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We present a novel numerical algorithm to perform nonlinear topology optimization on elastic thin
shells. The main component of our method is a differentiable thin-shell simulator based on discrete
differential geometry (DDG) discretization and the projected Newton method to solve geometrically
nonlinear elasticity and its derivatives on a triangle mesh. We build a density-based topology
optimization algorithm, enhanced by a density filter and a Heaviside projection scheme, to emerge and

optimize topologically complex shell structures on curved surfaces. We validate our approach using
standard test cases for nonlinear topology optimization and demonstrate the efficacy of our method by
tackling highly nonlinear topology optimization problems by producing complex and high-resolution
shell structural designs under various load conditions.

1. Introduction

Thin-shell structures manifest outstanding stiffness-to-
weight ratios compared with their volumetric counterparts
and therefore have played an essential role in many weight-
sensitive design applications such as automobiles and air-
planes. The design of thin shell structures has received
increasing attention in both computational design and topol-
ogy optimization communities over the past decades, exem-
plified by the differentiable simulation and inverse design
of various kinds of functional shells, such as fuselage and
Lotte tower [1], ankle-foot orthosis [2], blunt cone shell [3]
and etc. However, the state-of-the-art works that optimize
thin-shell topology with fine features concentrate on shell
topology optimization with linear elasticity. Devising meth-
ods to tackle both topological complexities and geometric
nonlinearities in a unified framework remains challenging.

Researchers in mechanical engineering and scientific
computing developed a host of algorithms and commercial
software (e.g. Comsol [4]) to solve thin-shell mechanics.
Originated from the Mixed Interpolation of Tensorial Com-
ponents (MITC) [5] approach, one of the well-received mod-
els using triangular elements that facilitate shell analysis and
design is MITC3 [6] and its nonlinear extension MITC3+
[7]. The linear [8] and non-linear [9] geometric effects of
MITC3 have been well-studied.
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On the other side, thin-shell simulation has also drawn
extensive attention from computational physics and compu-
tational geometry researchers for decades, since the seminal
work [10] on discretizing and simulating elastic surfaces. A
line of pioneering research has been done to devise effective
variational solvers and robust time integrators to simulate
shell dynamics on a triangle mesh [11, 12, 13, 14]. Along
this line, researchers started to explore solvers based on
Discrete Differential Geometry (DDG) [15] and intrinsic
shell models [16], where DDG developed discrete versions
of fundamental concepts from differential geometry, such
as curvature, tangents, and gradients, that can be applied to
discrete geometric structures like meshes, graphs, and point
clouds. Our shell simulator follows this line of research by
discretizing the membrane and bending energy terms on a
triangle mesh and solving its equilibrium by minimizing the
energy.

Volumetric topology optimization has received tremen-
dous success over the past decades [17, 18, 19]. Com-
bined with additional geometric constraints, volumetric ap-
proaches have been used to design manifold-coated struc-
tures with enclosed shells [20, 21, 22, 23], thin sheet metal
structures tailored for the deep drawing manufacturing pro-
cess [24], generalized 3D non-manifold thin-walled struc-
tures [25], and sparse lattice structures [26, 27]. They have
also been employed to produce thin features [28] or cellular
structures [29] on a planar domain. However, none of these
works leverage the shell model’s geometric feature to reduce
computational cost.

Compared with the volumetric topology optimization
counterpart, topology optimization on shells or other codi-
mensional geometries has remained less explored. Early
work [30] started by optimizing thickness as a varying field.
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Ansola et al. [31] introduced a parametric method to co-
optimize the shell shape and topology with microstruc-
ture. A discrete material optimization framework [32] later
was proposed to optimize material on laminated shells,
followed by extensions [33][34]. There is some more recent
progress made using different topology representations. Ho
and Kim[35] co-optimized the shape and topology of a linear
thin shell using the level-set method. Other examples include
NURBS [36] and Moving Morphable Components (MMC)
[3], series expansion [37], and multi-layer representations
[38] to obtain shell topology optimization results. We want
also to highlight the work done by [1], which optimized
shells with millions of elements on a supercomputer. Their
approach produced the state-of-the-art resolution for thin-
shell optimization, although with their focus on optimizing
linear shells.

