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ABSTRACT

The o↵set microlensing degeneracy, recently proposed by Zhang et al. (2022), has been shown to
generalize the close-wide and inner-outer caustic degeneracies into a unified regime of magnification

degeneracy in the interpretation of 2-body planetary microlensing observations. While the inner-
outer degeneracy expects the source trajectory to pass equidistant to the planetary caustics of the
degenerate lens configurations, the o↵set degeneracy states that the same mathematical expression
applies to any combination of the close, wide, and resonant caustic topologies, where the projected
star-planet separations di↵er by an o↵set (sA 6= sB) that depends on where the source trajectory
crosses the star-planet axis. An important implication is that the sA = 1/sB solution of the close-wide
degeneracy never strictly manifests in observations except when the source crosses a singular point
near the primary. Nevertheless, the o↵set degeneracy was proposed upon numerical calculations, and
no theoretical justification was given. Here, we provide a theoretical treatment of the o↵set degeneracy,
which demonstrates its nature as a mathematical degeneracy. From first principles, we show that the
o↵set degeneracy formalism is exact to zeroth-order in the mass ratio (q) for two cases: when the source
crosses the lens-axis inside of caustics, and for (sA � sB)6 ⌧ 1 when crossing outside of caustics. The
extent to which the o↵set degeneracy persists in oblique source trajectories is explored numerically.
Lastly, it is shown that the superposition principle allows for a straightforward generalization toN -body
microlenses with N � 1 planetary lens components (q ⌧ 1), which results in a 2N�1-fold degeneracy.

Keywords: Binary lens microlensing (2136), Gravitational microlensing exoplanet detection (2147)

1. INTRODUCTION

Photometric observations of planetary microlensing
events are commonly subject to a 2-fold-degenerate in-
terpretation where the projected planet location di↵ers
(sA 6= sB) but the planet-to-star mass ratio remains the
same (qA = qB). The close-wide degeneracy (e.g. Griest
& Safizadeh 1998; Dominik 1999; An 2005) is commonly
invoked for such events with source stars passing close
to the central caustic, while the inner-outer degeneracy
(Gaudi & Gould 1997; Han et al. 2018) is cited for events
which have source stars passing close to the planetary
caustic. The close-wide degeneracy arises from the in-
variance of the shape and size of the central caustic un-
der the s $ 1/s transformation for |1 � s| � q1/3, a
condition which is equivalent to the lens system being
far from the resonant regime (An 2021). The inner-
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outer degeneracy arises from the Chang-Refsdal (Chang
& Refsdal 1984) approximation to the planetary caustics
(Gaudi & Gould 1997; Dominik 1999), which describes
a point-mass lens with uniform shear. Chang-Refsdal
caustics are symmetric both along the star-planet axis
(referred to as the lens axis hereafter), and along the line
perpendicular to the star-planet axis that runs through
the center of the caustic.
Recently, Yee et al. (2021) and Zhang et al. (2022)

noted various inconsistencies of the two aforementioned
degeneracies with those seen in real and simulated
events. Yee et al. (2021) noted the large number of
semi-resonant topology events that cite the close-wide
degeneracy, for which the degenerate solutions do not
exactly follow s $ 1/s nor satisfy |1� s| � q1/3. They
went on to suggest that there may be a continuum be-
tween the close-wide and inner-outer degeneracies in
the resonant regime. Subsequently, Zhang et al. (2022)
pointed out that the s $ 1/s relationship is also not
exactly followed even within the |1 � s| � q1/3 regime
in which the close-wide degeneracy is expected to hold.
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They pointed out that the close-wide and inner-outer de-
generacies are fundamentally caustic degeneracies which
do not necessarily translate to magnification degenera-
cies that manifest in light-curves.
The o↵set degeneracy (Zhang et al. 2022) is then pro-

posed independently of caustics as a magnification de-
generacy, which both relaxes the non-resonant condi-
tion (|1 � s| � q1/3) and resolves the aforementioned
inconsistencies. A key observation in the o↵set degener-
acy is that for two planetary (q ⌧ 1) lenses that di↵er
only by an o↵set to the projected star-planet separation
(sA 6= sB) on the same lens-axis, their locus of equal
magnification — referred to as the null — intersects
with the lens-axis at

