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ABSTRACT

The offset microlensing degeneracy, recently proposed by Zhang et al. (2022), has been shown to
generalize the close-wide and inner-outer caustic degeneracies into a unified regime of magnification
degeneracy in the interpretation of 2-body planetary microlensing observations. While the inner-
outer degeneracy expects the source trajectory to pass equidistant to the planetary caustics of the
degenerate lens configurations, the offset degeneracy states that the same mathematical expression
applies to any combination of the close, wide, and resonant caustic topologies, where the projected
star-planet separations differ by an offset (sp # sp) that depends on where the source trajectory
crosses the star-planet axis. An important implication is that the sy = 1/sp solution of the close-wide
degeneracy never strictly manifests in observations except when the source crosses a singular point
near the primary. Nevertheless, the offset degeneracy was proposed upon numerical calculations, and
no theoretical justification was given. Here, we provide a theoretical treatment of the offset degeneracy,
which demonstrates its nature as a mathematical degeneracy. From first principles, we show that the
offset degeneracy formalism is exact to zeroth-order in the mass ratio (¢) for two cases: when the source
crosses the lens-axis inside of caustics, and for (sy — sp)® < 1 when crossing outside of caustics. The
extent to which the offset degeneracy persists in oblique source trajectories is explored numerically.
Lastly, it is shown that the superposition principle allows for a straightforward generalization to N-body
microlenses with N — 1 planetary lens components (¢ < 1), which results in a 2V ~!-fold degeneracy.

Keywords: Binary lens microlensing (2136), Gravitational microlensing exoplanet detection (2147)

1. INTRODUCTION

Photometric observations of planetary microlensing
events are commonly subject to a 2-fold-degenerate in-
terpretation where the projected planet location differs
(sa # sp) but the planet-to-star mass ratio remains the
same (g4 = ¢p). The close-wide degeneracy (e.g. Griest
& Safizadeh 1998; Dominik 1999; An 2005) is commonly
invoked for such events with source stars passing close
to the central caustic, while the inner-outer degeneracy
(Gaudi & Gould 1997; Han et al. 2018) is cited for events
which have source stars passing close to the planetary
caustic. The close-wide degeneracy arises from the in-
variance of the shape and size of the central caustic un-
der the s «» 1/s transformation for |1 — s| > ¢'/3, a
condition which is equivalent to the lens system being
far from the resonant regime (An 2021). The inner-
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outer degeneracy arises from the Chang-Refsdal (Chang
& Refsdal 1984) approximation to the planetary caustics
(Gaudi & Gould 1997; Dominik 1999), which describes
a point-mass lens with uniform shear. Chang-Refsdal
caustics are symmetric both along the star-planet axis
(referred to as the lens axis hereafter), and along the line
perpendicular to the star-planet axis that runs through
the center of the caustic.

Recently, Yee et al. (2021) and Zhang et al. (2022)
noted various inconsistencies of the two aforementioned
degeneracies with those seen in real and simulated
events. Yee et al. (2021) noted the large number of
semi-resonant topology events that cite the close-wide
degeneracy, for which the degenerate solutions do not
exactly follow s «> 1/s nor satisfy |1 — s| > ¢'/3. They
went on to suggest that there may be a continuum be-
tween the close-wide and inner-outer degeneracies in
the resonant regime. Subsequently, Zhang et al. (2022)
pointed out that the s <+ 1/s relationship is also not
exactly followed even within the |1 — s| > q'/? regime
in which the close-wide degeneracy is expected to hold.
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They pointed out that the close-wide and inner-outer de-
generacies are fundamentally caustic degeneracies which
do not necessarily translate to magnification degenera-
cies that manifest in light-curves.

