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Algal-bacterial interactions are ubiquitous in both natural and industrial systems,
and the characterization of these interactions has been reinvigorated by potential
applications in biosystem productivity. Different growth conditions can be used
for operational functions, such as the use of low-quality water or high pH/alkalinity,
and the altered operating conditions likely constrain microbial community structure
and function in unique ways. However, research is necessary to better understand
whether consortia can be designed to improve the productivity, processing, and
sustainability of industrial-scale cultivations through different controls that can
constrain microbial interactions for maximal light-driven outputs. The review high-
lights current knowledge and gaps for relevant operating conditions, as well as
suggestions for near-term and longer-term improvements for large-scale cultiva-
tion and polyculture engineering.

Motivations and challenges for the microalgal industry

Replacing petroleum-based transportation fuels with microalgae-based biofuels will increase
energy security and reduce fuel cycle carbon emissions, and microalgae provide several advan-
tages over terrestrial plants as renewable energy or chemical feedstocks. For microalgae, high
photosynthetic efficiency and fast growth rates can result in higher productivity per area of
marginal land and water relative to terrestrial plants [1]. In addition, microalgae cultivation can
be coupled to wastewater treatment and recycling, potentially reducing the need for high-value
fertilizer and water [1-5].

However, despite years of research and development, production still faces techno-economic
challenges. One main challenge is that the typically used open ponds are subject to numerous
biotic and abiotic stresses that include infestation with grazers and pathogens [6,7]. In addition,
fluctuations in light, temperature, and nutrients threaten culture stability and consistent yields.
Although microalgal monocultures (see Glossary) are well understood at the laboratory scale,
significant perturbations are inherent to the open systems [3,8,9], and the use of closed bioreactors
is possible but costly in terms of capital investment as well as light and CO, delivery.

Industrial scale microalgal cultures are usually seeded with a monoalgal or coalgal inoculum, and
colonization by other microorganisms is considered to be contamination that needs to be
managed. However, not unlike human and plant microbiome research, 'healthy' microbial diversity
is being appreciated and studied to better understand its roles in ecosystem function, where algae,
diatoms, and bacteria coexist to form commensal and symbiotic associations [10-16]. In addi-
tion, consortia consisting of more than one microalgal species can result in higher culture stability
and productivity [17,18], likely as a result of niche space occupation towards maximal carrying
capacity. Therefore, creating pond ecosystems with mutually supportive microalgal and microbial
species may increase productivity and system resilience.
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A basic tenet of community ecology is that uninhabited, open systems increase in complexity over
time; therefore, monocultures will be invaded from neighboring environments until a stable state is
reached that can be resilient to 'normal' changes [19,20]. Recent studies have provided evidence
that polycultures have advantages over monocultures with respect to biomass productivity
[21,22], stability [23], resource utilization [24], and resistance to invasive species (e.g., grazers)
[25,26], and these findings coincide with observations for diverse, natural systems (e.g., ocean
cyanobacteria) [27]. These studies also highlight potential tradeoffs during the cultivation phase
and in the downstream processing steps (harvesting, extraction, conversion) [18], and there is
a clear potential to select communities based upon maximizing pre- and post-processing for
targeted products [28,29]. However, as noted by Lian and colleagues [30], studies focused on
the distribution, structure, and function of algae-associated microbial communities continue to
be needed.

Engineering microalgal cultures with mutualistic or commensal bacteria has been employed to
enhance nutrient removal and bioremediation in wastewater sources [31], but less is understood
about how engineered polycultures at an industrial scale will perform with regards to light-driven
productivity and stability. Engineering microalgal cultures with bacteria could augment biofuel
production by addressing biomass growth, nutrient recycle, harvesting, and biofuel extraction
[3,32], as well as overall stability that could contribute to consistent harvests. This review focuses
on the potential of using bacteria to improve algal cultivation and harvesting through comparison
with productive natural and/or industrial systems, and also discusses current understanding of
how microalgal and bacterial interactions could alleviate system stress and contribute to overall
processing and productivity.

Microalgae and natural systems

Microalgae can have significant harmful impacts on human health and the economy (e.g., microalgal
blooms), but there are also many beneficial applications of microalgal biomass and metabolism (e.g.,
biofuels, bioproducts, and renewable food sources) [10]. Over 70 000 species of algae have been
identified using a combination of morphology- and molecular-based techniques [33], and >26
000 algal species/strains were recorded in GenBank as of January 2020 [34]. Atthough technolog-
ical advances in next-generation sequencing have allowed exponential growth in genome
sequencing, the number of publicly available algal genomes (224 published genomes) [34] repre-
sents <0.1% of known algal species. The gap in genome representation is in part due to the
challenge of isolating and cultivating axenic algal strains, especially when it is presumed that
many algal species rely on symbioses with bacteria and fungi [35,36].

Unlike axenic laboratory cultures, natural aquatic habitats are diverse microbial communities that
constantly exchange resources and respond to both abiotic and biotic fluctuations [15,37]. In a
field study of a microalgal-bacterial commmunity during a diatom-dominated bloom, Teeling and
colleagues [38] identified almost 100 microalgal morphologies that co-occurred with bacterial
clades. Bell and colleagues [22] surveyed community composition in large wastewater treatment
lagoons over a 1 year sampling period and detected extremely diverse communities (e.g., 445 eu-
karyotic operational taxonomic units, OTUs) that included green microalgae and predatory pro-
tists. In another survey of wastewater, Hena and coworkers [39] observed signatures of 20
microalgal and diatom species in dairy farm wastewater. By comparison, a 4 year survey of the
southern North Sea found that the overall species composition in plankton is balanced and
remains consistent despite interannual variation [40]. It is likely that natural consortia have
adapted to particular environments, fluctuations, and extremes, and insights into the role of
each microalgal species in a given habitat could inform strategies to design stable and productive
microalgal consortia for industrial cultivation in different locales (e.g., dry/sunny versus humid/
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Glossary

Antagonism: an association between
organisms in which one benefits at the
expense of the other.

Axenic: a culture that consists of a
single microalgal or bacterial species
and is free from contamination.
Bottom-up design: designing a
community with a desired phenotype
based on the sum of the individual parts.
Commensalism: an association
between organisms in which one
organism benefits and the other neither
benefits nor is harmed.

Consortium: a group of organisms that
work together to function at a higher
level than they could individually.

