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A B S T R A C T

An extrapolation approach within the Wiener path integral (WPI) technique is developed for determining the
stochastic response of diverse nonlinear dynamical systems. Specifically, the WPI technique treats the system
response joint transition probability density function (PDF) as a functional integral over the space of all possible
paths connecting the initial and the final states of the response vector. Further, the functional integral is
evaluated, ordinarily, by considering the contribution only of the most probable path. This corresponds to
an extremum of the functional integrand, and is determined by solving a functional minimization problem
that takes the form of a deterministic boundary value problem (BVP). This BVP corresponds to a specific grid
point of the response PDF domain. Remarkably, the BVPs corresponding to two neighboring grid points not
only share the same equations, but also the boundary conditions differ only slightly. This unique aspect of the
technique is exploited herein. Specifically, it is shown that solution of a BVP and determination of the response
PDF value at a specific grid point can be used for extrapolating and estimating efficiently the PDF values at
neighboring points without the need for considering additional BVPs. Notably, the herein developed approach
enhances significantly the computational efficiency of the WPI technique without, practically, affecting the
associated degree of accuracy. Two numerical examples relating to a Duffing nonlinear oscillator subjected to
combined stochastic and deterministic periodic loading, and to an oscillator with asymmetric nonlinearities
and fractional derivative elements are considered to demonstrate the reliability of the extrapolation approach.
Juxtapositions with pertinent Monte Carlo simulation data are included as well.

1. Introduction

Several methodologies have been developed in the field of stochastic
engineering dynamics over the last six decades, with varying degrees
of success, for determining response and reliability statistics of struc-
tural and mechanical systems. The interested reader is directed to
references such as the books by Lin [1], Nigam [2], Elishakoff [3],
Ghanem and Spanos [4], and Lutes [5], for a broad perspective. More
specifically, the available approximate/semi-analytical methodologies
can be broadly divided into two groups. The first group comprises tech-
niques that can treat accurately low probability events, but can handle
only a small number of stochastic dimensions due to prohibitive as-
sociated computational cost. Representative examples include discrete
versions of the Chapman–Kolmogorov equation (e.g., [6,7]), Fokker–
Planck equation solution schemes (e.g., [8]) and probability density
evolution methods (e.g., [9]). The second group comprises techniques,
such as statistical linearization schemes (e.g., [10,11]), that can treat
readily high-dimensional systems, but provide reliable estimates for
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low-order response statistics only, e.g., mean vector and covariance

matrix.

Further, it can be argued that Monte Carlo simulation (MCS) is the

most versatile numerical methodology for solving stochastic equations

of arbitrary form (e.g., [12–14]). Note, however, that there are many

cases where MCS can be computationally prohibitive. This is particu-

larly true when high-dimensional complex systems are considered, for

which even only one deterministic analysis is time-consuming. It is also

true when the system response quantity of interest is characterized by a

quite low probability of occurrence, with a computationally intractable

number of deterministic analyses required to acquire a reasonably

accurate estimate.

More recently, the Wiener path integral (WPI) technique was in-

troduced in the field of stochastic engineering mechanics in [15–17].

Remarkably, the technique has been found to be both of high accu-

racy, and of low computational cost in a wide range of applications

pertaining to diverse dynamical systems (e.g., [18–21]). Further, the
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WPI technique has proven to be versatile in treating a wide range of
nonlinear/hysteretic systems, even for those endowed with fractional
derivative elements (e.g., [22–24]).

The fundamental concept of the WPI technique relates to treating
the system response joint transition probability density function (PDF)
as a functional integral over the space of all possible paths connecting
the initial and the final states of the response vector. Further, the func-
tional integral is evaluated, ordinarily, by resorting to an approximate
approach that considers the contribution only of the most probable
path. This corresponds to an extremum of the functional integrand, and
is determined by solving a functional minimization problem that takes
the form of a deterministic boundary value problem (BVP). This BVP
corresponds to a specific grid point of the response PDF domain. Note,
however, that for any particular nonlinear system under consideration,
the equations of the BVP are independent of the grid point. In fact, only
the boundary conditions change with different grid points, whereas
the equations of the BVP remain unaltered. Remarkably, the BVPs
corresponding to two neighboring grid points not only share the same
equations, but also the boundary conditions differ only slightly. Thus,
it is expected that the BVP solutions, i.e., the most probable paths,
referring to the two grid points are highly correlated.

