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A B S T R A C T

Various techniques are developed for addressing the existence, uniqueness and numerical
calculation of Wiener path integral (WPI) most probable path solutions. Specifically, the WPI
technique for determining the stochastic response of diverse nonlinear dynamical systems treats
the system response joint transition probability density function as a functional integral over
the space of all possible paths connecting the initial and the final states of the response vector.
This functional integral is evaluated, ordinarily, by resorting to an approximate approach
that considers the contribution only of the most probable path. The most probable path
corresponds to an extremum of the functional integrand and is determined by solving a
functional minimization problem that takes the form of a deterministic boundary value problem
(BVP).

In this paper, first, it is shown that for the commonly considered case of the system
nonlinearity being of polynomial form, there exist globally optimal solutions corresponding
to the most probable path BVP. Further, relying on algebraic geometry concepts and tools, a
condition is derived for determining if the BVP for the most probable path exhibits a unique
solution over a specific region. Furthermore, a novel solution approach is developed for the
BVP by relying on Sylvester’s dialytic method of elimination. Notably, the method reduces the
complexity of the BVP system of coupled multivariate polynomial equations by eliminating one
or more variables. Various numerical examples pertaining to diverse nonlinear oscillators are
included for demonstrating the capabilities of the developed techniques.

1. Introduction

Monte Carlo simulation (MCS) constitutes a versatile technique for determining the stochastic response of diverse nonlinear
dynamical systems and structures (e.g., [1–3]). Nevertheless, the associated computational cost becomes prohibitive when the
objective relates to estimating quite low probability events (e.g., failures). In this regard, various alternative, semi-analytical or
purely numerical, techniques have been developed in the field of stochastic engineering dynamics over the past six decades for
treating complex structural systems and for computing response and reliability statistics. The interested reader is directed to some
standard books and review papers, such as in Refs. [4–8], for a broad perspective.
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Notably, one of the promising techniques, pioneered in stochastic engineering dynamics by Kougioumtzoglou and co-workers [9,
10], relies on the mathematical concept of Wiener path integral (WPI) that was originally developed by Wiener [11,12]. Remarkably,
the technique exhibits both high accuracy [13–15] and low computational cost [16], and is capable of treating stochastically excited
systems exhibiting diverse complex nonlinear/hysteretic behaviors (e.g., [17–19]).

According to the WPI technique (e.g., [20]), the system response joint transition probability density function (PDF) is expressed
as a functional integral over the space of all possible paths connecting the initial and the final states of the response vector. Further,
the functional integral is evaluated, ordinarily, by resorting to an approximate approach that considers the contribution only of
the most probable path. This corresponds to an extremum of the functional integrand and is determined by solving a functional
minimization problem that takes the form of a deterministic boundary value problem (BVP).

In general, a plethora of well-established numerical optimization schemes (e.g., [21]) can be employed for solving the resulting
deterministic BVP for the most probable path. In this regard, a Newton’s iterative optimization scheme was developed in [22].
However, there is generally no guarantee that the optimization algorithm converges to a global minimum. To address this issue, a
conceptually different solution approach was also pursued in [22] that relied on computational algebraic geometry concepts and
tools. In fact, a Gröbner basis approach was utilized, based on which the entire set of solutions corresponding to the BVP can be
computed. Thus, the global minimum (or minima) can be determined. Nevertheless, the associated computational cost becomes
non-trivial with increasing system dimensionality.

In this paper, the focus is directed to the existence, uniqueness and calculation of WPI most probable path solutions. In this
regard, first, it is shown that for the commonly considered case of the system nonlinearity being of polynomial form, there exist
globally optimal solutions corresponding to the most probable path optimization problem. Further, relying on algebraic geometry
concepts and tools, a condition is derived for determining if the BVP for the most probable path exhibits a unique solution over
a specific region. Furthermore, a novel solution approach is developed for the BVP by relying on Sylvester’s dialytic method of
elimination [23,24]. The rationale of the method relates to reducing the complexity of the BVP system of coupled multivariate
polynomial equations by eliminating one or more variables. In fact, the method yields a univariate polynomial equation to be solved
for the suppressed variable. Various numerical examples pertaining to diverse nonlinear oscillators are included for demonstrating
the capabilities of the developed techniques.

2. Preliminaries

2.1. Wiener path integral and most probable path approximation

In this section, the salient aspects of the WPI technique, pioneered in the field of engineering mechanics by Kougioumtzoglou
and co-workers [9,10] for determining the stochastic response of diverse dynamical systems, are reviewed for completeness. The
interested reader is also directed to Refs. [15,16,20] for more details and some more recent developments.

Specifically, consider a nonlinear multi-degree-of-freedom (multi-DOF) system whose dynamics is governed by the second-order
stochastic differential equation

Mẍ + g (x, ẋ) = w (t) . (1)

In Eq. (1), x =
[
xj (t)

]
n×1

is the n-dimensional response displacement vector, M denotes the n× n mass matrix, g =
[
gj (x, ẋ)

]
n×1

is
an arbitrary n-dimensional nonlinear vector-valued function, and w represents a Gaussian white noise stochastic excitation vector
process with E [w (t)] = 0 and E

[
w (t)wT (t − �)

]
= D� (�), where D ∈ Rn×n is a deterministic coefficient matrix.

Next, according to the WPI technique (e.g., [12,20]), the joint response transition PDF p
(
xf , ẋf , tf |xi, ẋi, ti

)
corresponding to

the system of Eq. (1) can be expressed as a functional integral over the space of all possible paths  {
xf , ẋf , tf |xi, ẋi, ti

}
that the

response process can follow; that is,

p
(
xf , ẋf , tf |xi, ẋi, ti

)
= ∫{xf ,ẋf ,tf |xi ,ẋi ,ti} exp (− [x, ẋ, ẍ]) [x(t)] , (2)

where the stochastic action  [x, ẋ, ẍ] is expressed as

 [x, ẋ, ẍ] = ∫
tf

ti

 (x, ẋ, ẍ)dt (3)

and

 (x, ẋ, ẍ) =
1

2
[Mẍ + g (x, ẋ)]TD−1 [Mẍ + g (x, ẋ)] (4)

denotes the Lagrangian functional of the system. Further,  [x(t)] in Eq. (2) represents a functional measure.
Nevertheless, calculating analytically the functional integral of Eq. (2) is, in general, an impossible task. In this regard, the

most probable path approximation is routinely employed in the literature for evaluating Eq. (2). This is done by considering the
contribution only of the path with the maximum probability of occurrence (e.g., [12,22]). Specifically, the largest contribution to
the functional integral of Eq. (2) relates to the trajectory xc (t) for which the stochastic action in Eq. (3) becomes as small as possible.
This leads to the variational (functional minimization) problem

minimize{xf ,ẋf ,tf |xi ,ẋi ,ti}
 [x, ẋ, ẍ] (5)
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with the set of boundary conditions, for j = 1,… , n,

xj
(
ti
)
= xj,i ẋj

(
ti
)
= ẋj,i,

xj
(
tf
)
= xj,f ẋj

(
tf
)
= ẋj,f .

(6)

Further, solving Eq. (5) and obtaining xc (t), the functional integral of Eq. (2) is evaluated approximately as

p
(
xf , ẋf , tf |xi, ẋi, ti

)
≈ C exp

(
− [

xc , ẋc , ẍc
])
, (7)

where C is a constant to be determined by the normalization condition

∫
∞

−∞ ∫
∞

−∞

p
(
xf , ẋf , tf |xi, ẋi, ti

)
dxfdẋf = 1. (8)

2.2. Rayleigh–Ritz solution scheme for the most probale path

In general, various methodologies can be employed for treating the optimization problem of Eq. (5) and for determining xc (t).
These range from standard Rayleigh–Ritz type numerical solution schemes (e.g, [10]) to more recently developed techniques
relying on computational algebraic geometry concepts and tools [22]. Alternatively, considering Eq. (5) and resorting to calculus of
variations (e.g., [25]) yields the corresponding Euler–Lagrange equations, which take the form of a BVP to be solved for obtaining
the most probable path xc (t) (e.g., [26]).

In this section, the basic elements of a Rayleigh–Ritz solution scheme for determining the most probable path xc (t) are concisely
reviewed for completeness; see also [10,19,22] for more details. Specifically, x (t) is approximated by

x (t) ≈ x̂ (t) =  (t) +Zh (t) , (9)

where  (t) is selected to satisfy the boundary conditions of Eq. (6), and the trial functions h (t) =
[
ℎl (t)

]
L×1

vanish at the boundaries,
i.e., h

(
ti
)
= h

(
tf
)
= 0;Z ∈ Rn×L is a coefficient matrix and L is the number of trial functions. Further, utilizing a vectorized form

of Z, Eq. (9) becomes, equivalently,

x̂ (t) =  (t) +H (t) z (10)

with

z =

⎡⎢⎢⎢⎢⎣

ZT
1

ZT
2

⋮

ZT
n

⎤⎥⎥⎥⎥⎦
and H (t) =

⎡⎢⎢⎢⎢⎣

hT (t) 0 ⋯ 0

0 hT (t) ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ hT (t)

⎤⎥⎥⎥⎥⎦
, (11)

where Zl denotes the l
th row of matrix Z and H (t) represents an n×nLmatrix. In the ensuing analysis, and without loss of generality,

the Hermite interpolating polynomials

 j (t) =

3∑
k=0

aj,kt
k, (12)

are used, i.e.,  (t) =
[
 j (t)

]
n×1
, where the n × 4 coefficients aj,k are determined based on the boundary conditions of Eq. (6). For

the trial functions, the shifted Legendre polynomials given by the recursive formula

lq+1 (t) =
2q + 1

q + 1

(
2t − ti − tf

tf − ti

)
lq (t) −

q

q + 1
lq−1 (t) , q = 1,… , L − 1, (13)

are employed, which are orthogonal in the interval
[
ti, tf

]
with l0 (t) = 1 and l1 (t) =

(
2t − ti − tf

)
∕
(
tf − ti

)
. Ultimately, the trial

functions take the form

ℎl (t) =
(
t − ti

)2(
t − tf

)2
ll (t) . (14)

Note that ℎl (t) is a polynomial of order l + 4 that vanishes at the boundaries. Further, each component x̂j (t) of x̂ (t) in Eq. (9) is a
polynomial of order up to L + 4 in t.