⇠null,0 =
sA � 1/sA + sB � 1/sB

2
, (1)

where the subscript “0” indicates to zeroth-order in q,
which we prove to be the correct form in Section 2. The
intersection between the null and the lens-axis is referred
to as the lens-axis null hereafter as a shorthand. Given
that planetary anomalies primarily occur on and near
the lens-axis, source trajectories crossing the lens-axis
null

u0

sin(↵)
= ⇠null,0 (2)

are then expected to result in similar light-curves un-
der the null-forming lens configurations. In the above
equation, u0/sin(↵) ⌘ uanom is where the source crosses
the lens-axis, which is usually also the source-star sep-
aration around the midpoint of the planetary anomaly,
u0 is the impact parameter to the coordinate origin (see
Section 2.1 for detailed considerations), and ↵ is the an-
gle between the source trajectory and the lens axis.
Crucially, the above formalism is continuous over

caustic topology transitions for q ⌧ 1, and thus gen-
eralizes the close-wide and inner-outer degeneracies to
the resonant regime. One major implication is that the
close-wide degeneracy only strictly manifests for the sin-
gular case of u0 = 0, and elsewhere the o↵set degeneracy
predicts a deviation from s $ 1/s. We thus refer to the
close-wide degeneracy as the central caustic degeneracy,
in line with An (2021). While Zhang et al. (2022) ver-
ified that the above formalism accurately describes the
degenerate solutions in 23 observed events in the referred
literature, it was found numerically and no theoretical
justification was given. Subsequently, an alternative for-
malism for the unification of degeneracies was proposed
in Gould et al. 2022, whose the relationship to the o↵set
degeneracy will be discussed in Section 5.
In this work, we provide a mathematical treatment of

the o↵set degeneracy. In Section 2, the location of the
lens-axis null is derived from the lens equation, which

proves the formalism proposed in Zhang et al. (2022).
In Section 3, conditions on the source trajectory orien-
tation is discussed. Finally, a generalized N -body o↵set
degeneracy based on the superposition principle is dis-
cussed in Section 4, whereas Section 5 concludes our
work.

2. DERIVATIONS

The goal of this section is to answer the question:
given two planetary lenses with the same mass-ratio
(qA = qB ⌧ 1) but di↵erent projected star-planet sep-
arations (sA 6= sB), where on the lens axis does their
magnifications equal?
Let us begin by defining the lens equation. With the

primary star on the origin and the planet on the real-axis
at a distance s from the primary, the two-body complex
lens equation (Witt 1990) states

⇣ = z �
1�m

z̄
�

m

z̄ � s
, (3)

where ⇣ = ⇠+i⌘ and z = z1+iz2 are the complex source
and image locations, m is the planetary mass normalized
to the total lens mass (Mtot), and s is the projected star-
planet separation normalized to the angular Einstein ra-
dius ✓E =

p
4GMtot/(Drelc2) where Drel is the source-

lens relative distance defined as D�1
rel = D�1

lens �D�1
source.

Witt & Mao (1995) showed that the lens equation can
be transformed into a 5th-order polynomial in z by sub-
stituting the conjugate of Equation 3,

z̄ = ⇣̄ +
1�m

z
+

m

z � s
, (4)

back into itself, whereby conjugates in z̄ are cleared.
The resulting polynomial is

p5(z; ⇣,m, s) =
5X

i=0

ai(⇣,m, s) · zi = 0, (5)

where

a0 =(1�m)2s2⇣

a1 =(1�m)s[ms� (2 + s2)⇣ + 2s⇣⇣̄)]

a2 =⇣ + 2s2⇣ �ms(1 + s⇣)

� s(s� 2ms� 2(m� 2)⇣ + s2⇣)⇣̄ + s2⇣⇣̄2

a3 =� s(ms+ ⇣) + (�2(m� 1)s+ s3 + 2⇣ + 2s2⇣)⇣̄

� s(s+ 2⇣)⇣̄2

a4 =ms� (1 + 2s2 + s⇣)⇣̄ + (2s+ ⇣)⇣̄2

a5 =(s� ⇣̄)⇣̄.