The offset degeneracy (Zhang et al. 2022) is then pro-
posed independently of caustics as a magnification de-
generacy, which both relaxes the non-resonant condi-
tion (|1 — s| > ¢'/3) and resolves the aforementioned
inconsistencies. A key observation in the offset degener-
acy is that for two planetary (¢ < 1) lenses that differ
only by an offset to the projected star-planet separation
(sa # sp) on the same lens-axis, their locus of equal
magnification — referred to as the null — intersects
with the lens-axis at

Enull,0 = sa=1/sa —; 5B 1/83, (1)
where the subscript “0” indicates to zeroth-order in g,
which we prove to be the correct form in Section 2. The
intersection between the null and the lens-axis is referred
to as the lens-axis null hereafter as a shorthand. Given
that planetary anomalies primarily occur on and near
the lens-axis, source trajectories crossing the lens-axis

null
Ug

Sil’l(Oé) = €null,O (2)

are then expected to result in similar light-curves un-
der the null-forming lens configurations. In the above
equation, ug/sin(a) = Uanom is where the source crosses
the lens-axis, which is usually also the source-star sep-
aration around the midpoint of the planetary anomaly,
ug is the impact parameter to the coordinate origin (see
Section 2.1 for detailed considerations), and « is the an-
gle between the source trajectory and the lens axis.

Crucially, the above formalism is continuous over
caustic topology transitions for ¢ < 1, and thus gen-
eralizes the close-wide and inner-outer degeneracies to
the resonant regime. One major implication is that the
close-wide degeneracy only strictly manifests for the sin-
gular case of ug = 0, and elsewhere the offset degeneracy
predicts a deviation from s <» 1/s. We thus refer to the
close-wide degeneracy as the central caustic degeneracy,
in line with An (2021). While Zhang et al. (2022) ver-
ified that the above formalism accurately describes the
degenerate solutions in 23 observed events in the referred
literature, it was found numerically and no theoretical
justification was given. Subsequently, an alternative for-
malism for the unification of degeneracies was proposed
in Gould et al. 2022, whose the relationship to the offset
degeneracy will be discussed in Section 5.

In this work, we provide a mathematical treatment of
the offset degeneracy. In Section 2, the location of the
lens-axis null is derived from the lens equation, which

proves the formalism proposed in Zhang et al. (2022).
In Section 3, conditions on the source trajectory orien-
tation is discussed. Finally, a generalized N-body offset
degeneracy based on the superposition principle is dis-
cussed in Section 4, whereas Section 5 concludes our
work.

2. DERIVATIONS

The goal of this section is to answer the question:
given two planetary lenses with the same mass-ratio
(ga = g < 1) but different projected star-planet sep-
arations (sp # sp), where on the lens axis does their
magnifications equal?

Let us begin by defining the lens equation. With the
primary star on the origin and the planet on the real-axis
at a distance s from the primary, the two-body complex
lens equation (Witt 1990) states

1—m m

(=2——

z z—5s’

3)

where ¢ = £+ and z = 21 +1iz9 are the complex source
and image locations, m is the planetary mass normalized
to the total lens mass (Mot ), and s is the projected star-
planet separation normalized to the angular Einstein ra-
dius 0 = \/4GMtot/(Drelc2) where D, is the source-
lens relative distance defined as D;ﬂl = Dl;lls — DL e

Witt & Mao (1995) showed that the lens equation can
be transformed into a 5th-order polynomial in z by sub-

stituting the conjugate of Equation 3,

1—-m m

Z=(+ (4)

z z—5s’

back into itself, whereby conjugates in Z are cleared.
The resulting polynomial is

5
p5(z;C,m,s):Zai(C,m,s)-zi:O, (5)

i=0
where

o =(1—m)*s*¢
ar =(1 —m)s[ms — (2 + s%)¢ + 2s¢C)]
ay =C +25%C — ms(1 + s¢)
— 5(s — 2ms — 2(m — 2)¢ + s%0)¢ + s2¢C3
ag = — s(ms + ¢) + (—2(m — 1)s + s° + 2 + 25°¢)C

— s(s+20)¢*
as =ms — (1 + 252 + sO)C + (25 + O)C2
a5 :(8 - E)E

The magnification of each individual image j located
at z; is given by the absolute value of the inverse of the
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Jacobian determinant of the lens equation:

R o B
#’J detJ'z:zj (6)

(1 %5
— P 0z 0z
where p; = £1 denotes the parity of the image.