Overall, the variational problem of Eq. (5) degenerates to an ordinary minimization problem of a function that depends on a
finite number of variables. Specifically, the functional , dependent on the n functions x (t) (and their time derivatives), is cast in
the form

S (z) ∶= (x̂, ̇̂x, ̈̂x), (15)

that depends on a finite number of nL coefficients z. Thus, the optimization problem corresponding to Eq. (5) becomes

min
z

S (z) . (16)

Further, the solution z∗ of Eq. (16) satisfies the first-order optimality condition

∇S (z) = 0, (17)

which represents a system of nL nonlinear algebraic equations to be solved numerically. Once the solution z∗ of the optimization
problem in Eq. (16) is obtained, the most probable path xc is determined by Eq. (9).
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3. Optimization problem for the Wiener path integral most probable path: Existence, uniqueness and calculation of
solutions

3.1. Existence of globally optimal solutions for the Wiener path integral most probable path

In this section, it is shown that for the commonly considered case of the nonlinear function g (x, ẋ) being of polynomial form,
there exist globally optimal solutions corresponding to the optimization problem of Eq. (16).

Specifically, for a polynomial nonlinear function g (x, ẋ) of degree d, the objective function S (z) in Eq. (16) becomes a
multivariate polynomial of degree 2d in p ∶= nL variables; see also [22] for more details. Further, the first-order optimality condition
of Eq. (17) yields a polynomial system of p equations of the form

f1
(
z1, z2,… , zp

)
= 0,

⋮

fp
(
z1, z2,… , zp

)
= 0,

(18)

where each fi is a polynomial of degree at most 2d − 1 with real coefficients.

Next, consider p-tuples of nonnegative integers � =
(
�1, �2,… , �p

)
. The monomial in variables z1, z2,… , zp, i.e., z1

�1z2
�2 ⋯ zp

�p ,
is represented as z� and |�| denotes the sum of powers

∑p

i=1
�i. The degree of the polynomial S (z) is defined as the maximum among

the sums of powers of all monomials in S (z). Thus, a general polynomial of degree d in the variables z1, z2,… , zp can be written
as [27],

S (z) =
∑
|�|≤d

c�z
� , (19)

where c� are real coefficients. The following theorem provides a sufficient condition for the existence of global minimizers of Eq. (19).

Theorem 1. Let S (z) be a multivariate polynomial of even degree 2d, expressed as

S (z) =
∑

|�|=2d
c�z

� +
∑

|�|<2d
c�z

� . (20)

If

lim‖z‖→+∞

∑
|�|=2d

c�z
� = +∞, (21)

then S (z) has at least one global minimizer.

Proof. Assuming that Eq. (21) holds true, it follows from Eq. (20) that

lim‖z‖→+∞
S (z) = +∞. (22)

Thus, there exists r > 0 such that for all ‖z‖ > r,
S (z) > S (0) . (23)

Further, let B̄ (0, r) denote the set {z ∶ ‖z‖ ≤ r} that is closed and bounded. Since the function S (z) is continuous on B̄ (0, r), S (z)

has a global minimizer z∗ on B̄ (0, r), i.e.,

S (z) ≥ S
(
z∗

)
, z ∈ B̄ (0, r) . (24)

In particular S (0) ≥ S
(
z∗

)
. For z ∉ B̄ (0, r),

S (z) > S (0) ≥ S
(
z∗

)
. (25)

Hence, z∗ is a global minimizer of S (z) on Rp. □

The following Lemma relates to a special form of the polynomial of Eq. (20) that satisfies the condition of Eq. (21), and thus,
the corresponding S (z) has at least one global minimizer.

Lemma 1. In Eq. (20), for the monomials corresponding to |�| = 2d, if the associated coefficients c� are positive and the respective powers
are even numbers, i.e., �i = 2k for i = 1, 2,… , p and k ∈ N and c� are zero otherwise, then S (z) has at least one global minimizer.

Proof. It is readily seen that if c� are positive and �i = 2k for i = 1, 2,… , p, k ∈ N, and c� are zero otherwise, then the first term
on the right hand side of Eq. (20) becomes a summation of monomials of even powers with positive coefficients, and thus Eq. (21)
holds true. Hence, Theorem 1 is satisfied and S (z) has at least one global minimizer. □
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3.2. Uniqueness of solution for the Wiener path integral most probable path

In this section, based on algebraic geometry concepts and tools, a condition is derived for determining if Eq. (18) exhibits a unique
solution over a region in the domain of z. The interested reader is also directed to Refs. [27–32] for a comprehensive exposition to
the topic of (computational) algebraic geometry.

In this regard, consider next the polynomial system of Eq. (18) whose entire set of solutions is referred to as the affine variety
V (I), where I is the ideal generated by the polynomials f1, f2,… , fp. Let VR (I) denote the real points of the variety V (I). It is
assumed that V (I) is a finite set, or equivalently, that the quotient ring A = R

[
z1, z2,… , zp

]
∕I is a finite dimensional R-vector

space.
Further, the vector space A = R

[
z1, z2,… , zp

]
∕I is also an algebra, thus for any f ∈ A, multiplication by f induces a vector

space endomorphism, denoted by Lf ∈ EndR (A). This defines a homomorphism L ∶ A → EndR (A), such that LfLg = Lfg . Since A
is a finite-dimensional algebra, multiplication by f on A can be represented by a matrix mf . In this regard, the symmetric bilinear
form B is defined as

B (f, g) = T r
(
mf ⋅ mg

)
= T r

(
mfg

)
, (26)

where T r denotes the trace, i.e., the sum of diagonal entries of a square matrix. Furthermore, the matrix of B on the vector space
A with basis

{
v1, v2,… , vd

}
is given by

Mi,j =
(
T r

(
mvivj

))
. (27)

Note that for a given symmetric bilinear form B with the matrix M , the signature � (B) is equal to the difference between the
number of positive eigenvalues and the number of negative eigenvalues of M , and the rank � (B) is equal to the rank of matrix M .
Also, for a given polynomial ℎ ∈ R

[
z1, z2,… , zp

]
, the associated bilinear form is defined as

Bℎ (f, g) = B (ℎf, g) = T r
(
mℎfg

)
, (28)

and the associated quadratic form Qℎ as

Qℎ (f ) = B (ℎf, f ) = T r
(
mℎf2

)
. (29)

Lemma 2 (32). Let V (I) be a finite affine variety defined by the ideal I generated by
(
f1, f2,… , fs

)
, where fi ∈ R

[
z1, z2,… , zp

]
, and

ℎ ∈ R
[
z1, z2,… , zp

]
be a given polynomial. Then,

�
(
Qℎ

)
= #

{
z ∈ VR (I) ∶ ℎ

(
z
)
> 0

}
− #

{
z ∈ VR (I) ∶ ℎ

(
z
)
< 0

}
, (30)

and

�
(
Qℎ

)
= #

{
z ∈ VC (I) ∶ ℎ

(
z
) ≠ 0

}
, (31)

where � denotes the signature and � denotes the rank of the quadratic form Qℎ and #A denotes the number of elements of the set A.

The uniqueness of solution of Eq. (18) in a region R can be demonstrated by utilizing the following theorem.

Theorem 2. Given the system in Eq. (18), and a region

R =
{(
z1, z2,… , zp

)
∶ zi ∈

(
ai, bi

)
, i = 1, 2,… , p

}
, (32)

the uniqueness of solution in R is implied if

�
(
Qℎi

)
= −1 and �

(
Qℎ2

i

)
= 1, (33)

where ℎi
(
z1, z2,… , zp

)
=
(
zi − ai

) (
zi − bi

)
, for i = 1, 2,… , p.

Proof. Let

Hi =
{(
z1, z2,… , zp

)
∶ ℎi

(
z1, z2,… , zp

)
< 0

}
, (34)

then Hi =
{(
z1, z2,… , zp

)
∶ zi ∈

(
ai, bi

)}
and

R = H1 ∩H2 ∩… ∩Hp =

p⋂
i=1

Hi. (35)

Next, employing Lemma 2, Eq. (30) yields

�
(
Qℎi

)
= #

{
z ∈ VR (I) ∶ ℎi

(
z
)
> 0

}
− #

{
z ∈ VR (I) ∶ ℎi

(
z
)
< 0

}
= −1. (36)

Further, since ℎ2
i

(
z
)
> 0 at every point z such that ℎi

(
z
)
> 0 and ℎi

(
z
)
< 0, Eq. (30) leads to

�
(
Qℎ2

i

)
= #

{
z ∈ VR (I) ∶ ℎi

(
z
)
> 0

}
+ #

{
z ∈ VR (I) ∶ ℎi

(
z
)
< 0

}
= 1, (37)
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for i = 1, 2,… , p. Taking into account Eqs. (36) and (37) yields

#
{
z ∈ VR (I) ∶ ℎi

(
z
)
> 0

}
= 0, (38)

and

#
{
z ∈ VR (I) ∶ ℎi

(
z
)
< 0

}
= 1. (39)

Thus, #VR (I) ∩Hi = 1 and #VR (I) ∩Hc
i
= 0 for i = 1, 2,… , p. Therefore,

#VR (I) ∩ R = #VR (I) ∩

(
p⋂
i=1

Hi

)
= 1, (40)

and

#VR (I) ∩ RC = #VR (I) ∩

(
p⋂
i=1

Hi

)C

= 0, (41)

where RC denotes the counterpart of R. In other words, there exists a unique solution of Eq. (18) in R. □

Note that for the special case ℎ = 1, the signature of Q1 is equal to the number of elements in VR (I). Therefore, solution
uniqueness for Eq. (18) is implied if

�
(
Q1

)
= 1. (42)

Clearly, the application of Theorem 2 entails the evaluation of the signature of the quadratic form Qℎ. To this aim, the following
proposition can be employed.

