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It has been theorized that terrestrial planets born beyond 1-3 au could
avoid being engulfed during the red-giant phases of their host stars.
Nevertheless, only a few gas-giant planets have been observed around white
dwarfs (WDs), the end product left behind by ared giant. Here we report on
evidence that the lens system that produced the microlensing event KMT-
2020-BLG-0414 is composed of a WD orbited by an Earth-mass planet and
abrown dwarf companion, as shown by the non-detection of the lens flux
using Keck adaptive optics. From microlensing orbital motion constraints,
we determine the planettobe a1.9 + 0.2 Earth-mass (Mg) planet at a physical
separation of 2.1+ 0.2 au from the WD during the event. By considering the
system’s evolutionary history, we determine the brown dwarf companion

to have a projected separation of 22 au from the WD and reject a degenerate

model that places the brown dwarf at 0.2 au. Given the planetary orbital
expansion during the final evolutionary stages of the host star, this
Earth-mass planet may have existed in an initial orbit close to1 au, thereby
offering a glimpse into the possible survival of planet Earth in the distant

future.

The ultra-high-magnification nature of the microlensing event KMT-
2020-BLG-0414 (KB200414 hereafter) has previously prompted
intensive photometric follow-up observations around the peak of
the event on 11 July 2020. Modelling of the densely sampled light
curve subsequently revealed a three-body lens system consisting of
alow-mass-ratio planet (¢ = 107) and a brown dwarf (BD) companion
orbiting a subsolar-mass host star'. Owing to intrinsic microlensing
degeneracies*™, four distinct models explain the light-curve data
equally well. Among the four models, the projected separation for
the BD companion could be very close (-0.2 au) or very wide (-20 au),
and the relative proper motion of thelens and source could be eitherin
the north-east (NE) or south-east (SE) directions, which are associated

with distinct microlensing parallax constraints. On the other hand, the
planet properties are consistent across the four models, all of which
indicate an approximately Earth-mass planet at a projected separation
ofaround1-2 au.

For KB200414, the mass of the primary lens star (Table 1), as
inferred from the finite-source effects and microlensing parallax,
indicates that it is either a main-sequence (MS) star or a white dwarf
(WD) stellar remnant. An MS lens star would be expected to have a
similar apparent brightness as the microlensing source star, whose
apparent brightness is known from the magnification profile. On the
other hand, a WD lens would be expected to be fainter by 6-8 mag,
making it practically undetectable under the glare of the source star.
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Table 1| Properties of the lens system KMT-2020-BLG-
0414L(bc) under a fourfold light-curve degeneracy, with a
uniform Bayesian prior

Parameter Unit North-east South-east
Close Wide Close Wide
Primarylensmass Mo 0.4507y 0361005 0257005 019'50s
Distance ke 112737 0.99%07  0.73'5%, 0.5770%6
MinimumMSlens mag 16327327 16.84703% 17167015 17.25%079
brightness (K,) ’ ’ ) ’
e L T AL e
i i _ +0.10 +0.12 +0.12 +0.21
it 0.45%05s 054757 076153  0.99%03
Source mag 1708+ 16.99 + 17.03 + 16.95 +
brightness (K;) 0.06 0.06 0.06 0.06
30 excess mag 18.63 19.06 18.88 19.34
brightness (K;)

North-east and south-east indicate the direction of the relative proper motion of the lens and
source, which corresponds to the uy>0 and u,<0 solutions under the ecliptic degeneracy™*.
Close and wide relate to the projected separation of the BD. Reported values are median
values with 68% confidence intervals. The minimum MS lens brightness is defined as

the minimum brightness for metal-rich ([Fe/H]=0.5) stars aged over 100 Myr to 10 Gyr.

The microlensing parallax is the ratio between the lens-source relative parallax and the
angular Einstein radius. The 30 excess flux is the upper limit of the excess flux at 99.7% (30)
confidence, defined as the difference between the observed flux (K,=16.99+0.03) and the
source flux.

Therefore, the two scenarios could be distinguished by measuring the
total brightness at the eventlocation before or after the event. OGLE-III
pre-eventimaging (Fig. 1a) measured the total brightness at the event
locationtobe /., =18.46 + 0.09, which implies a total blended flux of
1=19.3 ontop of the unmagnified source star brightness of /= 19.1. This
blended light was originally reported by ref. 1 as consistent with the
expected MS lens brightness (Table 1) but could also be attributed to
nearby field stars that cannot be resolved with seeing-limited imaging.

