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REMARKS ON THE STABILIZATION OF LARGE-SCALE GROWTH

IN THE 2D KURAMOTO–SIVASHINSKY EQUATION

ADAM LARIOS AND VINCENT R. MARTINEZ†

Abstract. In this article, some elementary observations are made regarding the be-
havior of solutions to the two-dimensional curl-free Burgers equation which suggest the
distinguished role played by the scalar divergence field in determining the dynamics
of the solution. These observations inspire a new divergence-based regularity con-
dition for the two-dimensional Kuramoto–Sivashinsky equation (KSE) that provides
conceptual clarity to the nature of the potential blow-up mechanism for this system.
The relation of this regularity criterion to the Ladyzhenskaya–Prodi–Serrin-type cri-
terion for the KSE is also established, thus providing the basis for the development of
an alternative framework of regularity criterion for this equation based solely on the
low-mode behavior of its solutions. The article concludes by applying these ideas to
identify a conceptually simple modification of KSE that yields globally regular solu-
tions, as well as providing a straightforward verification of this regularity criterion to
establish global regularity of solutions to the 2D Burgers–Sivashinsky equation. The
proofs are direct, elementary, and concise.
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1. Introduction

The Kuramoto-Sivashinky equation was originally introduced in [57] as a model for the
propagation of flame fronts and identified in connection with reaction-diffusion systems
in [35,36,37], motivated by the stability of traveling waves. Numerical studies such as [45]
indicated chaotic dynamics of the system whose complexity increases as the length of the
domain increases. When d = 1, it was proved in [49] (see also [59]) that the initial value
problem (1.1) is globally well-posed in H2(Ω). Soon after, it was then shown in [50] that
(1.1) possessed finitely many determining modes and a finite-dimensional global attractor.
In the celebrated work [20], it was furthermore shown that the long-time behavior of (1.1)
was completely characterized by a finite and low-dimensional system. Since these seminal
works, the KSE has become an important test bed for probing the connections between
PDEs, dynamical systems, chaotic behavior, and turbulence [26, 27], finding effective
computational means for studying the dynamics of infinite-dimensional systems exhibiting
such a strong form of finite-dimensional behavior (see, e.g., [6,14,19,29,30,31,32] and the
references therein), and in some recent works for the testing of model discovery, techniques
in data assimilation, and parameter estimation techniques [38, 43, 46, 52].

The (non-dimensionalized) Kuramoto-Sivashinky equation is given by

∂tφ+
1

2
|∇φ|2 = −∆2φ− λ∆φ, (1.1)
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where φ : R2 → R2, λ > 0. Upon applying the gradient operator to (1.1), one obtains the
corresponding vector-form of (1.1):

∂tu+ u·∇u = −∆2u− λ∆u, ∇⊥·u = 0, (1.2)

where u : R2 → R2, ∇⊥ = (−∂2, ∂1), ∆ = ∂2
1 + ∂2

2 , and ∆2 = (∂2
1 + ∂2

2)
2. We note that

(1.1), (1.2) represent a particular choice of re-scaling of the original system, so that the
parameters characterizing the domain size are ultimately encoded in λ. Indeed, if L is the
side-length of a square domain, then under a particular choice of re-scaling, where L is
order 1, one has λ ∼ L2. In this article, we are interested in the issue of global regularity
for (1.2) over the periodic box Ω = [0, 2π]d, where d ≥ 1.

In spite of the developments mentioned above, two important issues remain unre-
solved. In the case d = 1, numerical evidence [17, 23, 53, 61] shows that the average

energy, lim supt→∞
1
t

∫ t
0 ∥u(t)∥

2
L2dt, is an intensive quantity, namely, that it obtains a

bound independent of λ as λ → ∞, consistent with the viewpoint of thermodynamic
perspective of viewing (1.2) as a “large” system as λ → ∞ with spatially localized in-
teracting subsystems that allow for short-time decorrelated interactions. This has yet to
be confirmed rigorously, although some progress has been made [9, 11, 21, 22, 24, 50, 51]
with the best-known uniform-in-time bounds on the energy obtained as o(λ) [21] and

best-known time-average bounds obtained as O(λ(1/3)+) [22, 51]. On the other hand, in
higher-dimensions d ≥ 2, the issue of global existence of strong solutions for arbitrary
large, finite energy initial data is still not known. It is this latter issue that the present
article is concerned with.

Local-in-time existence of analytic solutions was established in [7], while the analog
of the Ladyzhenskaya–Prodi–Serrin regularity criterion, originally developed for the 3D
Navier–Stokes equations, was established for the d−dimensional KSE in [39]. Several
works [1,2,4,34] have constructed global solutions by exploiting anisotropy in some way.
Another approach to understanding the issue of global regularity has been to identify
various mechanisms such as maximum principles [28, 41, 44], mixing [13], dispersion [3],
“algebraic calming” [15] that ultimately stabilize large-scale growth in the system and
then to either modify (1.1) to possess these mechanisms or to locate them in closely
related systems which have these mechanisms naturally.

A major aim of the present work is to highlight the role that the sign of the divergence
of the solution plays in the (possible) destabilization of the large-scales in the system.
In [39], it was shown (among other results) that bounding various norms of the divergence
is sufficient to prove that the d-dimensional KSE is globally well-posed, although this
criterion was probably observed at least informally by other researchers earlier. In the
present work, we prove that it is sufficient to control merely the positive part of the
divergence, which seems not to have been observed earlier, although some recent numerical
experiments in [39] had hinted at this. The reason for this can be understood dynamically
as follows: In the KSE, small scales are stabilized by the hyperdiffusive mechanism,
while large scales (smaller than order

√
λ) are destabilized by the backward diffusive

mechanism1. In higher dimensions (d ≥ 2), we postulate the following destabilizing
mechanism: Regions of positive divergence tend to expand (since the vector field “points
outward” in these regions). Since the direction of the local expansion is in the same
direction as the solution u, the nonlinear term u ·∇u maintains this expansion, at least

1It was first observed by E.S. Titi [60] that in 1D at least, the equation is stabilized by the nonlinear
cascading energy from large scales to small scales.
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for short times, by advecting the velocity field along this expansion direction, further
increasing the divergence in these regions. This feedback mechanism creates large bubble-
like regions of positive divergence2. These regions are naturally associated with large
wave-lengths, and hence the low-mode instability of the equation causes these regions
to grow rapidly. Since the average of the divergence over a periodic domain must be
zero, there will always be some regions of negative divergence, but these regions will be
thin3 as regions of positive divergence compete for dominance, and hence small-scales are
also activated via this upwelling-type behavior. Thus, there is some hope for global well-
posedness via the “Titi mechanism” of stabilization via energy cascading to higher modes
where it can be dissipated. However, this cascade needs to be strong enough to counter-
balance the growth of positive-divergence regions. We make these heuristic arguments
more concrete in the present article by showing that if the divergence is bounded, or its
positive part is bounded, or its behavior on low-modes of the divergence is under control,
in a precise sense that we specify below, then the system is globally well-posed.

We develop several new regularity criteria (Theorem 4.2, Theorem 4.6, Theorem 4.8)
that improve some of the criteria developed in [39]. The main motivation for each of these
regularity criteria is based on a simple observation regarding solutions of the 2D curl-free
Burgers equation (Section 3) in conjunction with the prevailing belief that one need only
control low-mode instabilities to prevent blow-up. We introduce an elementary regularity
criterion consistent with the observations regarding the role of the divergence of the vector
field. This criterion is subsequently refined by making use of a beautiful idea introduced
in [10]. There, a unified approach to regularity of the 3D Navier–Stokes equations was
developed based on Kolmogorov’s phenomenological theory of turbulence by exploiting
the presence of a viscous cut-off in the energy spectrum; these ideas are applied in an
analogous fashion in the context of KSE due to the presence of hyperviscosity, but to
produce a decidedly different quantity from the context considered in [10] for controlling
regularity of solutions. We then develop the ideas encapsulated by our regularity criterion
to propose a different modification of the vector-formulation (1.2) of KSE (Section 5), as
well as provide a simple demonstration of our regularity criteria in the particular case of
the Burgers–Sivashinsky model (Section 6). Several insights are drawn from these results
which are captured in various remarks, revealing several interesting future directions to
pursue (Remark 3.1, Remark 4.10, Remark 5.2, Remark 5.3). Finally, we summarize our
paper and make some concluding remarks in Section 7.