Proposition 1 (32). Let Mℎ be the matrix of Qℎ and

pℎ (�) = det
(
Mℎ − �I

)
(43)

be the characteristic polynomial ofMℎ. Then, the number of positive eigenvalues ofMℎ is equal to the number of sign changes in the sequence
of coefficients of Mℎ.

Further, the steps for determining the matrix Mℎ of quadratic form Qℎ of an arbitrary ℎ ∈ R
[
z1, z2,… , zp

]
corresponding to

the system of polynomials in Eq. (18) are presented in Algorithm 1, which is based on the following three main subroutines that
can be found in most computer algebra systems; see also [22,33] for more details and some recent applications of the algorithm in
engineering dynamics.

• Groebner
(
f1, f2,… , fp

)
: This subroutine computes a Gröbner basis G for the ideal generated by f1, f2,… , fp (see for instance

Basis (.) command in Maple).
• StandardBasis (G): This subroutine computes a monomial basis B corresponding to the Gröbner basis G (see for instance
NormalSet (.) command in Maple).
• MulMatrix (f, B,G): This subroutine computes the multiplication matrix for a polynomial f based on the Gröbner basis G
and basis B (see for instance MultiplicationMatrix (.) command in Maple).

Algorithm 1: Computation of matrix Mℎ of the quadratic form Qℎ

Input: ℎ, f1, f2,… , fp ∈ R
[
z1, z2,… , zp

]
Output: Mℎ

1: G = Groebner
(
f1, f2,… , fp

)
2: B = StandardBasis (G)

3: n = length (B)
4: Initialize Mℎ as an empty n × n matrix
5: for i = 1 to n do
6: for j = 1 to n do
7: Mℎ (i, j) = Tr (MulMatrix (ℎ ⋅ B (i) ⋅ B (j) , B, G))

8: end for
9: end for
10: return Mℎ

3.3. Calculation of solutions for the Wiener path integral most probable path

In general, a wide range of numerical solution methodologies can be employed for treating the optimization problem described
by Eq. (16); see, for instance, Ref. [21] for a broad perspective on various numerical optimization algorithms. In fact, a Newton’s
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iterative optimization scheme was developed in [22] for solving Eq. (16). Nevertheless, although the Newton’s scheme exhibits
some desirable properties such as a quadratic convergence rate under certain conditions, the associated computational cost becomes
non-trivial for an increasing number of p = nL variables in Eq. (16).

Further, a conceptually different solution approach was also pursued in [22] that relies on computational algebraic geometry
concepts and employs Gröbner bases. Remarkably, the approach is capable of determining the entire set of solutions corresponding
to the first-order optimality conditions of Eq. (17). Note that the convexity of S(z) is implied if the approach yields only one solution.
Specifically, following computation of the multiplication matrix Mℎ via Algorithm 1, the entire set of solutions of Eq. (18) can be
determined by calculating the eigenvalues of Mℎ. In fact, the globally minimum value S∗ = minS(z) is equal to the smallest real
eigenvalue of MS . Nevertheless, the associated computational cost is significant, particularly for higher-dimensional systems.

In this section, an alternative solution approach is developed by relying on Sylvester’s dialytic method of elimination [23,24].
The rationale of the method relates to reducing the complexity of the system of coupled multivariate polynomial equations by
eliminating one or more variables. In fact, the method yields a univariate polynomial equation to be solved for the suppressed
variable. The interested reader is also directed to the review paper [34] for some indicative applications of the approach in robot
dynamics.

Specifically, the method aims at recasting Eq. (18) in an appropriate form so that the following renowned linear algebra theorem
can be applied.

Theorem 3 (35). The necessary and sufficient condition that p linear equations in p unknowns shall have a solution, other than the trivial
one in which each unknown is zero, is that the determinant of the coefficients be zero.

In the ensuing analysis, without loss of generality and for tutorial effectiveness, the polynomial system in Eq. (18) with p = 2 is
considered; that is,

f1
(
z1, z2

)
=

∑
i+j≤2d−1

ci,jz
i
1
z
j

2
= 0, (44)

f2
(
z1, z2

)
=

∑
i+j≤2d−1

ei,jz
i
1
z
j

2
= 0, (45)

where ci,j and ei,j denote coefficients. In passing, note that the method can be applied for an arbitrary number of equations p
(e.g., [34,36]). Next, the variable z1 is suppressed and Eqs. (44)–(45) are written, equivalently, as

c0,2d−1z2
2d−1 +

(
c1,2d−2z1 + c0,2d−2

)
z2

2d−2 +⋯ + (c2d−1,0z1
2d−1 +⋯ + c0,0) = 0, (46)

e0,2d−1z2
2d−1 +

(
e1,2d−2z1 + e0,2d−2

)
z2

2d−2 +⋯ + (e2d−1,0z1
2d−1 +⋯ + e0,0) = 0. (47)

Further, ignoring the terms with zero coefficients, Eqs. (46)–(47) are written concisely in the form

f̃1
(
z2
)
= alz2

l + al−1z2
l−1 +⋯ + a0 = 0, (48)

f̃2
(
z2
)
= bmz2

m + bm−1z2
m−1 +⋯ + b0 = 0, (49)

where l and m denote the indices of the leading terms corresponding to non-zero coefficients in Eqs. (46) and (47), respectively,
and al ≠ 0, bm ≠ 0 are non-zero coefficients dependent on ci,j and ei,j as in Eqs. (46)–(47). Furthermore, a system of l + m

homogeneous equations in the variables zl+m−1
2

, zl+m−2
2

,… , z2, 1 can be obtained by multiplying Eqs. (48) and (49) by z
m−1
2

, zm−2
2

,… , z2
and zl−1

2
, zl−2

2
,… , z2, respectively, to yield l + m − 2 additional equations. This yields

alz2
l+m−1 + al−1z2

l+m−2 +⋯ + a0z2
m−1 = 0,

alz2
l+m−2 + al−1z2

l+m−3 +⋯ + a0z2
m−2 = 0,

⋮

alz2
l + al−1z2

l−1 +⋯ + a0 = 0,

bmz2
l+m−1 + bm−1z2

l+m−2 +⋯ + b0z2
l−1 = 0,

bmz2
l+m−2 + bm−1z2

l+m−3 +⋯ + b0z2
l−2 = 0,

⋮

bmz2
m + bm−1z2

m−1 +⋯ + b0 = 0.

(50)

Next, Theorem 3 is applied to Eq. (50), dictating that the determinant of the coefficients is equal to zero, i.e.,

||||||||||||||||||

al al−1 … … a0 0 … … … 0

0 al al−1 … … a0 0 … … 0

⋮ ⋮

0 … … … 0 al al−1 … … a0
bm bm−1 … … … b0 0 … … 0

0 bm bm−1 … … … b0 0 … 0

⋮ ⋮

0 … … 0 bm bm−1 … … … b0

||||||||||||||||||

= 0. (51)
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Note that the coefficient matrix of the system of equations in Eq. (50) is known as the Sylvester matrix of f̃1 and f̃2. The resultant
of f̃1 and f̃2, denoted Res(f̃1, f̃2), is defined as the determinant of the Sylvester matrix.

It is readily seen that the resultant in Eq. (51) yields a polynomial equation in the suppressed variable z1 of degree q less than
or equal to (2d − 1)2; that is,

rqz1
q + rq−1z1

q−1 +⋯ + r1 + r0 = 0, (52)

where, clearly, the coefficients ri, i = 0,… , q, depend on the coefficients ci,j and ei,j of Eqs. (44)–(45).
Remarkably, the complexity of the original system of multivariate polynomial equations has been reduced. In fact, Eqs. (44)–(45)

have been recast into Eq. (52) that constitutes a univariate polynomial equation for z1. This can be readily solved by resorting to a
plethora of standard numerical optimization schemes (e.g., [21]). Note that the remaining variable z2 can be determined in a similar
manner by considering z2 as suppressed and repeating the above steps. Lastly, the solutions satisfying the first-order optimality
conditions of Eqs. (44)–(45), i.e., ∇S (z) = 0, are substituted into the objective function S(z) to determine which solution yields the
global minimum.

Further, it is shown next that both the Gröbner basis approach employed in [22] and the herein proposed dialytic method yield
the same set of solutions for Eqs. (44)–(45). In this regard, the following lemma is utilized in Theorem 4 for showing the equivalence
between the two approaches, and, in particular, that the characteristic polynomial of the multiplication matrix Mz1

calculated via
Algorithm 1 is equal to the resultant of Eq. (51).

Lemma 3 (27). Let V
(
f1, f2

)
denote the entire set of solutions of Eqs. (44)–(45). Next, assume that the system

F 1

(
z1, z2

)
=

∑
i+j=2d−1

ci,jz
i
1
z
j

2
= 0,

F 2

(
z1, z2

)
=

∑
i+j=2d−1

di,jz
i
1
z
j

2
= 0,

(53)

has no nontrivial solutions. Then,

Res
(
f̃1, f̃2

)
= k

∏
p∈V(f1 ,f2)

(
z1 − p1

)m(p)
, (54)

for some nonzero scalar k ∈ R where f̃1, f̃2 are given by Eqs. (48) and (49), respectively, and m (p) denotes the multiplicity of
p =

(
p1, p2

)
∈ V

(
f1, f2

)
.

Theorem 4. Let pz1 be the characteristic polynomial of the multiplication matrix Mz1
representing the linear map mz1 ∶ A → A given by

multiplication by z1 on the quotient ring A = R
[
z1, z2

]
∕⟨f1, f2⟩. Then,

Res
(
f̃1, f̃2

)
= kpz1 (55)

for some nonzero scalar k ∈ R.