The magnification of each individual image j located
at zj is given by the absolute value of the inverse of the
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Jacobian determinant of the lens equation:

µj =
pj

detJ |z=zj

(6)

= pj

✓
1�

@⇣

@z̄

@⇣

@z̄

◆�1
�����
z=zj

, (7)

where pj = ±1 denotes the parity of the image.
Witt & Mao (1995) further demonstrated how one

may acquire the individual image magnifications µj

without solving for the image locations zj . Evaluating
@⇣/@z̄ with Equation 3, clearing conjugates in z with
Equation 4, and clearing fractions, one obtains a 8th-
order polynomial in z whose coe�cients are parameter-
ized by µj . From here on, let us restrict our discussion
to the lens-axis, i.e., the real-axis (⇣ = ⇠). The com-
mon variable z in this 8th-order polynomial and 5th or-
der polynomial associated with the lens equation (Equa-
tion 5) can be eliminated by calculating their resultant,
which results in a lengthy 5th-order polynomial in µ:

p5(µ; ⇠,m, s) =
5X

i=0

bi(⇠,m, s) · µi = 0. (8)

whose coe�cients are parametrized by ⇠, m, and s. The
above polynomial can be further factored into linear and
cubic polynomials:

p5(µ; ⇠,m, s) =

 
1X

i=0

ci · µ
i

!2

·

 
3X

i=0

di · µ
i

!
= 0. (9)

Of the five solutions µj , the equal-magnification solu-
tions (µ1 = µ2 = �c0/c1) for the linear equation corre-
spond to the two o↵-axis images that only exist when
the source is inside of a caustic and are positive in par-
ity. The cubic polynomial has three real roots which
correspond to three negative parity images (µ3,4,5 < 0)
when the source is inside of caustics, but one positive
and two negative parity images when the source is out-
side of caustics (Witt & Mao 1995). Let us now consider
these two cases separately.

2.1. Inside Caustics

When the lens-axis null — the intercept of the locus of
equal magnification on the lens axis — is located inside
of caustics (Figure 1), images for each of the two poly-
nomials in Equation 9 are respectively equal in parity
and the total magnification can be derived directly from
the polynomial coe�cients:

µtot,in(⇠,m, s) =(µ1 + µ2)� (µ3 + µ4 + µ5)

=� 2c0/c1 + d2/d3

µtot,in(⇠,m, s) =
3m2s2 � ⇠2A2 + 2msB

m2s2 + ⇠2A2 � 2ms⇠C
, (10)

Figure 1. Top: fractional magnification di↵erence between
(sA = 1, q = 10�4) and (sB = 1.04, q = 10�4), with color-
scale shown to the right in log10. Black contours illustrate
the locus of equal magnification. The x and y axes are in
units of ✓E. Middle: a zoom-in of the dashed-line boxed
region in the top panel. The location of the lens-axis null
expected from ⇠null,0 is marked with the gold star in the
center. Source trajectories with ↵ = 30�, 60� are shown in
green and blue dashed lines. Bottom: di↵erences to single-
lens light-curves for null-crossing trajectories. Dashed lines
corresponds to sA = 1 whereas solid lines are for sB = 1.04.
Trajectory orientation is marked in the subplot upper-right
corners with the same color coding as the middle plot. The
↵ = 30� case is seen to have di↵erent caustic entry-exit times
but similar caustic-crossing durations.

where

A =1� s2 + s⇠

B =� 2s+ (1 + s2)⇠ � 3s⇠2 + 2⇠3

C =1 + s2 � 3s⇠ + 2⇠2.

The location of the lens-axis null can be derived by
solving µtot,in(sA) = µtot,in(sB). Since for planetary mi-
crolenses m ⌧ 1, the m2s2 term can be dropped in both
the numerator and the denominator, and we can substi-
tute the planet-to-star mass ratio q = m/(1 � m) for
m. Clearing fractions in µtot,in(sA)�µtot,in(sB) = 0, we
obtain a quadratic polynomial in ⇠. Taking the zeroth-
order Taylor expansion in q, one of the roots simplifies
to