Witt & Mao (1995) further demonstrated how one
may acquire the individual image magnifications pu;
without solving for the image locations z;. Evaluating
0¢/0z with Equation 3, clearing conjugates in z with
Equation 4, and clearing fractions, one obtains a 8th-
order polynomial in z whose coefficients are parameter-
ized by p;. From here on, let us restrict our discussion
to the lens-axis, i.e., the real-axis (¢ = £). The com-
mon variable z in this 8th-order polynomial and 5th or-
der polynomial associated with the lens equation (Equa-

tion 5) can be eliminated by calculating their resultant,
which results in a lengthy 5th-order polynomial in u:

-1

Z=Zzj

5
ps(u;&mys) =Y bi(&m,s) -t =0 (8)
i=0
whose coefficients are parametrized by £, m, and s. The
above polynomial can be further factored into linear and
cubic polynomials:
2

1 3
=0 1=0

Of the five solutions p;, the equal-magnification solu-
tions (u1 = pe = —cp/c1) for the linear equation corre-
spond to the two off-axis images that only exist when
the source is inside of a caustic and are positive in par-
ity. The cubic polynomial has three real roots which
correspond to three negative parity images (p34,5 < 0)
when the source is inside of caustics, but one positive
and two negative parity images when the source is out-
side of caustics (Witt & Mao 1995). Let us now consider
these two cases separately.

2.1. Inside Caustics

When the lens-axis null — the intercept of the locus of
equal magnification on the lens axis — is located inside
of caustics (Figure 1), images for each of the two poly-
nomials in Equation 9 are respectively equal in parity
and the total magnification can be derived directly from
the polynomial coefficients:

Ptot,in (€, M, 8) =(p1 + p2) — (s + f1a + ps)
=—2c¢g/c1 + da/ds

3m?s? — €242 4 2msB

m2s2 + £2A2 — 2mseC’

/U/tot,in(é.amas) = (10)

sp=1 sg=1.04
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:
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time [6¢]

Figure 1. Top: fractional magnification difference between
(sa =1,¢g=10"%) and (sg = 1.04, ¢ = 10™*), with color-
scale shown to the right in log,,. Black contours illustrate
the locus of equal magnification. The x and y axes are in
units of fg. Middle: a zoom-in of the dashed-line boxed
region in the top panel. The location of the lens-axis null
expected from &nui,o is marked with the gold star in the
center. Source trajectories with o = 30°,60° are shown in
green and blue dashed lines. Bottom: differences to single-
lens light-curves for null-crossing trajectories. Dashed lines
corresponds to s4 = 1 whereas solid lines are for sp = 1.04.
Trajectory orientation is marked in the subplot upper-right
corners with the same color coding as the middle plot. The
a = 30° case is seen to have different caustic entry-exit times
but similar caustic-crossing durations.

where

A=1-5>+s¢
B=—2s4 (14 5%)¢ — 3562 + 263
C =1+ 5% — 3s¢ + 262

The location of the lens-axis null can be derived by
solving fiyot,in(SA4) = Hiot,in(SB). Since for planetary mi-
crolenses m < 1, the m?s? term can be dropped in both
the numerator and the denominator, and we can substi-
tute the planet-to-star mass ratio ¢ = m/(1 —m) for
m. Clearing fractions in fot,in (S4) — ftot,in(sB) = 0, We
obtain a quadratic polynomial in £. Taking the zeroth-
order Taylor expansion in ¢, one of the roots simplifies
to

SA — 1/SA +sp — 1/83
2

gnull,in = + O(q)a (11)



4 ZHANG & GAUDI

where the other root is reduced to 0. We have thus
shown that the empirically derived &,un0 (Equation 1)
is exact for null-in-caustic to zeroth-order in q.

To see how &nuinin may deviate from the zeroth-order
term (&§nun o) for finite value of ¢, let us now consider the
first-order term in g and its dependence on sz 5. In par-
ticular, for sa = 1/sp, we should expect the first-order
term to not diverge to infinity in the sap — {0,00}
limit, in order to be consistent with the central caustic
degeneracy. Here, it is important to adapt a coordinate
origin that is consistent with caustic degeneracies. An
(2021) noted that while the central caustic degeneracy
breaks down near the resonant regime, a pair of reso-
nant caustics with sy = 1/sp still resembles each other
locally towards the back end of the caustic (near the
primary star). This suggests that one should choose a
coordinate origin that consistently aligns the back-end
of the central/resonant caustic for a pair of lenses with
an arbitrary difference in separation (sa p).