In this paper, the above unique aspect of the technique is ex-
plored further. Specifically, it is shown that solution of a BVP and
determination of the response PDF value at a specific grid point can
be used for extrapolating and estimating efficiently the PDF values
at neighboring points without the need for solving additional BVPs.
Notably, the herein developed approach enhances significantly the
computational efficiency of the WPI technique without, practically,
affecting the associated degree of accuracy. The latter is shown to
be true even for relatively large distances between the original and
the extrapolated points. Two numerical examples relating to a Duffing
nonlinear oscillator subjected to combined stochastic and deterministic
periodic loading, and to an oscillator with asymmetric nonlinearities
and fractional derivative elements are considered for demonstrating the
reliability of the technique. Juxtapositions with pertinent MCS data are
included as well.

2. Preliminaries

2.1. Wiener path integral formalism

The equation of motion of a stochastically excited m−degree-of-
freedom (m−DOF) structural system can be cast as a coupled system
of second-order stochastic differential equations (SDEs) in the form

Mẍ + Cẋ +Kx + g (x, ẋ, t) = w(t), (1)

where x denotes the displacement vector process
(
x = [x1,… , xm]

T
)
;

M , C, K are the m × m mass, damping and stiffness matrices, respec-
tively; and g(⋅) represents a nonlinear vector function that can also
account for possible dependence of the state of the system on its history.
Further, w(t) is a white noise stochastic vector process with E[w(t)] = 0

and E[w(t)wT (t + �)] = Sw�(�), where Sw ∈ R
m×m is a non-singular

diagonal matrix.
In comparison to alternative derivations in the literature, a novel

WPI formulation was developed by Mavromatis et al. [23] that circum-
vents the Markovian assumption for the system response process. In
this regard, nonlinear systems with a history-dependent state, such as
hysteretic structures or oscillators endowed with fractional derivative
elements, can be treated in a direct manner. That is, without resorting
to ad hoc modifications of the equations of motion pertaining, typically,
to employing additional auxiliary filter equations and state variables
(e.g., [25]).

Specifically, the probability of a path corresponding to an
n-dimensional Wiener vector process with W (t0) = W 0, W (tf ) = W f

and �W l = W l+1 −W l is given by (e.g., [26])

[W (t)] = lim
� ←←→0

{
exp

(
−

1

2�

L∑
l=0

�W T
l
�W l

)

×

L∏
l=0

[√
(2��)n

]−1 n∏
j=1

[
L+1∏
l=1

dWj,l

] }
,

(2)

where the time domain is discretized into L + 2 points � apart (with
L ←←→ ∞ as � ←←→ 0), i.e., ti = t0 < ⋯ < tL+1 = tf . Further, considering
Eq. (2) and accounting for the probabilities of all possible paths that
the Wiener process W can follow, the corresponding transition PDF is
given as the limit of an L−dimensional integral in the form

p
(
W f , tf |W i, ti

)
= lim

� ←←→0∫
∞

−∞

⋯∫
∞

−∞

exp

(
−

1

2�

L∑
l=0

�W T
l
�W l

)

×

L∏
l=0

[√
(2��)n

]−1 n∏
j=1

[
L+1∏
l=1

dWj,l

]
.

(3)

Regarding the relation between the Wiener and the white noise pro-
cesses, a unit intensity white noise process w(t), (i.e., Sw = I , where
I is the identity matrix) can be defined as an infinitesimal jump of the
Wiener process, i.e., w(t)dt = dW . Thus, it is often, informally, written
as the time derivative of the Wiener process in the form w(t) =

dW

dt
; see

also [27,28] for a more detailed discussion on the topic. Next, taking
into account the relationship between the system response process x

and the white noise process w described by Eq. (1), the transition
PDF p(xf , ẋf , tf |xi, ẋi, ti) is obtained by applying a functional change
of variables to Eq. (3); see [23] for more details.

In this regard, denoting the set of all paths with initial state xi
at time ti and final state xf at time tf by {xf , ẋf , tf ;xi, ẋi, ti}, the
joint transition PDF p(xf , ẋf , tf |xi, ẋi, ti) takes the form of a functional
integral over {xf , ẋf , tf ;xi, ẋi, ti}; that is,
p(xf , ẋf , tf |xi, ẋi, ti) = ∫{xf ,ẋf ,tf ;xi ,ẋi ,ti} exp (−[x, ẋ, ẍ])[x(t)], (4)

where

[x, ẋ, ẍ] = ∫
tf

ti

[x, ẋ, ẍ]dt (5)

denotes the so-called (e.g., [26]) stochastic action. The Lagrangian
functional [x, ẋ, ẍ] in Eq. (5) takes the form
[x, ẋ, ẍ] = 1

2
[Mẍ + Cẋ +Kx + g (x, ẋ, t)]T

× S−1
w

[Mẍ + Cẋ +Kx + g (x, ẋ, t)]

(6)

and the functional measure [x(t)] is given by the equation

[x(t)] =

m∏
j=1

[xj (t)]

=

m∏
j=1

tf∏
t=ti

dxj (t)√
2�

(
det

[
M−1Sw

(
M−1

)T ])1∕m

dt

.