⇠null,in =
sA � 1/sA + sB � 1/sB

2
+O(q), (11)
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where the other root is reduced to 0. We have thus
shown that the empirically derived ⇠null,0 (Equation 1)
is exact for null-in-caustic to zeroth-order in q.
To see how ⇠null,in may deviate from the zeroth-order

term (⇠null,0) for finite value of q, let us now consider the
first-order term in q and its dependence on sA,B. In par-
ticular, for sA = 1/sB, we should expect the first-order
term to not diverge to infinity in the sA,B ! {0,1}

limit, in order to be consistent with the central caustic
degeneracy. Here, it is important to adapt a coordinate
origin that is consistent with caustic degeneracies. An
(2021) noted that while the central caustic degeneracy
breaks down near the resonant regime, a pair of reso-
nant caustics with sA = 1/sB still resembles each other
locally towards the back end of the caustic (near the
primary star). This suggests that one should choose a
coordinate origin that consistently aligns the back-end
of the central/resonant caustic for a pair of lenses with
an arbitrary di↵erence in separation (sA,B).
We therefore opt to use the e↵ective primary star lo-

cation (Di Stefano & Mao 1996; An & Han 2002; Chung
et al. 2005) as the coordinate origin, which is given by

⇠ ! ⇠ +
q

(1 + q) · (s+ s�1)
, (12)

and indeed achieves the aforementioned alignment. Note
that the e↵ective primary location reduces to

⇠ !

8
<

:
⇠ + sq/(1 + q) s ⌧ 1

⇠ + s�1q/(1 + q) s � 1,

which are the central caustic locations (Han 2008) that
were used in Zhang et al. (2022) as the coordinate origin
for their numerical calculations. We point out that the
⇠ 2% error at sA = 1 and sB = 0.4 in Figure 2 of Zhang
et al. (2022) is a direct result of their coordinate choice,
which is inaccurate in describing resonant caustic loca-
tions and causes a misalignment between the resonant
and central caustics. Figure 2 reproduces that same fig-
ure, but with the e↵ective primary (Equation 12) as the
origin, and shows that the error of ⇠null,0 at sA = 1 and
sB = 0.4 is reduced to 0.1% and remains < 0.1% for
| log(sA,B)| < 0.25, or 1/1.8 < sA,B < 1.8.
Applying the above coordinate transformation to the

previous derivation, we find that while the zeroth-order
term remains ⇠null,0 as expected, the first-order term
(f · q) is rather involved. There are only two special
cases that are relevant here.
If the null is located within the central caustic, we

should expect sA ⇠ 1/sB , which simplifies the first order
term f · q to

f ⇠ �
s(3 + 2s2 + 3s4)

(1 + s2)3
. (13)

Figure 2. Deviation of ⇠null,0 from the exact null location,
normalized to |(sA � 1/sA)� (sB � 1/sB)|, where the exact
null location is derived numerically with q = 10�4. Three
solid curves show this relative error for changing sA against
three values of fixed sB ' (1/1.3, 1/1.8, 1/2.5). The two
dashed lines with darker colors show the alternative expres-
sion ⇠null,hm which is exact for ⇠null ⌧ 1 (see Section 2.2),
or equivalently sA ⇠ 1/sB, shown only for |⇠null| < 0.5 and
|sA � sB| > 1.

Note that the above expression is symmetrical under
s $ s�1. Since f ! 0 for s ! {0,1}, f does not
diverge and is typically of order unity. However, if we
had defined the lens-equation (Equation 3) in units of
the Einstein radius of the primary mass, then f diverges
to infinity for both s ! {0,1}, justifying our choice of
parameterization with the Einstein radius of the total
mass.
On the other hand, if the null is within the resonant

or the wide-planetary caustic, we should expect sA '

sB & 1, which results in

f ⇠ �
2

s+ s3
, (14)

and is also order unity. One may thus expect ⇠null,in '

⇠null,0 � q, that is, a deviation of order q, which is in
agreement with the slight deviation seen in the middle
panel of Figure 1.

2.2. Outside Caustics

For sources outside caustics (Figure 3 & 4), there are
three images which are di↵erent in parity, and we can no
longer obtain the total magnification directly from the
polynomial coe�cients. The sum of the absolute value
of the cubic roots is also di�cult to simplify. However,
keeping coe�cients up to first order in q, the cubic part
of Equation 9 is reduced to a quadratic polynomial with
two roots that are in a much simpler form compared to
the cubic roots. The total magnification is then the ab-
solute di↵erence between the two roots representing one
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positive and one negative parity image. Indeed, when
the source is away from the planetary caustic, the image
closest to the planet typically has negligible magnifica-
tion. As for the alternative scenario, we should already
expect ⇠null,0 to hold in the immediate vicinity of plan-
etary caustics, given that the location of the lens-axis
null transitions continuously from inside to outside of
caustics.
Equating the total magnification for sA and sB , clear-

ing fractions, further taking the first order expansion in
q and simplifying, we acquire a quartic polynomial

pnull(⇠; sA, sB) =
4X

i=0

ei(sA, sB) · ⇠
i = 0, (15)

whose coe�cients are provided in Appendix A. This
polynomial could be solved for the lens-axis null out-
side of caustics for any arbitrary pair of sA,B satisfying
q ⌧ 1.
To examine the conditions for ⇠null,0 to be the exact

form to zeroth-order in q, let us directly plug ⇠null,0 into
pnull as an ansatz, which reduces the polynomial to