Despite the progress in optimizing shell structures using
different topological representations, producing high-quality
topology optimization designs on a geometrically nonlinear
thin shell remains challenging, due to multiple interleaving
difficulties in practice to simultaneously tackle the shell’s ge-
ometric nonlinearity and topological complexities to probe
novel shell structural designs. In particular, due to the cou-
pling between the shell’s bending and stretching mechanics,
obtaining clear, binary structures is not a trivial task. The
local minima in a nonlinear shell could exhibit features with
creases, articulated joints, or a mix of surfaces and beams,
which are drastically different in terms of both optimization
convergence and mechanical performance from their linear
and volumetric counterparts.

Several methods have been investigated to solve the
convergence problem with non-linear topology optimization
including using the relaxed convergence criterion [39], inter-
polation with linear energy [40], linear to nonlinear two-step
process [41], element removal and reintroduction [42, 43],
and the co-rotational scheme [44]. However, these methods
either add on excess computational costs or require signif-
icant implementation efforts. Similarly, our method solves
the convergence issue of the thin-shell simulation within the
SIMP framework by the projected Newton’s method but with
minimal modification of the nonlinear structural optimiza-
tion framework to keep their simulation performance.

On the other hand, a multitude of recent work in com-
putational design and fabrication communities has been
devoted to the inverse design of functional thin shells.
These works can be categorized according to their physi-
cal design variables and optimization focus, including the
shape-material co-optimization [45], magnetoelasticity co-
optimization [46], parametric shapes [47], shell reinforce-
ment [48, 49], and synthesized microstructures [50, 51, 52],
to name just a few. While they are proposed to solve different
problems of inverse design, none of them has studied the
topology optimization on thin shells.

We present a novel topology optimization algorithm to
facilitate nonlinear structural design on thin shells. We build
our approach upon state-of-the-art nonlinear DDG shell
simulators stemming from previous work in computational

physics and geometry [15, 16] and extend the framework to
support differentiation calculation by adopting the projected
Newton method. We further incorporate this differentiable
solver into a topology optimization pipeline by equipping
density representations, binary filters, and large-scale op-
timizers in a unified framework. Our method provides a
practical tool that enables the topological design of complex
and nonlinear thin-shell structures, which, to the best of our
knowledge, produces state-of-the-art nonlinear shell topol-
ogy optimization results in terms of their design complexity.

The rest of the paper is organized as follows. In Section
2, we introduce the thin-shell model that we adopt and the
quasi-static simulation algorithm using the projected New-
ton method. We then formulate the topology optimization
problem, derive the sensitivities with the given thin-shell
model and present the optimization algorithm in Section
3. In Section 4, we validate our method by several simple
cases and then demonstrate the efficacy of our method with
more complicated boundary conditions, before conclusions
are drawn in Section 5.

2. Thin-shell Model

2.1. Continous Model

Based on the Kirchhoff-Love assumption, we model a
thin shell with a mid-surface f : Q — R3 extended by
a constant thickness h. Here f is a mapping from the two-
dimensional parameter space € to a three-dimensional space
R3. We represent the shell volume in terms of the shell’s
mid-surface f as x(x,y,z) = f(x,y) + zn(x, y), where n is
the mid-surface normal, x and y are local coordinates in €,
x is the coordinate in R3, and z € [—h/2, h /2] is the normal
extension. The first and the second fundamental forms on f
are then calculated as
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Following [15, 16], we adopt the St. Venant-Kirchhoff
model and define the elastic energy density using the first
and second fundamental forms:

e=2ia- I)”M\/ﬁ+?—;||f‘l(ll -D|, Vderl @

Here, the bar notation denotes variables in the rest shape.
The first term in Eq. (2) accounts for the stretching energy,
and the second term represents the bending energy. We
choose the material norm |[|-||;, by following the formula
used in [15] as:

E
— 2

NAlly = ; [vTr(A)? + (1 -w)Tr(A%)], 3

where A is a 2 X 2 matrix, E is the Young’s modulus and v
is the Poisson’s ratio.

