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• Topology optimization on geometrically nonlinear thin shells.

• Adopting discrete shell based on discrete differential geometry for a reduced degree of freedom.
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A B S T R A C T

We present a novel numerical algorithm to perform nonlinear topology optimization on elastic thin

shells. The main component of our method is a differentiable thin-shell simulator based on discrete

differential geometry (DDG) discretization and the projected Newton method to solve geometrically

nonlinear elasticity and its derivatives on a triangle mesh. We build a density-based topology

optimization algorithm, enhanced by a density filter and a Heaviside projection scheme, to emerge and

optimize topologically complex shell structures on curved surfaces. We validate our approach using

standard test cases for nonlinear topology optimization and demonstrate the efficacy of our method by

tackling highly nonlinear topology optimization problems by producing complex and high-resolution

shell structural designs under various load conditions.

1. Introduction

Thin-shell structures manifest outstanding stiffness-to-

weight ratios compared with their volumetric counterparts

and therefore have played an essential role in many weight-

sensitive design applications such as automobiles and air-

planes. The design of thin shell structures has received

increasing attention in both computational design and topol-

ogy optimization communities over the past decades, exem-

plified by the differentiable simulation and inverse design

of various kinds of functional shells, such as fuselage and

Lotte tower [1], ankle-foot orthosis [2], blunt cone shell [3]

and etc. However, the state-of-the-art works that optimize

thin-shell topology with fine features concentrate on shell

topology optimization with linear elasticity. Devising meth-

ods to tackle both topological complexities and geometric

nonlinearities in a unified framework remains challenging.

Researchers in mechanical engineering and scientific

computing developed a host of algorithms and commercial

software (e.g. Comsol [4]) to solve thin-shell mechanics.

Originated from the Mixed Interpolation of Tensorial Com-

ponents (MITC) [5] approach, one of the well-received mod-

els using triangular elements that facilitate shell analysis and

design is MITC3 [6] and its nonlinear extension MITC3+

[7]. The linear [8] and non-linear [9] geometric effects of

MITC3 have been well-studied.
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On the other side, thin-shell simulation has also drawn

extensive attention from computational physics and compu-

tational geometry researchers for decades, since the seminal

work [10] on discretizing and simulating elastic surfaces. A

line of pioneering research has been done to devise effective

variational solvers and robust time integrators to simulate

shell dynamics on a triangle mesh [11, 12, 13, 14]. Along

this line, researchers started to explore solvers based on

Discrete Differential Geometry (DDG) [15] and intrinsic

shell models [16], where DDG developed discrete versions

of fundamental concepts from differential geometry, such

as curvature, tangents, and gradients, that can be applied to

discrete geometric structures like meshes, graphs, and point

clouds. Our shell simulator follows this line of research by

discretizing the membrane and bending energy terms on a

triangle mesh and solving its equilibrium by minimizing the

energy.

Volumetric topology optimization has received tremen-

dous success over the past decades [17, 18, 19]. Com-

bined with additional geometric constraints, volumetric ap-

proaches have been used to design manifold-coated struc-

tures with enclosed shells [20, 21, 22, 23], thin sheet metal

structures tailored for the deep drawing manufacturing pro-

cess [24], generalized 3D non-manifold thin-walled struc-

tures [25], and sparse lattice structures [26, 27]. They have

also been employed to produce thin features [28] or cellular

structures [29] on a planar domain. However, none of these

works leverage the shell model’s geometric feature to reduce

computational cost.

Compared with the volumetric topology optimization

counterpart, topology optimization on shells or other codi-

mensional geometries has remained less explored. Early

work [30] started by optimizing thickness as a varying field.
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Ansola et al. [31] introduced a parametric method to co-

optimize the shell shape and topology with microstruc-

ture. A discrete material optimization framework [32] later

was proposed to optimize material on laminated shells,

followed by extensions [33][34]. There is some more recent

progress made using different topology representations. Ho

and Kim[35] co-optimized the shape and topology of a linear

thin shell using the level-set method. Other examples include

NURBS [36] and Moving Morphable Components (MMC)

[3], series expansion [37], and multi-layer representations

[38] to obtain shell topology optimization results. We want

also to highlight the work done by [1], which optimized

shells with millions of elements on a supercomputer. Their

approach produced the state-of-the-art resolution for thin-

shell optimization, although with their focus on optimizing

linear shells.