2These regions were observed and explicitly plotted in computational simulations in [39], but hints of this
can be seen earlier in [33], and even as far back as [57]. Note that such a dominance of positive divergence
regions over negative divergence regions is not observed in 1D simulations; this can be explained by the
nonlinear term vanishing in L2 energy estimates, which occurs only in dimension 1.
3Regions of negative divergence must either be widespread (e.g., many thin filaments) or have large
amplitude of divergence to compensate; computational evidence in [39] (see Fig. 7 in that work) indicate
it is the latter.
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2. Notation

Given real numbers a, b, we define a ∧ b = min{a, b} and a ∨ b = max{a, b}. For
p ∈ [1,∞), let Lp = Lp

0(Ω) denote the space of p-integrable scalar fields which are 2π-
periodic in each direction, equipped with the norm

∥ϕ∥Lp :=

(∫

Ω
|ϕ(x)|pdx

)1/p

, (2.1)

with the usual modification when p = ∞. We denote the L2-based Sobolev space of order
k ≥ 0, where k is an integer, by Hk = Hk(Ω), equipped with the norm

∥ϕ∥2Hk := ∥ϕ∥2L2 +
∑

|α|=k

∥∂αϕ∥2L2 , (2.2)

where α ∈ (N ∪ {0})2 denotes a multi-index. Throughout the article, we will abuse
notation by letting Lp, Hk denote the same spaces but with vector-valued outputs. We
will also make use of fractional homogeneous Sobolev spaces, Ḣκ, for κ ∈ R. These spaces
can be characterized in terms of the fractional Laplacian Dκ := (−∆)κ/2, which is defined
via its Fourier transform:

D̂κϕℓ = |ℓ|κϕ̂ℓ, (2.3)

where ϕ̂ℓ = (2π)−2
∫
Ω ϕ(x)e−iℓ·xdx, for each ℓ ∈ Z2. The norm characterizing Ḣκ is then

defined by

∥ϕ∥Ḣκ := ∥Dκϕ∥L2. (2.4)

Note that by the Plancherel identity,

∥ϕ∥2
Ḣκ = (2π)2

∑

ℓ∈Z2\{0}

|ℓ|2κ|ϕ̂ℓ|2. (2.5)

We therefore define for κ ∈ R:

∥ϕ∥Hκ :=
(
∥ϕ∥2L2 + ∥ϕ∥2

Ḣκ

)1/2
. (2.6)

Observe that for κ = k, the following quantities are equivalent (as norms):

∥ϕ∥Hk ∼
(
∥ϕ∥2L2 + ∥ϕ∥2

Ḣκ

)1/2
. (2.7)

In particular, the definitions (2.2) and (2.4) are consistent whenever κ is an integer. It is
also readily verifiable that for all κ ∈ R, we have the following equivalence:

∥ϕ∥Hκ ∼

⎛

⎝(2π)2
∑

ℓ∈Z2

(1 + |ℓ|2)κ|ϕ̂ℓ|2
⎞

⎠
1/2

. (2.8)

Lastly, we observe that in the subspace of mean-free, 2π-periodic functions (in each
direction) over Ω, we may identify Hκ with Ḣκ. For the remainder of the manuscript,
we will therefore adopt the abuse of notation that Hκ also denotes the homogeneous space
whenever we are in the context of mean-free functions.

We will make use of several inequalities. Let us recall the Kato–Ponce inequality
(see, e.g., [25, 42] and the references therein): given κ ∈ (0,∞), r ∈ (1,∞), and 1 <
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pj , qj < ∞ such that 1/pj + 1/qj = 1/r, there exists an absolute constant CKP =
C(κ, r, p1, q1, p2, q2) > 0 such that

∥Dκ(ϕ1ϕ2)∥Lr ≤ CKP

(
∥Dκϕ1∥Lp1∥ϕ2∥Lq1 + ∥ϕ1∥Lp2∥Dκϕ2∥Lq2

)
. (2.9)

If f = (I − PN )f , for some N > 0, we have the following Bernstein-type inequalities,
which are straight-forward to prove: for real numbers κ < κ′, we have

∥PNϕ∥Hκ′ ≤ Nκ′−κ∥Dκϕ∥L2 , κ ≥ 0

∥(I − PN )ϕ∥Hκ ≤ N−(κ′−κ)∥Dκ′

ϕ∥L2 , κ′ ≥ 0.
(2.10)

We point out that when N ≥ 1, then (I−PN)ϕ is mean-free. We will also make use of the
standard interpolation inequality in Sobolev spaces: given any real numbers κ1 < κ < κ2,
we have

∥Dκϕ∥L2 ≤ ∥ϕ∥
κ−κ1
κ2−κ1
Hκ2 ∥ϕ∥

κ2−κ

κ2−κ1
Hκ1 . (2.11)

Lastly, we recall the Sobolev Embedding Theorem (see, e.g., [5] for the fractional
version on the torus): given p ∈ (2,∞) and real number κ ≥ 0 such that 1/p = 1/2−κ/2,
there exists a constant CS = C(p,κ) such that

∥ϕ∥Lp ≤ CS∥ϕ∥Hκ . (2.12)

3. 2D curl-free Burgers equation

It is well-known that the main obstacle to global well-posedness of the d-dimensional
KSE (d ≥ 2) is in obtaining bounds on the energy 1

2∥u∥
2
L2. A similar equation in which

the same obstacle is present is the d-dimensional hyper-dissipative Burgers equation

∂tu+ u·∇u = −(−∆)γu. (3.1)

where γ > 1 (this was first observed in [40] with γ = 2). When γ = 1, (3.1) is simply the
viscous Burgers equation and global regularity of solutions is known due to the availability
of an L∞-maximum principle (supposedly first proved in [58], but see the discussion and
a modern proof in [54]). However, when γ > 1, a maximum principle is not known to
exist for either (3.1) or (1.2). Needless to say, if such a property were available, then
global regularity would follow.

One feature to recognize that is common to both (1.2) and (3.1) is the underlying
presence of the inviscid Burgers equation, i.e., (3.1) when λ = 0. We momentarily reflect
on this presence and its implications in the issue of the global regularity of curl-free
solutions to (1.2) and (3.1). In particular, let us consider the 2D inviscid Burgers equation,
that is,

∂tu+ u·∇u = 0, (3.2)

It is easy to see that if u is smooth and initially curl-free, then it remains curl-free. Indeed,
suppose that u satisfies (3.2). We introduce the variables

δ = ∇·u, ω = ∇⊥·u. (3.3)

We also denote

Dt = ∂t + u·∇. (3.4)

Then a straightforward computation shows that

Dtω + δω = 0. (3.5)
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Hence ω(t,X(t; a)) = exp
(
−
∫ t
0 δ(s,X(s, a))ds

)
ω(0, a), for all a ∈ Ω, where X(t; a)

denotes the Lagrangian particle position of a at time t:

d

dt
X(t; a) = u(t,X(t; a)), X(0; a) = a. (3.6)

Thus, if ω(0, · ) ≡ 0, then ω(t, · ) ≡ 0. For this reason, when (3.2) is initialized with a
curl-free vector-field, we refer to (3.2) as the curl-free Burgers equation. For the remainder
of the section, we will thus assume that ∇⊥·u = 0 holds.

On the other hand, upon applying the divergence operator to (3.2) and invoking the
curl-free property4, one obtains

Dtδ = −|∇u|2. (3.7)

This shows that δ always decreases along Lagrangian trajectories. In particular, if a
particle initially possesses negative divergence, then it will remain negative throughout
its evolution. Although the additional linear terms in (1.2) may, in general, counteract
this phenomenon, we take this elementary observation as an underlying motivation for
the divergence-based regularity criterion that we develop for (1.2).