�
(sA � sB)6(sAsB � 1)(sAsB + 1)2

4s2As
2
B

= O
�
(sA � sB)

6
�
.

(16)
Given non-zero first order derivative p0null and bounded
higher order derivatives, pnull ! 0 implies ⇠ ! ⇠null,0,
that is, the ansatz is indeed a root. Thus ⇠null,0 is exact
for (sA � sB)6 ⌧ 1 to zeroth-order in q. Note that this
condition is substantially more relaxed than the |sA �

sB| ⌧ 1 condition (e.g. 0.56 ' 0.015). Furthermore, the
condition of the lens being near the resonant regime (|1�
s| . q1/3) is a su�cient condition for (sA � sB)6 ⌧ 1,
allowing ⇠null,0 to be essentially exact for semi-resonant
events.
Numerical calculations (Figure 2) show that the error

on ⇠null,0 remains less than 1% for 1/2.5 < sA,B < 2.5
and should be su�ciently accurate for practical pur-
poses. Larger deviations of a few percent are found near
sA ⇠ 1/sB where |sA�sB | & 3. As a theoretical exercise,
an alternative expression for these high-magnification
(⇠null ⌧ 1) events can be immediately acquired by lin-
earizing pnull in ⇠null, which results in:

⇠null,hm = �e0/e1, (17)

where the coe�cients can be found in Appendix A. Fig-
ure 2 shows ⇠null,hm for |⇠null| < 0.5 (dashed lines), which
verifies that ⇠null,hm indeed describes the local behavior
at sA ⇠ 1/sB .

3. SOURCE TRAJECTORY ORIENTATION

Technically, the above derivation only guarantees ex-
act magnification matching on the lens-axis. It was
shown in Zhang et al. (2022) that vertical null-crossing
trajectories result in nearly identical light-curves, which
was also noted in Gaudi & Gould (1997) for the inner-
outer degeneracy. Indeed, Figures 1, 3, 4 all demon-
strate that the locus of equal magnification is vertically
extended near the lens-axis. Here, we consider the ex-
tend to which oblique trajectories could remain degen-
erate.
Let us first consider the case where the lens-axis null

is located outside of caustics. Figure 3 shows three ex-
amples where the null gradually moves away from the
central caustic. Figure 4 shows three additional cases
where sB approaches sA from sB = 1. Note how in
Figure 4 |⇠null| is greater than the examples in Figure
3. In both cases, vertical trajectories essentially give
rise to identical light-curves. As the trajectory becomes
more oblique, the magnifications under the two degen-
erate lenses begin to di↵er in the “wings” of the plane-
tary perturbation, and thus su�ciently precise photom-
etry can break the degeneracy. By comparing Figure 3
and 4, one may see that the trajectory angle can be as
oblique as ↵ = 15� while the light-curves remain largely
the same when the null is close to the central caustic
(|⇠null| ⌧ 1). Elsewhere, the di↵erences on the pertur-
bation “wings” become a significant fraction of the peak
planetary perturbation for ↵ . 45�. While not shown,
close approaches to the o↵-axis cusps of the planetary
caustic with oblique trajectories will decisively break the
degeneracy, as the time-of-approach will be either before
or after crossing the lens-axis.
For the lens-axis null inside of caustics, there is no-

tably an additional constraint on the caustic entry-exit
times and duration. Figure 1 illustrates how the vertical
null directionality implies that the caustic height is au-
tomatically matched at the lens-axis null, allowing the
caustic entry-exit times and duration to be the same for
vertical null-crossing trajectories. Essentially, intersec-
tions of caustics are the set of points in the source plane
where magnifications for the two lenses diverge simulta-
neously, and by definition, must occur on the locus of
equal magnification.
For oblique trajectories, note how the two resonant

caustics are approximately the reflection of one an-
other along the vertical null (black broken line in
Figure 1) and appears like large planetary caustics.
Because of this symmetry, the caustic-crossing dura-
tion remains approximately the same, but the caustic
entry-exit times begin to di↵er, the extent of which
depends on how quickly the caustic height changes
(d⌘caus/d⇠caus|⇠=⇠null,0