Direct air CO, capture: the capacity of
alkaline systems to take advantage of
enhanced dissolution of CO, into
aqueous solution at high pH.

High pH/high alkalinity: cultivation
conditions with pH >10 and alkalinity
>50 mEg/! that are designed to mimic
some of the most productive natural
ecosystems on Earth.

Monoculture: the cultivation of a single
species often resulting from active
exclusion of other species.

Mutualism: an association between
organisms in which both species benefit.
Photoautotroph: an organism that
uses energy from light to fix CO, in
organic molecules via photosynthesis.
Phycosome: the microbial community,
or microbiome, that is associated with
algal cells.

Phycosphere: the region immediately
surrounding algal cells that is composed
of chemical gradients that result from
algal metabolism.

Polyculture: the simultaneous cultivation
of two or more compatible species such
as microalgae.

Top-down design: designing a
community with a desired phenotype
based upon directed selection from
more to less complex.
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cloudy). Microalgae in natural systems are typically observed in diverse communities, and under-
standing relationships of microalgal species with each other and with non-microalgal partners
could be useful for stable industrial production.

Extreme environments can provide novel biochemical capacity relevant to industrial processes.
pH is a dominant factor, and many studies of microbial diversity in extremes have focused on
low-pH and high-temperature environments (e.g., hot springs). The ecology of alkaline systems,
both natural and artificial, is poorly understood, although it has been observed that communities
in alkaline environments are phylogenetically distinct from circumneutral habitats [41,42]. Most
phototrophic systems above ~45°C become dominated by cyanobacteria up to 75°C, whereas
microalgae grow better between 10°C and 40°C [43] depending upon the environment, with the
upper limit reported to be ~60°C [44]. Alkaline lake systems have some of the highest primary
productivity rates on the planet [45], and diverse and unique microalgae have been identified
from alkaline systems [46-48]. However, surprisingly, few studies have systematically catalogued
the extent of potential diversity and function of microalgae from temperate (20-40°C) alkaline sys-
tems. We hypothesize that, given the high primary productivity rates and tolerance to high pH, a
microalgal cultivation system at alkaline/high pH has the potential to achieve controllable inputs/
outputs (i.e., stable productivity with minimized inputs) via direct air CO, capture, and future
work should continue to focus on these and other unique conditions that are relevant to CO, pro-
cessing.

Microalgae in industrial systems

Microalgae require water, sunlight, and nutrients (e.g., N, P, Fe) to grow via photoautotrophy (i.
e., light-driven CO, utilization), and their low-nutrient and low-quality water requirements coupled
with rapid growth rates and high biomass yields make microalgal systems a target for biotechnol-
ogy applications, including biofuel and bioproduct generation [3]. Although some microalgae can
grow heterotrophically or mixotrophically with higher biomass yields [49,50], the use of additional
carbon can increase overall energy demands as well as increase contamination with heterotro-
phic microorganisms that compete for nitrogen and phosphorus [51,52]. Therefore, the focus
of this review is on photoautotrophic growth that uses CO, as the carbon source and sunlight
as the energy source.

Given the open-air nature of large-scale microalgal cultivation under photoautotrophic condi-
tions, maintaining axenic cultures presents many challenges. Invasion or ‘contamination’ is
inevitable, resulting in a complex ecosystem of bacteria, zooplankton, and microalgae as well
as fungi and viruses [53-55]. Much research has focused on controlling invading agents with
strong chemicals and pesticides, as well as on extensive sterilizing methods such as filtration.
A more practical approach may be to select for less susceptible or invasion-resistant strains
[56], well-structured polycultures that are tolerant to invaders, and/or cultivation conditions
that limit invasion through selection (e.g., high pH/high alkalinity, salinity). Moreover, naturally
high-pH and high-alkalinity environments (e.g., soda lakes) have some of the highest primary
productivities on Earth [57], largely attributed to the increased availability of inorganic carbon
in these environments; however, more work is needed that targets these environments. In
recent years, high-pH/high-alkalinity conditions have been used to increase microalgal bio-
mass and lipid yields in shorter time-periods, and these extreme conditions appear to reduce
invasion by harmful microorganisms and grazers [45,58-60]. Although it is feasible to select
and promote stable microalgae—bacterial consortia that can thrive at extremes [45,61], little
is known about the possible metabolic and/or ecological interactions specific to dynamic
extremes (e.g., pH changes across the diel cycle) and about their potential implications for
long-term, repeated cultivations.
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Natural phycosome communities are often more diverse and stable than those observed ex situ
or in industrial settings. The selective forces acting on wild and industrial systems are likely similar,
but the extent to which factors can influence structure and function is likely different. For example,
marine microalgal phycosome diversity correlates with latitudinal temperature gradients [62], but
little is known about whether similar temperature effects could play a role in industrial cultures that
can experience large diurnal temperature shifts when maximizing sunlight exposure. In addition, a
differentiation between free-living and directly attached bacteria has been observed in natural
systems, whereas the distinction is often less clear in ex situ cultures [10]. This is likely due to
the homogeneity of cultures, relative to natural environments, that is achieved under typical mixing
regimes. Industry practices of mixing and nutrient delivery to maximize algal production ultimately
minimize ecological niche partitioning and spatial differentiation that are likely important contribu-
tors to microbial roles. Influential environmental parameters such as photosynthetically active
radiation (PAR), pH, and pO, that might change under different industrial growth schemes likely
impact both the microalgae and the associated microorganisms. Hence, research will be neces-
sary to ascertain the mechanistic roles that significantly impact algal culture productivity or stabil-
ity under relevant industrial conditions.