Remark 3.1. In contrast to the curl-free Burgers equation, the vorticity form of the three-
dimensional Euler equations asserts the transport of vorticity along the fluid’s velocity field
and stretching of vorticity via the velocity’s gradient:

Dtω = ω ·∇u (3.8)

As we will see below, the role of the divergence in the irrotational setting will play a role
analogous to the vorticity in the incompressible setting from the point of view of regularity
in the context of the 2D Kuramoto–Sivashinsky equation (1.2).

Remark 3.2. We also refer the reader to the paper of A. Boritchev [8], wherein a sto-
chastic analog of the curl-free viscous Burgers equation is analyzed from the perspective
of hydrodynamic turbulence and bounds on averages of increments and energy spectra are
obtained uniformly in the viscosity parameter.

4. 2D Kuramoto–Sivashinsky equation

We consider (1.2) and first study how the divergence of the vector field controls the
growth solutions in any Sobolev norm. In fact, we show that the amplitude of outward
divergence can affect growth of norms, while regions of inward divergence stabilizes, con-
sistent with the observations from Section 3.

We will make use of the following local existence, regularity, and continuation result.

Theorem 4.1. Let u0 ∈ L2 such that ∇⊥·u0 = 0 in the sense of distribution. Then there
exists T0 = T0(∥u0∥L2) > 0 and a unique solution u ∈ Cw([0, T0];L2)) ∩ L2(0, T0;H2) to
(1.2). Moreover, for a.e. t0 ∈ (0, T0) and k ≥ 1, one has u ∈ C([t0, T0];Hk) such that

sup
t∈[t0,T0]

∥u(t)∥Hk ≤ C(t0, T0, ∥u0∥L2).

In particular, u(t) ∈ C∞, for all t ∈ (0, T0]. Lastly, if T ∗ denotes the maximal time of
existence and supt∈[0,T∗)∥u(t;u0)∥L2 < ∞, then T ∗ = ∞.

4The Leibniz product rule directly gives ∇ · (u ·∇u) = (∇u) : (∇u)T +u ·∇δ, and the curl-free property
implies ∇u = (∇u)T .



REMARKS ON THE STABILIZATION OF LARGE SCALES IN 2D KSE 7

In an effort to make the presentation self-contained, the relevant details of the proof
of Theorem 4.1 are supplied in the appendix (see Appendix A), but we nevertheless refer
the reader to [7, 48] for additional details (see also [18, 56]). Note that the details we
provide in Appendix A are carried out without appealing to the curl-free condition. Thus
Theorem 4.1 holds for u0 ∈ L2 as well, except the corresponding solution need not satisfy
the curl-free condition. Before we proceed, let us recall that if u were mean-free, then the
curl-free condition (via the Helmholtz decomposition) implies u = ∇φ, for some scalar
potential field φ. Thus, in a mean-free setting, the vector form (1.2) is consistent with
the scalar form (1.1); we refer the reader to Section 4.2 for additional remarks regarding
the validity of the mean-free assumption.

4.1. A divergence-based regularity criterion. Before stating the main result of this
section, we first introduce some additional notation. Denote the positive and negative
parts of δ = ∇·u by δ− = max{0,−δ} and δ+ = max{0, δ} so that δ = δ+ − δ−. Then
denote

δ∗+ = δ∗+(t) := sup
x∈Ω

δ+(t, x). (4.1)

Our main result is then stated as follows.

Theorem 4.2. Given u0 ∈ L2, let u denote the unique smooth solution of (1.2) with
initial data u(0) = u0 over its maximal interval of existence (0, T ∗). If

∫ T∗

0
δ∗+(s) ds < ∞, (4.2)

then supt∈[0,T∗)∥u(t)∥L2 < ∞ and, subsequently, T ∗ = ∞. Conversely, if (4.2) fails, then
either lim supt→T∗−∥u(t)∥H3 or lim supt→T∗−∥u(t)∥H1 is infinite.

Proof. The energy balance of (1.2) is given by

1

2

d

dt
∥u∥2L2 + ∥∆u∥2L2 = −⟨u·∇u,u⟩ − λ⟨∆u,u⟩. (4.3)

Observe that

−⟨u·∇u,u⟩ =
1

2
⟨δ, |u|2⟩ =

1

2
⟨δ+, |u|2⟩ −

1

2
⟨δ−, |u|2⟩. (4.4)

On the other hand, by the Cauchy-Schwarz inequality and Young’s inequality

λ|⟨∆u,u⟩| ≤ λ∥∆u∥L2∥u∥L2 ≤
1

2
∥∆u∥2L2 +

λ2

2
∥u∥2L2. (4.5)

It follows that

d

dt
∥u∥2L2 + ∥∆u∥2L2 + ⟨δ−, |u|2⟩ ≤

(
δ∗+ + λ2

)
∥u∥2L2, (4.6)

where δ∗+ is defined by (4.1). An application of Grönwall’s inequality then implies

∥u(t)∥2L2 ≤ exp

(
λ2t+

∫ t

0
δ∗+(s) ds

)
∥u0∥2L2. (4.7)

In particular supt∈[0,T∗)∥u(t)∥L2 < ∞ provided that (4.2) holds. By Theorem 4.1, we
may continue the solution past T ∗ and in particular deduce that u(t) ∈ C∞ for all t > 0.
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Conversely, suppose that (4.2) fails. By Theorem 4.1, δ+(t, x) < ∞, for all t ∈ (0, T ∗).
Thus, supx∈Ω δ+(T ∗, x) = ∞. It follows from the Sobolev embedding theorem that

C∥u(t)∥H3 ≥ C∥δ(t)∥H2 ≥ sup
x∈Ω

δ+(t, x).

Upon taking the limit as t → T ∗−, we deduce that ∥u(T ∗)∥H3 must be infinite. !

Remark 4.3. We point out that this regularity criterion is independent of the dimension
of the spatial domain. In particular, Theorem 4.2 holds in d = 3 as well, with the converse
statement adjusted accordingly from the higher-dimensional Sobolev embedding.

Theorem 4.2 is an extension (in the d = 2 case) of one of the regularity criteria devel-
oped in [39, Theorem 3.13] in terms of the divergence. Namely, rather than a criterion
on the whole divergence, here, we have a criterion based only on the positive part, which
has a physical significance discussed above in Section 1. The main thrust of Theorem 4.2
is to revisit the role of the divergence in light of the observations made in Section 3; in
the next section we further refine Theorem 4.2 having in mind the understanding that the
behavior of solutions to (1.2) is effectively determined by its behavior on the large-scales
alone.

4.2. A low-mode regularity criterion. In this section, we establish a stronger version
of Theorem 4.2 that exploits the idea that growth of the solution is entirely determined
by its growth on large-scales. To state the main result, we introduce the notation PNv

to denote the projection of v onto its Fourier series up to wavenumbers |k| ≤ N . We will
make use of the shorthand vN = PNv and vN = (I−PN )v, and similarly for scalar-valued
functions.

Also recall that (1.2) possesses the symmetry of Galilean invariance, i.e., if u(t,x) is a
solution to (1.2) corresponding to initial data u(0,x) = u0(x), then

(Gvu)(t,x) = u(t,x+

∫ t

0
v(s)ds) − v(t), (4.8)

is a solution of (1.2) corresponding to initial data (Gvu)(0,x) = u0(x) − v(0), for any
sufficiently smooth function v : [0, T ∗) → R2, where T ∗ > 0 is corresponding maximal
time of existence. In particular, we may choose v = ū, where ū is defined as the spatial
mean of u:

ū(t) :=
1

|Ω|

∫

Ω
u(t,x)dx. (4.9)

Thus, one automatically has that Gūu(t) is mean-free for as long as the solution u exists.
In the analysis of the main results below, it will be useful to invoke the Galilean invari-
ance; its utility will be clear in the proofs. Before we proceed to the proof of the main
results, we collect a few elementary results regarding the relation between the Galilean
transformation, Sobolev norms, mean-values, and fluctuations.

