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1. Introduction

When fluid volumes get small, i.e., on the length scales between O(0.1) um — O(1) mm, their interactions exhibit
complicated flow dynamics and geometric forms governed by many small-scale physical processes. For instance,
a fluid volume can collide and bounce [1], walk [2, 3], wrap [4, 5, 6], glide [7], support and drive [8], or form
non-manifold geometric structures [9, 10]. These flow processes are remarkably different from their macroscopic
counterparts, behaving like deformable solids (e.g., a fluid surface can hold heavy objects, and fluid volumes can
collide and bounce) rather than shear irresistible liquids. A dominant force underpinning these small-scale flow
processes is surface tension. The recent advances in computational physics [11, 12, 13, 14, 15, 16] and computer
graphics [17, 18, 19, 6, 20] in devising algorithms to accurately simulate surface tension with complex geometries
and multi-physics interactions have enabled numerical explorations of an ensemble of new interfacial and solid-fluid
coupling phenomena that were impractical to simulate with traditional methods.

However, among these new surface-tension phenomena being tackled, devising first-principle approaches to model
the intricate interactions between droplets and fluid volumes remains challenging due to the difficulties of handling
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the multi-phase and multi-scale coupling. When a small droplet falls onto a pond surface, it could rebound, decrease
its size, and sit on the deforming surface for seconds long, before its eventual merge into the water bulk (e.g., see
[21, 22, 23]). The physical mechanics underpinning this seemingly discrete phenomenon lie in the evolution of a thin
air gap between the droplet and the liquid surface. When two fluid volumes approach each other, a thin layer of the
surrounding air is trapped in the narrow gap between them. As the air gap’s thickness decreases, the air viscosity
dominates its dynamics according to the lubrication theory, which leads to the resistance of air drainage and prevents
the liquids from merging together. As the air leaks out, the gap narrows to a point where it can no longer maintain
the separation of the liquids, eventually leading to their coalescence [21]. Intuitively speaking, the dynamics of the
thin gap acts as an air cushion transmitting pressure forces between the liquid volumes and coupling their interfacial
dynamics without exhibiting any liquid-liquid contact. During the process, the air gap’s thickness scale is O(0.1) um,
in comparison to O(1) mm as the droplet size.

This multiphase and multiscale coupling problem underpins many droplets splashing, adhesion, and walking
droplet phenomena [22], which has drawn extensive attention from experimental and theoretical physicists. In the
literature, the rebound behavior of droplets in the binary collision was first reported by Rayleigh [24] and analyzed by
Pan et al. [1], Zhang and Law [25]. Similar rebound phenomena have also been observed when droplets bounced on
the soap films [26], rigid surfaces [27, 28] and liquid surfaces [29]. Among these works, Couder et al. [21] reported
the role of air film in the process of droplet bouncing. Further studies show that droplets can interact with liquid in
different ways, including walking [30, 2, 3], diffraction and interference [31], tunneling across the submerged barrier
[32], and orbiting [33, 34]. Bush [35] summarized these quantum-style behaviors and connected the hydrodynamics
system with the quantum theories. The quantum analogs also emerge in multi-droplet scenarios, including orbiting
pairs [36, 37], promenading pairs [38], stable spin lattices [39], droplet rings [40]. The experimental studies and
theoretical models for quantum analogs are reviewed and summarized in [41].

From the perspective of the numerical simulation, thin fluids, such as sheets [42, 43], splashes [44, 45], bubbles
[46, 47, 48], films [49, 50, 20], as well as air gaps discussed above, all exhibit codimensional geometric features that
are challenging to resolve with a traditional volumetric discretization (e.g., a Cartesian grid or a simplicial mesh).
To capture these thin fluid features, researchers invented a broad range of hybrid geometric representations, such
as particles [51, 52, 20], surface meshes [53, 10, 47, 43], implicit interfaces [46, 54, 55], and hybrid particle-grid
representation [42, 19]. By tracking the geometry changes and assigning degrees of freedom to the thin structures,
these representations enable us to discretize and effectively solve the physical forces acting on codimensional struc-
tures. Moreover, these codimensional representations allow researchers to simplify the physical models further. For
instance, in the context of modeling bouncing droplets, recent works [56, 57, 13, 58, 59] employ a reduced lubrication
film model to resolve the thin air flow within the gaps by considering the tangential viscosity as the primary force.

Cut-cell methods (e.g., [60, 61, 62]) provide an effective alternative for modeling thin features while keeping the
uniform grid structure. In contrast to adaptive mesh refinement (AMR) methods [63, 64, 12], which recursively refine
the grid to achieve sufficient resolution on thin features, cut-cell methods divide an interface cell with fine geometries
and evaluate the flow details with additional degrees of freedom. Its main advantage over dedicated codimensional
modeling is that it offers a straightforward and intuitive way to integrate the thin features with their surrounding
volumetric domains. These methods are commonly employed in simulating the thin gap flow [65, 66], multiphase
fluids [67], fluid-rigid interaction [60, 61, 68], and fluid-deformable interactions [69]. E.g., Chen et al. [70] improves
cut-cell methods by incorporating a pressure reposition strategy, resulting in second-order accuracy and discretization
orthogonality. When it comes to thin-gap flow, Qiu et al. [65] solved a two-way coupling system between thin
gaps and solids, where additional pressure degrees of freedom were placed on the solid surface. Another category
of research strives to capture the sub-cell flow details by integrating the irregular cell into the Eulerian framework,
including Voronoi cells [71, 72], tetrahedral cells [73] and tilted cells [74].