To further constrain the lens brightness, we observed the loca-
tion of KB200414 in the K-shortinfrared passband (K; 2.146 pm) with
laser-guide-star adaptive optics®® on the Keck Il telescope on 25 May
2023 (uT), approximately 3 yr after the peak of the event. Using our
Keckimages (Fig.1c), we measured atotal brightness of K;=16.99 + 0.03
at the event location within a circular aperture of radius 0.2", which
closely matches the infrared source brightness, which ranges from
K,=16.95+0.06 t0 17.08 + 0.06, for the four degenerate solutions
(Methods). Our high-angular-resolution imaging revealed that the
blended light in OGLE-III pre-event imaging arose primarily from
field stars within 0.5" to the west and north-west (Fig. 1). As shown in
Table1, our aperture photometry constrains any excess flux above the
source flux tobe at least around 2 mag fainter (at the 3o level) than the
expected brightness of the lens star, ifit were on the MS. Therefore, we
rejected the MS hypothesis and concluded that the primary lens star
(the planet’s host) must be aWD.

The conclusion that the primary lens is a WD called for a
re-examination of the four degenerate light-curve models. We found
that the two SE solutions are unlikely, as both would require an
extremely low-mass (ELM) WD below 0.3 M. ELM WDs (for example,
refs.7,8) arearare class of WDs formed exclusively throughbinary inter-
actions during which the companion star strips away the stellar enve-
lope from the ELM WD progenitor through either common-envelope
evolution or stable mass transfer before the progenitor star caninitiate
heliumburning (for example, refs. 9,10). Weimmediately ruled out the
existence of such massive companionsto thelensstar, asthe light-curve
models constrain the total lens mass as opposed to the primary lens
mass for close-inbinaries. It was also difficult to attribute the formation
ofanELM WD to the close-in BD companion under the close SE model,

as binary evolutionary models™" predict that a BD companion could
ejectthe envelope of the WD progenitor only ifit spiralledintoamuch
closer orbit (50.01au) or first interacted with the progenitor when it
was anasymptotic giant branch (AGB) star whose core mass has grown
tomore than-0.5M,,.

On the other hand, the two NE models do not require the forma-
tionofan ELM WD inacompactbinary. As the finite age of the Universe
limits the lowest mass of a WD that can form due to the evolution of a
single star, we imposed a host-mass lower limit of M > 0.45 M_ based
on WD population statistics (for example, refs. 13,14), which served
as a Bayesian prior to refine the lens system’s properties. Under this
extra constraint, both the close NE and wide NE models indicate that
there is an approximately 1.7-1.9 M, planet at a projected separation
ofaround 2.1 auwithahost mass near 0.5 M, (Table 2). The planet mass
is consistent with arocky composition, and the corresponding planet
sizewould be merely 20% greater than Earth’s radius from mass-radius
relationships (for example, refs.15,16). Furthermore, we inferred from
WD initial-final mass relations” that the progenitor (MS) mass was
likely around1-2 M,,.

Wetheninferred the planet’s physical separation fromits projected
separation using the orbital-motion effect'®" in the light-curve models
(Extended Data Table1and Methods). We adopted alog-uniform prior
onthe physical separation and modelled the planet’s orbit for different
assumed eccentricities. Asillustrated in Fig. 2, the posterior distribu-
tion for the physical separationis bimodal, which reflects two distinctly
allowed orbital configurations (Extended Data Fig. 1). The planet is
most probably near its greatest elongation in aninclined orbit, which
implies that the physical separation is near the projected separation.
Alternatively, the planetis near conjunctiononanearly edge-on orbit,
which implies a physical separation of 210 au. The former scenario is
substantially favoured for eccentricities up to e < 0.2, for which we
could place an upper limit to the physical separation at 2.3 au with
80-90% confidence. Due to tidal circularization during the host star’s
red-giant phases (for example, refs. 20,21), we consider it reasonable
toassume that the current planetary orbitindeed has low eccentricity.