2.2. Differential Geometry Discretization
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We discretize the elastic energy _
on a triangle mesh (V, E, F), where —
V', E, and F are the sets of vertices, /\
edges, and faces, respectively. We as- Y v
sume that the physical quantities and \ _/—
the rest counterparts are constant over
each face of the triangle mesh. Fol-
lowing [16] adopting the use of DDG, for a triangle with
vertices v;, U j» Uk WE discretize I(x, y) and I(x, y) into

I I e CR IR N O]
Liji = [(v; —v) - (v —vy) log=oill> | @
and
_l _(nj—ni)~(l)j—l)l-) (I’lj—nl)'(l)k—l)l)_
Tijie = 2 |y =) (g —ny) (v —vy) - (ng —mp)|° ©

where (n;, n;, ny) are the mid-edge normal. We can also com-
pute the rest first and second fundamental forms analogously
for a given rest configuration (ﬁi,ﬁj,ﬁk) and (ﬁi,ﬁj,ﬁk).
Then it is straightforward to write down a discrete elastic
energy density for each triangle by substituting (4) and (5)
into (2).

2.3. Quasi-static Simulation

We devise a quasi-static solver to minimize the elastic
energy defined in Eq. (2) with given boundary conditions
and external loads. Solving the quasi-static system using
the implicit Euler scheme amounts minimizing the total
potential energy ¢’ = e— f,, - x on a discrete shell, which is
nonlinear w.r.t. the vertex positions. We devised an iterative
solver based on the Newton—Raphson method with a back-
tracing line search to find the solution with more numerical
stability. As shown in Algorithm 1, in each iteration we first
compute the total potential energy and the corresponding
gradients and Hessian. Since the energy, derivatives, and
Hessian are calculated on each triangle separately, we can
easily parallelize the computation using multi-threads on the
CPU to reach high computational efficiency, using OpenMP
[53]. The system’s Hessian matrix needs to be positive semi-
definite (PSD) to ensure the algorithm searches in an energy-
descending direction. We achieve this by performing eigen-
decomposition on the Hessian matrix of each triangle and
clamping the negative eigenvalues to zero (similar ideas can
be seen in [54]). After obtaining the symmetric PSD global
hessian matrix and gradients, we solve the linear system
(Line 5) using the CHOLMOD [55] library. We check for
the convergence of the simulation based on the maximum
displacement norm and the tolerance is set to be le — 4 of
the typical edge length (Line 6) unless indicated otherwise.
We then perform the backtracking line search to check if
the potential energy after the vertices update is smaller than
the potential energy at the starting point to achieve better
stability. If the potential energy doesn’t decrease, we half the
step size and continue the process.

Algorithm 1 Quasi-static Thin Shell Simulation

1: for i « 1 to max_iterations do

2: e/ « compute_potential(x)

3: H = projecl_PSD(%

4 b= fexr - g_i

5: Ax = LinearSolve(H , b)

6: if ||Ax||, < tol then

7: break

8: end if

9: e:mp « compute_potential(x + Ax)
10: a=1

11: while e/ b, > e do

12: e;mp « compute_potential(x + aAXx)
13: af =2

14: end while

15: e =e «itmp

16: X < x+alAx

17: end for

3. Topology Optimization

3.1. Problem Formulation

Design variables We define a density value p € [0, 1]
on each triangle. Following the modified Solid Isotropic
Material with Penalization (SIMP) method [17], Young’s
modulus of each triangle is calculated as a function of input
density with a constant penalizing power p as:

E(p) = Emin + pp(EO - Emin)’ (6)

where E,;, and E are constants specifying the minimum
and maximum Young’s modulus, and p is a scalar field dis-
cretizing the density distribution over triangles. If filters are
further applied on p, Eq.(6) will take the projected density
as input. We choose E_;, = le — 6E, E specified in the
Table 1 and p varies according to description in Subsection
3.3.

Optimization problem Given a domain Q, we formulate
the topology optimization problem as minimizing the struc-
tural compliance e(p,u) by optimizing p, when the force
equilibrium of internal force —de/du and external force f,,,
is reached:

V(p)

— <
V) — fvs
minimize e(p, u), subject to Du=0, @)
P
de
a = fexr’

where u is the displacement, V' (p) is the material volume,
V() is the volume of the design domain, f,, is the input
volume fraction constraint, D is a selection matrix assigning
Dirichlet boundary conditions to mesh nodes.