Despite the progress in optimizing shell structures using

different topological representations, producing high-quality

topology optimization designs on a geometrically nonlinear

thin shell remains challenging, due to multiple interleaving

difficulties in practice to simultaneously tackle the shell’s ge-

ometric nonlinearity and topological complexities to probe

novel shell structural designs. In particular, due to the cou-

pling between the shell’s bending and stretching mechanics,

obtaining clear, binary structures is not a trivial task. The

local minima in a nonlinear shell could exhibit features with

creases, articulated joints, or a mix of surfaces and beams,

which are drastically different in terms of both optimization

convergence and mechanical performance from their linear

and volumetric counterparts.

Several methods have been investigated to solve the

convergence problem with non-linear topology optimization

including using the relaxed convergence criterion [39], inter-

polation with linear energy [40], linear to nonlinear two-step

process [41], element removal and reintroduction [42, 43],

and the co-rotational scheme [44]. However, these methods

either add on excess computational costs or require signif-

icant implementation efforts. Similarly, our method solves

the convergence issue of the thin-shell simulation within the

SIMP framework by the projected Newton’s method but with

minimal modification of the nonlinear structural optimiza-

tion framework to keep their simulation performance.

On the other hand, a multitude of recent work in com-

putational design and fabrication communities has been

devoted to the inverse design of functional thin shells.

These works can be categorized according to their physi-

cal design variables and optimization focus, including the

shape-material co-optimization [45], magnetoelasticity co-

optimization [46], parametric shapes [47], shell reinforce-

ment [48, 49], and synthesized microstructures [50, 51, 52],

to name just a few. While they are proposed to solve different

problems of inverse design, none of them has studied the

topology optimization on thin shells.

We present a novel topology optimization algorithm to

facilitate nonlinear structural design on thin shells. We build

our approach upon state-of-the-art nonlinear DDG shell

simulators stemming from previous work in computational

physics and geometry [15, 16] and extend the framework to

support differentiation calculation by adopting the projected

Newton method. We further incorporate this differentiable

solver into a topology optimization pipeline by equipping

density representations, binary filters, and large-scale op-

timizers in a unified framework. Our method provides a

practical tool that enables the topological design of complex

and nonlinear thin-shell structures, which, to the best of our

knowledge, produces state-of-the-art nonlinear shell topol-

ogy optimization results in terms of their design complexity.

The rest of the paper is organized as follows. In Section

2, we introduce the thin-shell model that we adopt and the

quasi-static simulation algorithm using the projected New-

ton method. We then formulate the topology optimization

problem, derive the sensitivities with the given thin-shell

model and present the optimization algorithm in Section

3. In Section 4, we validate our method by several simple

cases and then demonstrate the efficacy of our method with

more complicated boundary conditions, before conclusions

are drawn in Section 5.

2. Thin-shell Model

2.1. Continous Model
Based on the Kirchhoff–Love assumption, we model a

thin shell with a mid-surface f ∶ ¬ ³ ℝ
3 extended by

a constant thickness ℎ. Here f is a mapping from the two-

dimensional parameter space ¬ to a three-dimensional space

ℝ
3. We represent the shell volume in terms of the shell’s

mid-surface f as x(x, y, z) = f (x, y) + zn(x, y), where n is

the mid-surface normal, x and y are local coordinates in ¬,

x is the coordinate in ℝ
3, and z * [−ℎ∕2, ℎ∕2] is the normal

extension. The first and the second fundamental forms on f

are then calculated as
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Following [15, 16], we adopt the St. Venant-Kirchhoff

model and define the elastic energy density using the first

and second fundamental forms:

e =
ℎ

4

‖‖‖Ī
−1(I − Ī)

‖‖‖M
√
det �I+

ℎ3

12

‖‖‖Ī
−1(II − ĪI)

‖‖‖M
√
det �I. (2)

Here, the bar notation denotes variables in the rest shape.