(7)

2.2. Most probable path approximation

It is noted that the analytical evaluation of the WPI of Eq. (4) is, in
general, not feasible. Thus, alternative approaches are typically pursued
in the literature for evaluating approximately Eq. (4), such as the most
probable path approach (e.g., [26]). Note that the most probable path
approximation has exhibited a quite high degree of accuracy in various
diverse engineering mechanics applications (e.g., [17,18]).

Specifically, the largest contribution to the functional integral of
Eq. (4) relates to the trajectory xc (t) for which the stochastic action
of Eq. (5) becomes as small as possible. This leads to the variational,
functional minimization, problem

minimize{xi ,ẋi ,ti ;xf ,ẋf ,tf }
[x, ẋ, ẍ] (8)
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to be solved for xc (t) in conjunction with the boundary conditions

[x(ti), ẋ(ti),x(tf ), ẋ(tf )]
T = [xi, ẋi,xf , ẋf ]

T . (9)

Next, the functional integral of Eq. (4) is evaluated approximately as

p(xf , ẋf , tf |xi, ẋi, ti) = C exp
(
−[xc , ẋc , ẍc ]), (10)

where C is a constant to be determined by the normalization condition

∫
∞

−∞ ∫
∞

−∞

p(xf , ẋf , tf |xi, ẋi, ti)dxf dẋf = 1. (11)

Notably, various methodologies can be employed for treating the
optimization problem of Eq. (8) and for determining xc (t). For in-
stance, the most probable path xc (t), being an extremal of [x, ẋ, ẍ],
is determined by resorting to calculus of variations (e.g., [29]) and
by enforcing the necessary condition that the first variation vanishes,
i.e., � = 0. This yields a system of Euler–Lagrange equations to be
solved numerically for xc (t) (e.g., [21]). Further, alternative approaches
for obtaining the most probable path range from standard Rayleigh–
Ritz solution treatments of Eq. (8) (e.g., [17,30]) to more recently
developed techniques relying on computational algebraic geometry
tools [31].

3. Mathematical formulation

As discussed in Section 2.2, the most probable path xc (t), which is
used for determining approximately the system response joint transition
PDF via Eq. (10), is computed by solving a functional minimization
problem in the form of Eq. (8) in conjunction with the boundary
conditions of Eq. (9). Clearly, this BVP corresponds to a specific grid
point of the response PDF domain. In fact, for a given time instant
tf , a standard brute-force numerical implementation of the technique
(e.g., [19]) involves the discretization of the PDF effective domain into
N2m points, where N is the number of points in each dimension. Next,
the evaluation of the PDF is performed point-wise on the discretized
lattice. In other words, N2m BVPs in the form of Eqs. (8) and (9)
need to be solved numerically, inducing an exponential increase of the
computational cost with the dimension m of the system.

To circumvent the aforementioned challenge, attention is directed
in the following to the fact that, for a specific nonlinear system under
consideration, the BVPs to be solved are independent of the grid point.
In fact, only the boundary conditions change with different grid points,
whereas the form of the problem remains unaltered. Remarkably, the
BVPs corresponding to two neighboring grid points not only share the
same equations, but also the boundary conditions differ only slightly.
Thus, it is expected that their solutions, i.e., the most probable paths
referring to the two grid points, are highly correlated. This unique
aspect of the technique is explored further in the ensuing analysis, and
it is shown that solution of a BVP and determination of the response
PDF value at a specific grid point can be used for extrapolating and
estimating efficiently, and accurately, the PDF values at neighboring
points without the need for solving additional BVPs.

3.1. Relationship between the system response PDF estimates at two distinct
points

Consider a point (x′
f
, ẋ′

f
) in the response PDF domain that is re-

lated to point (xf , ẋf ) in Eq. (9) as (x′
f
, ẋ′

f
) = (xf + �xf , ẋf + �ẋf ),

where (�xf , �ẋf ) denotes the difference between the two points. In this
regard, referring to point (x′

f
, ẋ′

f
), Eqs. (8) and (9) become

minimize{xi ,ẋi ,ti;x′f ,ẋ′f ,tf }
[x, ẋ, ẍ] (12)

and

[x(ti), ẋ(ti),x
′(tf ), ẋ

′(tf )]
T = [xi, ẋi,x

′
f
, ẋ′

f
]T , (13)

respectively. Next, the solution of Eqs. (12) and (13), which is the
most probable path corresponding to initial conditions (xi, ẋi) and final
conditions (x′

f
, ẋ′

f
), is expressed as x′

c
= xc + �x, where �x denotes

a path to be determined. Further, substituting x′
c
= xc + �x into the

Lagrangian functional of Eq. (6) yields

[x′
c
, ẋ′

c
, ẍ′

c
] =

1

2

[
M(ẍc + �ẍ) + C(ẋc + �ẋ)+

+ K(xc + �x) + g
(
xc + �x, ẋc + �ẋ, t

)]T
× S−1

w

[
M(ẍc + �ẍ) + C(ẋc + �ẋ)+

+K(xc + �x) + g
(
xc + �x, ẋc + �ẋ, t

)]
.