Density filters We devised a mesh-independent density
filter and a projection filter to coerce the density field toward
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forming a clear structure. The combination of these two
steps also avoids checkerboard artifacts. The first pass we
employed is to smooth the density field. Motivated by [56],
we calculate a weighted average density based on triangles
within a certain range. For a given triangle k, our filter is
calculated as:

®)

- ZieNk Wi @;V;
Pk =

==+ -
ZieNk Wy U

wy; =r—|x; —x, ©)]

which blends the densities within a spherical neighborhood
specified by the radius r. Here N, is the k-th element of the
neighbor list within r, v; is the triangle area, and ¢; is the
triangle density. For the second pass, we apply a projection
filter to obtain a binary result of the final density field on the
triangle mesh. Our scheme was motivated by the projection
approach used in volumetric topology optimizations (e.g.
[57]) to obtain a clear structure. The projection filter takes
p as the input from the previous filter and calculates the
projected density p as:

. tanh(yn) + tanh(y (5, — 1)) (10)
~tanh(yn) + tanh(y(1 — 1)) ’

X
~

where # = 0.5 is the density threshold and y controls how
strong the projection is. When y = 1, there is no projection.
In our implementation, we use y € [1, 16]. Last, we set the
projected density value p as the input of Eq. (6) to update
Young’s modulus of each triangle.

Algorithm 2 Thin Shell Topology Optimization

Lpely<l1,p, < fVeeQ
2: for i « 1 to max_iterations do

3: Increment p and y with the continuation scheme

4 Update x according to Algorithm 1

5: Calculate e using Equation 2

6: Calculate V(p)

7: Update — and W(p ) using Equation (18) and (19)

8: Piy1 < mma update(p,,d < V(p), 0V(p)

9: Ap < pir1 —p;

10: if |[Ap]l, < tol then > tol = le—4
11: break
12: end if

13: Update p using Equation (8) and (10)
14: end for

3.2. Sensitivity
Since both the displacements of vertices u and the den-
sity field p influence the elastic energy, we have

de(u, p)
ou

_fext (In

move_limit)

By taking the partial derivative of p and right multiplying
[0%e(u, p)/ou?]~" for the Eq. (11), we derive the partial
derivative of u with respect to p as follows

ou _ e p) [aze(u, p)]“ .

dp  0pou ou?

Substituting (12) into the total derivative of objective e
w.r.t. p

de(u,p) _ de(u.p) , du de(w. p) .
dp ap Jdp Odu
yields
de(u, p) _ de(u,p) _0%e(u, p) [%e(u.p)| ™" de(u. p)
dp — op dpou ou? ou
14

Notice that we do not calculate the inverse of the matrix

) -
directly. Instead, we convert [&"2"0) 9eltt.p)
ou ou

the linear system and solve it with the CHOLMOD solver as
what we did in the forward simulation. Using (6), (14) can
be simplified as

into solving

9y e, (15)

From (10), we have

~ 2
0p; 1 —tanh(y (5, —n)) 16
5= =7
dp,  tanh(yn) + tanh(y(1 — n))
Here, dpy /d¢; is calculated using (8) as
0 Wy,V;
Pk - __TKH e, 17)

0, ZieNe Wy

Following the chain rule, the derivative of objective e
w.r.t design variables @ is
0Py 0p
D _ e Pk 2 (1)
a(Pj dpy 0Py 0 i
The derivative of volume V(p;) w. rt ¢ ; 1s simply the

volume of each element times % and followmg the
k

chain rule as

wvip) _
0@

9Py 9
Vo k)a a (19)