We therefore opt to use the effective primary star lo-
cation (Di Stefano & Mao 1996; An & Han 2002; Chung
et al. 2005) as the coordinate origin, which is given by

q
(144q) (s+s71)’

and indeed achieves the aforementioned alignment. Note
that the effective primary location reduces to

=&+ (12)

E+sq/(1+q) skl

&—
E+s1q/(1+q) s> 1,

which are the central caustic locations (Han 2008) that
were used in Zhang et al. (2022) as the coordinate origin
for their numerical calculations. We point out that the
~ 2% error at sy = 1 and sg = 0.4 in Figure 2 of Zhang
et al. (2022) is a direct result of their coordinate choice,
which is inaccurate in describing resonant caustic loca-
tions and causes a misalignment between the resonant
and central caustics. Figure 2 reproduces that same fig-
ure, but with the effective primary (Equation 12) as the
origin, and shows that the error of &,y11,0 at s = 1 and
sp = 0.4 is reduced to 0.1% and remains < 0.1% for
|log(saB)| < 0.25, 0or 1/1.8 < spap < 1.8.

Applying the above coordinate transformation to the
previous derivation, we find that while the zeroth-order
term remains &nuo as expected, the first-order term
(f - q) is rather involved. There are only two special
cases that are relevant here.

If the null is located within the central caustic, we
should expect s4 ~ 1/sp, which simplifies the first order
term f - q to

5(3 + 252 4 3s%)

U (RN 13)

logio(sg) = —0.10
logio(sg) = —0.25
—— logio(sg) = —0.40
sa=sg!
O Sp=SB

10% 1

5% 1

relative error

0% - ‘ \/ "

l0g10(sa) / l0910(SB)

Figure 2. Deviation of &nui,0 from the exact null location,
normalized to |(sa — 1/sa) — (s — 1/sg)|, where the exact
null location is derived numerically with ¢ = 10™*. Three
solid curves show this relative error for changing sa against
three values of fixed sp ~ (1/1.3,1/1.8,1/2.5). The two
dashed lines with darker colors show the alternative expres-
sion &nui,hm which is exact for &nun < 1 (see Section 2.2),
or equivalently sa ~ 1/sg, shown only for €| < 0.5 and
|SA - SB| > 1.

Note that the above expression is symmetrical under
s ¢ s71. Since f — 0 for s — {0,00}, f does not
diverge and is typically of order unity. However, if we
had defined the lens-equation (Equation 3) in units of
the Einstein radius of the primary mass, then f diverges
to infinity for both s — {0, 0o}, justifying our choice of
parameterization with the Einstein radius of the total
mass.

On the other hand, if the null is within the resonant
or the wide-planetary caustic, we should expect sg =~
sp 2 1, which results in

2
5+ 53’

f~ (14)
and is also order unity. One may thus expect {nuiin ~
&m0 — ¢, that is, a deviation of order ¢, which is in
agreement with the slight deviation seen in the middle

panel of Figure 1.

2.2. Outside Caustics

For sources outside caustics (Figure 3 & 4), there are
three images which are different in parity, and we can no
longer obtain the total magnification directly from the
polynomial coefficients. The sum of the absolute value
of the cubic roots is also difficult to simplify. However,
keeping coefficients up to first order in g, the cubic part
of Equation 9 is reduced to a quadratic polynomial with
two roots that are in a much simpler form compared to
the cubic roots. The total magnification is then the ab-
solute difference between the two roots representing one
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positive and one negative parity image. Indeed, when
the source is away from the planetary caustic, the image
closest to the planet typically has negligible magnifica-
tion. As for the alternative scenario, we should already
expect &nuil,o to hold in the immediate vicinity of plan-
etary caustics, given that the location of the lens-axis
null transitions continuously from inside to outside of
caustics.

Equating the total magnification for s4 and sp, clear-
ing fractions, further taking the first order expansion in
q and simplifying, we acquire a quartic polynomial

4
Poutl (€3 54, 5B) = Z&:(Sm sp)-&'=0, (15)

=0

whose coefficients are provided in Appendix A. This
polynomial could be solved for the lens-axis null out-
side of caustics for any arbitrary pair of sz p satisfying
g <1l

To examine the conditions for &,u0 to be the exact
form to zeroth-order in ¢, let us directly plug &nun,o into
Prull @8 an ansatz, which reduces the polynomial to

(54 —5B)%(sasB —1)(sasp +1)*
45% 5%

= O((SA — 83)6).