Proof. Let f ∈ R
[
z1, z2

]
. The characteristic polynomial pf of Mf is given by [27]

det
(
�I −Mf

)
=

∏
p∈V(f1 ,f2)

(� − f (p))m(p), (56)

where Mf is the multiplication matrix corresponding to the linear map mf ∶ A→ A given by multiplication by f and m (p) denotes
the multiplicity of p =

(
p1, p2

)
∈ V

(
f1, f2

)
. Next, setting f

(
z1, z2

)
= z1 leads to

det
(
�I −Mz1

)
=

∏
p∈V(f1 ,f2)

(
� − p1

)m(p)
. (57)

Substituting � = z1 yields

pz1 =
∏

p∈V(f1 ,f2)

(
z1 − p1

)m(p)
. (58)

Then, from Lemma 3,

Res
(
f̃1, f̃2

)
= kpz1 , (59)

where k is a nonzero constant. Therefore, Res
(
f̃1, f̃2

)
and pz1 yield the same solutions for z1. □

3.4. Mechanization of the techniques

Succinctly stated, the developed techniques pertaining to the existence, uniqueness and numerical calculation of WPI most
probable paths comprise the following steps:
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(a) For a given nonlinear system under consideration governed by Eq. (1), cast the corresponding stochastic action S (z) in the
form of Eq. (20). Next, apply Theorem 1 to prove the existence of a globally optimal solution.

(b) Use Algorithm 1 to calculate the characteristic polynomial of Eq. (43). Apply Theorem 2 in conjunction with Proposition 1
to prove the solution uniqueness.

(c) Cast the polynomial equations of Eq. (18) into the form of Eqs. (48)–(49). Suppress a specific variable and apply Eq. (51)
to yield a polynomial equation that depends on this variable only. Solve Eq. (52) via an appropriate numerical optimization
algorithm, e.g., Newton’s scheme [21]. Repeat the process for the rest of the variables. Note that the method can be applied,
at least in principle, for an arbitrary number of equations p = nL (e.g., [34]).

4. Numerical examples

Various oscillators exhibiting diverse nonlinear behaviors are considered in this section for demonstrating the capabilities of the
developed techniques. In fact, to perform direct comparisons between the herein proposed solution approach based on Sylvester’s
dialytic method and an alternative Gröebner basis approach employed in [22], the same numerical examples used in [22] are
considered next.

4.1. Linear oscillator

For the special case of a linear system, i.e., g (x, ẋ) = Cẋ+Kx in Eq. (1) where C and K denote the damping and stiffness matrices,
respectively, it has been shown in [26] that the Euler–Lagrange equations corresponding to the minimization problem of Eq. (5)
can be solved analytically for the most probable path. Remarkably, substituting the most probable path into Eq. (7) yields the exact
system response joint transition PDF that takes a Gaussian form. In other words, the response PDF obtained by the most probable
path approach is exact and approximation-free for the case of linear systems.

In the following, a single-DOF linear oscillator is considered whose equation of motion is given by

mẍ + cẋ + kx = w (t) , (60)

where the parameter values m = 5, c = 0.2, k = 1, and E (w (t)w (t + �)) = 2�S0� (�) with S0 = 0.5 are used. Next, a normalized
version of Eq. (60) is considered, where �0 = c∕2m!0 is the damping ratio and !0 =

√
k∕m is the natural frequency of the system.

Note that, using L = 2 in Eq. (10), it was shown in [22] that the objective function S (z) of Eq. (15) is convex. Thus, the Newton’s
scheme proposed in [22] converges to the exact optimal solution z∗ = (0.0173, 0.0001) in a single iteration starting from the arbitrarily
chosen point (50, 50). Further, employing the Gröebner basis approach in [22] yielded a single solution corresponding to the objective
function value S

(
z∗

)
= 4.4204, which coincided practically with the estimate obtained by the Newton’s scheme.

Next, to apply the techniques developed herein, considering L = 2 in Eq. (10) and arbitrary initial and final time instants (ti and
tf ), the objective function S (z) cast in the form of Eq. (20) becomes

S (z) = c2,0z1
2 + c0,2z2

2 +
∑
|�|<2

c�z
� , (61)

where

c2,0 =
1

4�S0

(tf − ti)
5

630

[(
!2
0
(tf − ti)

2 + 24�2
0
− 12

)2
+ 576�2

0

(
1 − �2

0

)
+ 360

]
, (62)

c0,2 =
1

4�S0

(tf − ti)
5

6930

[(
!2
0
(tf − ti)

2 + 88�2
0
− 44

)2
+ 7744�2

0

(
1 − �2

0

)
+ 2024

]
. (63)

To elaborate further, the stochastic action of Eq. (61) corresponding to the linear oscillator of Eq. (60) with d = 1 is a two-variable
polynomial of degree 2 (i.e., 2d = 2). Note that the first two terms in Eq. (61) refer to the monomials whose sums of powers are
equal to 2d = 2. Moreover, it is readily seen that since �2

0

(
1 − �2

0

)
> 0 for 0 < �0 < 1, the coefficients c2,0 and c0,2 in Eqs. (62) and

(63), respectively, are positive for arbitrary values of !0 > 0 and 0 < �0 < 1. Therefore, according to Lemma 1, there exists a global
minimizer for S (z).

Further, regarding the uniqueness of the solution, using the values m = 5, c = 0.2 and k = 1, and the boundary conditions
(x

(
ti = 0

)
, ẋ

(
ti = 0

)
, x

(
tf = 1

)
, ẋ

(
tf = 1

)
) = (0, 0,−0.5,−1.0), the first-order optimality condition of Eq. (17) yields the polynomial

system of Eq. (18) that becomes

f1
(
z1, z2

)
=

1

4�S0

(
39.6z1 − 0.674

)
= 0,

f2
(
z1, z2

)
=

1

4�S0

(
28.4z2 − 2.38 × 10−3

)
= 0.

(64)
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Fig. 1. First-order optimality condition equations and objective function of the most probable path optimization problem corresponding to a linear oscillator
under white noise

(
x
(
tf = 1

)
= −0.5, ẋ

(
tf = 1

)
= −1.0

)
.

Next, the characteristic polynomial ofM1 (for ℎ = 1) of the quadratic form Q1 corresponding to Eq. (64) is calculated via Algorithm 1
yielding

pℎ(�) = −� + 1. (65)

Eq. (65) exhibits a single sign change in the sequence of the polynomial coefficients. According to Proposition 1,M1 has one positive
eigenvalue and, since the polynomial is of degree one, Q1 has signature �

(
Q1

)
= 1 − 0 = 1. Therefore, relying on Theorem 2, there

exists a unique global minimizer for S(z).
Furthermore, clearly, the system of Eq. (64) is already in the form of Eqs. (48)–(49), and Sylvester’s dialytic method degenerates

to analytically solving directly Eq. (64). This yields z∗ = (0.0170, 0.0001) and the corresponding objective function value S
(
z∗

)
becomes S

(
z∗

)
= 4.4204, which coincides with the estimate based on the Gröbner basis approach in [22], as expected by Theorem 4.

Lastly, to provide further insight, the objective function S (z) of the most probable path optimization problem is shown in Fig. 1
by using L = 2 trial functions. The first-order optimality condition equations are included as well demonstrating the uniqueness of
the solution.

4.2. Duffing nonlinear oscillator

Next, a single-DOF Duffing nonlinear oscillator is considered, whose governing equation is a scalar version of Eq. (1); that is,

mẍ + cẋ + kx + "gnl (x, ẋ) = w (t) , (66)

where the parameter " denotes the nonlinearity magnitude, and the nonlinear function gnl (x, ẋ) is given by

gnl (x, ẋ) = kx3. (67)

Considering two trial functions (i.e., L = 2) and arbitrary initial and final time instants (ti and tf ) in Eq. (16), the objective function
S (z) is expressed in the form of Eq. (20) as

S (z) = c6,0z1
6 + c4,2z1

4z2
2 + c2,4z1

2z2
4 + c0,6z2

6 +
∑
|�|<6

c�z
� , (68)

where

c6,0 =
1

4�S0

(tf − ti)
25"2k2

67603900
(69)

c4,2 =
1

4�S0

(tf − ti)
25"2k2

121687020
(70)

c2,4 =
1

4�S0

(tf − ti)
25"2k2

1176307860
(71)
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c0,6 =
1

4�S0

(tf − ti)
25"2k2

109396630980
(72)

According to Lemma 1, since the coefficients c6,0, c4,2, c2,4 and c0,6 in Eqs. (69)–(72) are positive for arbitrary values " > 0 and k ∈ R,

there exists a global minimizer for S (z).

Next, using the same parameter values for m, c, k and S0 as in Section 4.1 in Eqs. (66) and (67), and considering the boundary

conditions (x
(
ti = 0

)
, ẋ

(
ti = 0

)
, x

(
tf = 1

)
, ẋ

(
tf = 1

)
) = (0, 0,−0.5,−1.0), the characteristic polynomial of M1 of the quadratic form

Q1 corresponding to Eq. (18) is calculated via Algorithm 1. This yields a 25-th degree polynomial that exhibits 13 sign changes in

the sequence of coefficients. According to Proposition 1, M1 has 13 positive eigenvalues and, since the polynomial is of degree 25,

the signature of Q1 is evaluated as �
(
Q1

)
= 13 − 12 = 1. Therefore, based on Theorem 2, there exists a unique global minimizer for

S(z).