For low eccentricities of e < 0.2, the greatest-elongation or
close-orbit case (d = 2.1au) is formally favoured by a Bayes factor of
around 5-10, which constitutes only substantial but not strong evi-
dence?. Therefore, the extent to which the conjunction or wide-orbit
case (d 210 au) may be ruled out is sensitive to the adopted physical
separation prior, which is complicated because the population of
terrestrial planets at such separations remains largely unexplored.
Canonical planet formation theory expects terrestrial planets to form
predominantly within the water-ice line at around 3 au for a Sun-like
star (for example, ref. 23). However, processes such as planet-planet
gravitational interactions during the early stages of planet formation
could scatter low-mass planets to very wide separations or outright
eject them?. Statistics from short-timescale microlensing events
(t: $0.5d) indicate that wide-orbit (210 au) and free-floating low-mass
planets combined are at least as abundant as the known population of
close-orbit planets?*?°, but current follow-up observations are insuf-
ficient to distinguish between the two scenarios®. Therefore, if a con-
siderable fraction of such candidates for microlensing free-floating
low-mass planets are confirmed to be bound planets (by direct detec-
tion of the host star), thenit becomes more probable for the Earth-mass
planet (KB200414Lb) to have awider orbit than at present inferred.

Similarly (but for a different reason), the BD companion takes
oneitheravery close or very wide projected separation, which would
indicate distinct evolutionary histories (Fig. 3). Toend upina close-in
orbit of 20.2 au under the close NE model, the BD companion would
probably have gone through a period of common-envelope evolution
with the WD progenitor and successfully ejected the stellar envelope.
However, most known post-common-envelope binaries have orbits
smaller than 0.01 au (ref. 28). Several WD binaries with MS companions
are known with separations of order 0.2 au that are suspected to be
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Fig.1| OGLE-III, CFHT and Keck Il imaging of KMT-2020-BLG-0414 taken
before, during and after the event. a, OGLE-IIl /-band image taken from 2002
t02009. The eventlocation is centred on the cross-hairs. The OGLE-Ill baseline

(catalogue) object is 0.18" west and 0.01" south of the event location, as indicated

after (2023)

by the white dot. b, CFHT/MegaCam /-band image taken 2.2 d after the peak of
the event. ¢, Keck adaptive optics K;-band imaging reveals that the blend flux

associated with the OGLE-1ll baseline object is predominantly attributed to field
stars to the west or north-west within 0.5".

Table 2 | Refined properties of the WD planetary system

. . i —e= O
KMT-2020-BLG-0414L under a host-mass limit of | U“Stat;le during ,Mﬁ’ — e=01
\ or scenario :
M>0.45M, 20 11 — e=02
18 e=03
Parameter Unit Close NE Wide NE '-I e=05
. .
+0.08 +0.06 \
WD mass Mo 0.51 505 0.49 503 o 40 - l'\
— 1
; +0.19 +0.16 = \
Distance kpc 127010 1.33%512 § |
3 \
WD flux (K.) mag 23.8%3% 24.0155 & s |4
i -1 +1.52 +1.29
Proper motion masyr 7747 5% 1772576
i irecti +21.4 +15.4
Proper motion direction deg 62.9757 685705 80 .
+0.31 +0.27 —
Planet mass Mg, 17520718 1.87 076 = \\
Planet projected separation au 2.17J_r8-f70 2.07ig»1212 100 1+ N N‘NTT ----- ————
- - 2 5 10 20 50
Planet physical separation (€<0.2)  au >10 2071@%‘; Physical separation (au)
BD mass M, 32, 4+3‘2 27.0+g-10 Fig. 2| Planet’s physical separation from the WD host during the peak of
- - : : the event asinferred fromits projected separation and the microlensing
BD projected separation au 0.20f8j8§ 22.31'12,'; orbital motion. Cumulative distribution function for the marginal posterior

Only the NE models are shown, as we have ruled out the SE models. The relative proper
motion of the lens and source was measured north (0°) to east (90°) and in the heliocentric
frame. The projected and physical separations are defined at the time of the event. The

minimum physical separation of the planet for scenario 1 (close NE) arises from stability
requirements during the host star’s MS phase.

