed an ablation test for this issue in Fig. 11.

We observe the following identity regarding a particle’s velocity
on a one-step flow map:

A _ M
s'—rq us’ﬂr,q

1
u + AtV(5|us,,q|2) (11)

where u‘s“, g
particle’s trajectory, namely, to move the particle to a new position
and keep its velocity as it is, as seen in all traditional particle-based
advection schemes. We show a brief proof in the Appendix A.
Combining Equation 9 and Equation 11, we obtain our final

advection-projection scheme as:

represents the passively advected velocity on the

(1) (Long-Range Mapping) For the interior particles, calculate

r/';quus,q.

(2) For an interior particle, calculate its velocity as the advected
velocity expressed with long-flow-map mapped velocity (Eq. 11):
u?,_}r’q =ul,, — VAY + V(Ljuy g2)AL.

(3) For a boundary particle (refer to Figure 4), calculate its veloc-

the long-flow-map mapped velocity: u?/[_,,’q =

ity as the advected velocity: u?’—»r,q = Uy g
(4) (Classical Projection) Solve the classical Poisson equation
to obtain pg:

V-Vp=V-ud | xeQ
X € dsQ (12)
p=0. X €09rQ

ur = Up,

(5) Update the integral: AT, = AS, + At(pg — 3luy gl?) and
do projection uy 4 = u?ﬂnq - VA;,q for interior part, and

Upg = uf, g~ quAt for the part near free surface.

We name it as Long-Range Mapping Classical Projection (LMCP).
In this scheme, the calculation of the Poisson equation is performed
for uﬁH : throughout the entire domain, ensuring the mathematical
consistency of the final velocity by the covector flow map ué\gr’q

and the advected velocity ufgnq after projection. At the same time,
A

for interior particles, the advected velocity u,_,,

A —_ M
us’—)ryq - us—»r,q

ping for vorticity preserving. Again, because only the gradient
—VAﬁ, + V(%|us/ |%)At is added to uéw_w, similar to subsection 6.3,
the process of adding —VAi’ +V(% lugr %) At to u?/l_,r to obtain u‘s“,_)r
keeps the long-range flow map’s ability to preserve vorticity.

Summary. We establish a long-range, Lagrangian flow map based
on Equation 6 and incorporate it in a classical projection step with
zero Neumann boundary by leveraging Equation 9 and 11.

is calculated by
- VAg:q + V(%|us/,q|2)At with long-range map-

8 TIME INTEGRATION

We adopt the LMCP scheme in our simulation and summarize the
time integration scheme of our approach in Algorithm 1. We provide
further implementation details in the Appendix B.
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Algorithm 1 Lagrangian Covector Fluid

Input: Initial velocity ug; Initial particle positions xs;
Re-initialization decision strategy R; Near-surface judgment.J
1: settime s «— 0,s’ « 0; integration Aii —0
2: for each time step and at time r do

3 if re-initialization decision strategy R satisfy then
4 sets «—r s «r

5: set Ug; < Uj; X < Xj; Aii —0

6: for all particle i do

7: advect particle position: x; < x; + v;At

8 for all particle i do

9 if J (i) is True then

10: compute u?,_}r’i — Uy j

11: else
12: compute 7.5 %h{,:x,-

3> r

13: compute uéw_mi — 7;’31-113,1'
14: compute u?,_)r’l. — uivf_)r’i - VAi:i + V(%lus/’i|2)At
15: solve possion Equation 12 and get p,;
16 update AT, — AS + (pri — §luril*)At
17: for all particle i do
18: do velocity projection: u,; = u‘s“,_‘r’i - Vpri
19: set last time: s” « r

9 NUMERICAL IMPLEMENTATION

Voronoi-based Discretization. We implemented a Voronoi-based
particle method for numerical implementation. In each time step, we
generate Voronoi diagrams for all moving particles, with each parti-
cle corresponding to a Voronoi cell. We represent the i-th particle as
qi, with position x;. As shown in Fig. 3, the cell corresponding to g;
is denoted V;, with a volume V; and centroid b;. The adjacent facet
between two neighboring cells V; and V; is denoted as Aj;. The
facet A;; has the area A;; and the centroid b;;. The distances from
x; and x; to the facet A;; are respectively denoted as d;; and dji,
while the distance between x; and x; is denoted as I;;. According to
the properties of Voronoi diagrams, A;; bisects the line connecting
x; and x; perpendicularly, so dj; = dj; and d;; + dj; = l;; holds.