(16)
Given non-zero first order derivative p! ,; and bounded
higher order derivatives, pnu1 — 0 implies & = &quno,
that is, the ansatz is indeed a root. Thus &nun,0 is exact
for (sa — sB)°® < 1 to zeroth-order in ¢. Note that this
condition is substantially more relaxed than the |sp —
sp| < 1 condition (e.g. 0.55 ~ 0.015). Furthermore, the
condition of the lens being near the resonant regime (|1—
s| < ¢'/?%) is a sufficient condition for (sp — sp)® < 1,
allowing &nuii,0 to be essentially exact for semi-resonant
events.

Numerical calculations (Figure 2) show that the error
on &nui,o remains less than 1% for 1/2.5 < sap < 2.5
and should be sufficiently accurate for practical pur-
poses. Larger deviations of a few percent are found near
sa ~ 1/sp where |sa—sp| 2 3. Asatheoretical exercise,
an alternative expression for these high-magnification
(énun < 1) events can be immediately acquired by lin-
earizing pupun in &uun, which results in:

Enull,hm = —eo/e1, (17)

where the coefficients can be found in Appendix A. Fig-
ure 2 shows &y hm for [€nun| < 0.5 (dashed lines), which
verifies that &nyi,hm indeed describes the local behavior
at sq4 ~ 1/sp.

3. SOURCE TRAJECTORY ORIENTATION

Technically, the above derivation only guarantees ex-
act magnification matching on the lens-axis. It was
shown in Zhang et al. (2022) that vertical null-crossing
trajectories result in nearly identical light-curves, which
was also noted in Gaudi & Gould (1997) for the inner-
outer degeneracy. Indeed, Figures 1, 3, 4 all demon-
strate that the locus of equal magnification is vertically
extended near the lens-axis. Here, we consider the ex-
tend to which oblique trajectories could remain degen-
erate.

Let us first consider the case where the lens-axis null
is located outside of caustics. Figure 3 shows three ex-
amples where the null gradually moves away from the
central caustic. Figure 4 shows three additional cases
where sp approaches s, from sg = 1. Note how in
Figure 4 |£hun] is greater than the examples in Figure
3. In both cases, vertical trajectories essentially give
rise to identical light-curves. As the trajectory becomes
more oblique, the magnifications under the two degen-
erate lenses begin to differ in the “wings” of the plane-
tary perturbation, and thus sufficiently precise photom-
etry can break the degeneracy. By comparing Figure 3
and 4, one may see that the trajectory angle can be as
oblique as a = 15° while the light-curves remain largely
the same when the null is close to the central caustic
(|€&nun] < 1). Elsewhere, the differences on the pertur-
bation “wings” become a significant fraction of the peak
planetary perturbation for a@ < 45°. While not shown,
close approaches to the off-axis cusps of the planetary
caustic with oblique trajectories will decisively break the
degeneracy, as the time-of-approach will be either before
or after crossing the lens-axis.

For the lens-axis null inside of caustics, there is no-
tably an additional constraint on the caustic entry-exit
times and duration. Figure 1 illustrates how the vertical
null directionality implies that the caustic height is au-
tomatically matched at the lens-axis null, allowing the
caustic entry-exit times and duration to be the same for
vertical null-crossing trajectories. Essentially, intersec-
tions of caustics are the set of points in the source plane
where magnifications for the two lenses diverge simulta-
neously, and by definition, must occur on the locus of
equal magnification.

For oblique trajectories, note how the two resonant
caustics are approximately the reflection of one an-
other along the vertical null (black broken line in
Figure 1) and appears like large planetary caustics.
Because of this symmetry, the caustic-crossing dura-
tion remains approximately the same, but the caustic
entry-exit times begin to differ, the extent of which
depends on how quickly the caustic height changes
(dNcans/dEcaus| Szﬁmu,o) near the lens-axis null. Fine tun-
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sa=12 sg=1/1.24 sa=12 sg=1/1.35

sp=12 sg=1/1.5

0.05
- -2
S 0.00
>
-4
-0.05
3
<E: a=45 AMmax = — 0.220 AMmax = — 0.057
a=90 a=90
~0.050-0.025 0.000 0.025 0.050 -02 -01 00 01 0.2
time [6g]