The phycosphere: the microalgal-bacterial interface

The term phycosphere refers to the immediate region surrounding a microalgal cell that is enriched
in organic matter (i.e., photosynthate) [63], and the phycosphere is analogous to the soil rhizosphere
that refers to the thin fluid layer (diffusive boundary layer) that surrounds small aquatic microalgae
(<100 um). The size of the phycosphere is determined by the size and shape of the microalgal
cell, growth, exudation rates, matility, and the level of mixing in the bulk aqueous phase, and smaller,
slower-growing cells generally have thinner phycospheres [36,64]. The phycosphere includes mi-
croorganisms associated with the microalgal cell surface and/or algal aggregates [10], and
includes both direct and indirect metabolic interactions within the effective diffusive boundary
layer. We propose the term 'phycosome’, building from the general concept of microbiome [65],
as the microbial community occupying a defined habitat (i.e., microalgal growth system) with
distinct physiochemical system-level properties (metabolic potential/function), irrespective of direct
attachment or proximity within the diffusive boundary layer [66]. In extreme cases, such as in the
interaction between Chlorophyta and Rickettsiales, bacteria can develop inside microalgal cells
[67]. In natural habitats, there are examples of the following scenarios: (i) a clear partitioning of
attached and free-living bacterial taxa [68], and (i) a large overlap of bacterial taxa in the attached
and free-living fractions [69]. Interestingly, Eigemann and colleagues [70] reported a shift from
scenario (i) to scenario (i) when culturing natural samples in laboratory conditions, and the results
suggested that the laboratory conditions that promote high microalgal biomass may also promote
an expansion of attached bacteria into the free-living fraction.

Although aquatic environments may seem to have a homogeneously low concentration of growth
substrates, a 'sea of gradients' is available to planktonic bacteria [71] that is created through the
release of dissolved organic carbon by microalgal cells into the surrounding water. Non-motile
bacteria can encounter microalgal cells randomly, but the encounters are relatively rare [36].
Beyond random encounters, many marine bacteria may actively gain access to the phycosphere
by chemotaxis to gain fithess advantages from the dissolved organic carbon [71-74]. Several
microalgal exudates can elicit microbial chemotaxis, including glycolate, acrylate, amino acids,
and dimethylsulfoniopropionate (DMSP) [63,75-77], and differential dissolved organic carbon
(DOC) exudates have been shown to impact chemotaxis in phylogenetically distinct groups
[73]. These results suggest that microorganisms can be attracted to algal cells and that some
algae may actively recruit specific microbial populations depending upon direct or indirect meta-
bolic interactions via different exudates.
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Once within the phycosphere, bacteria may maintain an association via attachment to microalgal
cell surface [78], microalgal sheaths [32], or to the polymeric matrix [79], all of which could be poten-
tial sources of carbon (Figure 1A-C). In some cases bacteria colonize transparent exopolymer
particles (TEPs), which are made of polysaccharides released by diatoms. Some bacterial strains
can modulate diatom TEP production, thereby promoting the aggregation of diatoms and pro-
moting bacteria-diatom associations [80]. Bacteria themselves can also release exopolysaccharides
in response to the presence of microalgae, which might also facilitate interactions [81].

Microalgal-bacterial interactions

Microalgal-microbial associations may provide selective advantages for microalgal health [82];
conversely, axenic cultures of microalgae may be unstable and prone to perturbation [8]. Microalgae
can release up to 50% of fixed carbon into the surrounding environment as excreted organic
compounds (e.g., carbohydrates) that are thought to directly and indirectly impact on associated
ecological partners, local photoinhibition, and/or aggregation [32,83,84]. Microalgal-bacterial inter-
actions are considered to be species- or even strain-specific, meaning that the phylogenetic com-
position of the bacterial community can depend on the microalgal host [68,85-87]. However, the
level of specificity has been suggested to differ between microalgal genera [88], but only a limited
number of algal phycosomes have been studied for different genera. The establishment of long-
term specific interactions is probably determined by metabolic dependencies as well as by long-
term coevolution [89-91]. Less is known about the drivers of short-term interactions (i.e., diel cycle);
however, preliminary studies have been conducted in freshwater environments (S. Papadopoulou,
MS Thesis, Uppsala University, 2021). The species-specific nature of microalgal-bacterial interac-
tions could be due to distinct exudates produced by a given microalgal species which provide sub-
strates that differentially attract bacteria based on their metabolic potential [86,91]. Consistently,
natural and industrial cultures containing multiple microalgal species have more diverse bacterial
communities than monoalgal cultures [10]. When synthetic phycosome communities were estab-
lished using a mixed bacterial starting community with diatom and dinoflagellate host cells, direct
relationships between host metabolism and community succession were uncovered based
upon host-produced metabolites [92]. These findings suggest that specific host processes
could select for specific phycosphere/phycosome compositions.

2003 '3 A
rends in Biotechnology
Figure 1. High-resolution depictions of interactions between the alkali-tolerant green microalga Chlorella sp. SLA-04 and associated microorganisms.
Scanning helium ion microscopy image (A) and transmission electron microscopy images (B,C) depicting attachment of microorganisms to SLA-04 cells. Credit: Alice
Dohnalkova and Shuttha Shutthanandan (Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory) via a Facilities Integrating Collaborations
for User Science (FICUS) grant. The scale bars in A-C represent 1 um. The images are representative observations of algal-bacterial direct contact.
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Microalgal cell size could play a role in the interactions with bacteria. For example, microalgae with
a small cell size (e.g., Nannochloropsis salina) may encounter bacteria at lower frequencies given
the lower surface area (i.e., smaller phycospheres) for bacterial attachment [31]. Larger cells
might not only provide more surface for attachment but also release more exudates, resulting
in wider diffusive boundary layers that can be encountered by chemotactic microorganisms
[37,64]. For this reason, the tradeoff between costs associated with biomass production and
surface area generation is an important consideration in understanding the selective pressures
driving morphological diversity in microalgae. Smaller cells, however, may move around more,
expanding the impacted area [37].

The growth mode or lifestyle of microalgae might also be a determining factor. For example, in
cultures enriched for microalgae-associated bacteria, the benthic marine diatom, Phaeodactylum
tricornutum, appeared to have more bacterial cells attached to its cell surface than N. salina [31].
Changes in the environment likely lead to changes in microalgal metabolism, which changes the
chemical 'profile’ of the phycosphere and might result in microbiome shifts. Ultimately, it is likely
that both host morphology and physiology can exert selective control over the composition of
the associated microbial community, and vice versa.

Aggregation in planktonic and biofilm cultures may provide an opportunity to investigate spatial
relationships in microalgae—phycosome interaction webs (Figure 2). In addition to algal aggre-
gates and/or the algal cell as the 'surface', microalgae can grow attached to physical surfaces
('macro'-biofilm) in natural and artificial environments, and biofilm growth is an important charac-
teristic to consider in the design of cultivation schemes for larger-scale production. Recent com-
parisons have shown that phototrophic biofilm growth can help to overcome challenges with the
delivery, mixing, and harvesting of algae [93], and that productive, cyanobacteria-dominated
biofilms can have diverse microbial communities [94]. Mixed-species and mixed-domain biofilms
can persist over a wide range of conditions given the flexible nature of microalgal metabolism and
the active interplay between heterotrophs and phototrophs [94], but more work will be necessary
to elucidate the occurrence, distribution, and function of the microbial populations specifically
associated with algal biofilms.