For each particle g;, its associ-
ated Voronoi cell V; is used to de-
fine a matrix-form discrete gra-
dient operator G and divergence
operator D to calculate the gra-
dient Gp of a scalar quantity ¢
and the divergence Dv of a vec-
tor quantity v carried by parti-
cles. The computation of these
operators relies on the calcula-
tion of the rate of change of the
volume Vy,V; induced by particle positions. We use the formula

Vx; Vi = %(Xj —bij) and Vx, Vi = = ¥ ;e N, Vx, Vj for calculating
ij
Vx,Vj as given in [De Goes et al. 2015].

Fig. 3. Voronoi discretization
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According to [De Goes et al. 2015; Duque 2023], the matrix-form
divergence operator and gradient operator can be defined directly
from Vy,Vj as D;j = (ijVi)T, Dj; = (Vxl.Vi)T and G = —=DT. The
divergence of v and the gradient of p can be computed using the
matrix-form divergence and gradient operators defined as follows:

Ajj
[Dvli= D, 71y = i) - vi+ (xy = byj) vy,

jeNi 13
4 (13)
[Gpli = Z T(Xi = bij)(pi = pj),
jeN; M

where N; represents the set composed of the cells adjacent to cell i.

When solving the Poisson equation for velocity projection, the
Laplacian operator L is defined as L = DV ~1G, where V is a diagonal
matrix composed of all cell volumes V;. Because the differential
operator matrices satisfy G = -DT, the operator —L is symmetric
and positive semi-definite, allowing the discretized Poisson equation
—Lp = —Du* to be solved using the Conjugate Gradient method,
where u* represents the velocity before the divergence projection.

Boundary. Similar to [De Goes
et al. 2015], we represent the
solid boundary using solid par-
ticles and sample air particles
near the free surface, utilizing
the ghost particle method from
[Schechter and Bridson 2012]
(see Fig. 4). Solid particles and
air particles are used for clipping ary (gray-blue) fluid, bound-
the Voronoi diagrams calculated aries (black), or air (orange).
for fluid particles and setting boundary conditions, as proposed in
[De Goes et al. 2015].
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Fig. 4. Particles represent ei-
ther interior (blue) or bound-

Others. For gravity, we accumulate the integration of gravity

Gl = fs " gdr along the particle trajectory and add it to the mapped

velocity before projectionuM,, « uM, + GI for interior part and

add gravity directly to advected velocity uf,_)r — uf,_)r + g/t near
the free surface. To make particle distribution more uniform, like in
[De Goes et al. 2015], at the end of each time step, we put particles

to the centroid of their corresponding Voronoi cell x; < b;.

10 RESULTS AND DISCUSSION

Validation. We demonstrate the effectiveness of our method by
performing four benchmark experiments against the power particle
method (PPM) [De Goes et al. 2015]!, which shares implementation-
wise similarities given its geometric data structure. We observe
slower energy dissipation rates, less vorticity noise, and better
preservation of vortical structures. We color each 2D particle blue
(lower/negative values) through gray to red (higher/positive values),
based on a linear curve corresponding to its vorticity magnitude.