Lemma 4.4. Let u be a smooth, periodic vector field over Ω and v : (0,∞) → R2 be
locally integrable. Then

∥Gvu(t)∥2Hκ =

{
∥u(t)∥2Hκ κ ̸= 0

∥u(t)∥2Hκ − |ū(t)− v(t)|2 κ = 0.
(4.10)

In particular

∥Gūu(t)∥Hκ = ∥u(t)− ū(t)∥Hκ , (4.11)
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for all κ ∈ R.

Proof. For all ℓ ∈ Z2 \ {0}, we see that v̂ℓ(t) = 0; upon changing variables and using the
translation invariance of Lebesgue measure on Ω, we see that

Ĝvuℓ(t) =
1

(2π)2

∫

Ω

(
u(t,x +

∫ t

0
v(s)ds) − v(t)

)
e−iℓ·xdx (4.12)

= eiℓ·
∫

t
0 v(s)ds

(
1

(2π)2

∫
∫

t
0 v(s)ds+Ω

u(t,x)e−iℓ·xdx

)

= eiℓ·
∫

t
0 v(s)dsûℓ(t).

It follows that |Ĝvuℓ(t)| = |ûℓ(t)|, for all ℓ ∈ Z2 \ {0}. Hence

∥Gvu(t)∥2Hκ =

{
∥u(t)∥2Hκ κ ̸= 0

∥u(t)∥2Hκ − |ū(t)− v(t)|2 κ = 0.

Now consider the special case v = ū and let ũ = u− ū. From (4.12), we also observe
that

Ĝūuℓ(t) = eiℓ·
∫

t
0 ū(s)ds ˆ̃uℓ(t).

In particular, |Ĝūuℓ(t)| = |ˆ̃uℓ(t)|, for all ℓ ∈ Z2 \{0}. Since ¯̃u = 0 by definition, it follows
that

∥Gūu(t)∥Hκ = ∥ũ(t)∥Hκ ,

for all κ ∈ R. This completes the proof. !

We will also make use of the following observation which effectively asserts the control
of the mean-value of solutions to (1.2) by their fluctuation component.

Lemma 4.5. Let u denote a smooth solution to (1.2) corresponding to initial value u0

and let T ∗ > 0 denote its maximal time of existence. Then

sup
0≤t≤T

|ū(t)| ≤ |ū0|+
1

8π2

∫ T

0
∥ũ(s)∥2H1ds, (4.13)

for any T < T ∗.

Now let us prove Lemma 4.5.

Proof of Lemma 4.5. Let ũ = u− ū. Observe that u·∇u = ũ·∇ũ + ū·∇ũ. Upon inte-
grating (1.2) over Ω, dividing by |Ω|, and invoking the divergence theorem and periodicity,
we obtain

d

dt
ū =

1

|Ω|

∫
ũ·∇ũdx. (4.14)

Upon integrating in time over [0, t], we then obtain

ū = ū0 +

∫ t

0

1

|Ω|

∫
ũ(s)·∇ũ(s)dx ds.

By the Cauchy-Schwarz and Young’s inequalities, we then deduce

|ū(t)| ≤ |ū0|+
1

2(2π)2

∫ t

0
∥ũ(s,x)∥2L2ds+

1

2(2π)2

∫ t

0
∥∇ũ(s,x)∥2L2ds.
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In particular

sup
0≤t≤T

|ū(t)| ≤ |ū0|+
1

8π2

∫ T

0
∥ũ(s)∥2H1ds,

for any T < T ∗. By Lemma 4.4, we deduce that

sup
0≤t≤T

|ū(t)| ≤ |ū0|+
1

8π2

∫ T

0
∥Gūu(s)∥2H1ds,

proving the desired result. !

Next, we prove a theorem inspired by the work of [10], which is in the same spirit as
Theorem 4.2, but which indicates that one only needs to focus on the divergence, weighted
preferentially on low modes as measured by a negative Sobolev norm. Of course, similar
to the Gibbs phenomenon, projecting to low modes may slightly change the regions of
positivity (and hence Theorem 4.2 is not a corollary of Theorem 4.6), but this is not
especially disruptive to our methods, and we can still obtain the following criterion on
the positive part of the low modes of the divergence.

Theorem 4.6. Given u0 ∈ L2, let u(· ;u0) denote the unique smooth solution of (1.2)
over its maximal interval of existence (0, T ∗). Given α ∈ [0, 2) and positive numbers C∗,
N∗, define

Nα(t;u0) =

[
C∗

(
∥u(t;u0)∥2H−α +N∗

)] 1
2−α

. (4.15)

For each α ∈ [0, 2), there exists a universal constant C∗, independent of u0 and T ∗, such
that for any N∗ such that C∗N∗ ≥ 1, if

lim sup
t→T∗−

∫ t

0
(PNα(s;u0)δ)

∗
+(s) ds < ∞, (4.16)

then supt∈[0,T∗)∥u(t)∥L2 < ∞ and, subsequently, T ∗ = ∞. Conversely, if (4.16) fails,
then lim supt→T∗−∥u(t)∥H3 is infinite.

Proof. Throughout the proof, it will be convenient to suppress the dependence ofNα(t;u0)
on t and u0. For convenience, we denote N = Nα. We first consider the case where u
is mean-free throughout its interval of existence. We write the cubic term in the energy
balance (4.3) as

− ⟨(u·∇)u,u⟩ = −⟨(uN ·∇)u,u⟩ − ⟨(uN ·∇)u,u⟩ =: I + II.

For I, we argue as in (4.4) to obtain

I =
1

2
⟨PN δ, |u|2⟩ =

1

2
⟨(PN δ)+, |u|2⟩ −

1

2
⟨(PN δ)−, |u|2⟩.

For II, we make use of the fact that uN is mean-free. Let ϵ ∈ (0, 1) and 1/pj +1/qj =
1/2, for j = 1, 2, where pj, qj ∈ [2,∞). Then by the Bernstein-type inequality (2.10) and
Kato–Ponce inequality (2.9) we obtain

|II| ≤ ∥D−ϵuN∥L2∥Dϵ((∇u)u)∥L2

≤
CKP

Nβ+ϵ
∥u∥Hβ

(
∥Dϵ∇u∥Lp1∥u∥Lq1 + ∥∇u∥Lp2∥Dϵu∥Lq2

)
,
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where β ∈ [−ϵ, 2]. By the Sobolev embedding (2.12) and interpolation (2.11), we see that
upon choosing (p1, q1) = (2/ϵ, ϵ) and (p2, q2) = (ϵ, 2ϵ), we have (since u is mean-free)

∥Dϵ∇u∥Lp1 ≤ CS∥∆u∥L2,

∥u∥Lq1 ≤ CS∥Dϵu∥L2 ≤ CS∥∆u∥
ϵ+α
2+α

L2 ∥D−αu∥
2−ϵ
2+α

L2 ,

∥∇u∥Lp2 ≤ CS∥D1+ϵu∥L2 ≤ CS∥∆u∥
1+ϵ+α
2+α

L2 ∥D−αu∥
1−ϵ
2+α

L2 ,

∥Dκu∥Lq2 ≤ CS∥∇u∥L2 ≤ CS∥∆u∥
1+α
2+α

L2 ∥D−αu∥
1

2+α

L2 ,

for any α ∈ [0, 2). For β ∈ [−(α ∧ ϵ), 2], inequality (2.11) yields

∥u∥Hβ ≤ ∥∆u∥
α+β
2+α

L2 ∥D−αu∥
2−β
2+α

L2 .

Choosing α+ β = 2− ϵ, we may now combine the above inequalities to deduce

|II| ≤ 2
CKPC2

S

Nβ+ϵ
∥∆u∥2L2∥u∥H−α .