The roles of bacteria in microalgal cultures

Microalgal-bacterial interactions span a broad spectrum from mutualistic to commensal, competi-
tive, and algicidal [13,85,86,95,96] (Figure 3). For example, for the marine microalgae Emiliania
huxleyi and the associated Roseobacter group, the interactions include distinct mutualistic and
algicidal phases. In the first phase, the bacterium provides antibiotics that protect the microalgal
cells from bacterial pathogens, and auxins which promote microalgal growth. As the microalgal
population ages, the bacterium switches to the algicidal phase in response to the increased levels
of p-coumaric acid, a breakdown product of dying microalgal cells. In this phase, Roseobacter
spp. can produce antialgal compounds, the roseobacticides, that kill microalgae [13,97-101].
This complex example suggests that at least some interactions are condition- and time-dependent.

Competitive or antagonistic interactions

In the relationship with microalgae, bacteria can be benefactors that can utilize dissolved organic
matter (DOM) release by microalgae and compete for macronutrients (e.g., N, P, Fe), resulting in de-
creased microalgal productivity [102]. In addition to utilizing microalgal exudates, some bacteria have
adapted an algicidal lifestyle in which bacteria actively attack microalgal cells to obtain nutrients [103].
Although algicidal bacteria need to be avoided in microalgal cultivations, they could potentially be
used for controlling harmful microalgal blooms [104,105]. Directly related to biofuel production,
Lenneman and colleagues [106] demonstrated that two algicidal bacteria, Pseudomonas
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Figure 2. An aggregate of Chlorella
sp. SLA-04 and its associated
phycosome from a xenic, high-pH,
high-alkalinity laboratory culture.
Chlorophyll autofluorescence is colored in
red, DAPI (4',6-diamidino-2-phenylindole)-
stained DNA is in cyan, and BODIPY 505/
515 (4,4-difluoro-1,3,5,7-tetramethyl-4-
bora-3a,4a-diaza-s-indacene)-stained
lipids are in yellow. The scale bar at bottom
left represents 30 pm. The image
represents a general observation of an
algal-bacterial coculture.

Trends in Biotechnology

pseudoalcaligenes AD6 and Aeromonas hydrophila AD9, induced microalgal cell lysis leading to at
least a sixfold improvement of lipid extraction from the microalgae Neochloris oleocabundans and
Dunaliella tertiolecta [107]. Bacterial algicides and the potential modes of action were reviewed
extensively by Meyer and colleagues [108].

In the same way as bacteria have evolved to prey upon microalgae, microalgae have evolved strate-
gies for self-defense. Although released microalgal DOM serves as a food source for bacteria, larger
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Figure 3. Mutualistic (left) and algicidal (right) interactions that occur in the phycosphere. A generic microalgal cell
is portrayed to represent multiple species. The shading around the microalgal cells represents gradients of metabolites that,
through diffusion away from cells, comprise the phycosphere. Metabolite exchanges highlighted in this summary are
ammonia (NH), iron (Fe), dissolved organic carbon (DOC), B vitamins, indole-3-acetic acid (IAA), tryptophan (Trp),
antibiotics, p-coumaric acid, enzymes, orfamide A, and roseobacticides.
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exopolymers may also form a 'mucus treadmill' that protects microalgal cells from excessive bacterial
colonization [31,109]. Microalgae can also reduce bacterial growth and colonization by interfering with
bacterial quorum-sensing systems [110,111]. Diatoms can secrete fatty acids and esters [112] that
have been shown to act as signaling molecules to induce bacterial biofim dispersal [113,114] or pro-
vide protection by serving as antibacterial compounds [115]. Polyunsaturated aldehydes (PUAs) can
suppress growth of some marine bacteria, but some bacteria in diatorm phycospheres are resistant to
PUAs, indicative of a potential selection mechanism [116]. In ways analogous to the role of the human
gut microbiome [117], the presence of a diverse phycosphere/phycosome may help to reduce the
occurrence/probability of antagonistic interactions (i.e., niche exclusion).

Beneficial or mutualistic interactions

Mutualistic relationships are common between microalgae and bacteria, and bacteria can provide es-
sential nutrients and exert growth effects as strong as those of light and temperature [118]. Capturing
and maintaining these relationships in engineered settings is crucial for highly productive polycultures.
There is ample evidence that bacteria can positively influence the productivity of microalgal systems
via both direct and indirect routes [21,22,119,120]; similar to other host-microbiome interactions,
these routes can include nutrient acquisition, growth effectors, and protection.

Nutrient acquisition

In photo-aquatic ecosystems, as bacteria process carbon fixed by autotrophs, CO, is produced
and inorganic nutrients are recycled (e.g., N, P, Fe) [118]. Although these nutrients directly benefit
the bacteria, the occurrence of bacterial remineralization within the phycosphere/phycosome
may also provide microalgal cells with elevated nutrient concentrations [37]. Microalgae require
iron for photosystem biosynthesis and function, and many bacteria produce siderophores for
iron acquisition. For example, Marinobacter spp. can produce siderophores that contribute to
iron chelation and iron uptake by microalgae [121,122]. In addition, bacteria such as Roseobacter
spp. have the potential to regenerate iron hemoproteins that are released by lyzed and decaying
microalgal cells [123].

Bacteria also play critical roles in microalgal nitrogen uptake. Diazotrophic organisms such as
cyanobacteria and other bacterial genera (Rhizobium, Mesorhizobium, and Azospirillum) can fix
N, into bioavailable forms [12]. Nitrogen fixation may be a more dominant process in the
phycosome of microalgal cultures at times when oxygen levels are low (e.g., during dark periods),
but more work will be necessary to ascertain the temporal and spatial distribution of nitrogen-
cycle functions in algal systems. Indeed, algal systems have been associated with nitrous oxide
production [124], and therefore other functional groups in addition to nitrogen fixation could be
important for not only nitrogen allocation but also environmental impacts (e.g., mitigation of
N-O emissions).