(1) Leapfrog. We initialize two negative and two positive vortex
rings, letting the four vortices move forward by the velocity field
generated by their influence on each other. The rate of energy dissi-
pation directly relates to the number of cycles they move forward

!For simplicity, we implement a Voronoi diagram instead of the power diagram without
affecting the ability to preserve vortex for both our methods and PPM.
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before merging. As illustrated in Fig. 6, our method shows a better
preservation of the vortical structures than PPM; vortices simulated
with our method stay separated at the point where the vortices
in the PPM simulation already merged. (2) Taylor Vortices. We
benchmark our method by simulating two Taylor vortices placed
0.815 apart from each other (Fig. 16). Their velocity field is given by
w(x) =U/a(2=r?/a*)exp((1-r?/a?)/2), where we use U = 1 and
a = 0.3, and r denotes the distance from x to the vortex center.Using
our method, we observe the vortices staying separate, whereas us-
ing PPM, they merge at the center. (3) Taylor-Green Vortices.
Fig. 10 shows a simulation started with a symmetric divergence-free
velocity field. The fluid is expected to maintain symmetry along the
two axes in 2D while rotating. We observe our method producing
less noise in terms of vorticity magnitude carried by the particles
as compared to PPM (Fig. 10a-b), with our method presenting a far
better energy dissipation curve (Fig. 10c). (4) 3D Dam Break. In
Fig. 8, we validate our method with the classical 3D benchmark case
for verification of solid boundary and free surface flow handling.

Ablation Study. We illustrate (1) the robustness of our LMCP
scheme in handling free surface boundary and (2) the subtraction
of accumulated pressure gradient significantly accelerating the con-
vergence rate. Fig. 11 illustrates a robust interface achieved using
our scheme, in contrast to instabilities that occur without it. Fig. 7
shows that the subtraction of the accumulated pressure gradient
can accelerate the convergence of the Poisson equation solver.

Examples. We show additional 2D and 3D examples to demon-
strate the robustness and correctness of our method. We use Taichi
[Hu et al. 2019] for our implementation, and experiments are run on
Tesla V100 GPUs. We use at most 200 000 particles in all experiments
to represent fluid, air, and solids. Voronoi diagrams are created using
Scipy [Virtanen et al. 2020] and Qhull [Barber et al. 1996]. Karman
Vortex Street. Fig. 15 shows alternating vortices forming down-
stream from a blunt object caused by the unsteady separation of
the fluid. 2D Moving and Rotating Board Fig. 5 shows an object
exhibiting flapping motion by traversing the rectangular domain
from left to right, and back while generating vortices in its wake.
3D Single & Double Sink In these examples, we illustrate our
method’s ability for accurate vorticity perservation combining with
free-surface treatment. For single vortex example, we place an initial
vorticity field at the center of the tank. A hole is opened as the sink
for the tank and water drains out through the hole. Similar settings
are adopted for two sink but the sinks have opposite direction of ro-
tation in order to create interesting surface motion. We can observe
spiral patterns on the surface in both examples. Results are shown
in Fig. 12, Fig. 17 and Fig. 13 3D Rotating Board As illustrated in
Fig. 9, a board is placed at the center of the scene and set to rotate
at a constant speed. We show our method can handle drastic free-
surface change and we deal moving solid boundaries in a robust and
effective way. Splashes and detailed water surfaces can be observed.
3D Wave Generator. In this example, we demonstrate the scenario
of waves crashing against several pillars. We observe the dynamic
water flow behind the pillars and the interaction between the waves.
We show particle view for this example in Fig. 14.
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CFL. In all of our examples, we set the CFL number to 1 due to
constraints imposed by the Voronoi particles. Larger CFL numbers
could lead to drastic changes in the neighbors of particles, potentially
causing stability issues. Grid-based methods [Nabizadeh et al. 2022]
do not encounter these issues.

Table 2. Performance timing. We measure the time each substep takes, and
also how much of this was taken up by constructing the Voronoi diagram.
Although our simulation method runs on the GPU, the Voronoi diagram
calculation takes place on the CPU.