Further, the Sylvester’s dialytic method is employed for solving Eq. (18), which takes the form

f1
(
z1, z2

)
=

1

4�S0

[c5,0z
5
1
+ c3,2z

3
1
z2
2
+ c1,4z1z

4
2
+ c4,0z

4
1
+ c3,1z

3
1
z2 + c2,2z

2
1
z2
2
+ c1,3z1z

3
2
+ c0,4z

4
2
+ c3,0z

3
1

+ c2,1z
2
1
z2 + c1,2z1z

2
2
+ c0,3z

3
2
+ c2,0z

2
1
+ c1,1z1z2 + c0,2z

2
2
+ c1,0z1 + c0,1z2 + c0,0],

f2
(
z1, z2

)
=

1

4�S0

[e4,1z
4
1
z2 + e2,3z

2
1
z3
2
+ e0,5z

5
2
+ e4,0z

4
1
+ e3,1z

3
1
z2 + e2,2z

2
1
z2
2
+ e1,3z1z

3
2
+ e0,4z

4
2
+ e3,0z

3
1

+ e2,1z
2
1
z2 + e1,2z1z

2
2
+ e0,3z

3
2
+ e2,0z

2
1
+ e1,1z1z2 + e0,2z

2
2
+ e1,0z1 + e0,1z2 + e0,0],

(73)

where

c5,0 = 8.88 × 10−8�2, e4,1 = 1.64 × 10−8�2,

c3,2 = 3.29 × 10−8�2, e2,3 = 3.4 × 10−9�2,

c1,4 = 1.70 × 10−9�2, e0,5 = 5.48 × 10−11�2,

c4,0 = − 1.01 × 10−6�2, e4,0 = − 8.41 × 10−8�2,

c3,1 = − 3.36 × 10−7�2, e3,1 = − 1.88 × 10−7�2,

c2,2 = − 2.82 × 10−7�2, e2,2 = − 6.05 × 10−8�2,

c1,3 = − 4.03 × 10−8�2, e1,3 = − 2.39 × 10−8�2,

c0,4 = − 5.98 × 10−9�2, e0,4 = − 1.86 × 10−9�2,

c3,0 = 5.67 × 10−6�2 −2.63 × 10−3�, e3,0 = 1.03 × 10−6�2,

c2,1 = 3.09 × 10−6�2, e2,1 = 1.28 × 10−6�2 −8.56 × 10−4�,

c1,2 = 1.28 × 10−6�2 −8.56 × 10−4�, e1,2 = 4.71 × 10−7�2,

c0,3 = 1.57 × 10−7�2, e0,3 = 7.62 × 10−8�2 −6.57 × 10−5�,

c2,0 = − 2.13 × 10−5�2 +1.07 × 10−2�, e2,0 = − 6.38 × 10−6�2 +2.63 × 10−3�,

c1,1 = 1.28 × 10−6�2 −8.56 × 10−4�, e1,1 = − 5.67 × 10−6�2 +4.62 × 10−3�,

c0,2 = − 2.84 × 10−6�2 +2.31 × 10−3�, e0,2 = − 1.35 × 10−6�2 +9.93 × 10−4�,

c1,0 = 6.06 × 10−5�2 −3.4 × 10−3� + 39.6, e1,0 = 2.69 × 10−5�2 −1.06 × 10−2�,

c0,1 = 2.69 × 10−5�2 −1.06 × 10−2�, e0,1 = 1.45 × 10−5�2 −1.12 × 10−2� + 28.4,

c0,0 = − 1.37 × 10−4�2 −0.18� − 0.674, e0,0 = − 8.59 × 10−5�2 −7.24 × 10−2� − 2.38 × 10−3.

(74)

Next, Eq. (73) is cast in the form of Eqs. (48)–(49). This yields

f̃1
(
z2
)
= a4z

4
2
+ a3z

3
2
+ a2z

2
2
+ a1z2 + a0, (75)

f̃2
(
z2
)
= b5z

5
2
+ b4z

4
2
+ b3z

3
2
+ b2z

2
2
+ b1z2 + b0, (76)
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where

a4 =
1

4�S0

(
c1,4z1 + c0,4

)
,

a3 =
1

4�S0

(
c1,3z1 + c0,3

)
,

a2 =
1

4�S0

(
c3,2z

3
1
+ c2,2z

2
1
+ c1,2z1 + c0,2

)
,

a1 =
1

4�S0

(
c3,1z

3
1
+ c2,1z

2
1
+ c1,1z1 + c0,1

)
,

a0 =
1

4�S0

(
c5,0z

5
1
+ c4,0z

4
1
+ c3,0z

3
1
+ c2,0z

2
1
+ c1,0z1 + c0,0

)
,

b5 =
1

4�S0

e0,5,

b4 =
1

4�S0

e0,4,

b3 =
1

4�S0

(
e2,3z

2
1
+ e1,3z1 + e0,3

)
,

b2 =
1

4�S0

(
e2,2z

2
1
+ e1,2z1 + e0,2

)
,

b1 =
1

4�S0

(
e4,1z

4
1
+ e3,1z

3
1
+ e2,1z

2
1
+ e1,1z1 + e0,1

)
,

b0 =
1

4�S0

(
e4,0z

4
1
+ e3,0z

3
1
+ e2,0z

2
1
+ e1,0z1 + e0,0

)
.

(77)

Multiplying Eqs. (75) and (76) by z4
2
, z3

2
, z2

2
, z2 and z

3
2
, z2

2
, z2, respectively, yields the equations

a4z
8
2
+ a3z

7
2
+ a2z

6
2
+ a1z

5
2
+a0z

4
2

= 0,

a4z
7
2
+ a3z

6
2
+ a2z

5
2
+a1z

4
2
+ a0z

3
2

= 0,

a4z
6
2
+ a3z

5
2
+a2z

4
2
+ a1z

3
2
+ a0z

2
2

= 0,

a4z
5
2
+a3z

4
2
+ a2z

3
2
+ a1z

2
2
+ a0z2 = 0,

a4z
4
2
+ a3z

3
2
+ a2z

2
2
+ a1z2 + a0 = 0,

b5z
8
2
+ b4z

7
2
+ b3z

6
2
+ b2z

5
2
+b1z

4
2
+ b0z

3
2

= 0,

b5z
7
2
+ b4z

6
2
+ b3z

5
2
+b2z

4
2
+ b1z

3
2
+ b0z

2
2

= 0,

b5z
6
2
+ b4z

5
2
+ b3z

4
2
+ b2z

3
2
+ b1z

2
2
+ b0z2 = 0,

b5z
5
2
+b4z

4
2
+ b3z

3
2
+ b2z

2
2
+ b1z2 + b0 = 0.

(78)

Furthermore, according to Theorem 3, the determinant of the coefficients of Eq. (78) is set equal to zero as in Eq. (51). This
yields a polynomial equation in the form of Eq. (52) with q = 25 that depends only on the suppressed variable z1. Next, considering
" = 1 and the initial condition z(0)

1
= 0, Eq. (52) is solved numerically by employing a standard Newton’s iterative optimization

scheme [21]. Similarly, the remaining variable z2 is obtained by considering z2 as suppressed and repeating the above steps.
Numerical results related to the iterations of the Newton’s scheme are summarized in Table 1. The objective functions S (z) of
the most probable path optimization problem and the first-order optimality condition equations for " = 1, 10 and 20 are shown
in Figs. 2–4, respectively. The solutions z∗ and S(z∗) for various values of " are summarized in Table 2. As anticipated based on
Theorem 4, the solutions coincide practically with the estimates obtained by the Gröbner basis approach applied in [22].

4.3. Nonlinear oscillator with an asymmetric response PDF

Further, a single-DOF nonlinear oscillator with an asymmetric response PDF is considered, whose governing equation takes the
form

mẍ + cẋ + kx + "gnl (x, ẋ) = w (t) , (79)

where the parameter " denotes the nonlinearity magnitude, and the nonlinear function gnl (x, ẋ) is given by

gnl (x, ẋ) = ax2 + x3. (80)

Considering two trial functions (i.e., L = 2) and arbitrary initial and final time instants (ti and tf ) in Eq. (16), the objective function
S (z) is expressed in the form of Eq. (20) as

S (z) = c6,0z1
6 + c4,2z1

4z2
2 + c2,4z1

2z2
4 + c0,6z2

6 +
∑
|�|<6

c�z
� , (81)
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Fig. 2. First-order optimality condition equations and objective function of the most probable path optimization problem corresponding to a Duffing nonlinear
oscillator with " = 1.0 and using L = 2 trial functions

(
x
(
tf = 1

)
= −0.5, ẋ

(
tf = 1

)
= −1.0

)
.

Table 1
Numerical optimization iterations for a Duffing nonlinear oscillator.

" = 1.0 " = 10 " = 20 " = 100

z
(k)

1
|z(k+1)

1
− z

(k)

1
| z

(k)

1
|z(k+1)

1
− z

(k)

1
| z

(k)

1
|z(k+1)

1
− z

(k)

1
| z

(k)

1
|z(k+1)

1
− z

(k)

1
|

0 2.11E−2 0 5.93E−2 0 9.89E−2 0 0.329
0.0211 4.52E−4 0.0593 3.72E−3 0.0989 1.08E−2 0.3286 0.146
0.0216 2.04E−7 0.0630 1.41E−5 0.1097 1.22E−4 0.4743 2.81E−2
0.0216 4.14E−14 0.0630 2.02E−10 0.1098 1.54E−8 0.5023 9.61E−4
0.0216 3.34E−18 0.0630 1.82E−19 0.1098 2.48E−16 0.5033 1.1E−6

0.5033 1.44E−12
0.5033 4.76E−17

z
(k)

2
|z(k+1)

2
− z

(k)

2
| z

(k)

2
|z(k+1)

2
− z

(k)

2
| z

(k)

2
|z(k+1)

2
− z

(k)

2
| z

(k)

2
|z(k+1)

2
− z

(k)

2
|

0 2.65E−3 0 2.73E−2 0 5.84E−2 0 0.749
0.0027 1.08E−5 0.0273 1.12E−3 0.0584 4.98E−3 0.7491 0.674
0.0026 1.82E−10 0.0262 1.98E−6 0.0534 3.95E−5 0.07491 0.407
0.0026 1.12E−19 0.0262 6.12E−12 0.0534 2.46E−9 0.4816 0.288

0.0262 1.17E−19 0.0534 1.24E−17 0.1939 0.139
0.333 2.66E−2
0.3064 1.26E−3
0.3052 2.71E−6
0.3052 1.27E−11
0.3052 5.74E−18

Table 2
Optimal solution and objective function values for a Duffing
nonlinear oscillator under white noise.