(14)

Eq. (14) is cast, equivalently, in the form

[x′
c
, ẋ′

c
, ẍ′

c
] =

1

2

[(
A(xc , �x) + Blin(�x)

)T
S−1
w

(
A(xc , �x) + Blin(�x)

)]
,

(15)

where

A(xc , �x) = Mẍc + Cẋc +Kxc + g
(
xc + �x, ẋc + �ẋ, t

)
, (16)

and

Blin(�x) = M�ẍ + C�ẋ +K�x. (17)

Further, based on Eq. (10), the joint response PDF p(x′
f
, ẋ′

f
, tf |xi, ẋi, ti)

is given by the equation

p(x′
f
, ẋ′

f
, tf |xi, ẋi, ti) = C exp

(
−[x′

c
, ẋ′

c
, ẍ′

c
]
)
. (18)

It is readily seen that Eq. (18) depends on x′
c
= xc +�x, where xc is

the most probable path corresponding to point (xf , ẋf ) and �x a path
to be determined. In Section 3.2, it is shown that �x can be evaluated
approximately, in a closed form, at zero computational cost. Thus, once
the xc corresponding to the original point (xf , ẋf ) has been determined,
an extrapolation approach can be applied for obtaining the PDF values
at neighboring points (x′

f
, ẋ′

f
) without any additional computational

effort.

3.2. Approximate analytical evaluation of the difference of the most prob-
able paths corresponding to two neighboring points of the system response
PDF domain

In the following, it is assumed that the two points of the system
response PDF domain, (xf , ẋf ) and (x′

f
, ẋ′

f
), are sufficiently close to

each other, and thus, their difference (�xf , �ẋf ) is relatively small.
Also, note that the two BVPs corresponding to (xf , ẋf ) and (x′

f
, ẋ′

f
) and

described by Eqs. (8) and (9), and Eqs. (12) and (13), respectively, have
identical equations with only slightly different boundary conditions.
Thus, it is reasonable to assume that the term �x is also relatively
small. In other words, the solutions of the two BVPs, i.e., the two
most probable paths xc and x′

c
, corresponding to (xf , ẋf ) and (x′

f
, ẋ′

f
),

respectively, are expected to differ only slightly.

Based on the preceding rationale, the approximation g
(
xc + �x, ẋc

+�ẋ, t) = g
(
xc , ẋc , t

)
is adopted next. In this regard, Eq. (16) becomes

A(xc , �x) = A(xc ) = Mẍc + Cẋc +Kxc + g
(
xc , ẋc , t

)
(19)

and Eq. (15) takes the form

[x′
c
, ẋ′

c
, ẍ′

c
] =

1

2

[(
A(xc ) + Blin(�x)

)T
S−1
w

(
A(xc ) + Blin(�x)

)]
. (20)

Further, consider the following general form for the diagonal matrix
Sw; that is,

Sw =

⎡
⎢⎢⎢⎢⎣

2�S1 0 ⋯ 0

0 2�S2 ⋯ 0

⋮ ⋯ ⋱ ⋮

0 ⋯ 0 2�Sm

⎤
⎥⎥⎥⎥⎦
, (21)
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where Si, i = 1,… , m are positive constants denoting the intensities of
the white noise processes. Next, taking into account Eq. (21), Eq. (20)
is written, equivalently, as

[x′
c
, ẋ′

c
, ẍ′

c
] =

1

2

m∑
i=1

1

2�Si

(Ai + Bi)
2, (22)

where

Ai =

m∑
j=1

mij ẍcj + cij ẋcj + kijxcj + gj (xc , ẋc , t) (23)

and

Bi =

m∑
j=1

mij�ẍj + cij�ẋj + kij�xj . (24)

In Eqs. (23) and (24), mij , cij , kij denote the elements of the matri-
ces M , C and K , respectively. Furthermore, employing the Cauchy–
Schwarz inequality (e.g., [32]), Eq. (22) yields

[x′
c
, ẋ′

c
, ẍ′

c
] =

1

2

m∑
i=1

1

2�Si

(Ai + Bi)
2

≤ 1

2

m∑
i=1

1

2�Si

2(A2
i
+ B2

i
).