Some diatoms or prymnesiophytes have been shown to have obligate mutualistic interactions
with nitrogen-fixing cyanobacteria [12,125]. Similarly, Rhizobium spp. can provide nitrogen for
Chlorella vulgaris, and this has been shown to increase microalgal cell levels by ~72% [32,126].
Moreover, bacteria can facilitate microalgal nitrogen uptake by converting nitrogen-containing
compounds into more bioavailable or preferred forms for microalgal consumption. Donghicola
spp. have been shown to degrade methylamine and release ammonium that can be utilized by
photoautotrophs [127]. In another case, when cultured with the diatom Pseudo-nitzschia
multiseries, Sulfitobacter psuedonitzschiae used nitrate from the medium and released ammo-
nium, which is the preferred nitrogen source for the diatom [128]. Even protists, which are
often considered to be pests in microalgal systems, facilitated nitrogen uptake in a closed system
where ammonia released by Paramecium caudatum enhanced productivity in Chlorella [129].
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Provision of essential vitamins and growth hormones

Stimulation of microalgal growth by bacteria can also occur via the production of vitamins
[11,130-1383]. Many microalgae are auxotrophic for essential vitamins such as B+», thiamine,
and biotin [134-136], and these compounds are thought to be exchanged through mutualistic
interactions with vitamin-producing microorganisms [11,137,138]. Using metagenomic and
metatranscriptomic approaches, Krohn-Molt and coworkers [87] provided strong evidence that
a-Proteobacteria (e.g., Porphytobacter and Blastomonas spp.) are the main B-vitamin suppliers
in Chlorella and Scenedesmus microbiomes, whereas Sphingobacteria and Bacteroidetes spe-
cies exhibited high expression of B4, biosynthetic genes in culture with Micrasterias [87].

Bacteria can also impact microalgal growth via the production and release of growth
hormones such as indole-3-acetic acid (IAA) [31,133,139,140]. Although IAA has no clearly
documented metabolic role in many bacteria, some bacteria can produce IAA from tryptophan.
Although the evidence for IAA involvement in microalgal physiology and development remains
limited, IAA has been thought to be the driver for several intimate microalgal-bacterial interactions
[30]. The coccolithophore Emiliania huxleyi exudes the amino acid tryptophan which is utilized by
the bacterium Phaeobacter inhibens to produce IAA [141]. A similar interaction was reported for a
Sulfitobacter spp. and Pseudo-nitzschia multiseries symbiont [128]. Interestingly, IAA addition to
the culture medium resulted in reduced growth of the diatom compared to IAA released by
bacteria. One explanation is that bacteria-released IAA achieved higher local concentration in
the phycosphere than the bulk concentration resulting from IAA addition to the medium [128].
In a recent comparison between plant growth-promoting and non-plant growth-promoting
bacteria, Escherichia coli promoted Chlorella sp. growth as much as Azospirillum brasilense
[142], and these results demonstrated the challenge in differentiating between the specific and
general effects of microbiomes. However, exogenous addition of the phytohormone, auxin,
increased biomass and lipid content in Scenedesmus SDEC-8 and Chlorella sorokiniana [143].
Because it is difficult to demonstrate definitive cause-and-effect relationships, more research
will be necessary to ascertain the potential for phycohormone effects at the industrial scale.

Protection

Bacteria can provide a degree of protection to microalgae beyond simple niche exclusion.
Makridis and colleagues [144] tracked bacterial communities associated with green microalgae
grown for aquafeed, and observed that the presence of particular populations hindered the
growth of pathogenic bacteria. For example, Roseobacter spp. produce tropodithietic acid
(TDA), a dual sulfur-tropolone compound that inhibits a broad range of marine pathogens and
may help to prevent harmful bacteria from colonizing the microalgal phycosphere [145]. Bacteria
have also been found to infect and kill microalgal predators, which could result in increased
microalgal growth. In particular, the bacterium Pasteuria ramosa is a parasite of the crustacean
Daphnia magna [146], and Holospora undulata can infect the protozoan Paramecium caudatum
[147]. In addition, many marine bacteria express antagonistic activity against other bacteria via
antibiotics [148]. Finally, phycosphere bacteria can relieve microalgae from oxidative stress in-
duced by reactive oxygen species. Epiphytic bacteria associated with the diatom Amphiprora
kufferathii were shown to express catalase activity that reduced hydrogen peroxide levels in the
local environment [149].

Salt stress

In addition to nutrients and CO.,, water becomes a major challenge for sustainable, industrial scale
algal cultivation [3]. Therefore, the replacement of freshwater by low-quality water (e.g., marine
water, wastewater) can help to improve both environmental and financial burdens on industrial pro-
duction. There are numerous examples of halotolerant microalgae that can physiologically adjust to
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environments with osmotic stresses introduced by saline waters via shifted cell metabolism,
osmoprotectants, and/or altered ion exchange [150]. For example, previous work has shown
that green algae such as Desmodesmus, Chlorella, Dunaliella, Scenedesmus, and Picochlorum
spp. can tolerate elevated salinity and still produce storage compounds (lipids/starches) [150-153],
and more recent work has demonstrated the growth of green algae in actual seawater/sea salts, in-
cluding adaptive evolution for storage compound production in more saline environments
[150,154,155]. Moreover, Church and colleagues [156] showed that the salt concentration had
more of an effect than the salt type on Chlorella vulgaris in terms of both growth and storage com-
pounds.

In the context of salinity stress, microalgae can produce osmoprotectants, and
dimethylsulfoniopropionate is considered to be the most abundant and important osmotically ac-
tive metabolite in phytoplankton, although microalgae can use both nitrogen- and sulfur-containing
osmolytes depending on nitrogen levels in the local environment [157,158]. Recently, microalgae
species have been shown to utilize either ectoine or proline as alternative osmoprotectants
[158,159]. Although saline water provides an alternative water source as well as limiting the growth
of invasive species during open cultivation, the impact of resource allocation (carbon and/or nitro-
gen) to osmoprotectants must be considered when aiming to maximize algal biomass and lipids.
However, an additional role for the phycosome could be in the production of osmoprotectants,
and recent work has shown microalgal use of bacterially produced ecotoine [158]. That said,
few studies have tracked the structure and function of microbial communities in saline/salt-
stressed outdoor algal cultivations, and future work will be necessary to delineate the potential
phycosomal roles in salinity tolerance, particularly in high-alkalinity conditions (i.e., elevated so-
dium). Interestingly, when scleractinian corals (and the algal symbiont) were exposed to salinity
stress, a functional role of osmolyte production was associated with microbiome restructuring
[160].