We propose a novel two-way coupling approach to simulate the bouncing droplet phenomena based on first prin-
ciples. Our algorithm couples fluid volumes, thin air gaps, and interfacial forces in a monolithic manner to model the
aerodynamics-driven fluid contact processes by producing simulations that match real-world experiments in three-
dimensional settings. Our key idea is to discretize the air gap as a set of irregular grid cells and devise a reduced
fluid model to characterize their coupling with the liquid volumes. Our method creates a new set of irregular grid
cells specified with varying thicknesses that can be embedded in a Cartesian grid to characterize the thin air film.
This novel geometric representation captures the air-liquid interactions within a thin gap with an arbitrary thickness
without employing any adaptivity (which is impractical in this setting due to the drastically different length scales).
On top of this novel geometric discretization, we further build a monolithic system to solve the coupling problem.
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Fig. 1: Hlustration of fluid domains and interfaces. The entire computational domain is divided into three domains. Q; is liquid, 5 is the thin air
film, and Q3 is ambient air. Interfaces are denoted using the corresponding subscripts (I'12, I'13, ['23). We show examples of the domain evolution
att = {0,1,72}. Left Top: When ¢t = 0, a droplet Q;; is released above the liquid bath Q; ;. The distance between two liquid volumes is more
significant than a predefined film thickness threshold /,,,,. Left Bottom: When ¢ = 11, the liquid volumes approach each other. The thin air film Q,
is identified where the distance between two liquids is less than /,,4,. Right: When ¢ = 1,, the liquid bath deforms due to the impact of the droplet.
In the air film, we define local coordinates on I'i; N dQ; > as a tangential basis vector e, and a normal basis vector e,,. The local coordinates are
parameterized by & and &,. The local thickness & of the air film at x € I'12 N 9Q ; is approximated as its distance to Qy x. us, u;) specify the local
tangential velocities on the upper and down sides of air film (both denoted as I'12). Similarly, u,1, u,,| specify the local normal velocities on the two
sides.

We demonstrate the effectiveness of our approach by simulating different bouncing droplet phenomena involving
thin intervening air films. These phenomena include binary collision, bouncing droplets, promenading pairs, and
droplet pinch-off. We also validate the accuracy of our model by comparing the simulation results with experimental
videos in different collision and contact settings. Our method enables three-dimensional simulations of bouncing
droplets that match real-world physics, and it produces visually authentic animations to demonstrate these complicated
processes. We summarize the main contributions of our work as:

o A discrete representation to model aerodynamic thin films with varying thicknesses as the single-layered irreg-
ular cells.

o A cut-cell grid method to couple multiphase fluids with contrasting length scales.
e A monolithic coupling algorithm to solve the lubricated air film and incompressible flow in a single linear solve.

o A unified simulation framework to simulate bouncing droplets with physical accuracy.

This paper is organized as follows. In Section 2, we present the physical model of the system. Section 3 introduces
the geometrical discretization and defines the differential operators on the cut-cell liquid regions and the single-layer
irregular air cells. We then proceed to build a coupling system to resolve the pressure across the volumetric liquid
regions and the lubricated air film in Section 4. In Section 5, we outline our temporal evolution scheme and introduce
the remaining steps of the algorithm. The results of the numerical validation and the simulation are presented in
Section 6. Finally, we conclude our work and discuss the limitations and future directions in Section 7.

2. Physical Model

2.1. Domain Definition

As shown in Figure 1, we use Q = Q; U Q; U Q3 UT to denote the entire fluid domain. In particular, we use Q,
to represent liquid volumes (including both bulks and droplets), €, to represent the thin air film, and Q3 to represent
ambient air. The liquid domain Q; can be further divided into liquid volumes (Q; ;, j € N*) (e.g., liquid bath and
bouncing drops) according to their topological connectivities. The thin air film €, is defined as the region where
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the distance between two liquid volumes is less than a predefined thickness threshold 4,,,,. Mathematically, this film
can be featured as €, = {x € Q : x ¢ Q; and d(x,Q; ;) + d(x,Qix) < hye with j # k}, where d(x,Q, ;) =
Mingeq, ; (|x — X|) returns the distance between x and € ;. In addition to €, we use I to denote the fluid interface
across different domains. We let I' = I'j, U T'p3 U T3, where I'y5 is the interface between Q; and Q,, '3 = 9Q; \ T'j»
is the interface between liquid and ambient air and I'y3 = 0Q; \ I'; is the interface between thin film and ambient air.

2.2. Volumetric, Multiphase Fluid Model

We model the motion of fluid volumes by solving the multiphase, incompressible Navier—Stokes equations

Vo A
6—u+u~Vu=—£+'LiV2u+g,

ot pPi Pi xeQ;, i=1,2,3 (D
V-u=0,

with the interface jump conditions
[pil=vyk, xel UL,

[p2] =0, x €Ty, ()
[u] =0, x el U3 Uy,

where u is the velocity, g is the gravitational acceleration, p; is the pressure in €;, y is the surface tension coefficient,
and « is the local mean curvature. [-] denotes the jump condition across an interface.

Solving Equation (1) on a Cartesian grid directly is impractical, due to the vanishingly small domain thickness of
the air gap. Therefore, we exercise simplification in each domain. For the liquid domain Q;, we drop the viscosity
term. For the ambient air domain 3, we assume the air pressure is constant, i.e., p3 = pgm, Where p,, is the default
atmospheric pressure. The model simplification of thin-film flow is nontrivial, which we will discuss next.

2.3. Thin-film Fluid Model

We model the trapped air between fluid volumes as a lubricated thin film of air volume. We will first describe its
geometry model and then present the dynamics equations.

2.3.1. Thin-film geometry

We model trapped air on a thin film with spatially varying thicknesses between fluid volumes. Next, we discuss
its geometry model and parameterization.

For geometry description, we model a thin layer of air as a codimension-1, open surface with varying thickness
embedded in codimension-0 space. The two sides of the surface are the two interfaces between different fluid volumes
in Q) and the air film Q,. The open boundary of the surface (as a codimension-2 rim) is the interface between the air
film Q, and the ambient 3.

For surface parameterization, we define a local coordinate system at each point of the surface by establishing a
set of orthonormal basis vectors. For example, as shown in Figure 1, in two-dimensional space, we define e, and e,
according to the local geometry as the tangential and normal basis vectors. A point in the air film can be described
using its coordinates & and &,. These definitions can be naturally extended to three-dimensional cases. For each local
point within the film, we define its local thickness £ as the sum of distances to two adjacent liquid volumes.

2.3.2. Thin-film dynamics
Next, we will derive the governing equations for thin-film airflow based on Equation (1). We will first present the
differential form and then the integral form.

Differential form. Following [75, 58], we reduce Equation (1) by modeling the normal and tangent gradients of air
pressure in the thin film as

opa u 8 u,

s 2_23

O U req, 3)
op2 -0

06,
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Fig. 2: Discretization of liquids and the air film. The liquid domain Q; (blue) is divided into several separate liquid volumes on the Cartesian grid
enhanced by cut-cells, with level set ¢, pressure p; and velocity # sampled on nodes, cells, and faces. In the gap between liquid volumes, the air
film Q5 (green) is represented by single-layered irregular cells and the cut-cell meshes to solve pressure pa.

with
[p2] = —yk, x €Ty,
{ 4

[p2]1=0, x €Ty,

where &, and &, denote the local unit normal and tangent directions, respectively, and u,, 1, are normal and tangent
components of the air velocity, respectively. The intuition behind Equation (3) is as follows: As the thickness of the
air film decreases, especially when the thickness is much smaller than the characteristic tangent length, the viscosity
drag becomes the dominant force [76, 75].