" z∗ S(z∗)

" = 1.0 (0.0216, 0.0026) 4.4517
" = 10 (0.0630, 0.0262) 4.7427
" = 20 (0.1098, 0.0534) 5.0861
" = 100 (0.5033, 0.3052) 8.4904
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Fig. 3. First-order optimality condition equations and objective function of the most probable path optimization problem corresponding to a Duffing nonlinear
oscillator with " = 10 and using L = 2 trial functions

(
x
(
tf = 1

)
= −0.5, ẋ

(
tf = 1

)
= −1.0

)
.

Fig. 4. First-order optimality condition equations and objective function of the most probable path optimization problem corresponding to a Duffing nonlinear
oscillator with " = 20 and using L = 2 trial functions

(
x
(
tf = 1

)
= −0.5, ẋ

(
tf = 1

)
= −1.0

)
.

where

c6,0 =
1

4�S0

(tf − ti)
25"2

67603900
, (82)

c4,2 =
1

4�S0

(tf − ti)
25"2

121687020
, (83)

c2,4 =
1

4�S0

(tf − ti)
25"2

1176307860
, (84)

c0,6 =
1

4�S0

(tf − ti)
25"2

109396630980
. (85)

According to Lemma 1, since the coefficients c6,0, c4,2, c2,4 and c0,6 in Eqs. (82)–(85), are positive for arbitrary values " > 0, there

exists a global minimizer for S (z).
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Next, utilizing the parameter values, m = 1, c = 0.2, k = 1, and E (w (t)w (t + �)) = 2�S0� (�) with S0 = 0.5 in Eqs. (79)

and (80), and considering the boundary conditions (x
(
ti = 0

)
, ẋ

(
ti = 0

)
, x

(
tf = 1

)
, ẋ

(
tf = 1

)
) = (0, 0,−0.3,−0.8), the characteristic

polynomial of M1 of the quadratic form Q1 corresponding to Eq. (18) is calculated via Algorithm 1. This yields a 25-th degree

polynomial exhibiting 13 sign changes in the sequence of coefficients. According to Proposition 1, M1 has 13 positive eigenvalues

and, since the polynomial is of degree 25, the signature of Q1 takes the value �
(
Q1

)
= 13− 12 = 1. Therefore, based on Theorem 2,

there exists a unique global minimizer for S(z).

Further, the Sylvester’s dialytic method is employed for solving Eq. (18), which takes the form

f1
(
z1, z2

)
=

1

4�S0

[c5,0z
5
1
+ c3,2z

3
1
z2
2
+ c1,4z1z

4
2
+ c4,0z

4
1
+ c3,1z

3
1
z2 + c2,2z

2
1
z2
2
+ c1,3z1z

3
2
+ c0,4z

4
2
+ c3,0z

3
1

+ c2,1z
2
1
z2 + c1,2z1z

2
2
+ c0,3z

3
2
+ c2,0z

2
1
+ c1,1z1z2 + c0,2z

2
2
+ c1,0z1 + c0,1z2 + c0,0],

f2
(
z1, z2

)
=

1

4�S0

[d4,1z
4
1
z2 + d2,3z

2
1
z3
2
+ d0,5z

5
2
+ d4,0z

4
1
+ d3,1z

3
1
z2 + d2,2z

2
1
z2
2
+ d1,3z1z

3
2
+ d0,4z

4
2
+ d3,0z

3
1

+ d2,1z
2
1
z2 + d1,2z1z

2
2
+ d0,3z

3
2
+ d2,0z

2
1
+ d1,1z1z2 + d0,2z

2
2
+ d1,0z1 + d0,1z2 + d0,0],

(86)

where

c5,0 = 8.88 × 10−8�2,

c3,2 = 3.28 × 10−8�2,

c1,4 = 1.70 × 10−9�2,

c4,0 = 2.58 × 10−6a�2 −4.20 × 10−7�2,

c3,1 = − 1.72 × 10−7�2,

c2,2 = 6.72 × 10−7a�2 −1.25 × 10−7�2,

c1,3 = − 2.09 × 10−8�2,

c0,4 = 1.34 × 10−8a�2 −2.76 × 10−9�2,

c3,0 = 1.83 × 10−5a2�2 −1.01 × 10−5a�2 +1.09 × 10−6�2 −4.96 × 10−4�,

c2,1 = − 3.71 × 10−6a�2 +7.18 × 10−7�2,

c1,2 = 2.89 × 10−6a2�2 −1.86 × 10−6a�2 +2.89 × 10−7�2 −1.67 × 10−4�,

c0,3 = − 1.79 × 10−7a�2 +3.87 × 10−8�2,

c2,0 = − 5.66 × 10−5a2�2 +2.20 × 10−5a�2 −2.12 × 10−6�2 −6.43 × 10−3a� +6.06 × 10−4�,

c1,1 = − 1.72 × 10−5a2�2 +1.17 × 10−5a�2 −1.50 × 10−6�2 +4.72 × 10−4�,

c0,2 = − 4.51 × 10−6a2�2 +2.59 × 10−6a�2 −3.49 × 10−7�2 −1.12 × 10−3a� +1.91 × 10−4�,

c1,0 = 9.86 × 10−5a2�2 −3.66 × 10−5a�2 +3.61 × 10−6�2 +1.41 × 10−3a� +7.78 × 10−4� + 1.53,

c0,1 = 3.33 × 10−5a2�2 −1.60 × 10−5a�2 +1.83 × 10−6�2 +2.66 × 10−3a� −2.41 × 10−4�,

c0,0 = − 1.30 × 10−4a2�2 +5.30 × 10−5a�2 −5.75 × 10−6�2 +3.11 × 10−2a� −7.85 × 10−3� − 0.109,

(87)

and

d4,1 = 1.64 × 10−8�2,

d2,3 = 3.40 × 10−9�2,

d0,5 = 5.48 × 10−11�2

d4,0 = − 4.30 × 10−8�2,

d3,1 = 4.48 × 10−7a�2 −8.34 × 10−8�2,

d2,2 = − 3.14 × 10−8�2,

d1,3 = 5.38 × 10−8a�2 −1.1 × 10−8�2,

d0,4 = − 9.79 × 10−10�2,

d3,0 = − 1.24 × 10−6a�2 +2.39 × 10−7�2,

d2,1 = 2.89 × 10−6a2�2 −1.86 × 10−6a�2 +2.89 × 10−7�2 −1.67 × 10−4�,



Mechanical Systems and Signal Processing 208 (2024) 110989

16

A. Nawagamuwage et al.

d1,2 = − 5.38 × 10−7a�2 +1.16 × 10−7�2,

d3,0 = 1.37 × 10−7a2�2 −9.86 × 10−8a�2 +1.87 × 10−8�2 −1.29 × 10−5�,

d2,0 = − 8.62 × 10−6a2�2 +5.86 × 10−6a�2 −7.51 × 10−7�2 +2.36 × 10−4�,

d1,1 = − 9.01 × 10−6a2�2 +5.19 × 10−6a�2 −6.99 × 10−7�2 −2.24 × 10−3a� +3.82 × 10−4�,

d0,2 = − 1.55 × 10−6a2�2 +1.19 × 10−6a�2 −1.77 × 10−7�2 +9.8 × 10−5�,

d1,0 = 3.33 × 10−5a2�2 −1.6 × 10−5a�2 +1.83 × 10−6�2 +2.66 × 10−3a� −2.41 × 10−4�,

d0,1 = 1.68 × 10−5a2�2 −8.56 × 10−6a�2 +1.06 × 10−6�2 +2.87 × 10−3a� −4.22 × 10−4� + 1.12,

d0,0 = − 7.32 × 10−5a2�2 +3.36 × 10−5a�2 −3.94 × 10−6�2 +1.12 × 10−2a� −3.92 × 10−3� − 1.25 × 10−2.

(88)

Next, Eq. (86) is cast in the form of Eqs. (48)–(49). This yields

f̃1
(
z2
)
= a4z

4
2
+ a3z

3
2
+ a2z

2
2
+ a1z2 + a0, (89)

f̃2
(
z2
)
= b5z

5
2
+ b4z

4
2
+ b3z

3
2
+ b2z

2
2
+ b1z2 + b0, (90)

where

a4 =
1

4�S0

(
c1,4z1 + c0,4

)
,

a3 =
1

4�S0

(
c1,3z1 + c0,3

)
,

a2 =
1

4�S0

(
c3,2z

3
1
+ c2,2z

2
1
+ c1,2z1 + c0,2

)
,

a1 =
1

4�S0

(
c3,1z

3
1
+ c2,1z

2
1
+ c1,1z1 + c0,1

)
,

a0 =
1

4�S0

(
c5,0z

5
1
+ c4,0z

4
1
+ c3,0z

3
1
+ c2,0z

2
1
+ c1,0z1 + c0,0

)
,

b5 =
1

4�S0

d0,5,

b4 =
1

4�S0

d0,4,

b3 =
1

4�S0

(
d2,3z

2
1
+ d1,3z1 + d0,3

)
,

b2 =
1

4�S0

(
d2,2z

2
1
+ d1,2z1 + d0,2

)
,

b1 =
1

4�S0

(
d4,1z

4
1
+ d3,1z

3
1
+ d2,1z

2
1
+ d1,1z1 + d0,1

)
,

b0 =
1

4�S0

(
d4,0z

4
1
+ d3,0z

3
1
+ d2,0z

2
1
+ d1,0z1 + d0,0

)
.