In particular, observe that the pair (α,β) may be chosen among the following collection
of pairs:

(α,β) ∈ {(0, 2− ϵ), (ϵ, 2), (1, 1− ϵ), (2− ϵ, 0)}ϵ∈(0,1). (4.17)

Upon returning to (4.3), applying (4.5), the estimates for I, II, and the definition of
N (4.15), we arrive at

d

dt
∥u∥2L2 + ∥∆u∥2L2 + ⟨δ−, |u|2⟩ ≤

(
δ∗+ + λ2

)
∥u∥2L2 +

2CKPC2
S

C∗
∥∆u∥2L2,

provided that β ̸= −ϵ. Finally, by choosing, C∗ = 2CKPC2
S ∨ 1, we ensure that (4.7)

holds. This completes the proof for the mean-free case.
If u is not mean-free, then we consider the Galilean shifted solution, Gūu, satisfying

(1.2) with initial value u0 − ū0. By Lemma 4.4, the result then holds for Nα given by

Nα(t;u0) =
[
C∗

(
∥ũ(t;u0)∥H−α +N∗

)] 1
2−α

. (4.18)

Note that since C∗N∗ ≥ 1, we have Nα ≥ 1.
In particular, the result asserts that if (4.16) holds with Nα given by (4.18), then

supt∈[0,T∗]∥ũ(t; ũ0)∥L2 < ∞. By Theorem 4.1, it follows that supt∈[0,t0]∥u(t;u0)∥L2 <
∞ and supt∈[t0,T∗]∥ũ(t; ũ0)∥H1 < ∞, for some 0 < t0 < T ∗. Since ∥u(t;u0)∥2L2 =

∥ũ(t; ũ0)∥2L2 + |ū(t;u0)|2, we then see from Lemma 4.5 that supt∈[0,T∗]∥u(t;u0)∥L2 < ∞.
Finally, we apply Lemma 4.5 once again to replace (4.18) with (4.15). This completes the
proof. !

Remark 4.7. Regularity criteria in terms of the divergence were developed in [39, Theo-
rem 3.12] in arbitrary dimension d. In particular, it is shown there that in the case d = 2
that if δ ∈ Lr(0, T ;Lp), where p ∈ [1,∞], r ∈ [1, 2], then u is a globally regular solution
of (1.2). Theorem 4.6 therefore improves upon this regularity criterion when p = ∞,
r = 1 by only imposing an integrability condition on the positive part of the divergence on
sufficiently many low modes. The number of low-modes that need to be tracked depend on
H−α, where α ∈ [0, 2), which is strictly weaker than the energy-norm, L2, when α > 0.

Lastly, we address the integrability-in-time of the frequency cut-off N = N(t;u0).
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Theorem 4.8. Given u0 ∈ L2, let u(· ;u0) denote the corresponding unique smooth
solution of (1.2) over its maximal interval of existence (0, T ∗). Given α ∈ [0, 2), let
Nα(· ;u0) be given as prescribed by Theorem 4.6. Then u(· ;u0) is globally regular if and
only if Nα(· ;u0) ∈ L4(0, T ∗).

Proof. Assume that u is mean-free over its maximal interval of existence. We recall (4.3)
and rather than apply (4.4), we simply estimate the right-hand side directly with Hölder’s
inequality, interpolation, (A.1), and Young’s inequality to obtain

|⟨u·∇u,u⟩| ≤ ∥u∥2L4∥∇u∥L2 ≤ C∥∇u∥2L2∥u∥L2

≤ C∥∆u∥L2∥u∥2L2 ≤
1

4
∥∆u∥2L2 + C∥u∥4L2 .

Also

C∥∆u∥L2∥u∥2L2 ≤ C∥∆u∥L2∥u∥2−2ϵ
L2 ∥∆u∥

2αϵ
2+α

L2 ∥D−αu∥
4ϵ

2+α

L2

= C∥∆u∥
2+(1+2ϵ)α

2+α

L2 ∥u∥2−2ϵ
L2 ∥u∥

4ϵ
2+α

H−α

≤
1

2
∥∆u∥2L2 + C∥u∥

4(1−ϵ)(2+α)
2+α−2ϵα

L2 ∥u∥
8ϵ

2+α−2ϵα

H−α .

Then for any α ∈ [0, 2) and ϵ ∈ (0, 1) such that 2 + α = 4ϵ, we have

C∥∆u∥L2∥u∥2L2 ≤
1

2
∥∆u∥2L2 + C0∥u∥2L2∥u∥

4
2−α

H−α ,

for some absolute constant C0 > 0.
With (4.5), we deduce

d

dt
∥u∥2L2 + ∥∆u∥2L2 ≤ C0∥u∥

4
2−α

H−α∥u∥2L2 + λ2∥u∥2L2, (4.19)

for some universal constant C0. In particular

d

dt
∥u∥2L2 + ∥∆u∥2L2 ≤

(
λ
C0

C∗
N4 + λ2

)
∥u∥2L2. (4.20)

By Grönwall’s inequality

∥u(t)∥2L2 ≤ exp

(
λ2t+ λ

C0

C∗

∫ t

0
N4(s) ds

)
∥u0∥2L2.

This establishes the result for the mean-free case. We may now argue as we did in the
proof of Theorem 4.6 to complete the argument for the non-mean-free case. !

Remark 4.9. When α = 0, the condition N0(· ;u0) ∈ L4(0, T ∗) is consistent with the
Ladyzhenskaya–Prodi–Serrin (LPS) type regularity criterion for (1.2) that was developed
in [39]. Indeed, in the case d = 2, [39, Theorem 3.1] implies that if u ∈ Lr(0, T ;Wm,p),
where m ∈ (0, 1), p ∈ [1, 2/m), and r ∈ (4/3, 4/(1 + m)] or else m = 0 and p ∈ (1,∞],
r ∈ [4/3, 4), then u is a globally regular solution. Thus, N0(· ;u0) ∈ L4(0, T ∗) is simply
the assertion that u ∈ L2(0, T ∗;L2). When α ∈ (0, 2), Theorem 4.8 therefore provides a
non-trivial extension of the LPS regularity criterion that includes negative-Sobolev norms,
that is, by allowing for the case m < 0 (in the notation of [39]). Similar results can of
course be obtained for the case d = 3; we restrict our discussion to the d = 2 for narrative
clarity.



REMARKS ON THE STABILIZATION OF LARGE SCALES IN 2D KSE 13

Intuitively speaking, the growth of negative Sobolev norms indicate a growth of energy
in low frequencies, and hence, large-scales, since negative Sobolev norms penalize energy
in high frequencies. Thus, Theorem 4.6 provides yet another alternative perspective to the
issue of regularity of (1.2) that refines the statement that the behavior of the solution on
large-scales controls the behavior of the solution on all scales.

Remark 4.10. We point out that the range of α is almost sharp in the sense that we can
almost reach the “critical threshold” α = 2. Indeed one observes the following critical-type
phenomenon when estimating the trilinear interaction in the energy balance:

|⟨Gūu·∇Gūu, Gūu⟩| ≤ CL∥∆Gūu∥2L2∥Gūu∥H−2 , (4.21)

which can be proved by applying Hölder’s inequality, the Ladyzhenskaya inequality, and
(2.11), where CL denotes the constant from the Ladyzhenskaya inequality (see also (A.1)):

∥ϕ∥2L4 ≤ C∥∇ϕ∥L2∥ϕ∥L2.

In fact, in the context of Ω = R2, one may identify H−2 as a scaling-critical norm for
the system (1.2) in the particular case λ = 0, which possesses the scaling-symmetry,
uθ(t,x) = θ3u(θ4t, θx), for θ > 0. In particular, uθ is a solution of (1.2) whenever u is
a solution and ∥uθ∥H−2(R2) = ∥u∥H−2(R2).

In light of these remarks, one may essentially consider our analysis as “subcritical.”
Reaching the α = 2 criticality threshold would yield an optimal improvement of (4.6),
(4.8). However, the fact that (4.15) appears to blow up in the limit as α → 2 suggests that
there may be some interesting challenges to overcome in reaching this endpoint. Indeed,
this endpoint case may be viewed as an analog of the celebrated L3-based endpoint of the
LPS-regularity criterion for the 3D Navier–Stokes equations established by Escauriaza,
Seregin, and Šverák [16].

It would therefore be interesting to study whether the H−2 norm or other scale-consistent
quantity, especially those which are Lp–based, can serve as the frequency cut-off charac-
terized by (4.15) or to study the potential for ill-posedness at this regularity threshold.