post-common-envelope binaries” . Models are able to explain these
wider post-common-envelope binaries only if mass transfer was first
initiated during the AGB phase of the progenitor of the WD, when its
envelopeisexpected tobeloosely bound and little gravitational energy
is required to unbind it'’**"*2, Under this scenario, the BD’s initial orbit
around the MS hostis expected tobe 3-6 au (ref. 31). Nevertheless, even
if this common-envelope evolution pathway remains valid for a sub-
stantially less massive BD, long-term orbital stability for the system (for
example, ref. 33) would require the planet to be on aninitially wide orbit
(d 210 au), whichis already disfavoured by the planet orbital model.
Given the combination of evidence against the close NE model,
we conclude that the wide NE model (scenario 2 in Fig. 3) is the most
favoured scenario, such that neither the planet nor the BD interacted
with the WD progenitor. In this case, this system may provide a possible
glimpse into the distant future of our Solar System. Although Venus
will eventually be engulfed and Mars will most certainly survive, the
final fate of the Earth remains uncertain and critically depends on the
stellar-mass-loss rate during the solar red-giant-branch phase®*, which
remains poorly constrained®. Certain models predict that the Earth
may be engulfed during the solar tip-red-giant-branch-phase due to
tidal interactions and dynamical drag’*”. Nevertheless, if Earth does
indeed survive, thenits orbitis expected to expand to around twice its

distribution of the physical separation under a log-uniform prior is shown for
different eccentricities. The difference between the close NE and wide NE models
isminimal (Supplementary Figs. 2 and 3). Their mean values are displayed. The
cumulative distribution function for the physical separation without the orbital
motion constraints is shown for e = 0 (dashed line) for comparison. The shaded
regionindicates the planetary orbits that would have been initially unstable with

the BD orbit during the host star’s MS phase under the close NE model (scenario
linFig.3).

current size, comparable to the current orbit for KB200414Lb. There-
fore, the Earth-mass planet KB200414Lb probably represents a similar
yet more fortuitous future compared to that of our own planet Earth.

Methods
Observations

We observed the location of the planetary microlensing®*~° event
KB200414 (ref. 1) using the wide mode of the NIRC2 camera on the
KeckIltelescope on25May 2023 (UT) under programme U152 (Primary
Investigator J.S.B. and Science Primary Investigator K.Z.). The pixel
scalewas 0.04" per pixel witha40"by 40" field of view. Five deep images
were takenwith 30 s of exposure per image for the relative photometry
on the target. Two shallow images were taken, each with 10 s of total

integration time, which consisted of 20 co-adds of 0.5 sexposures. The
shallowimage had abrighter saturation limit and was used for calibra-
tiontothe VVV photometric system. The shallow and deep images were

corrected for nonlinearity*’, sky-subtracted, flat-fielded and averaged
into two master images.
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Fig.3|Illustration of the system’s possible evolutionary histories under the
close NE and wide NE models. a-c, Close NE model. a, Initial configuration, with
aclose-in BD and wide-orbit planet. b, The orbits expand due to host-star mass
loss. The AGB host star overflows the Roche lobe. The BD enters the common
envelope. ¢, Thecommon-envelopeis ejected as the BD orbit reduces to 0.2 au.

The planetary orbit further expands. d-f, Wide NE model. d, Initial configuration,
witha close-in planet and wide-orbit BD. e, The orbits expand due to host-star
mass loss. Neither the BD nor the planet interact with the AGB host star. f, The
orbits continue to expand. Objects and orbits are not drawn to scale. Separations
arerepresentative values.

We identified the target in the Keck image by transforming the
magnified source locationin theimage taken by the Canada-France-
Hawaii Telescope (CFHT; Fig. 1b) into the Keck frame. A linear trans-
formation between the two frames was derived using ten reference
stars listed in Supplementary Table 1, resulting in a residual standard
error of 22.6 mas. We unequivocally identified the Keck star located
at (502.43, 559.02) as the event location, which has a nominal offset
from the CFHT source location of 22.0 + 22.6 mas, that is, within one
pixelinthe Keckimage.

Wethen performed aperture photometrywith aradius of five pixels
(0.2") onthe two stacked images using the photutils package*. Eleven
relatively isolated stars in the shallow image with 12.5 < Ky, <15.5
were calibrated to VVV DR4 aperture photometry*?, whichresultedina
zero-point uncertainty of 0.03 mag. We then calibrated the deep image
to the shallow image, which resulted in a calibrated target brightness
of K,=16.99 + 0.03. Given the relative proper motion of the lens and
source of -8 mas yr™ (Table 2), we expected the lens—source separation
tobe~-24 mas at the time of the Keck observations, much smaller than
the ~80 mas Keck point spread function. Therefore, the target flux
includes the combined flux from the lens and source stars. Note that
the OGLE blended light may be attributed to four stars within 0.5" to
the west and north-west, which have a total brightness of K, ~16.8. This
is comparable to the source star’s brightness (see ‘Flux constraints’),
whichis also the case for the OGLE /-band blend.