(25)

Next, based on Eq. (25), [x′
c
, ẋ′

c
, ẍ′

c
] is approximated by its upper

bound as

approx[x′c , ẋ′c , ẍ′c ] =
m∑
i=1

1

2�Si

(A2
i
+ B2

i
). (26)

Equivalently, Eq. (26) can be expressed in a vectorial form as

approx[x′c , ẋ′c , ẍ′c ] = AT (xc )S
−1
w
A(xc ) + BT

lin(�x)S
−1
w
Blin(�x). (27)

Obviously, decoupling has been achieved in Eq. (27), where the first
term depends on xc only, and the second term depends on �x only.
Further, considering the form of the Lagrangian of Eq. (6), Eq. (27)
can be written, equivalently, as

approx[x′c , ẋ′c , ẍ′c ] = 2
([xc , ẋc , ẍc ] + lin[�x, �ẋ, �ẍ]) , (28)

where

lin(�x, �ẋ, �ẍ) = 1

2
BT
lin(�x)S

−1
w
Blin(�x). (29)

Next, substituting Eq. (28) into Eq. (5) yields

approx[x′c , ẋ′c , ẍ′c ] = 2
([xc , ẋc , ẍc ] + lin[�x, �ẋ, �ẍ]) , (30)

where lin[�x, �ẋ, �ẍ] is the stochastic action corresponding to the
Lagrangian of Eq. (29). Further, following Section 3.1, x′

c
is determined

by solving the BVP of Eqs. (12) and (13), where  is approximated
by approx of Eq. (30). Note, however, that in Eq. (30), the first term
depends only on xc , which is considered to be a known function
obtained by solving the BVP of Eqs. (8) and (9) corresponding to
point (xf , ẋf ). In this regard, [xc , ẋc , ẍc ] is treated as a constant in
the functional minimization problem, and thus, Eqs. (12) and (13)
degenerate to

minimize{0,0,ti;�xf ,�ẋf ,tf }
lin[�x, �ẋ, �ẍ] (31)

and

[�x(ti), �ẋ(ti), �x(tf ), �ẋ(tf )]
T = [0, 0, �xf , �ẋf ]

T , (32)

respectively. Next, resorting to the fundamental theorem of calculus of
variations (e.g., [29]), the necessary condition is employed that the
first variation of the functional of Eq. (31) vanishes, i.e., �lin = 0.
This yields the corresponding system of Euler–Lagrange equations for
j = 1,… , m

)lin
)�xj

−
d

dt

)lin
)�ẋj

+
d2

dt2

)lin
)�ẍj

= 0 (33)

to be solved in conjunction with the boundary conditions of Eq. (32).
Notably, the form of the functional minimization problem of

Eqs. (31) and (32), or, equivalently, of the associated Euler–Lagrange
Eqs. (32) and (33), is identical to that corresponding to a linear oscilla-
tor under Gaussian white noise [33]. In fact, as shown in [33], Eqs. (32)
and (33) are amenable to analytical solution treatment yielding

�x = C1v1e
�1t + C2v2e

�2t +⋯ + C4mv4me
�4mt, (34)

where [C1, C2,… , C4m]
T is a vector containing 4m coefficients to be

determined by enforcing the boundary conditions of Eq. (32) and
{v1, v2,… , v4m}, {�1, �2,… , �4m} are the eigenvectors and eigenvalues,
respectively, of the associated eigenvalue problem. For more details on
the derivation and the exact analytical expressions of the coefficients
and of the eigenvalues and eigenvectors in Eq. (34), the interested
reader is referred to [33].

In summary, the PDF value p(x′
f
, ẋ′

f
, tf |xi, ẋi, ti) at a point (x′f , ẋ′f )

sufficiently close to point (xf , ẋf ) is evaluated herein by substituting
x′
c

= xc + �x in Eq. (18), where �x is given by Eq. (34). From a
computational cost perspective, it is highlighted that once the most
probable path xc (t) corresponding to the original point (xf , ẋf ) has
been determined, the herein developed extrapolation technique re-
quires zero additional computational effort for obtaining the PDF values
at neighboring points (x′

f
, ẋ′

f
). Further, as shown in the numerical

examples of Section 3.3, the accuracy degree of the technique is un-
affected, practically, even for relatively large distances between points
(xf , ẋf ) and (x′

f
, ẋ′

f
). The latter can be attributed, at least partly, to the

fact that the expression for the response PDF in Eq. (18) is relatively
insensitive to the exact form of x′

c
as a function of time, and thus, an

approximation in the form x′
c
= xc +�x, with �x given by Eq. (34) is of

satisfactory accuracy. This is due to the integral operator involved in
the definition of the stochastic action [x′

c
, ẋ′

c
, ẍ′

c
] that ‘‘averages’’ the

time domain behavior of x′
c
.