Temperature stress

Temperature stress for photoautotrophic growth can include both climatic- (long-term, seasonal)
and weather-related (short-term) changes that must be considered for industrial scale, algal
growth facilities. Diurnal temperature swings (in a given day and across seasons) are inherent
to most geographic regions selected for maximizing algal growth (i.e., warm, sunny regions),
and these can generate extremes in temperature highs and/or lows. Cho and coworkers showed
that changes in water temperature over a seasonal cycle affected microalgal biomass productivity
by ~10-fold [161], and small temperature changes of 5-10°C can impact biomass allocation (e.g.,
[162]). Microalgae can modulate phospholipid membrane content in response to temperature
changes, and lower temperatures have been shown to increase the production of industrially rel-
evant metabolites such as eicosapentaenoic acid (EPA) and polyunsaturated fatty acids (PUFAS)
[163].

Research investigating the comparison between axenic and xenic microalgal cultures and tem-
perature stress is limited, but results from a previous study indicated that a native or non-native
microalgal microbiome played a positive role in the microalgal response to heat stress through
enhanced chlorophyll fluorescence [164]. Temperature was a dominant factor that affected
microbial abundance in xenic microalgal cultures, and the predominant microbial species were
related to various seasonal temperature changes [161]. Large, sudden increases in temperatures
can promote algal cell death [165], and daily temperature fluxes in outdoor microalgal systems
were associated with increased phycosome species richness [166]. However, it is difficult to de-
lineate direct and indirect temperature effects on the respective algal and microbial populations,
and it remains unclear how the changes are interrelated; therefore, more work will be necessary
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to better understand the potential role of phycosphere/phycosome in algal growth system resil-
ience to both diurnal temperature changes as well as to different seasonal-regional temperatures.

Learning from nature: ecological engineering for the laboratory and industry

It is becoming clear that large-scale, outdoor monoalgal cultivations are prone to infection, inva-
sion, and contamination that can result in communities of bacteria, zooplankton, fungi, viruses,
and other microalgae [8]. Until recently these contamination events have mostly been addressed
through the use of pesticides and extensive sterilizing methods such as filtration [55]. However, a
more sustainable approach may be to select for stable and resilient strains and their associated
communities [32,37].

However, studies on inter-organismal interactions in engineered microalgal cultivation systems
are still relatively rare, particularly at a larger scale, and underscores our nascent understanding
of metabolic cooperation within these microbial communities for stable biofuel production
[128]. One contributing factor is that typical laboratory practices for enriching and isolating
microalgal strains are not optimal for maintaining the associated phycosome/phycosphere. Be-
cause isolation protocols generally follow multiple rounds of dilution and enrichment with and
without antibiotics, many associated bacteria are likely eliminated. Prolonged axenic cultivation
of microalgal species in industrial scale systems is not practical, and the absence of bacteria
can negatively influence microalgal physiology and growth even in supportive media. Engineering
approaches should therefore be pursued that promote beneficial interactions and minimize
detrimental interactions. We use the term ‘engineering' here to refer to promoting and maintaining
mixed consortia of 'natural’ algae and other microorganisms (Eukarya, Bacteria, and Archaea)
with desired outputs rather than editing at the genome level.

In recent years there has been increased interest in culturing microalgae with the associated
microbial communities [26]. Although such studies have facilitated our understanding of the
molecular mechanisms of interactions in microalgal-bacterial consortia, enriched laboratory cultures
generally have a lower diversity than in situ communities [87]. Analogous to plant-microorganism
interactions at plant roots and leaves [167,168], phycosphere/phycosome consortia could be
designed/selected to promote beneficial/protective interactions and/or limit negative interac-
tions to improve the stability and resilience of industrial cultures.

The key issues in addressing gaps in knowledge between natural and engineered consortia in
these settings concern (i) whether enriched cultures can capture the necessary diversity of natural
microalgal phycospheres/phycosomes, (i) whether polycultures in managed, open ponds can
have similar benefits as those reported in natural habitats, and (i) whether is it possible to reconsti-
tute and/or design microbial consortia with predictable and controllable outcomes that can be
consistently maintained. Although the productivity of natural ecosystems is often measured in
terms of biomass production [169], the productivity of a microalgal industrial cultivation is likely
assessed by biomass quantity, compositional content (e.g., lipids), stability/robustness, net envi-
ronmental impact (e.g., water, nutrient, CO, requirements), and the overall costs [17]. Therefore,
the phycosome and potential impacts should be considered during life-cycle and techno-
economic analyses [3].

Use of algal polycultures to improve productivity and stability

In many environments, microorganisms form interactive consortia in which they are more likely to
interact with each other than with outside species [170,171]. Termed 'small-world"' networks,
these consortia are common in natural and man-made systems in which microscale interactions
impact overall productivity [172]. In addition, based on modeling of clustered food webs
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[173,174], phycosphere communities can display increased stability compared to randomly
assembled food webs and may display increased diversity because extinction rates are more
gradual. Sinha and Sinha [174] showed that relationships between species can be independent
of both the initial size and connectivity of the network, and that the number of interactive species is
a fundamental property of network structure irrespective of biotic or abiotic conditions. The
results also suggest that species that interact with too many other species can destabilize
network persistence [175].

Two mechanisms are believed to drive diversity—productivity relationships — the selection effect and
the complementarity effect [24,28,176]. In the selection effect, the more species in a consortium,
the higher the chance of having a species with a specific function. However, simply increasing
the number of species does not always lead to increases in yield and stability if species are in the
same functional group [18]. To maximize the potential for improving yield, polycultures could be
designed based on specific traits/metabolic potential and the functional complementarity between
species. Indeed, metabolic dependencies, interactions, and exchanges are being increasingly
suggested as major drivers of community structure and function in different systems. Metabolic
modeling of >800 subcommunities with known species composition indicated that communities
with high phylogenetic diversity tend to consist of species with a low degree of metabolic overlap
[177]. These models emphasized metabolic dependencies as a key biotic force that determines
microbial communities in nature. Communities with high interaction potential among members
are more likely to benefit from complementary biosynthetic capacities and require fewer resources
[178]. Therefore, metabolite exchange could be a mechanism that stabilizes phycosphere/
phycosome interactions, and communities with metabolic synergy could therefore thrive in nutri-
tionally poor habitats [179]. This principle can guide the design of polycultures through ecological
engineering to maximize metabolic capacity and achieve target biomass composition in industrial
microalgal cultivation, where the main aim is to maximize outputs (biomass, lipid content) using
minimal inputs (e.g., nitrogen, phosphorus, low-quality water). To achieve this goal, it is necessary
to identify the mechanisms behind diversity—productivity relationships so that design and control
can be attempted.