(91)

Multiplying Eqs. (89) and (90) by z4
2
, z3

2
, z2

2
, z2 and z

3
2
, z2

2
, z2, respectively, yields the equations

a4z
8
2
+ a3z

7
2
+ a2z

6
2
+ a1z

5
2
+a0z

4
2

= 0,

a4z
7
2
+ a3z

6
2
+ a2z

5
2
+a1z

4
2
+ a0z

3
2

= 0,

a4z
6
2
+ a3z

5
2
+a2z

4
2
+ a1z

3
2
+ a0z

2
2

= 0,

a4z
5
2
+a3z

4
2
+ a2z

3
2
+ a1z

2
2
+ a0z2 = 0,

a4z
4
2
+ a3z

3
2
+ a2z

2
2
+ a1z2 + a0 = 0,

b5z
8
2
+ b4z

7
2
+ b3z

6
2
+ b2z

5
2
+b1z

4
2
+ b0z

3
2

= 0,

b5z
7
2
+ b4z

6
2
+ b3z

5
2
+b2z

4
2
+ b1z

3
2
+ b0z

2
2

= 0,

b5z
6
2
+ b4z

5
2
+ b3z

4
2
+ b2z

3
2
+ b1z

2
2
+ b0z2 = 0,

b5z
5
2
+b4z

4
2
+ b3z

3
2
+ b2z

2
2
+ b1z2 + b0 = 0.

(92)

Furthermore, according to Theorem 3, the determinant of the coefficients of Eq. (92) is set equal to zero as in Eq. (51). This
yields a polynomial equation in the form of Eq. (52) with q = 25 that depends only on the suppressed variable z1. Next, considering
" = 1, a = 1.5 and the initial condition z

(0)

1
= 0, Eq. (52) is solved numerically by employing a standard Newton’s iterative

optimization scheme [21]. Similarly, the remaining variable z2 is obtained by considering z2 as suppressed and repeating the above
steps. Numerical results related to the iterations of the Newton’s scheme are summarized in Table 3. The objective functions S (z)

of the most probable path optimization problem for " = 1 and a = 1.5, " = 10 and a =
3
√
10

20
, and " = 50 and a =

3
√
2

20
are shown in

Figs. 5–7, respectively. The solutions z∗ and S(z∗) for various values of " and a are summarized in Table 4. As anticipated based
on Theorem 4, the solutions coincide practically with the estimates obtained by the Gröbner basis approach applied in [22].
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Fig. 5. First-order optimality condition equations and objective function of the most probable path optimization problem corresponding to a nonlinear oscillator
with an asymmetric response PDF with " = 1 and a = 1.5 using L = 2 trial functions

(
x
(
tf = 1

)
= −0.3, ẋ

(
tf = 1

)
= −0.8

)
.

Table 3
Numerical optimization iterations for a nonlinear oscillator with an asymmetric response PDF.

" = 1, a = 1.50 " = 10, a =
3
√
10

20
" = 50, a =

3
√
2

20
" = 100, a = 0.150

z
(k)

1
|z(k+1)

1
− z

(k)

1
| z

(k)

1
|z(k+1)

1
− z

(k)

1
| z

(k)

1
|z(k+1)

1
− z

(k)

1
| z

(k)

1
|z(k+1)

1
− z

(k)

1
|

0 4.67E−2 0 2.78E−2 0 9.43E−2 0 1.09E−1
0.0467 7.95E−4 0.0278 1.34E−3 0.09431 1.48E−2 0.1086 8.11E−2
0.0459 2.34E−7 0.0265 3.23E−6 0.1091 7.68E−4 0.1897 5.13E−2
0.0459 2.02E−14 0.0264 1.89E−11 0.1084 2.57E−6 0.241 2.09E−2
0.0459 2.07E−18 0.1084 2.86E−11 0.2619 3.09E−3

0.265 6.07E−5
0.2651 2.30E−8
0.2651 3.41E−15

z
(k)

2
|z(k+1)

2
− z

(k)

2
| z

(k)

2
|z(k+1)

2
− z

(k)

2
| z

(k)

2
|z(k+1)

2
− z

(k)

2
| z

(k)

2
|z(k+1)

2
− z

(k)

2
|

0 3.89E−4 0 1.05E−3 0 1.12E−1 0 10
−0.0004 5.22E−7 −0.0011 3.79E−6 0.112 2.99E−2 10 9
−0.0004 9.36E−13 −0.0011 4.91E−11 0.0818 3.42E−3 1 0.5
−0.0004 1.20E−20 0.0783 4.21E−5 0.5 0.25

0.0783 6.32E−9 0.25 3.47E−2
0.0783 1.39E−16 0.2153 4.98E−3

0.2103 9.59E−5
0.2102 3.51E−8
0.2102 4.69E−15
0.2102 1.98E−18

Table 4
Optimal solution and objective function values for a nonlinear
oscillator with an asymmetric response PDF under white noise.

", a z∗ S(z∗)

" = 1, a = 1.50 (0.0459,−0.0004) 1.6827

" = 10, a =
3
√
10

20
(0.0264,−0.0011) 1.5984

" = 50, a =
3
√
2

20
(0.1084, 0.0783) 1.7934

" = 100, a = 0.150 (0.2651, 0.2102) 2.2707
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Fig. 6. First-order optimality condition equations and objective function of the most probable path optimization problem corresponding to a nonlinear oscillator

with an asymmetric response PDF with " = 10 and a = 3
√
10

20
using L = 2 trial functions

(
x
(
tf = 1

)
= −0.3, ẋ

(
tf = 1

)
= −0.8

)
.

Fig. 7. First-order optimality condition equations and objective function of the most probable path optimization problem corresponding to a nonlinear oscillator

with an asymmetric response PDF with " = 50 and a = 3
√
2

20
using L = 2 trial functions

(
x
(
tf = 1

)
= −0.3, ẋ

(
tf = 1

)
= −0.8

)
.

4.4. Nonlinear oscillator with a bimodal response PDF

Next, a single-DOF nonlinear oscillator with a bimodal response PDF is considered, whose governing equation is given by

mẍ + cẋ + kx + "gnl (x, ẋ) = w (t) , (93)

where

gnl (x, ẋ) = −ax + x3. (94)

Considering two trial functions (i.e., L = 2) and arbitrary initial and final time instants (ti and tf ) in Eq. (16), the objective function
S (z) is expressed in the form of Eq. (20) as

S (z) = c6,0z1
6 + c4,2z1

4z2
2 + c2,4z1

2z2
4 + c0,6z2

6 +
∑
|�|<6

c�z
� , (95)

where

c6,0 =
1

4�S0

(tf − ti)
25"2

67603900
, (96)
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c4,2 =
1

4�S0

(tf − ti)
25"2

121687020
, (97)

c2,4 =
1

4�S0

(tf − ti)
25"2

1176307860
, (98)

c0,6 =
1

4�S0

(tf − ti)
25"2

109396630980
. (99)

According to Lemma 1, since the coefficients c6,0, c4,2, c2,4 and c0,6 in Eqs. (96)–(99) are positive for arbitrary values " > 0, there

exists a global minimizer for S (z).

Next, using the parameter values m = 1, c = 1.0, k = 1.0, and E (w (t)w (t + �)) = 2�S0� (�) with S0 = 0.0637 in Eqs. (93) and (94),

and considering the boundary conditions (x
(
ti = 0

)
, ẋ

(
ti = 0

)
, x

(
tf = 1

)
, ẋ

(
tf = 1

)
) = (0, 0, 0.8, 0.9), the characteristic polynomial

of M1 of the quadratic form Q1 corresponding to Eq. (18) is calculated via Algorithm 1. This yields a 25-th degree polynomial

exhibiting 13 sign changes in the sequence of coefficients. According to Proposition 1, M1 has 13 positive eigenvalues and, since

the polynomial is of degree 25, Q1 has signature �
(
Q1

)
= 13 − 12 = 1. Therefore, based on Theorem 2, there exists a unique global

minimizer for S(z).

Further, the Sylvester’s dialytic method is employed for solving Eq. (18), which takes the form

f1
(
z1, z2

)
=

1

4�S0

[c5,0z
5
1
+ c3,2z

3
1
z2
2
+ c1,4z1z

4
2
+ c4,0z

4
1
+ c3,1z

3
1
z2 + c2,2z

2
1
z2
2
+ c1,3z1z

3
2
+ c0,4z

4
2
+ c3,0z

3
1

+ c2,1z
2
1
z2 + c1,2z1z

2
2
+ c0,3z

3
2
+ c2,0z

2
1
+ c1,1z1z2 + c0,2z

2
2
+ c1,0z1 + c0,1z2 + c0,0],

f2
(
z1, z2

)
=

1

4�S0

[d4,1z
4
1
z2 + d2,3z

2
1
z3
2
+ d0,5z

5
2
+ d4,0z

4
1
+ d3,1z

3
1
z2 + d2,2z

2
1
z2
2
+ d1,3z1z

3
2
+ d0,4z

4
2
+ d3,0z

3
1

+ d2,1z
2
1
z2 + d1,2z1z

2
2
+ d0,3z

3
2
+ d2,0z

2
1
+ d1,1z1z2 + d0,2z

2
2
+ d1,0z1 + d0,1z2 + d0,0],

(100)

where

c5,0 = 8.88 × 10−8�2,

c3,2 = 3.28 × 10−8�2,

c1,4 = 1.7 × 10−9�2,

c4,0 = 2.26 × 10−6�2,

c3,1 = 6.41 × 10−7�2,

c2,2 = 6.07 × 10−7�2,

c1,3 = 7.61 × 10−8�2,

c0,4 = 1.24 × 10−8�2,

c3,0 = − 3.66 × 10−5a�2 +2.69 × 10−5�2 −4.96 × 10−4�,

c2,1 = 1.25 × 10−5�2,

c1,2 = − 5.77 × 10−6a�2 +5.35 × 10−6�2 −1.67 × 10−4�,

c0,3 = 6.02 × 10−7�2,

c2,0 = − 5.89 × 10−4a�2 +1.97 × 10−4�2 −5.02 × 10−3�,

c1,1 = − 1.26 × 10−4a�2 +1.01 × 10−4�2 −2.05 × 10−3�,

c0,2 = − 4.09 × 10−5a�2 +2.18 × 10−5�2 −9.85 × 10−4�,

c1,0 = 3.17 × 10−3a2�2 −4.14 × 10−3a�2 +9.79 × 10−4�2 +6.98 × 10−2a� −1.18 × 10−2� +1.57,

c0,1 = − 1.01 × 10−3a�2 +3.75 × 10−4�2 −1.03 × 10−2�,

c0,0 = 2.02 × 10−2a2�2 −1.53 × 10−2a�2 +3.24 × 10−3�2 −1.60 × 10−1a� +1.45 × 10−1� +8.02 × 10−2,