5. Global regularity of the 2D Castrated KSE

Motivated by the results of Section 4.2, we propose a modification of (1.2) that inhibits
the transfer of energy to large-scales. Indeed, we observe from the energy balance (4.3)
that the trilinear interaction term can be expanded as

− ⟨(u·∇)u,u⟩
= −⟨PN ((u·∇)u),u⟩ − ⟨(I − PN )((u·∇)u),u⟩

= −⟨(uN ·∇)uN ,uN ⟩ − ⟨(uN ·∇)uN ,uN ⟩ − ⟨(uN ·∇)u,uN ⟩+ II

= Ia + Ib + Ic + II,

where

II := −⟨(I − PN )((u·∇)u),u⟩.

We therefore propose the following modification of (1.2):

∂tu+∆2u+ λ∆u

= −((uN(u)·∇)uN(u))N(u) − ((uN(u)·∇)u)N(u) − ((u·∇)u)N(u), (5.1)
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where N(u) is defined by the functional

N(u) = C∗

(
∥u∥L2 +N∗

)
, (5.2)

for some suitable number N∗ and positive constant C∗ such that C∗N∗ ≥ 1. Note that
this choice of N∗, C∗ ensures that N(u) ≥ 1. Observe that the first three terms on the
right-hand side of the balance are precisely Ib, Ic, and II. In particular, the mechanism
that would have produced large-scale energy from exclusively large-scale interactions has
been culled in (5.1). For this reason, we refer to (5.1) as the castrated KSE. We show
below that this system is globally regular.

Theorem 5.1. Let u0 ∈ L2 and λ > 0. There exist C∗, N∗ such that for all constants
C ≥ C∗ and N ≥ N∗ defining (5.2), a unique solution u ∈ Cw([0, T ];L2)) ∩ L2(0, T ;H2)
of (5.1) corresponding to initial data u(0) = u0 exists, for all T > 0. Moreover, for any
t0 > 0 and k ≥ 1, one has u ∈ C([t0, T ];Hk) such that

sup
t∈[t0,T ]

∥u(t)∥Hk ≤ C(t0, T, ∥u0∥L2) < ∞.

In particular, u(t) ∈ C∞, for all t ∈ (0, T ]. Lastly, if ∇⊥·u0 = 0, then ∇⊥·u(t) = 0, for
all t > 0.

Proof. Due to the fact that (5.1) is a reduced version of (1.2), the same analysis as
the one outlined in Appendix A for (1.2) can be carried out mutatis mutandis for the
Galerkin approximation of (5.1). The only technicality that needs to be addressed is
the issue of ensuring that the frequency cut-off (5.2) remains well-defined throughout the
evolution of the system. For this, we truncate (5.2) by N (n)(u) := N(u) ∧ n, so that
N (n) ≤ n. The same analysis produces a sequence of solutions {u(n)}n≥1 corresponding
to the system defined by the truncated cut-offs N (n), for which all of our apriori estimates
hold uniformly in n, allowing for passage to the limit (via a diagonalization argument)
as n → ∞. Thus, under the same hypothesis as (4.1), one has local existence of smooth
solutions to (5.1) emanating from initial data u0 ∈ L2. We omit these details and simply
refer the reader to Appendix A. In particular, it will again suffice to control u in L2. Note
that throughout the proof we will suppress the dependence of N(u) on u for convenience.

The energy balance of (5.1) is given by

1

2

d

dt
∥u∥2L2 + ∥∆u∥2L2

= −⟨(uN ·∇)uN ,uN ⟩ − ⟨(uN ·∇)u,uN ⟩ − ⟨(u·∇)u,uN ⟩ − λ⟨∆u,u⟩
= Ib + Ic + II − λ⟨∆u,u⟩.

Observe that it suffices to treat Ib, Ic, and II since the fourth term was already treated
in (4.5). Denoting again ũ := u− ū, it will also be helpful to note that (5.2) implies

N = C∗

(
(∥ũ∥2L2 + |ū|2)1/2 +N∗

)
.

For Ib, first observe that

Ib = −⟨(ũN ·∇)uN ,uN ⟩ − ⟨(ū·∇)uN ,uN ⟩ = I1b + I2b .
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We apply Hölder’s inequality, interpolation (2.11), the Poincaré inequality (2.10), (5.2),
and Young’s inequality to estimate

|I1b | ≤ ∥ũN∥2L4∥∇uN∥L2

≤
C

N
∥ũN∥H1∥ũN∥L2∥∆uN∥L2

≤
C

N
∥∆ũ∥1/2L2 ∥ũ∥1/2L2 ∥ũN∥L2∥∆uN∥L2

≤
1

12
∥∆u∥2L2 +

C

N4
∥ũN∥4L2∥u∥2L2

≤
1

12
∥∆u∥2L2 +

C

C4
∗

∥u∥2L2,

for some universal constant C > 0. Also

|I2b | ≤ |ū|∥∇uN∥L2∥uN∥L2

≤
|ū|
N

∥∆uN∥L2∥uN∥L2

≤
1

12
∥∆u∥2L2 +

C

4π2N2
∥uN∥2L2∥u∥2L2

≤
1

12
∥∆u∥2L2 +

C

C2
∗

∥u∥2L2.

To treat Ic we first observe that

Ic = −⟨(uN ·∇)ũ, ũN ⟩ − ⟨(uN ·∇)ũ, ū⟩ = I1c + I2c .

We then estimate Ic similarly to Ib. In particular, we have

|I1c | ≤ ∥uN∥L2∥∇ũ∥L4∥ũN∥L4

≤
C

N2
∥∆uN∥L2∥∆ũ∥3/4L2 ∥ũ∥1/4L2 ∥∇ũN∥1/2L2 ∥ũN∥1/2L2

≤
C

N3/2
∥∆u∥7/4L2 ∥ũ∥1/4L2 ∥ũN∥L2

≤
1

12
∥∆u∥2L2 +

C

N12
∥ũN∥8L2∥ũ∥2L2

≤
1

12
∥∆u∥2L2 +

C

C12
∗ N4

∗
∥u∥2L2,

for some universal constant C > 0, where we invoked (4.15) in obtaining the final inequal-
ity. We also have

|I2c | ≤ ∥uN∥L2∥∇ũ∥L2 |ū|

≤
C

4π2N2
∥∆uN∥L2∥∆ũ∥1/2L2 ∥ũ∥1/2L2 ∥u∥L2

≤
C

N2
∥∆u∥3/2L2 ∥u∥3/2L2

≤
1

12
∥∆u∥2L2 +

C

N8
∥u∥6L2,

≤
1

12
∥∆u∥2L2 +

C

C8
∗N2

∗
∥u∥2L2.
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Lastly, we estimate II. As before, let us first observe that

II = −⟨(ũ·∇)ũ,uN ⟩ − ⟨(ū·∇)ũ,uN⟩ = II1 + II2.

Observe that upon applying Hölder’s inequality, interpolation, the inverse Poincaré in-
equality, and the Cauchy-Schwarz inequality, we obtain

|II1| ≤ ∥ũ∥L4∥∇ũ∥L4∥uN∥L2

≤ C∥∇ũ∥L2∥ũ∥1/2L2 ∥∆ũ∥1/2L2 ∥uN∥L2

≤
C

N2
∥∆u∥L2∥∆ũ∥L2∥ũ∥L2

≤
C

C2
∗N∗

∥∆u∥2L2 ,

for some universal constant C > 0. Similarly

|II2| ≤ |ū|∥∇ũ∥L2∥uN∥L2

≤
C

2πN2
∥u∥L2∥∆ũ∥1/2L2 ∥ũ∥1/2L2 ∥∆uN∥L2

≤
C

N2
∥∆u∥3/2L2 ∥u∥L2∥ũ∥1/2L2

≤
1

12
∥∆u∥2L2 +

C

N8
∥u∥4L2∥ũ∥2L2

≤
1

12
∥∆u∥2L2 +

C

C8
∗N

2
∗

∥u∥2L2,

for some universal constant C > 0.
Let C0 denote the maximum over all constants C appearing in the estimates above.