Integral form. Based on Equation (3), we can further derive the integral form for thin-film flow. Given a small
control volume V in the air film, we define its tangent volume boundary as 9V, and its normal volume boundary as
0V, € I'15. The pressure within V is governed by the incompressibility constraints in Equation (1), where the sum of
the integrated flux through the boundary is zero. By substituting the lubrication model into the tangent flux on 9V,
and considering the pressure-gradient force on the normal boundary 9V, the air-film pressure takes the form

/’12 apz f 1 (9[)2 f Usp + Up| f
———ds+ At — ds = ——ds + u,ds ®))
fav, 12u ¢, av, P2 0&, av, 2 v,

with the jump conditions on the interfaces

{[Pz] =—yk, x €Tl ©

[P2]1=0, x €Ty,

where At is the time step, u;, u; represent the local tangent boundary velocity evaluated at I N9  and I'j; N0
respectively (see Figure 1), and u, is the local normal boundary velocity. We refer readers to a detailed derivation in
Appendix A.

3. Discretization

3.1. Sub-cell discretization

We discretize the liquid domain €, as multiple separate liquid volumes on a Cartesian grid with cut cells. Every
liquid volume is tracked in a regular background grid by a separate node-based level set. The cut-cell mesh is rebuilt
from the level set to represent its interface. The interface grid cells are cut into sub-cells. The pressure samples are
repositioned carefully to maintain the orthogonality of the gradient to the cut-cell interface, thus achieving sub-grid
accuracy. Based on the cut-cell meshes, the air film Q, is constructed as single-layered irregular cells sandwiched
between cut-cell-based liquid volumes, as shown in Figure 2.
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Fig. 3: Discretization of the liquid level set, velocity, and pressure. We split the liquid domain into multiple liquid regions (11,12, ...). Left
and Right: Each region has its own node-based level set ¢ (black dots) and face-based velocity field u (solid arrows). The interfaces 9Q; are
discretized into the cut-cell mesh (blue segments) by performing the marching cubes algorithm on level sets. The velocity fields are sampled on
grid faces (solid arrows) and extrapolated (dashed arrows). Middle: When coupling fluid regions with the air film (green), the normal velocities
on the cut faces (dashed arrows) are interpolated from the grid faces. The pressure samples (blue dots) in the cut-cell are repositioned on the same
iso-distance (blue dotted lines) parallel to the interface, following [70].

3.1.1. Liquid discretization

We divide the liquid domain €; into separate regions by running a flood-fill algorithm. As shown in Figure
3, we track each liquid region by creating its own level set function on a regular background grid. We define the
interface 0Q; by constructing a cut-cell isocontour mesh using the marching cubes algorithm [77]. Specifically, to
find the intersection between an interface and a grid edge, we check the sign change of the level set on the grid
edge. These intersections, called cut vertices, can be expressed mathematically as x = (1 — 6)x; + 0x,,, with 6 =
o(xp)/ ((x;) — d(x,,)), where x; and x,, are the two endpoints of a grid edge. The cut vertices are then connected into
meshes (segment mesh in 2D or triangle mesh in 3D). The faces of this cut-cell mesh are referred to as “cut faces” to
distinguish them from the regular “grid faces”.

As illustrated in Figure 3, the velocity field for each liquid volume is split into orthogonal components and stored
in grid faces. The interface velocities are sampled at the center of the cut faces and interpolated from the grid
faces. Under an inviscid assumption, only the normal component of the interface velocity is preserved. We follow
[70] to reposition the pressure samples along the iso-surface within the cut-cell for improved sub-grid accuracy and
discretization orthogonality.

3.1.2. Air-film discretization

The air film Q; is discretized as a set of single-layered irregular cells seamlessly embedded in the thin gap between
liquid volumes. These air cells are reconstructed every time step based on the cut-cell mesh of the surrounding liquid
volumes. After advection, we construct the cut-cell mesh for liquid volumes and organize the nearby cut faces from
different regions into groups. One air cell is then assigned on each cut face group with the cut-meshes serving as its
top and bottom surface, as shown in Figure 4. The air pressure degrees of freedom are placed at the center of the cut
face groups. More details on the construction of the air film can be found in Section 5.3.

The air-film thickness varies within a single air cell. For an air cell located between liquid volumes €; ; and €,
given a vertex x on the cut face in 9Q; ;NI'j,, the local thickness & is defined as ¢, (x) where ¢ is the levelset function
of the other liquid volume Q; ;. The thickness of a cut face is defined as the average of its vertices.

The cut-cell meshes, obtained from the interfaces of liquid volumes, also serve as the top and bottom boundaries
of air cells. The normal velocities on the top and bottom surfaces u,, u,; are sampled at the center of these cut faces
and interpolated from the liquid velocity. However, it is challenging to explicitly define the lateral surface of the air
cell using meshes, especially in three-dimensional cases. Instead, we represent the lateral surface with half faces,
which are the faces expanded from the rim of the top and bottom meshes along the local normal direction.

As shown in Figure 4 (Left), for two-dimensional cases, we define half faces on the rim vertices. These half-faces
are half-height lateral faces connected to the top or bottom of air cells and are normal to the local tangent. The area of
the half face is approximated as h1/2 or h; /2, where hy, h; are the air film thickness evaluated at the top and bottom



173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

Given-name Surname etal / Journal of Computational Physics (2023) 7

Unt
”.,. A/\ )
-+ Bottom
-l !
unT\/ //7 Uy TAVAE /
ht/2

=< S
y.‘hj /2 Uny = um/r—l___ T/
N T
Unl

.
h‘i,/ Unl

’A . Bottom

Fig. 4: Discretization of the irregular air film cells in 2D (Left) and 3D (Right). The top and bottom of the air cell are defined by the cut-cell mesh
(green faces). The lateral cell boundaries are discretized as half faces at the rim (grey faces). u,; and u, are the normal velocity of interfaces at
the center of cut faces interpolated from the liquid volumes. u,; and u, are the tangential velocity interfaces evaluated at the cut vertices in 2D or
the midpoints of cut edges in 3D.