) near the lens-axis null. Fine tun-
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Figure 3. Top row: magnification di↵erence in log-scale for three pairs of lens configurations indicated in the subplot titles.
q = 10�3 for all cases. Color-bar to the right shows the di↵erence scale in log10. The oval-shaped contours are the loci of
equal magnification (null). Three null-crossing source trajectories with ↵ = 15�, 45�, 90� are shown with the two-segment solid
lines, with direction going from upper-right to lower-left. The green central caustics are for the changing sB . Second row:
magnifications (µ) for null-crossing trajectories in the same color coding as the top row. Solid lines are for sA and dashed lines
for sB . The x-axis (time) is centered on the lens-axis null and scaled to |⇠null|. Bottom three rows: planetary perturbation
shown as the di↵erence to a single lens model in unit of magnitudes. The maximum deviation is indicated in the second-to-last
row.

Figure 4. Same as Figure 3 but for three di↵erent configurations.

ing of the lensing parameters (e.g. the event timescale)
may reduce the di↵erence in the caustic entry-exit times.
Additionally and similarly to null-outside-caustic, close
approaches to the o↵-axis cusps (not shown in Figure 2)
will be asymmetrical for oblique trajectories would cate-
gorically break the degeneracy. Finally, for the lens-axis
null inside of central caustics (|1�s| ⌧ q1/3), the central
caustics are close to identical due to the central caustic
degeneracy and thus the aforementioned constraints on
the caustic entry-exit times are less relevant.

Recent examples in the literature of null-in-caustic in-
clude, among others, KMT-2019-BLG-0371 (Kim et al.
2021), KMT-2019-BLG-1042 (Zang et al. 2022), and
OGLE-2019-BLG-0960 (Yee et al. 2021). In the case of
OGLE-2019-BLG-0960, the trajectory was quite oblique
(↵ ' 15), yet still resulted in very degenerate solutions
because the caustic height in this particular case changes
slowly near the null (|d⌘caus/d⇠caus|⇠=⇠null,0

⌧ 1), allow-
ing the caustic entry-exit times to remain approximately
the same even for very oblique trajectories.
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Figure 5. Example of the o↵set degeneracy generalized to
triple lens systems. Top: magnification di↵erence between
triple lens configurations of (s1, s2,�)=(1.2, 1.25, 60�), re-
ferred to as the wide/wide configuration whose central caus-
tic is shown in blue, and the close/close configuration of
(0.8189, 0.7938, 60�) whose central caustic is shown in green.
� is the angle between the two lens-axes (dashed lines), with
the horizontal one corresponding to s1. The two resulting
lens-axis nulls are marked with cyan dots, which coincide
with the source trajectory (solid line). Bottom: light-curves
for the null-crossing trajectory. In the legend, s $ 1/s refers
to the (1/1.2, 1/1.25, 60�) configuration expected from the
central caustic degeneracy. The designations “close” and
“wide” refer to the caustic topology rather than the close-
wide degeneracy. The bottom panels show light-curve residu-
als of the degenerate configurations to the wide/wide config-
uration in units of magnitudes. Light-curves resulting from
the central caustic degeneracy (green curves) are shown to
have greater residual than that from the o↵set degeneracy
(red curves). The horizontal axis is the source location pro-
jected to the x-axis and the cyan dots indicate the nulls al-
lowing for a straightforward comparison to the top figure.