3.3. Mechanization of the technique

Concisely stated, the mechanization of the technique comprises the
following steps:

(a) For a given time instant tf , discretize the domain of final states
{xf , ẋf } into N2m points, where N is the number of points in
each dimension and 2m is the number of stochastic dimensions.
N relates to the number of original points and is selected to
be relatively small, e.g., N ∈ [5, 15]. Note that alternative, non-
uniform and/or randomly generated, discretization meshes can
be also used in principle.

(b) For each one of the N2m points {xf , ẋf }, determine the most
probable path xc (t) by solving numerically Eqs. (8) and (9).

(c) Consider the extrapolation domain of final states discretized into
M2m points, whereM is the number of points in each dimension
with M ≫ N .

(d) For each one of the M2m points {x′
f
, ẋ′

f
} in the extrapolation

domain, determine its closest point {xf , ẋf } in the original
domain.

(e) Evaluate the most probable path x′
c
corresponding to point

{x′
f
, ẋ′

f
} as x′

c
= xc + �x, where �x is given by Eq. (34) in

closed-form; see also Fig. 1 for a schematic.
(f) Obtain the system response transition PDF p(x′

f
, ẋ′

f
, tf |xi, ẋi, ti)

by substituting x′
c
= xc + �x into Eq. (18).

4. Numerical examples

4.1. Duffing nonlinear oscillator subjected both to stochastic loading and to
a deterministic harmonic excitation component

Consider a single-DOF Duffing nonlinear oscillator subjected to
combined loading. Its equation of motion is given by

mẍ + cẋ + kx + �x3 = w(t) + F cos (!t). (35)
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Fig. 1. Extrapolation approach shown for a generic single-DOF oscillator: Original discretization mesh and a representative most probable path xc corresponding to point (xf , ẋf )

(blue); representative extrapolated most probable path at point (x′
f
, ẋ′

f
) evaluated as x′

c
= xc + �x (red). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 2. Joint response PDF at indicative time instants tf = 0.5, 1 and 2 s corresponding to a Duffing nonlinear oscillator subjected both to stochastic loading and to a deterministic
harmonic excitation component: (a) results obtained by the WPI technique at N2 = 72 points and extrapolated at N2 = 2012 points; (b) comparison with MCS data (100,000
realizations).

Obviously, the applied excitation comprises a white noise (w(t)) and a
deterministic harmonic (F cos (!t)) components. In passing, note recent
extensions of alternative standard approximate techniques, such as
stochastic averaging and statistical linearization, to account for such
challenging cases of combined stochastic and deterministic periodic
loading (e.g., [34–37]). In this regard, it is shown herein that such types
of combined loading, for which the purely stochastic excitation can be
construed as a special case, can be treated by the WPI technique in a
straightforward manner without the need for any modifications of the
original formulation. Indeed, Eq. (35) can be written, equivalently, in

the form of Eq. (1) with g(x, ẋ, t) = �x3−F cos (!t) and parameter values

m = 1, c = 0.5, k = 1, � = 1, F = 1.5, ! = 2, S0 = 0.05.

Next, for three arbitrarily selected time instants tf = 0.5, 1, 2s,

the joint response PDF p(xf , ẋf , tf |0, 0, 0) is evaluated at N2 = 72

points based on the WPI technique. Further, the herein developed

extrapolation approach is employed for estimating the PDF values at

a grid of N2 = 2012 points spanning the entire PDF domain. The

results are plotted in Fig. 2(a) and compared with MCS-based estimates

(100,000 realizations) in Fig. 2(b). The MCS data are obtained by
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Fig. 3. Joint response PDF at an indicative time instant tf = 1s corresponding to a Duffing nonlinear oscillator subjected both to stochastic loading and to a deterministic harmonic
excitation component: (a) results obtained by the WPI technique at N2 = 52 points and extrapolated at N2 = 2012 points; (b) results based on a splines extrapolation scheme using
the same original mesh of N2 = 52 points as in (a); (c) comparison with MCS data (100,000 realizations). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

numerically solving the equation of motion based on a standard Runge–
Kutta integration scheme (e.g., [38]) and by conducting a statistical
analysis on the response time-histories. Further, to highlight the quite
high degree of accuracy, even for relatively large distances between
the original and the extrapolated points, the WPI-based joint response
PDF at tf = 1s is shown in Fig. 3(a) in conjunction with the original
mesh of N2 = 52 points (red dots). This is compared, indicatively,
with a purely data-based splines extrapolation scheme (e.g., [39])
that provides the PDF estimate shown in Fig. 3(b). Obviously, due
to the quite small number of original mesh points, the splines-based
scheme fails to capture even the basic shape of the PDF compared with
the MCS-based estimate of Fig. 3(c). Also, the splines-based estimates
violate the property of the PDF being non-negative.