Top Top

cut vertices. The tangent velocities on the half faces are interpolated from the liquid volumes at the cut vertices on the
rim of the air cell, denoted by u,; and u,; respectively. The tangent flux between two air cells is approximated at both
top and bottom boundaries as uhy/2 + u; hy /2. Note that this boundary tangent flux form is only utilized as the first
term on the right-hand side in Equation (5).

In a three-dimensional case, the half faces are defined on the rim edges of the top and bottom meshes, as in Figure
4 (Right). The lateral tangent velocities u, u,; are interpolated at the midpoint of the rim edges, and the lateral area
of the half face is [h/2 where [ is the length of the rim edge. Unlike the two-dimensional case, there is no one-to-one
mapping between the half faces on the top and bottom boundaries in the three-dimensional case. To obtain the tangent
flux between two air cells, we iterate over the common rim edges between the two cells and sum up the flux of the
half faces on these rim edges. With the lateral interfaces of air cells defined on the half faces based on the top and
bottom boundaries, our method effectively handles the non-manifold film geometry, as shown in Figure 5 (Middle)
and Figure 11.

3.2. Discrete differential operators

Next, we will build the discrete differential operators for the liquid volumes, air film, and their interfaces. We
provide a comprehensive explanation of the gradient operator as an example. The divergence and Laplacian operators
can be derived in the same manner.

Gradient operator in liquid. In a liquid domain, the gradient is defined as Vp = (p1; — p1.m)/dim between two liquid
cell [, m, with the pressure samples p;;, pi, on the iso-surfaces of cells and dj,, = |x; — x,,]. On the ambient air
interface I'j3, we modify the gradient equation by placing the interfacial pressure sample pj,, at the center of the cut
face and setting it equal to the boundary condition p,,,. We use S; Glpl to represent the matrix form of the pressure
gradient acceleration Vp/p in the liquid domain. p; stands for the liquid pressure vector. G, is a difference matrix
with elements 1 and —1, denoting the pressure difference across the grid faces and cut faces of I'j3. S; is a diagonal
matrix with elements 1/(p;d;,), which can be regarded as the inverse of the area density in the control volume of the
face between p;; and py .

Gradient operator in air film. The tangent pressure gradient in the air film is defined on the half faces between
adjacent air pressure degrees of freedom. We sample the pressure ps;, pa2,, at the center of air cells x;, x,, and
discretize the gradient Vp = (p2; — pam) / (1%, — X,|) on the half faces. On the ambient air interface I'»3, we place
the pressure sample of the ambient air p,,, on the half face. And the distance between two samples is defined as
|(x; — x,) - €], where x, is the position of the rim (rim vertex in 2D, midpoint of rim edge in 3D), e, is the tangent
unit vector at x, parallel to u,; or u,;. We use p, to denote the air film pressure vector and Gz to denote the tangent
pressure difference operator on the half faces.
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Fig. 5: Time evolution of the 2D binary droplet collision (Top row), the 2D trinary droplet collision (Middle row), and the 2D bouncing droplet
(Bottom row). Liquid volumes (blue) are visualized and air films (green) are depicted in the latter two examples.

Gradient operator on air-liquid interface. Across the interface I'1, between the liquid volumes and the air film, the
acceleration caused by pressure gradient Vp/p is continuous. Disregarding the jump condition, the acceleration on
a cut face between the liquid sample p;; and the air film sample p,,, is discretized as Vp/p = (p1; — p2m)/(e1d; +
P2l /2), where d; is the distance from the liquid pressure sample to the cut face, £, /2 is the half thickness evaluated
at the cut face, as shown in Figure 3. The acceleration across I'j, is given as SrGr(plT, pg )T, where Sr is a diagonal
matrix with elements 1/(o;d; + p2hy,/2) describing the inverse of face density in the control volume of the cut faces.
Gr = ((A}m, (A}m) is the difference matrix across the interface. Each row of (A}m picks out the adjacent liquid pressure
sample of the cut face and assigns 1. In contrast, each row in Gr, assigns —1 for the adjacent air film sample. Thus,
Gr(plT, pg ) returns a vector where the entries are pressure differences between the liquid and the air film on the cut
faces of I'y5.

4. Coupling System

Building upon the sub-cell discretization and its discrete differential operators, we propose a two-way coupling
method for solving the pressure monolithically across both the liquid volumes and the air gap. This method couples
the inviscid liquids and the lubricated air film through their cut-cell interface, which enforces the continuous velocity
constraint naturally. We will now introduce the pressure projection equation for liquids and air film and derive their
coupling system.

Liquid domain. The pressure projection equation for the liquid is discretized on the liquid cells, which gives
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Atz Vp1 + AzZ Al g? = ZAgug + ZA"”" )
7. 7,

where ¥, is the set of the grid faces, and the cut faces on the ambient air boundary I'y3, 7, is the set of the cut faces
on the boundary I't;. u, is the velocity sampled on the faces F,. u, is the normal velocity on the center of the cut
faces ¥,. A, and A, denote the area of the corresponding faces.

Using the differential operator in Section 3.2, we rewrite Equation (7) in a matrix form as

AGTA1S,Gip1 + AiG] | ArSr(Gr.ip: + Gropy)

. - (®)
= GTA]II] + GIY:’]A[‘U[‘

where Gl is the pressure difference operator on the grid faces in €; and the cut faces on I'j3. (A}r,lpl + (A}r,zpz is the
pressure difference across the liquid-air-film interface I'j;. A and Ar are the diagonal area matrices for the liquid
faces in ) U T'j3 and the cut faces on I'j», respectively. u; is the velocity vector for the liquid faces in Q; U T3 and
ur is the velocity vector for the cut faces on I'y5.

Air film. Discretizing Equation (5) on a irregular air cell gives

h A, 6]72 A, 6[)2
Z 124 9€; tz 02 06, ;A,u[ " ;A”u” ©)

where ¥, is the set of the lateral half faces of the air cell, F, is the set of the cut faces on its normal boundary in I'y,,
u, is the boundary tangent velocity on the half faces which represents both u,; and u,, u, is the normal velocity on the
center of the cut faces, /, is the thickness evaluated at the rim of the half face, A, and A,, denote the area of the half
faces and the cut faces.

The matrix form of Equation (9) for the air film becomes

mGszézpz + AtGL,ArSH(Gr 1p1 + Grap2) (10)

= GZTAzllz Qs GIZ’ZA]‘U[‘
where G, is the tangent difference operator mapping the pressure difference onto the half faces, V; is a diagonal

matrix denoting (th) /d with the thickness h, half face area A and sample distance d evaluated on the half faces
between two air cells. u; is the tangent velocity vector containing u,; and u,; on the half faces.