4. GENERALIZATION TO N -BODY LENS

The superposition principle (Bozza 1999; Han et al.
2001) states that planetary perturbations from an N -
body lens satisfying qi ⌧ 1 is well approximated by
the superposition of perturbations from each individ-

ual planet. This allows a straightforward generalization
of the o↵set degeneracy to N -body lenses, which has
N � 1 number of lens-axes, and thus the number of null
to match, resulting in a 2N�1 number of degenerate con-
figurations.
Figure 5 shows an example of the o↵set degeneracy

generalized to triple lens systems, where the source
passes close to the back end of the self-intersecting cen-
tral caustics. We have adapted the same configuration
in Figure 2 of Song et al. (2014) to facilitate compar-
ison to the extension of the central caustic degeneracy
to triple-lens discussed therein. The magnification dif-
ference between the wide/wide and close-close configu-
rations is shown to be the sum of the residuals from the
two singly-o↵set (close/wide and wide/close) configura-
tions, which confirms the superposition picture. Addi-
tionally, as expected the 3-body o↵set degeneracy also
serves as a correction to the 3-body central caustic de-
generacy. The light-curve di↵erence between the close/-
close and wide/wide configurations is greater near the
null on the horizontal lens-axis (s1) than the other be-
cause the source crosses the horizontal axis at ↵ = 30
but ↵ = 90 for the s2 axis. This is in agreement with
discussions in Section 3.
Interestingly, a detailed inspection of Figure 5 reveals

that the central caustic cusps at the ‘tips’ of the central
caustics are actual slightly o↵ the two lens-axes, which
can be attributed to the influence of one planet on the
other’s caustic. This indicates that technically one may
have to apply the source-null matching principle to an
“e↵ective lens axis.” Moreover, the superposition princi-
ple is expected to break down when the planets are close
to being aligned on the same axis. Indeed, for a triple
lens for which the two planets are aligned on the same
axis, there is only one null that depends on the o↵set of
both planets. We suggest that the simplest case of the
axis-aligned triple planetary lens with equal mass-ratios
may be analytically tractable by studying the following
lens equation:

⇣ = z �
1� 2m

z̄
�

m

z̄ � s1
�

m

z̄ � s2
. (18)

Details of the generalized N -body o↵set degeneracy
should be explored in future work.

5. DISCUSSION

In this work, we have provided a mathematical treat-
ment of the o↵set degeneracy by deriving the intercept
of the equal-magnification locus on the lens-axis — the
lens-axis null — directly from the lens-equation in the
limit of q ⌧ 1. The numerically found ⇠null,0 expression
(Zhang et al. 2022) is shown to be the exact form of the
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lens-axis null location inside of caustics, and outside of
caustics subject to (sA � sB)6 ⌧ 1, to zeroth-order in
q. The derivations in this work demonstrate the nature
of the o↵set degeneracy as a mathematical degeneracy
deeply rooted in the lens equation itself.
The relationship between the o↵set degeneracy and

the central caustic (close-wide) and inner-outer de-
generacies has been discussed in Zhang et al. (2022).
To summarize, the o↵set degeneracy relaxes the non-
resonant (|1� s| � q1/3) condition required by the two
caustic degeneracies and generalizes them to a unified
regime of magnification degeneracy. For sources passing
close to central caustics, the o↵set degeneracy serves as
a correction to the s $ 1/s relationship of the central
caustic degeneracy, which only strictly manifests when
u0 = 0. For this reason, we advocate that the close-wide
degeneracy should be more appropriately referred to as
the central caustic degeneracy (e.g. An 2021), which
also serves to discourage its misuse as a magnification
degeneracy.
On the other hand, the inner-outer degeneracy expects

the source star to pass equidistant to the planetary caus-
tics located at ⇠p = sA,B�1/sA,B, and thus results in the
same mathematical expression as the o↵set degeneracy.
However, the Chang-Refsdal approximation to plane-
tary caustics fails near the resonant regime (Dominik
1999), and thus the o↵set degeneracy provides a more
accurate conceptual explanation. In a subsequent pa-
per, Zhang (2022) o↵ered an alternative interpretation
by showing how planetary lenses can be decomposed into
Chang-Refsdal lenses with variable shear, which results
in the o↵set degeneracy as a direct consequence. While
the terms inner and outer were originally coined to re-
fer to “the inner[/outer] region of the planetary caustic
with respect to the planet host” (Han et al. 2018), the
idea of a generalized perturbative picture (Zhang 2022)
suggests that they remain meaningful labels for the o↵-
set degeneracy if they refer to the lens-plane instead —
the location of the planet being inside or outside of the
image being perturbed, with respect to the primary star.
The applicability of the central caustic degeneracy

to the resonant regime was previously studied in An
(2021), which found that the back-end of the central/res-
onant caustic remains locally degenerate into the reso-
nant regime (|1 � s| . q1/3) but the front end becomes
di↵erent. They further suggested that in this case, slight
adjustments to the qA = qB and sA = 1/sB pair of so-
lutions may result in a locally degenerate model. This
work directly responds to their suggestion: qA = qB
should remain the same whilst sA,B should be adjusted
such that the location of the lens-axis null coincides with
the source trajectory. Strictly speaking, the qA = qB