Figure 3. Top row: magnification difference in log-scale for three pairs of lens configurations indicated in the subplot titles.
q = 1073 for all cases. Color-bar to the right shows the difference scale in log,,. The oval-shaped contours are the loci of
equal magnification (null). Three null-crossing source trajectories with o = 15°,45°,90° are shown with the two-segment solid
lines, with direction going from upper-right to lower-left. The green central caustics are for the changing sg. Second row:
magnifications (u) for null-crossing trajectories in the same color coding as the top row. Solid lines are for s4 and dashed lines
for sp. The x-axis (time) is centered on the lens-axis null and scaled to |€nun|.- Bottom three rows: planetary perturbation

shown as the difference to a single lens model in unit of magnitudes. The maximum deviation is indicated in the second-to-last
row.

sp=13 sg=1.1

spa=13 sg=1.2

y [6e]

. - ~ >
EE ww.on a=60 ‘Maﬁo.ozo a=60 $mmax=o.069
£ _ ]\ _
a=90 a=90 \/\( a=90 A
—04 -02 00 02 04 04 -02 00 02 04 04 -02 00 02 04
time [6g]

Figure 4. Same as Figure 3 but for three different configurations.

ing of the lensing parameters (e.g. the event timescale)
may reduce the difference in the caustic entry-exit times.
Additionally and similarly to null-outside-caustic, close
approaches to the off-axis cusps (not shown in Figure 2)
will be asymmetrical for oblique trajectories would cate-
gorically break the degeneracy. Finally, for the lens-axis
null inside of central caustics (|1 —s| < ¢*/?), the central
caustics are close to identical due to the central caustic
degeneracy and thus the aforementioned constraints on
the caustic entry-exit times are less relevant.

Recent examples in the literature of null-in-caustic in-
clude, among others, KMT-2019-BLG-0371 (Kim et al.
2021), KMT-2019-BLG-1042 (Zang et al. 2022), and
OGLE-2019-BLG-0960 (Yee et al. 2021). In the case of
OGLE-2019-BLG-0960, the trajectory was quite oblique
(o ~ 15), yet still resulted in very degenerate solutions
because the caustic height in this particular case changes
slowly near the null (|d7ncaus/dEcaus| et < 1), allow-
ing the caustic entry-exit times to remain approximately
the same even for very oblique trajectories.
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Figure 5. Example of the offset degeneracy generalized to
triple lens systems. Top: magnification difference between
triple lens configurations of (s1,s2,¢)=(1.2, 1.25, 60°), re-
ferred to as the wide/wide configuration whose central caus-
tic is shown in blue, and the close/close configuration of
(0.8189, 0.7938, 60°) whose central caustic is shown in green.
¢ is the angle between the two lens-axes (dashed lines), with
the horizontal one corresponding to si. The two resulting
lens-axis nulls are marked with cyan dots, which coincide
with the source trajectory (solid line). Bottom: light-curves
for the null-crossing trajectory. In the legend, s <> 1/s refers
to the (1/1.2, 1/1.25, 60°) configuration expected from the
central caustic degeneracy. The designations “close” and
“wide” refer to the caustic topology rather than the close-
wide degeneracy. The bottom panels show light-curve residu-
als of the degenerate configurations to the wide/wide config-
uration in units of magnitudes. Light-curves resulting from
the central caustic degeneracy (green curves) are shown to
have greater residual than that from the offset degeneracy
(red curves). The horizontal axis is the source location pro-
jected to the x-axis and the cyan dots indicate the nulls al-
lowing for a straightforward comparison to the top figure.

4. GENERALIZATION TO N-BODY LENS

The superposition principle (Bozza 1999; Han et al.
2001) states that planetary perturbations from an N-
body lens satisfying ¢; < 1 is well approximated by
the superposition of perturbations from each individ-

ual planet. This allows a straightforward generalization
of the offset degeneracy to N-body lenses, which has
N — 1 number of lens-axes, and thus the number of null
to match, resulting in a 2V ~! number of degenerate con-
figurations.