Fully-coupled system. Combining Equation (8) and Equation (10) yields the fully-coupled system.
Al‘G{A]S]G] + AIGIT:’]A[‘SI‘G[‘J AIGIZ:’IA[‘S[‘GI‘,Z

> N ~ N 1 4 ~ |
AtGL ArSrGry  AGT ArStGrs + —GIV,G [PJ

r2Ardror,] r2Arorur2 12 2 V22 an
G{A]U] + G;’IAFUF

G;Azllz + G;’zAFUF
This system is symmetric and positive definite and is amenable to high-performance algebraic multi-grid solvers.

To ensure the volume conservation of each fluid region during the simulation, we adopt the divergence control method
proposed in [78].

5. Time Integration

We summarize our temporal evolution scheme in Algorithm 1. At the beginning of each frame, the node-based
level sets and the velocity fields are advected using the MacCormack method (Section 5.1). After the advection, the
gap geometry is fixed (Section 5.2). Then, we generate the cut cells of the liquid volumes using the marching cube
method and discretize the air film into single-layered irregular cells (Section 5.3). Body forces, including gravity,
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Algorithm 1 Temporal evolution for a single timestep

Advect liquid level sets and velocity fields (Section 5.1)
Fix gap geometry to avoid penetration (Section 5.2)
Update cell geometry for liquid and air (Section 5.3)
Apply body forces

Solve implicit surface tension (Section 5.4)

Solve the two-way coupling system (Section 4)

AN

:

Fig. 6: Illustration of irregular cell construction for the air film. Left: The surface mesh of two liquid volumes Q , €. (blue surface with wireframes)
is visualized. First, the ridge vertices (black dots) are sampled at the intersections of grid edges and the ridge surface (grey surface) where
¢j — ¢ = 0. Middle: Next, We construct a graph with cut faces and ridge vertices as the graph vertices and initialize its edges based on the closest
neighbor search. We then divide the cut faces into multiple groups (colored mesh) based on the connectivity of the graph. Right: Finally, the air
cells (green cells) are constructed based on the groups of cut faces. For clarity purposes, only a subset of air cells is visualized in this figure. The
top and bottom boundaries of air cells are defined by the cut faces (green faces). The lateral cell boundaries are defined by the half faces (grey
faces) positioned along the edge of the cut faces.

are applied explicitly, and the surface tension is solved implicitly on fluid regions (Section 5.4). Finally, our method
couples the pressure degrees of freedom in the liquids and the air film through their interfaces and solves the two-way
coupling system (Section 4).

5.1. Advection

As discussed in [13], the inertia of the air film can be considered negligible in simulation when the gaseous
kinetic energy is much smaller compared to the Laplace pressure, which holds for all small-scale scenarios in our
paper. Therefore, in this step, we only advect the liquid volumes, including their node-based level sets and velocity
fields, using the MacCormack method [79].

5.2. Fixing gap geometry

Due to the significant difference in scale of the system, even trivial numerical errors from advection and inter-
polation can lead to negative air film thickness. We address the issue by performing Jacobi-style iterations of local
correction on the cut vertices with negative thickness. Given the cut vertex x on the grid edge e and the liquid interface
0Q j, if it is found to be inside another liquid volume Q; ; (¢(x) < 0), the local correction update the level set value
on both nodes of e by ¢;+ = (|px(x)| + he)/2. he is the minimal thickness threshold determined empirically.

5.3. Updating cell geometry

In each time step, we update the cell geometry on both liquid volumes and the air film. For the liquid volumes,
we regenerate the cut-cell mesh and reposition the pressure samples on the iso-surface. Based on the interface mesh
of liquids, irregular air cells are constructed.
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Fig. 7: Numerical validation of pressure transmission across the air film. A series of scenes are set up, where an air film is confined in a piston filled
with liquids, and a constant pressure p,y; = 1000 mPa is applied on the upper boundary. The illustration of the scene and the plot of the pressure loss
Dext — p are shown. Left: A planar air film trapped between two liquid regions in a piston. The pressure losses evaluated at x = 1.0,0.84,0.67,0.5
mm show that the external pressure is transmitted throughout the whole domain and results in an identical pressure field. Middle: The same air
film is trapped with its left and right boundaries connected to the ambient air. The same pressure samples are evaluated, indicating that the thin film
is capable of transmitting the majority of pressure even close to the ambient air boundary. Right: An annular air film is trapped in the liquid, with
a constant pressure applied on the upper boundary. The radial pressure loss distribution and the pressure loss along the annular film are plotted,
which match the boundary pressure condition.

Cut cells in liquid volumes. For each liquid volume, we perform the marching cube algorithm on its node-based level
set to obtain its cut-cell mesh. We then update the pressure samples on the cut cells, following a method proposed in
[70], to achieve second-order accuracy and maintain discretization orthogonality on the cut cells.

Irregular cells in the air film. The process of the air cell construction is illustrated in Figure 6. Given a pair of liquid
volumes {€ ;, Q; }, the air film is defined as the region where i < h,,,.. We group the boundary cut faces within the
threshold from two liquid volumes ¥ and ¥ to construct single-layered air cells.

We first define an iso-contour surface at ¢; — ¢, = 0, which is also the ridge of min(¢;, ¢;). A set of ridge vertices
V are sampled at the intersections of this ridge surface and the grid edges. Then, an auxiliary graph is initialized with
these ridge vertices V and the cut faces F; U F; as the graph nodes. We add edges between each ridge vertex and
its closest cut faces in F; and F; , as well as between each cut face and its closest ridge vertex. For each connected
subgraph, we group the cut faces within the subgraph and construct irregular air cells with these cut faces serving
as its boundary mesh. The lateral cell boundary of the newly generated air cell is discretized as the half faces on
the rim as described in Section 3.1. The normal and tangential velocities on its boundary are interpolated from the
corresponding liquid volumes. To determine the center of the air cell, we compute the average position of its vertices
and project it onto the ridge surface.