In Fig. 4, the y-axis shows the mean square error of the PDF esti-
mates compared with the MCS-based solution (100,000 realizations).
The x-axis shows the computation time required for obtaining the
PDF estimates. Clearly, for a given degree of accuracy, the proposed
extrapolation approach is several orders of magnitude more efficient
than both a brute-force implementation of the WPI technique and a
standard MCS solution scheme.

4.2. Oscillator with asymmetric nonlinearities and fractional derivative
elements

Consider next a single-DOF oscillator with asymmetric nonlineari-
ties and fractional derivative elements. Its equation of motion is given
by

mẍ + cC
ti
Da

t
x + k(x + �x2) = w(t) (36)

where C
ti
Da

t
x represents the left Caputo fractional derivative of order a

defined as

C
ti
Da

t
x(t) =

1

� (1 − a) ∫
t

ti

ẋ(�)

(t − �)a
d�, (37)

with � (⋅) denoting the Gamma function; and 0 < a < 1. Eq. (36)
can be written, equivalently, in the form of Eq. (1) with g (x, ẋ, t) =

−cẋ + cC
ti
Da

t
x + �kx2. The selected parameter values are m = 1, c =

0.6, k = 1, � = 0.5, � = 0.5 and S0 = 0.05. Next, the joint response
PDF p(xf , ẋf , tf |0, 0, 0) is evaluated based on the WPI technique by
employing a Rayleigh–Ritz scheme for solving the BVP of Eqs. (8) and
(9) (e.g., [22]).
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Fig. 4. Comparisons in terms of accuracy and computational cost between the standard MCS, the brute-force implementation of the WPI technique, and the efficient WPI technique
based on extrapolation: mean square error and associated computation time for estimating the joint response PDF at an indicative time instant tf = 1s corresponding to a single-DOF
Duffing nonlinear oscillator subjected both to stochastic loading and to a deterministic harmonic excitation component.

Fig. 5. Joint response PDF at indicative time instants tf = 1, 2 and 3 s corresponding to an oscillator with asymmetric nonlinearities and fractional derivative elements: (a) results
obtained by the WPI technique at N2 = 92 points and extrapolated at N2 = 2012 points; (b) comparison with MCS data (100,000 realizations).

In passing, it is worth noting that the response of the oscillator
in Eq. (36) cannot, strictly speaking, reach stationarity. This is due
to the fact that escape from the corresponding potential energy well
is possible if the displacement exceeds a critical level. Such an es-
cape is followed, typically, by an unbounded response behavior. In
the following numerical results, such an escape event has practically
zero probability of occurrence for the selected parameter values and

final time instants; see also section 5.3.6 in the book by Roberts and
Spanos [10] for a relevant discussion.

Further, the herein-developed technique is used for evaluating the
PDF values at an original mesh of N2 = 92 points, and for extrapolating
at a grid of N2 = 2012 points over the PDF domain. The results are
plotted for three arbitrary time instants tf = 1, 2, 3s in Fig. 5(a) and
compared with MCS-based estimates (100,000 realizations) in Fig. 5(b)
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Fig. 6. Joint response PDF at an indicative time instant tf = 2s corresponding to an oscillator with asymmetric nonlinearities and fractional derivative elements: (a) results obtained
by the WPI technique at N2 = 52 points and extrapolated at N2 = 2012 points; (b) results based on a splines extrapolation scheme using the same original mesh of N2 = 52 points
as in (a); (c) comparison with MCS data (100,000 realizations). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

demonstrating a quite high degree of accuracy. For the MCS analyses,
the L1 algorithm (e.g., [40]) has been used for integrating numerically
Eq. (36) and for determining response realizations. Furthermore, the
WPI-based PDF estimate for tf = 2s is plotted in Fig. 6(a) in conjunction
with the original mesh of N2 = 52 points (red dots). In Fig. 6(b), the
splines-based PDF estimate is shown, obtained by using the same origi-
nal mesh of N2 = 52 points. Comparisons with the MCS-based estimate
in Fig. 6(c) demonstrate, similarly to the example of Section 4.1, a
quite low accuracy degree exhibited by the purely data-based splines
extrapolation scheme (e.g., [39]).