We may then choose any positive constants C∗, N∗ satisfying

C0

C2
∗N∗

≤
1

12
and

C0

C2
∗

(
1 +

1

C2
∗
+

1

C6
∗N

2
∗
+

1

C10
∗ N4

∗

)
≤

1

2
(λ ∨ 1)2.

Then upon combining the above estimates and adding ∥u∥2L2 to both sides of the resulting
inequality, we arrive

d

dt
∥u∥2L2 + ∥u∥2H2+ ≤ 4(λ ∨ 1)2∥u∥2L2.

An application of Grönwall’s inequality then yields

∥u(t)∥2L2 +

∫ t

0
e4(λ∨1)2(t−s)∥u(s)∥2H2 ds ≤ e4(λ∨1)2t∥u0∥2L2 ,

and we are done. !

Remark 5.2. On the other hand, we may also control the transfer of energy produced
via nonlinear interaction by removing both the production of small-scale energy through
nonlinear interaction in addition to the large-scale energy produced from large-scale inter-
actions. In particular, one may consider what may be referred to as a “cascade-restricted”
KSE-type system:

∂tu+ ((uN(u)·∇)uN(u))N(u) + ((uN(u)·∇)u)N(u) = −∆2u− λ∆u, (5.3)
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When λ = 0, one may redefine N(u) = C∗

(
∥PNu∥L2 +N∗

)
, with similar defining con-

stants C∗, N∗ as in Theorem 4.6. In this case, (5.3) becomes a cascade-controlled hy-
perviscous Burgers-type equation. The above analysis then implies the existence of a
finite-dimensional global attractor. It would be interesting to study numerically whether
the long-time average of the energy for this system is an intensive quantity (see the dis-
cussion in Section 1).

Remark 5.3. We observe that the system (5.1) can be viewed as a controlled-KSE system.
In particular, (5.1) can be written as

∂tu+ u·∇u = −∆2u− λ∆u+ f(u;N),

where f(u;N) is given by

f(u;N) = PN(u)(uN(u)·∇uN(u)).

From this point of view, the control f(u;N) systematically removes large-scale/large-scale
interactions that contribute directly to large-scale motions as the KSE solution evolves.
An alternative approach to understanding the issue of global regularity could therefore be
to study the extent to which the low-mode/low-mode interactions can be systematically
added to (5.1) and retain the property of global well-posedness.

Remark 5.4. At first glace, system (5.1) may appear fairly complicated from the per-
spective of numerical simulations, since the “cut-off” wave number N(u) depends on the
solution, but by treating the system semi-implicitly (to avoid the stiffness of the linear
terms), so that N(u) depends on the previous time-step, a reasonable numerical scheme
can be devised. For example, for simple semi-implicit Euler time-stepping, one could
consider (with uk ≈ u(tk), time-step h > 0, and some appropriate spatial discretization):

(1 + h∆2 + hλ∆)uk+1 (5.4)

= uk − h((uk
N(uk)·∇)(uk)N(uk))N(uk) − h(((uk)N(uk)·∇)uk)N(uk) − h((uk·∇)uk)N(uk),

which is straight-forward to implement. We do not comment here on the stability or
consistency of scheme (5.4), but we plan to study simulations of (5.1) in a future work.

6. Global regularity of the 2D Burgers–Sivashinsky equation

In the final section of the paper, we apply Theorem 4.2 to show that solutions to
the so-called 2D “Burgers–Sivashinsky” equation (see, e.g., [24, 55]) are globally regular.
Although this result is known (see, e.g., [47, 48]), the proof we provide is new and a
straightforward consequence of Theorem 4.2, which the reader can verify is also valid for
the Burgers–Sivashinsky equation.

Recall that the curl-free Burgers–Sivashinsky equation is given by

∂tu+ u·∇u = ∆u+ λu, ∇⊥·u = 0. (6.1)

Note that (6.1) still possesses a Galilean-type invariance. Indeed, upon letting w = e−λtu,
we see that

∂tw + eλtw·∇w = ∆w. (6.2)

Thus, for Gλ
vw = w(t,x +

∫ t
0 eλsv(s)ds) − v(t), if w satisfies (6.2) with initial data w0,

then Gλ
w̄w satisfies (6.2) with mean-zero initial data, where w̄(t) = |Ω|−1

∫
Ωw(t,x)dx.

We remark that analysis similar to that performed in the previous sections may then still
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be applied to obtain similar results for the Burgers–Sivashinsky equation. However, in
what follows, only the analog of Theorem 4.2 is needed.

Theorem 6.1. Given a smooth vector field u0 such that ∇⊥·u0 = 0, there exists a
unique solution u ∈ C([0, T ];L2)) ∩L2(0, T ;H1) of (3.7) with initial data u(0) = u0, for
all T > 0, such that u(t) ∈ C∞, for all t ∈ [0, T ].

Proof. Let u be the unique local-in-time solution of (6.1) corresponding to initial data
u0 so that δ = ∇·u is also smooth. Similar to (3.7), the scalar divergence satisfies

∂tδ + u·∇δ = −|∇u|2 +∆δ + λδ (6.3)

Suppose that δ∗(t) = maxx∈Ω δ(t, x) = δ(t, x∗(t)). For t > 0, observe that ∇δ|(t,x∗(t)) = 0
and that ∆δ|(t,x∗(t)) ≤ 0. Then upon evaluating (6.3) at x∗(t) we obtain

d

dt
δ∗ ≤ λδ∗. (6.4)

Hence δ∗(t) ≤ eλtδ∗(0). Since δ∗(0) ≤ (δ∗(0))+ and δ∗+(t) = 0, if δ∗(t) ≤ 0, else δ∗(t) =
δ∗+(t), it follows that δ

∗
+(t) ≤ eλt(δ∗(0))+, which verifies (4.2). !

Remark 6.2. For a complete justification of interchanging the maximum operator with
the time-derivative in obtaining (6.4), we refer the reader to [12, Appendix B].

Remark 6.3. It is shown in [48] that an apriori bound for (6.1) of a quantity stronger
than ∥δ+(t)∥L∞ can be obtained, namely, for the quantity αp(t) := ∥(∂1u1(t))+∥pLp +
∥(∂2u2(t))+∥pLp, for all p ≥ 3. This quantity is, in turn, used to obtain an control
∥δ+(t)∥L2 , and therefore deduce global regularity. An apriori estimate for ∥δ(t)∥L∞, then
immediately follows. However, [47, 48] achieve much more with their analysis and ulti-
mately, sharp estimates on the absorbing ball in L2 are obtained.

7. Conclusions

To summarize, we establish the primacy of the divergence, particularly the low-mode
behavior of the positive part of the divergence, in determining global regularity of so-
lutions to the Kuramoto–Sivashinsky equation, (1.2), in dimension d = 2 (Theorem 4.2,
Theorem 4.6) This observation is motivated from the monotonicity of the divergence in
the 2D curl-free Burgers equation, (3.2) in Lagrangian coordinates. From this point of
view, our results suggest that an analysis of the interplay between the stabilizing and de-
stabilizing mechanisms present in (1.2) should also account for the sign of the divergence.

The cut-off frequency present in our divergence-based regularity criterion provides a
unified approach to regularity in the spirit [10]. This approach allows for more expansive
regularity criterion that complements existing results in the literature (Theorem 4.8),
specifically the rather comprehensive study [39]. In particular, we identify the role of
negative Sobolev norms as a type of critical quantity that warrants further investigation
(see Remark 4.9 and Remark 4.10).

Our study of the low-mode behavior of the divergence further inspires a modifica-
tion to (1.2), namely, the castrated KSE (5.1). The castrated KSE removes large-scale
interactions that contribute to amplification of large-scale energy, but retains all other
interactions. Provided that a sufficiently large number of these interactions are removed,
we are able to establish global regularity of solutions. It would be interesting to study the
long-time behavior of (5.1), investigate whether or not it is exhibits chaotic dynamics,
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as well as study how it compares to the original 2D KSE model (1.2). However, since
we do not establish a uniform-in-time bound of the energy for this system, we propose a
further modification of (5.1) that possesss and L2 absorbing ball, which we refer to as the
cascade-restricted KSE (5.3). This further modified KSE may be closer to the 1D KSE
and potentially frutiful ground for studying whether or not the long-time averaged energy
is an intensive quantity in the sense described in the introduction. We believe these issues
are interesting and deserve further investigation, both analytically and computationally,
for example using a scheme in the spirit of the scheme we proposed in Remark 5.4.