Figure 5 shows an example of the offset degeneracy
generalized to triple lens systems, where the source
passes close to the back end of the self-intersecting cen-
tral caustics. We have adapted the same configuration
in Figure 2 of Song et al. (2014) to facilitate compar-
ison to the extension of the central caustic degeneracy
to triple-lens discussed therein. The magnification dif-
ference between the wide/wide and close-close configu-
rations is shown to be the sum of the residuals from the
two singly-offset (close/wide and wide/close) configura-
tions, which confirms the superposition picture. Addi-
tionally, as expected the 3-body offset degeneracy also
serves as a correction to the 3-body central caustic de-
generacy. The light-curve difference between the close/-
close and wide/wide configurations is greater near the
null on the horizontal lens-axis (s1) than the other be-
cause the source crosses the horizontal axis at a = 30
but o = 90 for the sy axis. This is in agreement with
discussions in Section 3.

Interestingly, a detailed inspection of Figure 5 reveals
that the central caustic cusps at the ‘tips’ of the central
caustics are actual slightly off the two lens-axes, which
can be attributed to the influence of one planet on the
other’s caustic. This indicates that technically one may
have to apply the source-null matching principle to an
“effective lens axis.” Moreover, the superposition princi-
ple is expected to break down when the planets are close
to being aligned on the same axis. Indeed, for a triple
lens for which the two planets are aligned on the same
axis, there is only one null that depends on the offset of
both planets. We suggest that the simplest case of the
axis-aligned triple planetary lens with equal mass-ratios
may be analytically tractable by studying the following
lens equation:

1-2m m m

__m (18)
zZ — 89

==z

z zZ— 81

Details of the generalized N-body offset degeneracy
should be explored in future work.

5. DISCUSSION

In this work, we have provided a mathematical treat-
ment of the offset degeneracy by deriving the intercept
of the equal-magnification locus on the lens-axis — the
lens-axis null — directly from the lens-equation in the
limit of ¢ <« 1. The numerically found &nuii,0 expression
(Zhang et al. 2022) is shown to be the exact form of the
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lens-axis null location inside of caustics, and outside of
caustics subject to (sa — sp)® < 1, to zeroth-order in
q. The derivations in this work demonstrate the nature
of the offset degeneracy as a mathematical degeneracy
deeply rooted in the lens equation itself.

The relationship between the offset degeneracy and
the central caustic (close-wide) and inner-outer de-
generacies has been discussed in Zhang et al. (2022).
To summarize, the offset degeneracy relaxes the non-
resonant (|1 — s| > ¢!/3) condition required by the two
caustic degeneracies and generalizes them to a unified
regime of magnification degeneracy. For sources passing
close to central caustics, the offset degeneracy serves as
a correction to the s «» 1/s relationship of the central
caustic degeneracy, which only strictly manifests when
ug = 0. For this reason, we advocate that the close-wide
degeneracy should be more appropriately referred to as
the central caustic degeneracy (e.g. An 2021), which
also serves to discourage its misuse as a magnification
degeneracy.

On the other hand, the inner-outer degeneracy expects
the source star to pass equidistant to the planetary caus-
tics located at &, = sa —1/sa,B, and thus results in the
same mathematical expression as the offset degeneracy.
However, the Chang-Refsdal approximation to plane-
tary caustics fails near the resonant regime (Dominik
1999), and thus the offset degeneracy provides a more
accurate conceptual explanation. In a subsequent pa-
per, Zhang (2022) offered an alternative interpretation
by showing how planetary lenses can be decomposed into
Chang-Refsdal lenses with variable shear, which results
in the offset degeneracy as a direct consequence. While
the terms inner and outer were originally coined to re-
fer to “the inner[/outer] region of the planetary caustic
with respect to the planet host” (Han et al. 2018), the
idea of a generalized perturbative picture (Zhang 2022)
suggests that they remain meaningful labels for the off-
set degeneracy if they refer to the lens-plane instead —
the location of the planet being inside or outside of the
image being perturbed, with respect to the primary star.