Choosing multiple microalgae strains as 'core' biomass producers

In the context of managed cultivation, consortia of microalgae with different traits might be more
tolerant to changing environmental conditions (light, temperature) and more resistant to invaders
[25]. When mono- and polyalgal cultures were evaluated, polycultures exhibited more stable
production through time, higher biocrude yields over time, and were more resistant to invasion
than monocultures [21,26]. The studies indicated that designing consortia requires characteriza-
tion and selection of strains based on ecological principles to promote functional diversity [21,26].
A previous study showed that consortia of multiple microalgae resulted in higher biomass
production than those of monoalgal cultures when cultivated in wastewater [39]. Interestingly,
although four 'standard' UTEX strains (https://utex.org/) were included in the screen for the
best consortia, the optimal consortium contained only native strains isolated from the wastewater
sources used for cultivation. These native strains may have developed an optimal interaction
network with one another and with other indigenous microorganisms, as well as with the local
environment. Therefore, identifying and promoting the natural relationships that are characteristic
of a given environment (e.g., water or nutrient source) may be an effective strategy for designing
stable and productive microalgal consortia.

The positive diversity—productivity relationships could be explained by the efficient use of nutrients
and light. Microalgae have different light preferences (wavelength, intensity), and microalgal con-
sortia that contained species with non-overlapping optimal wavelengths had higher lipid content
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and PAR absorbance than polycultures with overlapping light use [24]. In a study on algal nitrogen
uptake, algal species differed significantly in their capacity to take up ammonium, urea, and ni-
trate, and as a result cocultures that differed in nitrogen preferences showed greater complemen-
tarity and higher productivity than monocultures [176]. In addition, mixed microalgal communities
were also shown to remove inorganic nutrients more rapidly than monoalgal cultures and exhibited
increased growth rates [180].

Bacterial consortia as probiotic ‘amendments'

Inoculating microalgal cultures with bacterial communities that confer health benefits could be
used as a form of phycosome/phycosphere engineering [31]. In photoreactor systems,
microalgae and the accompanying bacterial flora were strongly positively correlated [120]. In a
separate study, the growth of Navicula veneta was positively affected by Halomonas NC1, and
diatom cell levels were 65% less without the bacterium [181]. When Chlorella vulgaris was
grown in the presence of different bacteria, all important parameters for biofuel production
were higher than those of the corresponding axenic cultures [182]. More recently, Toyama
[183] cultured each of three microalgal species Chlamydomonas reinhardtii, Chlorella vulgaris,
and Euglena gracilis in the presence and absence of indigenous bacteria in wastewater effluent,
and for all three species xenic cultures resulted in higher biomass yields (1.5-2.8-fold) compared
to the respective axenic cultures.

The improved biomass production in polyculture may be explained in part by the higher rate of
nutrient assimilation and uptake by both microalgal and bacterial members. For example,
P. tricornutum cells in the presence of bacteria fixed 64% more carbon than axenic cells, whereas
bacterial cells that attached to microalgal cells consumed more microalgae-fixed carbon than
unattached bacteria [31]. In another study assessing the symbiotic relationship between
cyanobacteria and diatoms (e.g., Climacodium spp.) in bulk seawater, cyanobacterial cells that
attached to diatom cells showed higher nitrogen-fixation rates (171-420-fold) compared to
rates estimated for free-living cells, and the majority of the fixed nitrogen was transferred to the
diatom [12]. Ortiz-Marquez [184] eliminated the need for providing inorganic nitrogen directly to
a microalgal culture by adding Azotobacter vinelandlii, a nitrogen-fixing bacterium that had been
genetically engineered to secrete ammonium into the growth medium. In a recent study,
Janthinobacter protected Microchloropsis from rotifer grazing pressure for short periods of
time in outdoor cultures [185]. Although these studies demonstrate both direct and indirect,
positive impacts of added bacteria, the explicit use in promoting microalgal growth for biofuel pro-
duction is still imited owing to the knowledge gaps in interactions of bacteria with microalgae
hosts, the potential tradeoff between yield and overall culture health, and the challenges of main-
taining stable healthy consortia for different microalgae and/or polycultures. Similarly to the
context of human gut microbiomes and person-to-person variability, much more work will be
necessary to discern and define ‘healthy' phycosomes for different microalgal species under
different growth conditions. Some benefits are easier to track than others; for example, an aggre-
gation phenotype could help with biomass dewatering and harvesting [186,187].

Toward designing microalgal consortia with controllable outputs

The enrichment and characterization of microalgal consortia from extreme natural habitats
could provide 'simplified’ communities with higher productivity and consistent stability.
Robust, resilient, adaptable, and productive communities have been established via simple
enrichment of native consortia [10,31], or by the assembly of novel synthetic consortia
[26,188,189]. Habitats experiencing extreme environmental conditions hold potential for
strains with unique traits, for example alkaline systems, that could contribute to functional pa-
rameters (i.e., CO, delivery).
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Alkaline aquatic systems have been shown to be among the most productive natural ecosystems
in the world [57,94], and it is hypothesized that distinct but very well-developed metabolic inter-
actions are at least partially responsible for these high productivities. Microalgae of diverse
taxa including Scenedesmus, Navicula, Chlorella, and Neospongiococcum spp. can thrive in
high-pH environments, and they are valuable resources for cultivation with atmospheric CO»
[47,59] (A. Vadlamani, PhD Thesis, University of Toledo, 2016; K. Moll, PhD Thesis, Montana
State University, 2021). For example, Chlorella sorokiniana SLA-04 achieved high biomass
productivities (>20g/m?/day) in open raceway ponds under high pH/high alkalinity without a culture
crash over a 2 year period [60,190]. Given the adaptive specialization of such organisms, manipu-
lating cultivation conditions may be a useful approach for selecting stable, beneficial consortia
under desired conditions.