J
3.3. Optimization
Given the sensitivities for the objective and constraints,
we use the method of moving asymptotes (MMA) [58, 59]
to optimize the densities on triangles to minimize the shell’s
elastic compliance. Following Algorithm 2, we first ini-
tialize the penalization power p and the density projection
parameter y to 1. In each iteration, we then run the quasi-
static thin-shell simulation according to Algorithm I to reach
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a balance between internal and external forces under the
current density distribution. On Line 3, to achieve better
density convergence we use the continuation strategies as
[60] by increasing p by 0.05 every other iteration when
p is smaller than 2 and once every five iterations when p
is smaller than 3. Similarly, we double y once every 10
iterations after 200 iterations until it reaches 16. Then we
calculate the sensitivities for the objective and constraint
functions according to Equation (18) and (19) to update the
optimization variables. Also, we do not perform a direct

inversion on the global Hessian matrix but solve for g_[u)

with the corresponding linear system by Equation (12). The
Hessian is calculated the same as what we do in the quasi-
static simulation except that we do not project the Hessian
to PSD here and switch to a direct sparse LU solver when
the CHOLMOD solver fails to solve the system, in order to
achieve more accurate gradients while keeping the solving
efficiency at the same time. We update p with the MMA
optimizer and check for convergence. The move_limit on
Line 8 indicates how much the variable can change, which
we use 0.1 in all experiments.

4. Numerical Results

All examples were run on a single desktop with an
AMD Ryzen 7 3800X 8-Core 3.90 GHz processor and 64GB
installed RAM. The experiment parameters and statistics are
summarized in Table 1. Use the compliance convergence
leroters—e—en|

etery
tion), all our examples converge within 125 iterations. The

convergence plots for all examples also demonstrate good
convergence. We show the results at iteration 250 after the
designs become the most binary.

criteria < 1% (subscript denotes itera-

4.1. Validation

First, we validate the correctness of our method under
different loading conditions with three examples and com-
pared the results with other standard methods.

Long beam: validation for in-plane force As shown
in Figure 1, we demonstrate that our method can produce
optimization results under in-plane point force loads with
different magnitudes to explore the material’s geometric
non-linearity. In a 4 m X 0.5 m domain with 0.001 m
thickness, we set up a 160k triangle mesh based on an
800 % 100 grid with left and right nodes fixed. A point force
pointing downward is added on the bottom middle node of
the plane. The convergence plot of this example is shown
accordingly in Figure 2, from which we can tell that all
optimizations converge within 100 iterations. The initial rise
in objective was due to the use of the continuation of the
parameter scheme for p. As the force becomes larger, there
are fewer detailed structures formed and buckling happens
in the middle of the beam when || f,,;|| = 100N. As the
force becomes larger, the strain enters the geometrically non-
linear region and the structure becomes more degenerated

AAAAAANNL
1777777777

e e

Figure 1: Optimized long beam with geometrically nonlinear
elements, displacements are incorporated in the rendering. The
boundary condition is illustrated using black marks on the top
figure. Forces from top to bottom: 0.01N, 0.1N, 1N, and 100N.
The final objectives of the structures are 4.18e-9, 4.27e-07,
4.96e-05, and 0.560 respectively.

Long Beam (0.01N) Long Beam (0.1N)

s00E08 100E06

000E+00 000800

Long Beam (1N) Long Beam (100N)

Figure 2: The convergence plots for the long beam examples.

and only supports well for the specific load case. The transi-
tion of structures from thin patterns to thick beams under dif-
ferent in-plane loads is consistent with the beam structures
obtained by other standard nonlinear topology optimization
algorithms using volumetric elements (e.g. [61]).

To further validate the correctness of our in-plane model,
we further compared the results with the linear MITC3
elements in COMSOL. As shown in Figure 3, the long
rectangular domain is similarly fixed on both sides and a
100 N external force load is applied on the bottom middle
node. The optimized structure is similar to the structure
that we optimized using a small force load equal to 0.01N.
This structure produces a much larger objective (3.59) than
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Figure 3: Top: the long beam structure produced by using
linear MITC elements in COMSOL with || f,. |l = 100N. Bot-
tom: the deformed structure simulated using our geometrically
nonlinear simulator with an objective equal to 3.59.

that of our structure (0.560) when both are simulated with
geometrically nonlinear elements.

_,"/7

Figure 4: Flat plane is loaded with the downward forces on the
rightmost nodes. Left: highly bent plane with 100N force load.
Right: the optimized structure.

== objective == stretching energy bending energy

30

20

Objective

50 100 150 200 250

Optimization Iterations

Figure 5: The convergence plot for the bending plane example.