The applicability of the central caustic degeneracy
to the resonant regime was previously studied in An
(2021), which found that the back-end of the central /res-
onant caustic remains locally degenerate into the reso-
nant regime (|1 — s| < ¢*/3) but the front end becomes
different. They further suggested that in this case, slight
adjustments to the g4 = ¢p and s4 = 1/sp pair of so-
lutions may result in a locally degenerate model. This
work directly responds to their suggestion: ga = ¢p
should remain the same whilst s4, g should be adjusted
such that the location of the lens-axis null coincides with
the source trajectory. Strictly speaking, the g4 = ¢p

st =5, sz
—— logio(sg) = — 0.10
. 10%1 —— log1o(ss) = — 0.25
o —— logio(sg) = —0.40
| -
(O] 5%
o
=
)
©
T 0%
| -
-5%.
-3 -2 -1 0 1 2 3

log10(sa) / l0g10(SB)

Figure 6. Error on the st = \/sa - sB heuristic, defined as

the difference between the predicted value of %anom = st —

l/sT from sa B, and the exact location of equal magnification
on the lens-axis. Solid curves are for the s heuristic and
dashed curves are for the offset degeneracy (tanom = &null,0)
for comparison. Quantities are defined similarly to Figure 2.

condition is an assumption made in this work which
is known to be true for the caustic degeneracies. The
fact that vertical trajectories give rise to identical light-
curves (Figures 1, 3, 4) validates the g4 = gp assump-
tion, but a formal proof would require examining the
magnification off the lens-axis.

While examining the magnification-matching behav-
ior on the lens-axis is a direct way of deriving the offset
degeneracy formalism, there is a potential pathway to
derive the &,u,0 formalism for the null-in-caustic case
by studying caustic resemblances, which was proposed
by An (2021). In Section 3, we found that the caustic
height for the offset-degenerate pair of lenses matches
exactly at the lens-axis null, but such a claim is based
on the observation that the null is vertically-directed
near the lens-axis. Therefore, studying the intersection
between caustics of lenses with equal mass-ratios may
be not only be an independent pathway to deriving the
offset degeneracy formalism, but also a verification of
the equal mass-ratio condition.

Subsequent to the proposal of the offset degeneracy,
Ryu et al. (2022) and Gould et al. (2022) proposed an
alternative formalism for unifying the close-wide and
inner-outer degeneracies, referred to as the “st heuris-
tic”. The quantity s' is defined by

ST = ( V ugnom + 4 + uanom)/27 (19)

which is a solution t0 Uanom = s — ]./ST, and thus the
solution for planetary-caustic-crossing events. Here, we
have defined uanom as the signed location of where the
source crosses the binary axis to avoid a sign ambiguity
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in the original expression. This quantity was initially
used in Hwang et al. (2022) for the heuristic analysis
of events subject to the inner-outer degeneracy, where
the solutions are approximately related by sa p = st+
As. More recently, Gould et al. (2022) proposed that
an alternative expression, st = /54 - 5B, would lead to
the unification of the two degeneracies.

The derivations in this work show that the st =
V/5a - 5B expression does not correctly unify the close-
wide and inner-outer degeneracies, but nevertheless pro-
vides approximate solutions in the s — 1 limit. By sub-
stituting &nuin,o for vanom in Equation 19, we find that
the first order Taylor expansion of (s)? at sap = 1
is indeed s - sg. Figure 6 shows that although the
st = \/5A - sB heuristic captures the boundary cases
of sp = 1/sg with st = 1 (and wapom = 0), and
sa = sg = s', it is only approximately correct in the
intermediate regime. Lastly, we note that both the s
heuristic and the offset degeneracy formalism require
solving one quadratic equation to derive one solution

from the other based on the source trajectory, which in-
dicates that the exact form given by Equation 1 & 2 is
equally convenient to use for heuristic analysis.
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APPENDIX
A. POLYNOMIAL COEFFICIENTS

Equation 15:

eo =—16(sa8p — 1)(s4 + 545 + 5555 + 55 + shs5 + 5455 + 5555 + 5455)

e1=—2(s4+5p)(3 —4s% + 5% — 165455 — 45% + 854 5% — 4shys% — 1657 5% + s — 45455 + 3sh5%)
eg = —4(sasp — 1)(s% — 3sasp + 5s%sp + 65455 + bsasy — 35555 + s5)

e3=— (sa+sp)(1+ 54 — 8% sp + 55 — 145455 + shis5% — 85455 + 455 + s4sh)

eq4 =2545p(5458 — 1)(1 + 8% + 25458 + 5% + 545%).
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