5.4. Semi-implicit surface tension

Instead of treating surface tension as the interface pressure jump in pressure projection, we solve the semi-implicit
surface tension [46] on a narrow band around the interface weighted by a Dirac function for each fluid region inde-
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Fig. 8: The pressure transmission in Figure 7 (Middle) with different air film thickness 4. The pressure loss along the vertical lines at x = 0.5 mm
is plotted.

pendently. The faces within ¢(x) < Ax, are included in the equation:

1 272\, , % 1
(1 - =cAr'VHU" = u + —6(p)okitAt (12)
P 1Y
where the Dirac function is
1 + cos g—f
8(p) = ———, if ¢ € [-Axs, Axy] (13)
2A.X5

with the band width Axs = 3Ax. The zero-velocity Dirichlet boundary condition is enforced.

6. Results

6.1. Numerical validations in 2D
To validate our coupled pressure projection, we set up a set of two-dimensional numerical tests.

6.1.1. Air film pressure transmission

In this two-dimensional test, a thin air film is trapped between two liquid volumes in a solid piston with zero
gravity, as illustrated in Figure 7 (Left). A constant pressure is applied to the upper boundary of the liquid, resulting
in a high pressure inside the piston. Due to the incompressibility, the analytical solution should be a constant pressure
field throughout the entire domain. The simulation is conducted in a 1 mmx1 mm domain divided into a 64 X 64 grid.
The air film locates at y = 0.5 mm with the thickness # = 1 x 107> mm. The density of the liquid and the air are p; =
1000kg/m?, p, = 1kg/m>. A Dirichlet pressure boundary condition of p,,, =1000 Pa is applied to the upper domain
boundary and Neumann pressure boundary conditions are applied to all solid boundaries. The resulting pressure on
vertical lines x = 1.0,0.84,0.67,0.5 mm are identical to the constant external pressure, which is consistent with the
analytical solution.

6.1.2. Air film pressure transmission with the open boundary

We further assess the pressure transmission through the planar air film with its left and right boundaries connected
to the ambient air, similar to the liquid-air-film system in real-world scenes. The configurations are identical to the
test in Section 6.1.1, with the exception of the zero pressure boundary condition being applied at the left and right
boundaries of the air film.

We analyze the pressure loss distribution along four vertical lines at x = 0.0,0.17,0.34,0.5 mm. The results in
Figure 7 (Middle) show that although the pressure slightly decreases as it moves down, about 99.99% of the pressure
is successfully transmitted to the lower liquid volume. Therefore, when two liquids collide, the thin air film acts like
an air cushion even if it is connected to the ambient air, and is able to transmit the pressure between them to avoid
coalescence.

We also examine the effect of air film thickness on pressure transmission. Figure 8 shows the pressure loss sampled
along the vertical line at x = 0.5 mm for various thicknesses & = 1072,3 x 1072,107, 10~* mm. The results support
the intuitive assumption that as the air film gets thinner, the pressure transmission loss across the air film decreases.
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Fig. 9: A 2D droplet falls on the liquid bath with different air film height thresholds %, = 3Ax, 5SAx, 7Ax

6.1.3. Annular air film pressure transmission

in Figure 7 (Right), we demonstrate the ability of our solver to handle a curved air film. An annular air film is
trapped in the liquids, with the same boundary conditions in Section 6.1.1. The film is centered in the domain with
the thickness # = 1 x 107> mm and radius 0.25 mm. the constant pressure is obtained throughout the liquid volume
and the air film, in agreement with the analytic solution.

6.1.4. Droplet impact with different film height threshold

We simulate a two-dimensional droplet impacting a liquid bath to evaluate the effect of 4,,,,, which is used as
a numerical threshold to distinguish the air film from the ambient air. The simulation is initialized in a 1 mmx1
mm domain with Ax = 1/64 mm, where the droplet is placed at (0.5, 0.5) with radius » = 0.15 mm and the bath is
initialized with the depth Az = 0.3 mm. The surface tension of the liquid is o = 1.66 mN/m and its density is p; =
1000 kg/m?. The air density is p, = 1 kg/m? and its viscosity is u» = 18.6 uPas The simulation is run with the gravity
g = -9.8m/s? and the time step At =5 x 10™*s.

Figure 9 shows the results with £,,,, = 3Ax, 5Ax and 7Ax, which validates that the thickness threshold won’t affect
the overall motion of the simulation. We also found that a small threshold #,,,, = Ax would lead to instability due
to the potential incorrect geometry in air film initialization, while a too-large threshold would introduce additional
overhead on thick air film where the resulting pressure has a negligible effect on the liquids. Therefore, we use
Nax = SAx for the remaining simulations in this work.

6.1.5. Binary droplet collision, trinary droplet collision, bouncing droplet in 2D

In Figure 5 (Top), we simulate the two-dimensional binary collision by emitting two identical spherical droplets
with opposite initial velocities. During the head-on collision, the air film exerts resistance to droplet coalescence, re-
sulting in the droplets bouncing apart. We also simulate the trinary collision in Figure 5 (Middle), which demonstrates
the ability of our method to handle non-manifold joints in thin films.

We further simulate the two-dimensional bouncing droplet. The bath oscillates vertically with the period 0.02 s
and the peak acceleration 9.8 m/s?>. As shown in Figure 5 (Bottom), the droplet is able to bounce over the bath
periodically and stably for a long time, which indicates the stability of our algorithm.

6.2. Binary droplet collision

We follow the experimental study [1] to set up the experiments of head-on binary tetradecane droplet collisions.
Two tetradecane droplets are initialized in 1 atm ambient air, with the density p; = 762 kg/m® and the surface tension
coefficient o = 26.56 mN/m. The density of the air film trapped in the gap is p» = 1kg/m?, and the viscosity is u» =
18.6 uPas. The simulation is conducted with the time step At = 5 x 1078 s on a 256 x 128 x 128 background grid with
Ax =1/128 mm.

In Case I, the droplets with the radius R = 0.1706 mm are placed along the x-axis with the distance between the
droplet centers Dy = 2.5R and emitted in opposite directions with an initial velocity Vo = 0.243 m/s. In Case II,
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Fig. 10: Time evolution of the binary droplet collision for Case I and II. Top and Bottom: Representative frames of the rendered images from our
simulation and the experimental snapshots from [1]. Middle: The evolution of the x-axis positions of two droplets. The regions filled by the light
color are the x-axis bounding box of two droplets. Solid lines denote the x-axis center position of two droplets.

the collision occurs between two droplets with the radius R = 0.1676 mm and the initial velocity Vy = 0.496 m/s,
resulting in larger deformation. The Weber number is We= 2.27 for Case I and is We= 9.33 for Case II.