Bending plane: validation for out-of-plane force. In
this example, we demonstrate that our method can optimize
structures with purely out-of-plane forces, see Figure 4. We
set a triangulated 128 X 64 plane fix the left ten percent
of the plane nodes and add 100N on the rightmost nodes
with the density p of the rightmost faces fixed at 1. Since
the displacement is very large for this example, we decrease
the tolerance for simulation tolerance to 0.1 of the typical
edge length for faster convergence. Before the structural

optimization, the plane with evenly distributed density is
bent downwards. As optimization proceeds, densities are
mostly gathered toward the left side of the structures and
only minimum densities are allocated to form a connection
with the force loads. Therefore, as shown in the convergence
plot Figure 5, the bending energy is largely reduced and
a crease traverses through the middle of the optimization
domain.

Figure 6: Cylinder with top and bottom nodes fixed and pulling
force (100N) distributed on two sides. Left: the initial defor-
mation before topology optimization with boundary condition
marked in black. Right: the optimized structure.

= objective == stretching energy bending energy

Objective
(%)

\4/\

50 100 150 200 250

Iteration

Figure 7: The convergence plot for the pulled cylinder example.

Cylinder pulled from two sides: validation for large
deformation With the top and bottom nodes fixed, we
add two loads of vertically distributed forces on the sides
concentrating on the middle 0.5 of the cylinder height. The
cylinder is 3m tall with aradius equal to 1m. As demonstrated
in Figure 6, there is subtle deformation can be observed
initially, where the two sides are pulled by forces. At the
end of the optimization, we can see two clear "X" shapes
forming around the applied force while connecting the top
and bottom fixed nodes. Notice that there is a vertical gap
formed in each of the x shapes, which acts as a hinge so
that the overall bending energy can be minimized, see plot
in Figure 7.
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Example Design  Sim Computation Time (ms/iter) Newton’s h(m) E,(Pa) v Iy
DoF DoF Iterations
Forward  Gradient Other
Long beam 160k 243k - - - 0.001 1e° 035 0.2
Bending plane 16k 25k 3091 1188 14.377 1200 0.01 1¢° 0.3 0.5
Pulled cylinder 103k 156k 36411 4695 11.271 2616 0.001 le? 0.3 035
Paraboloid shell 205k 309k 4930 3098 68.118 2172 0.01 1€° 0.5 0.5
Odonata wing 5 degree 683k 1,029k 41528 22339 509 585 0.01 1e° 0.3 0.3
Odonata wing down 683k 1,029k 76961 21877 549 937 0.01 1¢° 0.3 0.3
Hyperboloid  cylinder 670k 1,006k 38581 24465 470.164 501 0.001 1e’ 0.3 0.5
(concave)
Hyperboloid  cylinder 670k 1,006k 35310 24895 512.461 500 0.002 le? 0.3 0.5
(convex)
Bunny 139k 209k 6787 4416 102.90 500 0.02 1¢° 0.3 0.35
Table 1
Statistics for all examples.
= objective == stretching eneray bending energy
5
a a I~ ™ )
‘ -
A e -

Figure 8: Paraboloid shell. Optimization iteration from left to
right, top to bottom: 0, 20, 100, 250.

4.2. Examples

Next, we demonstrate that our method can generate
intricate structures on complex geometries under various
loading conditions.

Paraboloid shell We set up a 215k triangle mesh with a
paraboloid shape with y = —0.5((x — 0.5)> + (z — 0.5)?),
where x, z € [0, 1]. The four corners of the mesh are fixed
and a downward point load of 0.0001N is added in the
center of the mesh. As shown in Figure 8, our method first
distributes the density mostly in the middle and around the
four edges and then generates thin beams connecting the

50 100 150 200 250

Iteration

Figure 9: The convergence plot of the paraboloid shell example.

middle part with the four corners. The convergence plot is
shown as Figure 9, from which we can observe the increase
of objective before iteration 50 due to the effect of the
continuation of the parameter scheme.

Figure 10: Left is the concave hyperboloid cylinder and right
is the convex hyperboloid cylinder. The inset picture indicates
the boundary condition.
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Figure 11: Left: the convergence plot of the concave hyper-
boloid cylinder. Right: the convergence plot of the convex
hyperboloid cylinder.