(101)
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and

d4,1 = 1.64 × 10−8�2,

d2,3 = 3.40 × 10−9�2,

d0,5 = 5.48 × 10−11�2,

d4,0 = 1.60 × 10−7�2,

d3,1 = 4.05 × 10−7�2,

d2,2 = 1.14 × 10−7�2,

d1,3 = 4.98 × 10−8�2,

d0,4 = 3.48 × 10−9�2,

d3,0 = 4.16 × 10−6�2,

d2,1 = − 5.77 × 10−6a�2 +5.35 × 10−6�2 −1.67 × 10−4�,

d1,2 = 1.81 × 10−6�2,

d0,3 = − 2.75 × 10−7a�2 +2.97 × 10−7�2 −1.29 × 10−5�,

d2,0 = − 6.29 × 10−5a�2 +5.04 × 10−5�2 −1.02 × 10−3�,

d1,1 = − 8.19 × 10−5a�2 +4.35 × 10−5�2 −1.97 × 10−3�,

d0,2 = − 1.09 × 10−5a�2 +9.72 × 10−6�2 −3.75 × 10−4�,

d1,0 = − 1.01 × 10−3a�2 +3.75 × 10−4�2 −1.03 × 10−2�,

d0,1 = 2.89 × 10−4a2�2 −5.09 × 10−4a�2 +1.89 × 10−4�2 +2.48 × 10−2a� −9.68 × 10−3� +1.13,

d0,0 = 4.37 × 10−3a2�2 −6.67 × 10−3a�2 +1.79 × 10−3�2 +3.13 × 10−2a� +3.34 × 10−2� −1.56 × 10−2.

(102)

Next, Eq. (100) is cast in the form of Eqs. (48)–(49). This yields

f̃1
(
z2
)
= a4z

4
2
+ a3z

3
2
+ a2z

2
2
+ a1z2 + a0, (103)

f̃2
(
z2
)
= b5z

5
2
+ b4z

4
2
+ b3z

3
2
+ b2z

2
2
+ b1z2 + b0, (104)

where

a4 =
1

4�S0

(
c1,4z1 + c0,4

)
,

a3 =
1

4�S0

(
c1,3z1 + c0,3

)
,

a2 =
1

4�S0

(
c3,2z

3
1
+ c2,2z

2
1
+ c1,2z1 + c0,2

)
,

a1 =
1

4�S0

(
c3,1z

3
1
+ c2,1z

2
1
+ c1,1z1 + c0,1

)
,

a0 =
1

4�S0

(
c5,0z

5
1
+ c4,0z

4
1
+ c3,0z

3
1
+ c2,0z

2
1
+ c1,0z1 + c0,0

)
,

b5 =
1

4�S0

d0,5,

b4 =
1

4�S0

d0,4,

b3 =
1

4�S0

(
d2,3z

2
1
+ d1,3z1 + d0,3

)
,

b2 =
1

4�S0

(
d2,2z

2
1
+ d1,2z1 + d0,2

)
,

b1 =
1

4�S0

(
d4,1z

4
1
+ d3,1z

3
1
+ d2,1z

2
1
+ d1,1z1 + d0,1

)
,

b0 =
1

4�S0

(
d4,0z

4
1
+ d3,0z

3
1
+ d2,0z

2
1
+ d1,0z1 + d0,0

)
.

(105)
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Fig. 8. First-order optimality condition equations and objective function of the most probable path optimization problem corresponding to a nonlinear oscillator
with a bimodal response PDF with a = 1.3 and " = 1 using L = 2 trial functions

(
x
(
tf = 1

)
= 0.8, ẋ

(
tf = 1

)
= 0.9

)
.

Table 5
Numerical optimization iterations for a nonlinear oscillator with a bimodal response PDF.

a = 1.3 a = 1.5 a = 1.8

z
(k)

1
|z(k+1)

1
− z

(k)

1
| z

(k)

1
|z(k+1)

1
− z

(k)

1
| z

(k)

1
|z(k+1)

1
− z

(k)

1
|

0 2.07E−02 0 5.98E−02 0 1.31E−02
−0.0207 2.16E−04 −0.0598 2.48E−03 0.0131 8.50E−05
−0.0209 2.33E−08 −0.0573 4.44E−06 0.013 3.60E−09
−0.0209 2.71E−16 −0.0573 1.42E−11 0.013 6.52E−18

z
(k)

2
|z(k+1)

2
− z

(k)

2
| z

(k)

2
|z(k+1)

2
− z

(k)

2
| z

(k)

2
|z(k+1)

2
− z

(k)

2
|

0 5.33E−02 0 5.98E−02 0 7.01E−02
−0.0533 1.99E−03 −0.0598 2.48E−03 −0.0701 3.36E−03
−0.0513 2.88E−06 −0.0573 4.44E−06 −0.0668 8.07E−06
−0.0513 6.00E−12 −0.0573 1.42E−11 −0.0667 4.64E−11
−0.0513 4.58E−18 −0.0573 4.40E−18 −0.0667 4.19E−18

Multiplying Eqs. (103) and (104) by z4
2
, z3

2
, z2

2
, z2 and z

3
2
, z2

2
, z2, respectively, yields the equations

a4z
8
2
+ a3z

7
2
+ a2z

6
2
+ a1z

5
2
+a0z

4
2

= 0,

a4z
7
2
+ a3z

6
2
+ a2z

5
2
+a1z

4
2
+ a0z

3
2

= 0,

a4z
6
2
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5
2
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4
2
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3
2
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2
2
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a4z
5
2
+a3z

4
2
+ a2z

3
2
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2
2
+ a0z2 = 0,

a4z
4
2
+ a3z

3
2
+ a2z

2
2
+ a1z2 + a0 = 0,
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8
2
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7
2
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2
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2
+b1z

4
2
+ b0z

3
2

= 0,

b5z
7
2
+ b4z

6
2
+ b3z

5
2
+b2z

4
2
+ b1z

3
2
+ b0z

2
2

= 0,

b5z
6
2
+ b4z

5
2
+ b3z

4
2
+ b2z

3
2
+ b1z

2
2
+ b0z2 = 0,

b5z
5
2
+b4z

4
2
+ b3z

3
2
+ b2z

2
2
+ b1z2 + b0 = 0.

(106)

Furthermore, according to Theorem 3, the determinant of the coefficients of Eq. (106) is set equal to zero as in Eq. (51). This
yields a polynomial equation in the form of Eq. (52) with q = 25 that depends only on the suppressed variable z1. Next, considering
a = 1.3, " = 1 and the initial condition z

(0)

1
= 0, Eq. (52) is solved numerically by employing a standard Newton’s iterative

optimization scheme [21]. Similarly, the remaining variable z2 is obtained by considering z2 as suppressed and repeating the above
steps. Numerical results related to the iterations of the Newton’s scheme are summarized in Table 5. The objective functions S (z) of
the most probable path optimization problem and the first-order optimality condition equations for a = 1.3, 1.5 and 1.8, considering
" = 1 are shown in Figs. 8–10, respectively. The solutions z∗ and S(z∗) for various values of a are summarized in Table 6. As
anticipated based on Theorem 4, the solutions coincide practically with the estimates obtained by the Gröbner basis approach
applied in [22].
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Fig. 9. First-order optimality condition equations and objective function of the most probable path optimization problem corresponding to a nonlinear oscillator
with a bimodal response PDF with a = 1.5 and " = 1 using L = 2 trial functions

(
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)
.

Fig. 10. First-order optimality condition equations and objective function of the most probable path optimization problem corresponding to a nonlinear oscillator
with a bimodal response PDF with a = 1.8 and " = 1 using L = 2 trial functions

(
x
(
tf = 1

)
= 0.8, ẋ

(
tf = 1

)
= 0.9

)
.

Table 6
Optimal solution and objective function val-
ues for a nonlinear oscillator with a bimodal
response PDF under white noise.

a z∗ S(z∗)

a = 1.3 (−0.0209,−0.0513) 4.6669
a = 1.5 (−0.0064,−0.0573) 4.5140
a = 1.8 ( 0.0130,−0.0667) 4.3156

5. Concluding remarks

Various techniques have been developed in this paper for addressing the existence, uniqueness and numerical calculation of WPI
most probable path solutions. Specifically, for the first time in the literature, results have been obtained regarding the existence
and uniqueness of solutions pertaining to the most probable path BVP described by the coupled system of multivariate polynomial
equations shown in Eq. (18). To elaborate further, first, it has been shown that for the commonly considered case of the system
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nonlinearity being of polynomial form, there exist globally optimal solutions corresponding to the most probable path optimization
problem. Second, relying on algebraic geometry concepts and tools, a condition has been derived for determining if the BVP for the
most probable path exhibits a unique solution over a specific region.

Furthermore, a novel approach based on Sylvester’s dialytic method of elimination has been developed for calculating numerically
the most probable paths. The rationale of the method relates to reducing the complexity of the nL system of coupled multivariate
polynomial equations described by Eq. (18). In fact, the computational cost associated with solving numerically Eq. (18), by applying,
indicatively, the Newton’s iterative scheme developed in [22], becomes non-trivial for an increasing number of unknowns (p = nL)

when higher-dimensional n-DOF systems are considered. Remarkably, it has been shown that the proposed method circumvents
the above challenge by eliminating one or more variables successively, and thus, yielding nL univariate polynomial equations to
be solved independently. Notably, it has also been proved that both the Gröbner basis approach employed in [22] and the herein
proposed dialytic method yield the same set of solutions for the BVP. Various numerical examples pertaining to diverse nonlinear
oscillators have been considered for demonstrating the capabilities of the developed techniques.
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