Flux constraints

The source star’s brightness was measured only in the Vand / bands
and slightly differed across models. As the follow-up observations were
performedinthe K,band, we first converted the /-band source bright-
ness to the K, band from its intrinsic (/ - K;) colour and reddening
E(I-K;). To derive the extinction and reddening, we constructed a
(/- K,) versus K, colour-magnitude diagram by cross-matching OGLE-III
and VVV catalogue stars within 2' of KB200414 (Supplementary Fig.1).
The VVV photometry was calibrated to 2MASS. We measured the cen-
troid of the red-giant clump as (/ - K, k), = (2.49 £ 0.01,13.06 + 0.02).
For the intrinsic centroid of the red-giant clump, we adopted
(- K5, Kg)g o = (146 £ 0.04,12.89 + 0.04) (refs. 43,44), which implies
E(/-K)=1.03+0.04 and Ay, = 0.17 + 0.04. We also cross-checked the
K extinctionin colour space. Using the OGLE extinction calculator, we
derivedreddening E(V-1)=0.972and E(J - K,) = 0.316 (ref. 45) towards
the sight line of KB200414. Adopting the extinction law of ref. 46, we
have A,, = 0.528E(/ - K,) = 0.17, whichis inagreement with the analysis
of the colour-magnitude diagram.

We then derived the intrinsic (/- K,) colour of the source from its
intrinsic (V- 1) colour, which was reported as (V- 1/)s,=0.84 £ 0.03 in
ref. 1. Using colour-colour relations* and the zero-point offset from
K tostandard K of 0.04 mag (ref. 48), we derived (/ - ;) , = 1.06 x 0.04
and, thus, (/ - Ky)g = (I = Ky)g o + EU - K) = 2.09 + 0.06, which was used
to convert the /-band source brightness (Table 4 of ref. 1) into the K;
source brightnesslistedin Table 1.

We derived the expected K brightness for hypothetical MS lenses
using MESA* Isochrones and Stellar Tracks (MIST)***'. The apparent
brightness depends onthe mass, distance, age, metallicity and extinc-
tionexperienced by the lens star. Torule out all possible MS lenses, we
had to consider stellar properties that lead to the faintest brightness.
Therefore, we adopted metal-richisochrones ([Fe/H] = 0.5) and consid-
ered the faintest possible brightness for ages over 100 Myr and 10 Gyr.

The mass and distance of the primary lens star were derived
from the angular Einstein radius and the microlensing parallax, as
constrained by the light-curve models and source star’s properties.
We directly adopted the published light-curve models of ref. 1in the
form of raw Markov chain Monte Carlo chains. We searched for other
degenerate models using amachine-learning algorithm*®>**, which did
notyield new solutions but recovered the existing ones. Note that the
lens properties originally reported in Table 5 of ref. 1 were based on a
Galactic model that rejected parameter samples that would result in
the MSlens being brighter than the blend flux of /=18.9. Aswe rejected
the hypothesis that the primary lens is an MS star, we simply adopted
auniform prior, whichresulted in slightly different reported values.

The angular Einstein radius is defined as

9]—2 = VKMLT[re[» (1)

where M, isthe mass of the lens, i, = m, — 115 is the lens—sourcerelative
parallaxand

K= ﬁ ~ 8.144 mas/M,. 2)
c2au

The microlensing parallax is defined as the lens-source relative
parallax in units of the angular Einstein radius:

Z Ml [ M
"E_OE_ kM 3

Therefore, the lens mass is M, = 6;/(km;) and the lens parallax is
1, =, — s = M0 — 5. For the source parallax, we adopted a source
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distance of Ds = 8.0 £ 0.8 kpc, which was derived using the triaxial G2
Galactic bulge model originally adapted in ref. 54 for microlensing
population studies.