Lastly, as an application our regularity criterion, we supply an efficient proof of the
global regularity of the 2D Burgers-Shivashinsky model (6.1). It is our hope that our reg-
ularity criteria may also shed light on the issue of global regularity for the 2D Michelson-
Shivashinsky model, whose vector form is given by

∂tu+ u·∇u = ∆u+ λ(−∆)1/2u. (7.1)

In this direction, we specifically refer the reader to a recent result of H. Ibdah [28], wherein
it is shown that a modified (7.1) is shown to be globally regular in any dimension.
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Appendix A. Local Existence of solutions

We provide the relevant energy estimates that ultimately imply local existence and
uniqueness of strong solutions. We proceed in a formal fashion and remark that a rigor-
ous argument can be made by carrying out the energy estimates for the corresponding
Galerkin approximation; one may observe that the estimates performed below will yield
estimates uniform in the dimension of the Galerkin system.

It will be convenient to have the following interpolation inequalities on hand:

∥v∥2L4 ≤ C∥v∥H1∥v∥L2 , (A.1)

∥∂αv∥L∞ ≤ C∥∆∂αv∥
2|α|+2

2(|α|+2)

L2 ∥v∥
1

|α|+2

L2 , (A.2)

where α is any multi-index such that |α| ≥ 1.

Proof sketch of Theorem 4.1. First, we establish estimates in L2. We recall the energy
balance (4.3) from the proof of Theorem 4.2. We alternatively estimate the trilinear term
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using Hölder’s inequality, (2.11), and (A.1):

−⟨u·∇u,u⟩ ≤ C∥u∥2H1∥u∥L2

≤ C(∥∇u∥2L2 + ∥u∥2L2)∥u∥L2= C∥∇u∥2L2∥u∥L2 + C∥u∥3L2

≤ C∥∆u∥L2∥u∥2L2 + C∥u∥3L2

≤
1

4
∥∆u∥2L2 + C(1 + ∥u∥2L2)∥u∥2L2.

Combining this with (4.5), then adding 1
4∥u∥

2
L2 to both sides yields

d

dt
∥u∥2L2 +

1

4
∥u∥2H2 ≤ C(1 + λ+ ∥u∥2L2)∥u∥2L2.

It then follows from Grönwall’s inequality that there exists T ∗ > 0 such that for all
T < T ∗, u satisfies

sup
0≤t≤T

(
∥u(t)∥2L2 +

∫ t

0
∥u(s)∥2H2 ds

)
≤ C∗(T, ∥u0∥L2), (A.3)

for all t ∈ [0, T ], where limT→T∗− C∗(T, ∥u0∥L2) = ∞. In particular, u ∈ L2(0, T ;H2),
for all T < T ∗, so that u(t) ∈ H2 for a.e. t ∈ (0, T ∗). We moreover estimate

∫ T

0
∥
du

dt
(t)∥2H−2dt ≤ C

∫ T

0
∥u(t)∥2H2dt+ C

∫ T

0
∥u(t)·∇u(t)∥2L2dt+ Cλ2

∫ T

0
∥u(t)∥2L2dt

≤ C

∫ T

0
∥u(t)∥2H2dt+ C

∫ T

0
∥u(t)∥2H2∥u(t)∥2L2 + Cλ2

∫ T

0
∥u(t)∥2L2dt

≤ C

⎡

⎣1 +
(

sup
t∈[0,T ]

∥u(t)∥L2

)2
⎤

⎦
∫ T

0
∥u(t)∥2H2dt+ Cλ2

∫ T

0
∥u(t)∥2L2dt.

Hence du
dt ∈ L2(0, T ;H−2).

We now deduce Hk estimates for (1.2), for any k ≥ 2. Let α ∈ (N∪{0})k, where k ≥ 1,
and |α| = k. The corresponding Hk balance is obtained by taking the L2 inner produce
of (1.2) with ∂2αu, and then sum over all |α| = k. Indeed, we obtain

1

2

d

dt
∥u∥2Hk + ∥∆u∥2Hk = −(−1)k

∑

|α|=k

⟨∂α(u·∇)u, ∂αu⟩ − (−1)kλ
∑

|α|=k

⟨∂α∆u, ∂αu⟩

Observe that

⟨∂α(u·∇u), ∂αu⟩

=
∑

δ+β=α

cδ,β⟨∂δuj∂j∂
βuℓ∂αuℓ⟩

= cα,0⟨∂αuj∂ju
ℓ, ∂αuℓ⟩+ c0,α⟨uj∂j∂

αuℓ∂αuℓ⟩+
∑

0<|δ|,|β|<k

cδ,β⟨∂δuj , ∂j∂
βuℓ∂αuℓ⟩.
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Since the derivatives are mean-free due to the periodic boundary conditions, by interpo-
lation, (A.2), and Young’s inequality, one has

|⟨∂αuj∂ju
ℓ, ∂αuℓ⟩| = ∥∂αu∥2L2∥∇u∥L∞

≤ C∥∆∂αu∥
2k

k+2

L2 ∥u∥
4

k+2

L2 ∥∆∇u∥1/2L2 ∥∇u∥1/2L2

≤ C∥∆∂αu∥
2(k+1)
k+2

L2 ∥u∥
k+4
k+2

L2

≤
1

8
∥∆∂αu∥2L2 + C∥u∥

k+4
k+1

L2 .

Also, upon integrating by parts and estimating as before, we see that

|⟨uj∂j∂
αuℓ∂αuℓ⟩| = |⟨δ, |∂αu|2⟩|

≤ ∥∇u∥L∞∥∂αu∥2L2

≤
1

8
∥∆∂αu∥2L2 + C∥u∥

k+4
k+1

L2 .

Lastly

|⟨∂δuj , ∂j∂
βuℓ∂αuℓ⟩| ≤ ∥∂δu∥L2∥∇∂βu∥L2∥∂αu∥L∞

≤ C∥∆∂αu∥
2(k+1)
k+2

L2 ∥u∥
k+4
k+2

L2 .

An application of Young’s inequality again yields

∑

0<|δ|,|β|<k

cδ,β|⟨∂δuj , ∂j∂
βuℓ∂αuℓ⟩| ≤

1

8
∥∆∂αu∥2L2 + C∥u∥

k+4
k+1

L2 .

We are left to treat one more term:

λ|⟨∆u, ∂2αu⟩| ≤ λ∥∆∂αu∥L2∥∂αu∥L2

≤
1

8
∥∆∂αu∥2L2 + Cλ2∥∂αu∥2L2 .

Finally, combining the above and adding ∥u∥2L2 to both sides of the resulting inequality,
we arrive at

d

dt
∥u∥2Hk + ∥u∥2Hk+2 ≤ Cλ2∥u∥2Hk + C(1 + ∥u∥2L2)

k+4
2(k+1) .

By (4.19) and an application of Grönwall’s inequality, it follows that

sup
t∈[0,T ]

(
∥u(t)∥2Hk +

∫ t

0
∥u(s)∥2Hk+2 ds

)
≤ eCλ2TC∗(T, ∥u0∥L2)

k+4
k+1 ,

for all T < T ∗, where C∗ is the same constant from (A.3), and T ∗ is the same existence
time appearing there.

Finally, we see that we may bootstrap from the fact that u(t) ∈ H2 a.e. t ∈ (0, T ).
For such t0 ∈ (0, T ), we may then show u ∈ Cw([t0, T ];H2), which implies u(t) ∈ H2 for
all t ∈ [t0, T ). Since this holds for a sequence of t0 → 0, it follows that u(t) ∈ H2, for
all t ∈ (0, T ). The above estimates then imply that u ∈ L2(0, T ;H2k), where k = 2. We
may now induct on k to deduce u(t) ∈ Hk, for all t ∈ (0, T ), for all k ≥ 1. !
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