Hyperboloid cylinder By fixing the bottom of the hy-
perboloid cylinder nodes and adding a distributed load of
0.0001 N on the top, we optimize the density distribution on
concave and convex hyperboloid cylinders which are both
3m tall, see Figure 10. The concave cylinder produces a
network consisting of connecting rhombi while the convex
cylinder produces a network consisting of rectangles. The
optimizer automatically generates the solid ring on the top
of the cylinders to maximize the stiffness around the force
load. These two patterns match the design of durable stools
in the real world. The convergence plots are given in 11.

v
W
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Figure 12: Optimization intermediate states of the Stanford
bunny at iteration 1, 20, 100 and 250. The boundary condition
is indicated in the first picture, where the bottom nodes of the
bunny are fixed and loads are applied on the head and the
back.

Stanford bunny Our method also works on more complex
geometries like the Stanford bunny, shown in Figure 12 with
the convergence plot in Figure 13. We fixed the bottom nodes
of the bunny and applied distributed loads of 0.1 N on the
head and the back of the bunny. Concentrated density formed
around the head and the back area where the force loads are

== phj == stretching energy bending energy
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=
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50 100 150 200 250

Iteration

Figure 13: The convergence plot of the bunny example.

applied, while grid-like structures span around the chest and
buttock area.

Odonata Wing In this example, we show that our method
can produce detailed vein-like structures on an Odonata
wing with out-of-plane forces. In Figure 14 with conver-
gence plots in Figure 15, the design domain is a shell shaped
like the Odonata wing with the middle nodes lifted a small
amount (as illustrated by the inset of the bottom figure). The
leftmost nodes on the boundary are fixed in both cases which
is similar to how wings are attached on odonata. In the top
figure, the distributed loads are applied on the right bottom
boundary nodes along the normal direction with 5 degrees of
out-of-plane component into the image plane. Long beams
with high densities are formed in the middle and bottom of
the plane, traversing horizontally and tapering towards the
right end. In the bottom figure, distributed forces pointing
into the image plane with a linear increment from left to
right are applied to every node. We observe that a main
beam travels horizontally in the middle and it branches out
like fractals over the entire domain. Although in real life,
the force load applied to the Odonata wing is constantly
changing, here we provide the optimized structure under two
arbitrary loads with out-of-plane force components to obtain
some insights.

5. Conclusion

This paper presents a nonlinear topology optimization
algorithm on thin shells to obtain complex structures. The
algorithm embodied a differentiable, nonlinear thin shell
solver to carry out sensitivity analysis and density evolution
on a shell mesh. A density filter was designed to coerce
binary structures. We validated our approach on different test
scenarios of optimizing nonlinear structures, exploring the
bending-stretching tradeoff, and large nonlinear deforma-
tion, as well as generating high-resolution shell structures.

Currently, our approach has several aspects of limita-
tions. First, our current thin-shell solver cannot handle ele-
ment inversion, hindering it from solving shells with a large
in-plane compression. Strain-limiting methods or invertible
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Figure 14: Odonata wing optimization results with two different loading cases.

= ob = setching energy ~ bending snergy = obj = stetching snergy ~ bending aneray

200805 500E05

1soess
_ _ aweos
2 e H
: | § o

so0E07
100E05

000E400

Figure 15: Left: the convergence plot of the Odonata wing
example with pulling force on the bottom right boundary.
Right: the convergence plot of the Odonata wing example with
downward pushing forces on the entire domain.

elastic solvers (e.g., [54]) will be considered to enhance
the robustness of the current method. Second, our method
does not optimize shape. Due to the algorithmic complexi-
ties of updating mesh elements, it is currently challenging
to co-optimize mesh geometry and topology in a unified
framework. It will be interesting to further explore thin-shell
solvers that can work on other shell representations such
as particles and implicit surfaces to explore the possibili-
ties of shape-density co-optimization. Third, devising high-
performance multigrid shell solvers is also an immediate
next step to facilitate super-resolution shell optimization.
Last, our current method does not support nonmanifold
geometries, which prevents the tackling of many interesting
shell structures such as foams and bubble clusters. One of our
future directions is to explore the nonmanifold shell solver
and its topology optimization.
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