Followingref. 55, we derived the K, extinction experienced by the
lens star (regardless of whether it is an MS star or WD) as

Dy
Ag, (D) = / ax, x ng(D)dD, 4)
0

where D, isthelens distance, ny(D) is the dust density at distance D and
ayis the extinction in units of mag kpc™ dust. We adopted an exponen-
tial Galactic dust distribution model where, in cylindrical
coordinates,

(&)

ny(D) « exp (_M _RD) >’

z4 Rq

where theradial distance fromthe Galactic centre (R) and height above
the Galactic plane (z) arerelated to the distance to the observer (D), and
the Galactic longitude (/) and latitude (b) by

z(D) =z + Dsinb ~ z, + Db, (6)

R(D) = \/(RO —Dcosbcosl)’ +(Dcosbsinl)’ ~ Ry —D|.  (7)

In the above equations, the adopted dust length scales were (R,
Z4) =(3.2,0.1) (ref. 56) and the adopted location of the Sun was (R,
Z,) =(8.3,0.023) kpc (refs. 57,58). The extinction constant was derived
as ay = 0.67 by considering Ay (Ds) = 0.17and Ds = 8 kpc. The minimum
expected brightness for MS lenses consistent with the light-curve
models is reported in Table 1, with K; lens extinctions in the range
0.03-0.06 mag.

WD properties
The age of the Universe limits the lowest mass for a WD that formed
through the evolution of a single star. CO WDs are known to have a
mass distribution sharply centred around 0.59 M, which drops off
quickly for lower masses. Essentially, no WDs have been found with
M < 0.45 M, except for ELM/helium WDs'". We, therefore, imposed
a host-mass lower limit of M > 0.45 M, as a Bayesian prior to further
refine the properties of the planetary system. As low-mass WDs
(-0.5M,) were already strongly favoured by the light-curve models,
the inferred host mass was relatively insensitive to the specific WD
mass prior adopted, provided that some form of prior was applied
to reject the regime M < 0.45 M, where singular WDs are extremely
uncommon.

We derived the expected K; brightness of the CO WD for the two
NE solutions using the isochrone for 0.54 M, DA WDs under the BaST]I
stellar evolution model®. We considered the possible WD brightness
under a uniform cooling age distribution from 0.1to 10 Gyr. We applied
the same extinction scheme as for MS lenses, which resulted in an
expected WD lens brightness of K, = 24. As such, it would be favour-
abletodirectly observe the WD lens at the first light of the 30-m-class
telescopes (estimated 2030), which would separate it from the glare
of the source star by around 80 mas. It may also be possible to detect
the WD lens with the James Webb Space Telescope.

Orbital model

Weinferred the planet’s physical separation (d) and semimajor axis (a)
fromits projected separation (s) by leveraging the effect of the micro-
lensing orbital motion, which was included in the light-curve models
originally published by ref. 1. This approach considers the projected
separation (s) and the relative angle (a) as changing linearly in time,
which are parametrized as (s, ). As the planetary light-curve feature

occurred during a short 7 d window, this linear parameterization is
likely sufficient. We validated it by examining how much (s, &) were
actually predicted to change during this time frame.

We converted the planet’s orbital motion parameters (s, &) for the
NE models to physical units under the host-mass lower limit, which
were approximately a=03+01radyr?’ and s=0.0+01auyr™
(Extended Data Table1). Note thatref. 1 considered orbital motion only
for the planet and not for the BD. They estimated that doing so would
require an additional 9(10°) CPU hours for each degenerate model.
Moreover, they suggested that incorporating the BD orbital motion
would not make a pronounced impact on the light curve, as the light-
curve anomaly associated with the BD is less than half a day in
duration.

We considered an orbital model with six parameters: host mass
(M), semimajor axis (a), eccentricity (e), inclination (i), argument of
periapsis (w) and the reference phase (¢,), whichis defined as the dif*-
ference between the reference time (t,) in the light-curve model and
the time of periastron (¢,.;), and normalized to the orbital period (P):
@0 = (t, — tye)/P. This parametrization made the orbital modelinvariant
tothe orbital period and host mass, which we used to scale the orbital
model as aseparate step.

The physical separation and semimajor axis are deterministically
related to the projected separation and orbital elements (e, i, ¢,, @)
through d =s/f(0) and a = s/g(6), where @ is a shorthand for the afore-
mentioned orbital elements. We first transformed samples from the
projected separation posterior (Table 2) into the physical separation
posterior without considering the orbital motion constraints. To this
end, we sampled adense grid of orbital elements from a uniform prior
for w and ¢, and a sine prior for i, which facilitated an isotropic prior
on the orbital plane. We sampled distinct eccentricities over [0, 0.5]
for a step size of 0.1. We then evaluated a grid of transforming factors

f(6) and g(6) from the grid of orbital elements using the exoplanet
package®®. Finally, we acquired (M, s) samples from the light-curve
posterior (Table 2) and applied the grid of transforming factors to
derive samples of the physical separation. We then applied the same
procedure to the semimajor axis.