Average Time Cost per Substep
Scene name Particles | Total (Voronoi)
2D Leapfrog 480k 12.5s (8.8s)
2D Taylor Vortices 360k 9.8s (6.4s)
2D Taylor-Green Vortices 156k 5.96s (2.7s)
3D Dam Break 211k 20.9s (18.12s)
2D Karméan Vortex Street 381k 9.56s (6.74s)
2D Moving and Rotating Board 150k 5.92s (2.66s)
3D Sink 180k 295 (25.75)
3D Rotating Board 150k 5.9s (2.6s)
3D Wave Generator 403k 35s (32.84s)

11 LIMITATIONS AND FUTURE WORK

In summary, this paper presents a novel Lagrangian approach to es-
tablishing covector flow maps under complex boundary conditions.
The developed decoupling mechanism, rooted in flow-map theory,
effectively combines long-range flow maps with short-range (and
classical) projections, ensuring robust handling of free boundaries.
A significant limitation of our approach lies in its exclusive treat-
ment of inviscid flows. Addressing viscous flows, as well as other
interfacial phenomena, represents a promising direction for future
research. Currently, the speed of our fluid simulation code is con-
strained by the single-threaded Qhull algorithm used for generating
Voronoi cells in each frame. We plan to investigate more efficient
schemes for solving incompressibility on particles. In our future
work, we aim to delve further into flow-map theories within a
weakly compressible framework, enhancing meshfree Lagrangian
methods such as SPH. Additionally, we are interested in applying
our decoupled mapping-projection scheme to other free-surface
problems, including levelset-based and particle-grid methods.
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A PROOF OF EQ. 11

Proof: Consider one step advection from time s’ to r and we

. ’ X1
have x, 4 = X' g + Atug 4. Thus the Jacobian 7,° = =< can be
q q q T T %y
’ X (X qg—Atuy ;)
s’ _ s'.q _ r.q s'q) _ 1 _ ,
calculated as 7,° = Ty Trg =1 - AtVuy 4, where

I denotes identity matrix. Thus u’/

_ s T _ _
s'—rq 7;’,q Us',qg = Us'q
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T : A
AtVuS,’q Uy q. In the particle method, UG g

1 1
Vul -u= V(§|u|2), we have u‘gﬁr’q = uyﬁr!q +V(E|us»,q|2)At. O

= uyg. Due to

B IMPLEMENTATION DETAILS OF ALGO. 1

Reinitialization. We employ a simple reinitialization decision strat-
egy R triggered every n substeps (n = 20 in our implementation).

Boundary particle checking. We employ the following strategy
to obtain the boundary particle set J: At the initial time s, set
the flag 7; to False; at each step, check if the particle is in the k
layers of particles near the free surface at current time r. If it is, we
update the flag 7; to True; J(i) returns the value of z;.(k = 3 in our
implementation).
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Fig. 5. A moving and rotating board in 2D traverses the domain from left to right, and then back.
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the case of both the original Covector Fluid technique, and our method, where

previous pressure integration is subtracted before projection. Blue, green, and

[ | red lines depict divergence error-interative step curve for conjugate gradient
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observe an improved rate of convergence by our method. This plot corresponds

Fig. 6. Leapfrog vortices in 2D. PPM (top), our approach (bottom). to Leapfrog example and convergence error is calculated by averaging |V - u|
on particles.

Fig. 9. Rotating board.
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Fig. 10. Qualitative and quantitative evaluation of simulating Taylor-Green (a) Without (b) Our method
vortices. (a) and (b) show the state for each method after 700 time steps. (c) Fig. 11. Ablation study on the effect of our novel free surface
shows the volume-averaged kinematic energy (y-axis) over time steps (x-axis): treatment. We observe the same ball of fluid particles being
the energy dissipation for PPM (orange) and our method (blue) over 500 time dropped into a still body of waterWhen not using our method
steps. Here, coloring represents the magnitude and sign of vorticity. (on the left), due to inaccuracies in the 7 approximation,

strange shapes appear at the free surface. When using our
method (on the right), the shape of the free surface is correct.



SIGGRAPH Conference Papers *24, July 27-August 1, 2024, Denver, CO, USA Zhiqi Li, Barnabas Bércsok, Duowen Chen, Yutong Sun, Bo Zhu, and Greg Turk

Fig. 14. Waves generated in a water tank with cylindrical obstacles.
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Fig. 15. K&rman vortex street. Fig. 16. Taylor vortices. Initial Fig. 17. Double sink (surface rendering).

state (top) and at 300 steps (bot-
tom). PPM (left), Ours (right).
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