The time series of the droplets are visualized in Figure 10 with our simulation results and the photographs obtained
from the experiments in [1]. Specifically, four representative frames are compared, including the initial contact,
maximum deformation, rebound, and detachment. Our results, which use the same configurations, agree well with
the experimental results in terms of contact time and droplet deformation.

6.3. Trinary droplet collision

We further conduct the experiment where three tetradecane droplets collide and rebound. We emit three tetrade-
cane droplets with radius R = 0.1706 mm in 1 atm ambient air, with the density p; = 762kg/m?, the surface tension
coefficient o = 26.56 mN/m and the initial velocity Vy = 0.5m/s. The density of the air film is p, = 1 kg/m3, and the
viscosity is pp, = 18.6uPas. We discretize the domain on a 128 x 128 x 128 background grid with Ax = 1/128 mm
and conduct the simulation with the time step At = 5 x 1075 s,

The simulation result is depicted in Figure 11, showcasing the collision of three identical droplets followed by
their rebound. Note that the air film exhibits a non-manifold joint, demonstrating the ability of our method to handle
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Fig. 11: Time evolution of the trinary droplet collision, where three droplets collide, form a non-manifold gap between them and subsequently
rebound.

t=0.0248s = t=0.0664s

t(s)

Fig. 12: Time evolution of a droplet bouncing on a vibrating bath in (2, 1) mode. Top: Rendered images of four representative frames. Bottom:
Temporal evolution of the scene. The solid line denotes the movement of the droplet center, and the dashed line denotes the bath movement. The
background image is generated by stitching the successive simulation frames, where a cropped vertical section represents each frame through the
droplet center.

complex non-manifold geometry.

6.4. Bouncing droplet on a vibrating bath

We reproduce the bouncing droplet reported in [2] where a silicon oil droplet is released on an oscillating silicon
oil bath. The container is vibrating vertically with the acceleration ag = ysin(2nft), where f is the frequency, and y
is the peak acceleration. As discussed in [2], different periodic bouncing modes (i, n) of the droplets are observed. In
a (m, n) bouncing mode [26, 2], the droplet bounces steadily with the period equal to m/n times of the bath vibration
period. Intuitively, it means the droplet contacts the bath n times within m bath oscillating periods.

In our simulation, we release a silicon oil droplet with the undeformed radius Ry = 0.39mm, with surface tension
o =20.6 mN/m and density p; = 949 kg/m>. The bath is shaken vertically with f = 50 Hz and y = 35.28 m/s?. The
non-dimensional bath acceleration is I' = y/g = 3.6. The simulation is conducted in a 5 X 5 X 5 mm domain divided
into 256° grid cells, with the time step At =2 x 107*s.

In Figure 12, the vertical sections through the droplet center are rendered and joined together by frame order.
The droplet trajectory and the sinusoidal motion of the liquid surface are plotted on the spatiotemporal image. Our
simulation reproduces the (2, 1) bouncing mode reported in [2], where the droplet bounces once every two vibration
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periods of the bath. Whenever the droplet touches the bath, the bath is always in its upward phase of the period and
propels the droplet back.

The pressure distribution in the air film on a cross-section across the droplet center is visualized in Figure 13. At
the beginning of the impact, a narrow pressure peak in the air film arises due to the large relative velocity between
the two liquids. As the droplet deforms, the pressure is distributed over a larger area of the air film. As its upward
velocity is restored, the air film pressure declines until the droplet separates from the bath.

6.5. Promenading pairs of droplets

As reported in the previous work [38], when two identical droplets bounce on an oscillating liquid bath, they
exhibit a behavior known as the promenading mode. In this mode, the droplets interact with each other through the
wave field and vibrate laterally along the line across their centers. In our simulation, the silicon oil with the density
p1 = 949kg/m> and the surface tension o = 20.6 mN/m is used for both droplets and the liquid bath. The radius
of the undeformed droplets is R = 0.8 mm, and the bath is vibrated vertically with f = 80Hz, I' = 0.45 and y =
4.41 m/s?. The initial distance between the droplet centers is Dyp = 4mm in Case I and Dy = 2.4 mm in Case II. To
reduce the accumulated error caused by long-term simulation, we simulate the two phases (approaching and leaving
each other) of the promenading mode separately over several vibration periods. The simulation domain is discretized
on a 256 X 170 x 256 with Ax = 15/256 mm. The time step is At = 1 x 107*s.

The simulation results in Figure 14 show that our method is capable of capturing the interaction between two
droplets through the wave field and reproducing two phases of the promenading modes. In Case I, with a small initial
droplet distance, two droplets bounce and move away from each other, while in Case II, with a larger distance, they
bounce and move towards each other. The trajectories of two droplets and their distances are plotted aside.

In this scene, we demonstrate that our algorithm is compatible with multiple liquid volumes. By using separate
field discretization for each liquid volume, minimal modifications are required when applying the algorithm to mul-
tiple liquid volumes. In particular, the air film construction and the region topological change step (splitting and
merging) are executed sequentially for all possible liquid volume pairs in cases with multiple liquids.

6.6. Merging and pinching

As shown in 15, we reproduce the droplet pinch-off with a large droplet (R = 10 mm) released on a still bath,
similar to [23]. When the large droplet touches the liquid bath, it merges with the liquid surface. Following the
merging, a thin liquid column emerges, breaks off, and eventually pinches off a small droplet due to the surface
tension, which is able to sit on the bath for several seconds.

We simulate the scene with a 256 x 128 x 256 grid with Ax = 120/256 mm and Az = 2 x 10™*s. The density of
the liquid is p; = 949 kg/m? and the surface tension is o~ = 1333.3 mN/m.

When the large droplet touches the liquid bath, the negative thickness correction is turned off to mimic the droplet
merging caused by the Van der Waals force. After the droplet merges with the bath, we switch to the semi-implicit
surface tension to avoid the numerical viscosity at the thin liquid neck. The weight w,, = 0.3 is used for the explicit
surface tension part and w;,, = 0.7 for the implicit part. After the pinch-off, we switch back to the implicit surface
tension solver.

The topological changes of the liquid volumes, including splitting and merging, are resolved automatically on the
node-based level sets. To detect splitting, we execute the flood fill algorithm on each liquid volume level set. When
multiple connected components are found, the fluid region is split and these connected components are converted into
new fluid regions, each with its own level set and velocity field sampled from the original liquid volume. Merging of
two regions is identified when their level sets overlap. It is detected when a cut vertex on the grid edge of the region
€ ; is inside of another region €4, as indicated by ¢(x) < 0. The regions are then replaced by a newly merged
region, whose level set is constructed as ¢ = min(¢;, ¢x). The velocity field of the merged region is copied from the
original regions. Specifically, the velocity on the overlapping face is assigned as the average velocity of two original
regions.