The first term in Eq. (2) accounts for the stretching energy,

and the second term represents the bending energy. We

choose the material norm ‖ç‖M by following the formula

used in [15] as:

‖A‖M =
E

1 − �2

[
� Tr(A)2 + (1 − �) Tr

(
A2

)]
, (3)

where A is a 2 × 2 matrix, E is the Young’s modulus and �

is the Poisson’s ratio.

2.2. Differential Geometry Discretization
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forming a clear structure. The combination of these two

steps also avoids checkerboard artifacts. The first pass we

employed is to smooth the density field. Motivated by [56],

we calculate a weighted average density based on triangles

within a certain range. For a given triangle k, our filter is

calculated as:

�̃k =

1
i*Nk

wki'ivi
1

i*Nk
wkivi

, (8)

wki = r − |xk − xi|, (9)

which blends the densities within a spherical neighborhood

specified by the radius r. Here Nk is the k-th element of the

neighbor list within r, vi is the triangle area, and 'i is the

triangle density. For the second pass, we apply a projection

filter to obtain a binary result of the final density field on the

triangle mesh. Our scheme was motivated by the projection

approach used in volumetric topology optimizations (e.g.

[57]) to obtain a clear structure. The projection filter takes

�̃ as the input from the previous filter and calculates the

projected density �̂ as:

�̂k =
tanh(
�) + tanh

(

(�̃k − �)

)

tanh(
�) + tanh(
(1 − �))
, (10)

where � = 0.5 is the density threshold and 
 controls how

strong the projection is. When 
 = 1, there is no projection.

In our implementation, we use 
 * [1, 16]. Last, we set the

projected density value �̂ as the input of Eq. (6) to update

Young’s modulus of each triangle.

Algorithm 2 Thin Shell Topology Optimization

1: p ± 1, 
 ± 1, �e ± fv"e * ¬

2: for i ± 1 to max_iterations do

3: Increment p and 
 with the continuation scheme

4: Update x according to Algorithm 1

5: Calculate e using Equation 2

6: Calculate V (�)

7: Update
)e

)�i
and

)V (�)

)�i
using Equation (18) and (19)

8: �i+1 ± mma_update(�i, )
e

�i
, V (�), )

V (�)

�i
, move_limit)

9: �� ± �i+1 − �i

10: if ‖��‖@ < tol then ⊳ tol = 1e−4

11: break

12: end if

13: Update �̂ using Equation (8) and (10)

14: end for

3.2. Sensitivity
Since both the displacements of vertices u and the den-

sity field � influence the elastic energy, we have

)e(u,�)

)u
= fext. (11)

By taking the partial derivative of � and right multiplying

[)2e(u,�)∕)u2]−1 for the Eq. (11), we derive the partial

derivative of u with respect to � as follows
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)�
= −
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Substituting (12) into the total derivative of objective e

w.r.t. �
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Notice that we do not calculate the inverse of the matrix

directly. Instead, we convert
[
)2e(u,�)

)u2

]−1
)e(u,�)

)u
into solving

the linear system and solve it with the CHOLMOD solver as

what we did in the forward simulation. Using (6), (14) can

be simplified as

)e

)�k
= p�

p−1

k
ek. (15)

From (10), we have

)�̂k
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(
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(16)

Here, )�̄k∕)'j is calculated using (8) as

)�k

)'j

=
wkivj1

i*Ne
wkivi

, j * Ne (17)

Following the chain rule, the derivative of objective e

w.r.t design variables ' is

)e

)'j

=
de
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)'j
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The derivative of volume V (�k) w.r.t. 'j is simply the

volume of each element times
)�̂k

)�̄k
and

)�̃k

)'j

, following the

chain rule as

)V (�)

)'j

= V (�̂k)
)�̂k

)�̃k

)�̃k

)'j

. (19)

3.3. Optimization
Given the sensitivities for the objective and constraints,

we use the method of moving asymptotes (MMA) [58, 59]

to optimize the densities on triangles to minimize the shell’s

elastic compliance. Following Algorithm 2, we first ini-

tialize the penalization power p and the density projection

parameter 
 to 1. In each iteration, we then run the quasi-

static thin-shell simulation according to Algorithm 1 to reach
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