Formally, we applied a change of variables for which the physical
separation posterior wasrelated to the projected separation posterior
(from the light-curve model) through

P(E.0) = p(s.0)| 22| = p(s,0000) = p(s.0), ®)

where p(s, ) isashorthand for p(s = f(6)d, 8). From the above equation,
we caninterpret p(d, 6) as a posterior distribution, where p(s, 6) is the
(partial) likelihood of the projected separation. The physical separa-
tion prior is given by p(d) ~1/d, namely a log-uniform distribution.
We verified the log-uniform prior numerically givenitsimportancein
interpreting the final results.

We can write the above intermediate posterior as p(d, 0ls), as it
accounts only for the projected separation measurement and not the
orbital motion measurements. Observe that the full (taking into
accountall of s,s and &) and intermediate posteriors follows the same
jointdistribution p(d, 6,s,s, &):

p(d,6)s,$,a) x p(d,0,s,s, a) x p(d, 0|s)p(s, a|M,s, 0). )

Therefore, we can convert samples from the intermediate poste-
rior to the full posterior with an importance weight of p(s, @M,s, 6),
namely the partial likelihood of the orbital motion constraints. The
predicted orbital motion was derived using the finite difference on the
aforementioned orbital element grid, which requires knowledge of
the orbital period. The host mass associated with the projected separa-
tion (the M and s samples from Table 2) underlying each parameter
combination was used to derive the orbital period from Kepler’s third
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law. Therefore, our approach natively accounts for the covariance
between Mand s, which circumvents the difficulty that sis an observ-
able whereas M is a model parameter. Therefore, we expect this
approach to be useful for similar microlensing orbital analysis in the
future.

We validated the assumption of linear orbital motion by examin-
ing the extent to which (s, &) are predicted to change during the plan-
etary light-curve feature. We found that they changed by merely
010-3) au yr'and ©(10-5) rad yr™, which implies that linear orbital
motion is asufficient parametrization.

Aswediscussinthe main text, the bimodality of the physical sepa-
rationrepresents two distinct regions of orbital space that are allowed
under the orbital model. Extended Data Fig. 1 visualizes the marginal
likelihood p(s, a)i, ¢o) for the inclination and reference phase under
different eccentricities. To ease interpretation and without substantial
loss of generality for mildly eccentric orbits, we fixed the argument of
periapsisto w = /2 such that periastron and apastron occur at conjunc-
tion. We cansee that the planetis either near greatest elongationinan
inclined orbit or near conjunction on a nearly edge-on orbit, with the
former substantially favoured.

Tointerpret the origins of this degeneracy (bimodality), observe
thatifthe planet were onacircular, face-on orbit, thengivena ~2.1au
and M~ 0.5 M, wewould expectaconstant a ~ 1.5rad yr ' fromKepler’s
third law, which is much greater than the measured da ~ 0.3 rad yr™.
Therefore, the orbit must be substantially inclined. Furthermore, the
measured s is close to zero, which indicates that the planet is either
near conjunction or longest elongation, which are the two locations
where the projected separation remains stationary. If the planet were
near conjunction, then its physical separation would greatly exceed
the projected separation, which leads to amuch longer orbital period
thatservestoreduce a. This also explains why the conjunctionscenario
isfavoured at apastron (Extended Data Fig.1), where the planet’s angu-
lar velocity is also intrinsically smaller.

Data availability

The reduced Keck images are available via Zenodo at https://doi.org/
10.5281/zenodo.13128167 (ref. 61). The raw data will be available on the
Keck Observatory Archive (https://koa.ipac.caltech.edu/) after the
18-month proprietary period.
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Extended Data Fig. 1| Marginal likelihood for the inclination and orbital phase for different assumed eccentricities. Shown for the special case of w = + /2 where
apastron and periastron are aligned with conjunction for eccentric orbits.
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Extended Data Table 1| Orbital motion parameters for the NE models

Close-NE Wide-NE
& (radyr1) [ 0.30£0.15 | 0.27+£0.11
$(uyr ) | 0.00+£0.13 | —0.08 & 0.15

Converted to physical units under the WD mass prior (M > 0.45M,,) and shown as the mean values and standard deviations of the respective posterior distribution.
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