6.7. Performance

The physical parameters of the scenes are summarized in Table 1. All the simulations are performed on a PC with
Intel® Xeon® E5-2620 v4 2.10GHz CPU. We use the AMGPCG solver in AMGCL[80] to solve the linear system
in the implicit surface tension and pressure projection steps. The simulation configurations and timings are listed in
Table 2. All the three-dimensional simulations are rendered using Houdini.
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Fig. 13: The air film pressure distribution of the bouncing droplet. Top left: The section view of the domain across the droplet center at = 0.0282s.
The background grid is colored with the checkerboard pattern to visualize the cells. Top right: A zoom-in section view of the pressure distribution
in the air film. The coordinate system is stretched vertically to enhance visualization. Bottom: The pressure distribution in the air film during the
first impact. The pressures are sampled on the same section across the droplet center.

Table 1: Physical parameters in the scenes

Scene lglm/s*)  pi(kg/m’) o (mN/m) py(kg/m’)  ur(uPas)
Binary Collision (I & II) - 762 26.56 1 18.6
Trinary Collision = 762 26.56 1 18.6
Bouncing Droplet 9.8 949 20.6 1 18.6
Promenading Pairs (I & II) | 9.8 949 20.6 1 18.6
Merging and Pinching 9.8 949 1333.3 1 18.6

7. Summary

This paper proposed a novel computational approach for simulating the bouncing droplet phenomena, with a par-
ticular focus on capturing and solving the air film that plays an essential role in fluid collision and coalescing. Based
on the cut-cell fluids tracked by separate level sets, we discretize the entrained air film as a single layer of irregular
cells that are tightly embedded within the gap formed by adjacent cut-cell fluid interfaces. This allows for efficient
handling of the complex film geometry without the need for tedious grid refinement. Building upon this discretization,
we model the air film as a thin lubricated layer and couple it with the inviscid incompressible liquid in a monolithic
manner. Our method reproduces a wide range of phenomena, including binary collision, bouncing droplets, prome-
nading pairs, and droplet pinch-off, demonstrating its ability to capture many critical dynamical features by accurately
resolving the lubricated air flow with liquids.

We identify several limitations and future work directions based on our current approach. First, our system
does not handle viscosity in the fluid domain. One immediate next step is to add viscosity to the liquid model,
which has been proven important in driving droplet walking behaviors [2]. In particular, we plan to focus on the
interfacial viscosity coupling between liquid volumes and the air film. Second, the physical accuracy of our fluid-
fluid coalescence model can be improved. For example, introducing the Van der Waals force into our continuous
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Fig. 14: The two droplets bounce on the vibrating bath and form the promenading pairs. Left: Rendered result for Case I, where two droplets
bounce and move away from each other. Middle: Rendered result for Case II, where the droplets move towards each other. Right top: The droplet
positions as a function of time . The colored stripes indicate the x-axis bounding box of droplets. The solid lines represent the trajectories of the
droplet centers. Right bottom: The droplet distances as a function of time ¢.

Table 2: Simulation configuration and timings

Scene grid resolution Ax(mm)  Af(s) Iter/Frame  Time/Frame(s) #DoFs(10%)
Binary Collision I 256 x 128 x 128 1/128 5x10°% 1.18 14.37 96.63
Binary Collision II 256 x 128 x 128  1/128 5x10°% 1.18 14.20 91.85
Trinary Collision 128 x 128 x 128 1/64 5x107%  1.00 5.60 19.97
Bouncing Droplet 256 X 256 x 256 5/256 2x107* 312 128.02 6750.88
Promenading Pairs I 256 x 170 x 256 15/256  1x107* 1.16 56.96 5446.76
Promenading Pairs IT | 256 x 170 x 256  15/256 1 x10™* 1.14 53.28 5448.75
Merging and Pinching | 256 x 128 x 256 15/32 2x107*  1.19 27.23 2854.92

flow model is an interesting future direction, which will allow the solver to predict the bouncing and coalescence
behaviors based on multiscale physical principles. Third, due to the computing resolution and boundary conditions,
our solver currently cannot model the interfacial wave dynamics accurately, which limits its capability in handling
complex drop-wave interactions such as the pilot drop dynamics [35]. In particular, devising a direct numerical solver
to reproduce the full-scale dynamics of a walking droplet and further explore its quantum-mechanics connections
still remains challenging (and alluring). Last, our current model can only handle thin films between fluid volumes.
Extending the proposed cut-cell algorithm to facilitate simulations with more complicated physics, e.g., to capture the
air gap between droplets and elastic thin sheets, filaments, and fluffy surfaces, will open up new opportunities for this
model in accommodating physical simulations in a wider scope.
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Appendix A. Lubrication model in the Air Film

As two liquid regions approach each other, the thickness of inter-liquid film between them decreases. The di-
mension of the film in the normal direction becomes much smaller than its dimension in the tangential direction, and
the viscosity drag becomes the dominant force. Through order analysis, we model the air flow in the gap using the

lubrication theory[75].
In the lubricated film, the normal and tangent gradient of the air pressure are modeled as
6]72 62ut
e M55
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with
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where &, and &; denote the local unit normal and tangent directions, respectively, u,, 4, are normal and tangent com-

ponents of the air velocity, respectively.

To derive the equation that updates the tangential velocity by the pressure gradient, we integrate the first equation

in Equation A.1 with respect to the normal direction &,:
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Then we integrate it again on the intervals [0, &,] and [0, /] (4 is the thickness of the air film):
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By combining these two equations to eliminate g%’lfnzo and applying the boundary conditions u, (/)

u,), the tangential velocity of the air film is given as:
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The average tangent velocity of the film can be obtained by integrating the tangent velocity from &,
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Thus the average tangent velocity of the air film is
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In the normal direction, the velocity on the interface I'j, is updated by the pressure gradient across the liquid and

the air.
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Given a volume V in the air film with its tangent boundary dV; and normal boundary 0V, C T2, the incompress-

ibility is achieved by summing up the integrated flow through the boundary:

with
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Substituting Equation (A.7) and (A.8) into it yields the reduced model for the air film:
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