Consortium design will also benefit from a thorough understanding of the community compo-
sition and metabolic interactions between members, which is being facilitated by next-
generation sequencing as well as next-generation physiology and imaging technology [191].
Metagenomic sequencing, for instance, will allow the metabolic potential of the community to
be estimated, and can predict possible metabolic relationships between community members.
Advanced staining and imaging techniques may make it possible to elucidate how microalgal—
bacterial interactions affect carbon, nitrogen, phosphorus, and energy flow for maximum
productivity. At the gene expression level, meta-transcriptomic analyses combined with
BONCAT (biorthogonal non-canonical amino acid tagging), isotope-specific Raman confocal
microspectroscopy, and metabolite analysis can reveal how phycosome interactions influence
microalgal physiology, and vice versa, during both short- and long-term cultivations. These
omic, chemical, and imaging approaches will shed light on the temporal and spatial dynamics
to inform consortia design.

Furthermore, consortia design can be assisted by mathematical modeling, including
population-based modeling for predicting interspecies dynamics [192] and metabolic net-
work modeling to predict energy and material flows in a community [193,194]. Ultimately,
the performance of a consortium needs to be assessed at the industrial scale at the point of
production. Although studies so far suggest that engineering microalgal consortia could
improve the productivity and stability of large-scale cultivation, extensive life-cycle and
techno-economic assessments (LCAs and TEAs) will be necessary to determine whether
these improvements result in more sustainable operation in both economic and environmental
terms during anticipated perturbations (e.g., weather fluctuations). From the biofuel process-
ing perspective, bacteria have potential for use in cultivation (provide a growth benefit) [15,25],
reduction of invasion, harvesting (induce aggregation) [186,187], and extraction (weakening of the
microalgal cell wall) [98,108].

In silico design of phycosphere communities

Synthetic microbial communities have traditionally been built using either top-down design
or bottom-up design approaches. Top-down refers to breaking down complex systems
into individual parts to simplify and understand their function, whereas bottom-up refers to
the integration of well-studied systems to form another, more complex system. Both ap-
proaches generally require extensive background observation, next-generation sequencing,
and physiological work as well as intensive experimentation [195,196]. The future of
microbiome engineering has been suggested to hinge on the principles of design—build-test-
learn (DBTL) [196], and recent advances in microfluidics, modeling, sequence-based technology,
and bioinformatics can expedite the process of identifying, culturing, and applying 'built' consortia
to algal systems.
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For phycosome applications, consortium design can be achieved using metabolic predic-
tions of the host algal cell, a native phycosome, a desired microbial community, or a combi-
nation. With sufficient metabolic information about the host, exudate composition can be
modeled and used to predict how microorganisms may be recruited to the host [74]. Addi-
tional approaches are being developed to predict and build systems based upon mathemat-
ical models of natural ecosystems [197]. Computational approaches have also been paired
with high-throughput culturing techniques such as microfluidics to predict host processes
that are integral to recruiting microbiomes [198] or how complementarity of host and micro-
bial growth rate and substrate preferences can be used to train phycosome design
algorithms [199]. Phycosomes have been designed by 'letting the host decide' through
swapping complex microbiomes from taxonomically distinct host species and by letting
the host recruit microbial species to a new microbiome [200]. Used together, in silico and
ex situ tools such as these can strengthen or expand the potential of traditional bottom-up
or top-down microbiome design.

Concluding remarks and future perspectives

There is evidence that microalgal cultures can increase productivity, stability, and robustness
through functional and phylogenetic diversification at both the algal population and microbial
community levels. Therefore, industrial scale microalgal culture productivity and stability might
be improved through diversification and thoughtful design of the microalgal phycosphere and
phycosomes. Multiple microalgal species could provide high culture stability (e.g., temperature
and light intensity tolerance) and promote efficient resource utilization, while the associated
bacterial communities could provide essential nutrients, growth-promoting components, and
protection against pathogens, grazers, stresses, etc.

It is evident from the recently published literature that the importance of microalgal microbiomes has
been recognized, but more research will be necessary to elucidate mechanistic understanding of
phycosphere/phycosome interactions that directly promote productivity and stability at an
industrial scale (see Outstanding questions). The challenge can become more complex when polyalgal
cultures are considered under different growth conditions, such as high-pH/high-alkalinity systems
that have high but consistent pH with or without higher osmolarity. Nevertheless, understanding
these interactions is essential for controlling and optimizing the function of industrial ecosystems for
maximal societal benefit in terms of direct air capture of CO, and the use of low-quality water and
nutrients that can produce different value-added products. In fact, natural systems typically operate
with low-quality resources via recycling and a combination of functional redundancy and complemen-
tarity to offset dynamic stresses. An improved understanding of phototrophic biosystems in different
environments and geographic locations could inform the operation of biosystems at the industrial
scale for CO, capture by taking advantage of ecology and physiology. Remaining challenges include
the completion of in-depth physiological studies with accompanying ecology to understand the
potential of combined organismal traits, the relationship between community members, and maintain-
ing the consortia over industrially relevant time- and space-scales.
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Outstanding questions

What is the relationship between culture
diversity and culture productivity?
When engineering algal (poly)cultures,
are higher levels of diversity necessary
to improve the culture stability and
productivity?

Are metabolic and ecological interactions
more predictable and controllable in
more extreme conditions (e.g., high-pH,
high-alkalinity cultures)? Can communi-
ties be engineered based upon desired
functions to occupy functional niche
space?

Can natural observations of elevated
productivity in alkaline systems translate
to the laboratory? To industrial scale
systems?

Are bottom-up and/or top-down ap-
proaches more feasible and streamlined
to achieve desired outcomes of stable
and productive algal polycultures?

How can the microalgal industry use
phycosomes from naturally productive
systems to design consortia cultures
with minimal inputs (carbon, nitrogen,
phosphorus) and desirable outputs
(biomass, lipid, starch)?

Can metabolic modeling be used
to estimate and build niche space
for stable, photoautotrophic-driven
outputs?

How does engineering microalgal—
bacterial consortia impact the eco-
nomics of cultivation models that are
often built upon assumptions that
cultures are axenic?
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