Figure 6. Error on the s† =
p
sA · sB heuristic, defined as

the di↵erence between the predicted value of uanom = s† �
1/s† from sA,B, and the exact location of equal magnification
on the lens-axis. Solid curves are for the s† heuristic and
dashed curves are for the o↵set degeneracy (uanom = ⇠null,0)
for comparison. Quantities are defined similarly to Figure 2.

condition is an assumption made in this work which
is known to be true for the caustic degeneracies. The
fact that vertical trajectories give rise to identical light-
curves (Figures 1, 3, 4) validates the qA = qB assump-
tion, but a formal proof would require examining the
magnification o↵ the lens-axis.
While examining the magnification-matching behav-

ior on the lens-axis is a direct way of deriving the o↵set
degeneracy formalism, there is a potential pathway to
derive the ⇠null,0 formalism for the null-in-caustic case
by studying caustic resemblances, which was proposed
by An (2021). In Section 3, we found that the caustic
height for the o↵set-degenerate pair of lenses matches
exactly at the lens-axis null, but such a claim is based
on the observation that the null is vertically-directed
near the lens-axis. Therefore, studying the intersection
between caustics of lenses with equal mass-ratios may
be not only be an independent pathway to deriving the
o↵set degeneracy formalism, but also a verification of
the equal mass-ratio condition.
Subsequent to the proposal of the o↵set degeneracy,

Ryu et al. (2022) and Gould et al. (2022) proposed an
alternative formalism for unifying the close-wide and
inner-outer degeneracies, referred to as the “s† heuris-
tic”. The quantity s† is defined by

s† = (
p
u2
anom + 4 + uanom)/2, (19)

which is a solution to uanom = s† � 1/s†, and thus the
solution for planetary-caustic-crossing events. Here, we
have defined uanom as the signed location of where the
source crosses the binary axis to avoid a sign ambiguity
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in the original expression. This quantity was initially
used in Hwang et al. (2022) for the heuristic analysis
of events subject to the inner-outer degeneracy, where
the solutions are approximately related by sA,B = s† ±
�s. More recently, Gould et al. (2022) proposed that
an alternative expression, s† =

p
sA · sB, would lead to

the unification of the two degeneracies.
The derivations in this work show that the s† =

p
sA · sB expression does not correctly unify the close-

wide and inner-outer degeneracies, but nevertheless pro-
vides approximate solutions in the s ! 1 limit. By sub-
stituting ⇠null,0 for uanom in Equation 19, we find that
the first order Taylor expansion of (s†)2 at sA,B = 1
is indeed sA · sB. Figure 6 shows that although the
s† =

p
sA · sB heuristic captures the boundary cases

of sA = 1/sB with s† = 1 (and uanom = 0), and
sA = sB = s†, it is only approximately correct in the
intermediate regime. Lastly, we note that both the s†

heuristic and the o↵set degeneracy formalism require
solving one quadratic equation to derive one solution

from the other based on the source trajectory, which in-
dicates that the exact form given by Equation 1 & 2 is
equally convenient to use for heuristic analysis.
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APPENDIX

A. POLYNOMIAL COEFFICIENTS

Equation 15:

e0 =� 16(sAsB � 1)(s2A + sAsB + s3AsB + s2B + s4As
2
B + sAs

3
B + s3As

3
B + s2As

4
B)

e1 =� 2(sA + sB)(3� 4s2A + s4A � 16sAsB � 4s2B + 8s2As
2
B � 4s4As

2
B � 16s3As

3
B + s4B � 4s2As

4
B + 3s4As

4
B)

e2 =� 4(sAsB � 1)(s4A � 3sAsB + 5s3AsB + 6s2As
2
B + 5sAs

3
B � 3s3As

3
B + s4B)

e3 =� (sA + sB)(1 + s2A � 8s3AsB + s2B � 14s2As
2
B + s4As

2
B � 8sAs

3
B + s2As

4
B + s4As

4
B)

e4 =2sAsB(sAsB � 1)(1 + s2A + 2sAsB + s2B + s2As
2
B).
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