Lastly, similarly to Fig. 6, in Fig. 7 the mean square error (y-axis) of
the PDF estimates is plotted as a function of the computation time (x-
axis) required for determining the PDF. For a given degree of accuracy,
it is readily seen that the developed extrapolation approach vastly
outperforms the standard MCS scheme in terms of efficiency.

5. Concluding remarks

A novel extrapolation approach has been developed in this paper
that drastically reduces the computational cost associated with the

WPI technique without, practically, affecting the exhibited accuracy.
Specifically, the WPI technique for determining the stochastic response
of diverse nonlinear dynamical systems relies on a variational formu-
lation that leads to a functional minimization problem. This takes the
form of a deterministic BVP to be solved for the most probable path,
which is used for determining approximately the system response joint
transition PDF. The BVP corresponds to a specific grid point of the
response PDF effective domain. Remarkably, the BVPs corresponding to
two neighboring grid points not only share the same equations, but also
the boundary conditions differ only slightly. This unique aspect of the
technique has been exploited herein and it has been shown that solution
of a BVP and determination of the response PDF value at a specific
grid point can be used for extrapolating and estimating efficiently, and
accurately, the PDF values at neighboring points without the need for
solving additional BVPs. In fact, the developed extrapolation approach
has exhibited a quite high degree of accuracy even for relatively large
distances between the original and the extrapolated points. Two nu-
merical examples relating to a Duffing nonlinear oscillator subjected to
combined stochastic and deterministic periodic loading, and to an oscil-
lator with asymmetric nonlinearities and fractional derivative elements



International Journal of Non-Linear Mechanics 160 (2024) 104646

9

I.G. Mavromatis et al.

Fig. 7. Comparisons in terms of accuracy and computational cost between the standard MCS, the brute-force implementation of the WPI technique, and the efficient WPI technique
based on extrapolation: mean square error and associated computation time for estimating the joint response PDF at an indicative time instant tf = 1s corresponding to a
stochastically excited oscillator with asymmetric nonlinearities and fractional derivative elements.

have been considered for assessing the performance of the developed
approach. It has been shown that, for a given degree of accuracy, the
extrapolation approach is several orders of magnitude more efficient
than both a brute-force implementation of the WPI technique and a
standard MCS solution scheme.

CRediT authorship contribution statement

Ilias G. Mavromatis: Conceptualization, Methodology, Software,
Writing – original draft, Writing – review & editing. Ioannis A. Kou-
gioumtzoglou: Conceptualization, Funding acquisition, Methodology,
Supervision, Writing – review & editing. Pol D. Spanos: Conceptual-
ization, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

I. A. Kougioumtzoglou gratefully acknowledges the support through
his CAREER award by the CMMI Division of the National Science
Foundation, United States (Award No. 1748537).

References

[1] Y.K. Lin, Probabilistic Theory of Structural Dynamics, McGraw-Hill, 1967.

[2] N.C. Nigam, Introduction to Random Vibrations, The MIT Press, Cambridge,
1983.

[3] I. Elishakoff, Probabilistic Theory of Structures, second ed., Dover Publications,
1999.

[4] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach,
Dover Publications, 2003.

[5] L.D. Lutes, S. Sarkani, Random Vibrations: Analysis of Structural and Mechanical
Systems, Elsevier-Butterworth-Heinemannier, 2004.

[6] M.F. Wehner, W.G. Wolfer, Numerical evaluation of path-integral solutions to
Fokker–Planck equations, Phys. Rev. A 27 (5) (1983) 2663–2670, http://dx.doi.
org/10.1103/PhysRevA.27.2663.

[7] A. Naess, J.M. Johnsen, Response statistics of nonlinear, compliant offshore
structures by the path integral solution method, Probab. Eng. Mech. 8 (2) (1993)
91–106, http://dx.doi.org/10.1016/0266-8920(93)90003-E.

[8] H. Risken, The Fokker–Planck Equation: Methods of Solution and Applications,
Springer-Verlag, Berlin, Heidelberg, 1984, http://dx.doi.org/10.1007/978-3-642-
61544-3.

[9] J. Li, J. Chen, Stochastic Dynamics of Structures, John Wiley & Sons, Ltd,
Chichester, UK, 2009, http://dx.doi.org/10.1002/9780470824269.

[10] J.B. Roberts, P.D. Spanos, Random Vibration and Statistical Linearization, Dover
Publications, 2003.

[11] L. Socha, Linearization Methods for Stochastic Dynamic Systems, Vol. 730,
Springer, Berlin, Heidelberg, 2007.

[12] M. Grigoriu, Applied Non-Gaussian Processes: Examples, Theory, Simulation,
Linear Random Vibration, and Matlab Solutions, Prentice Hall, 1995.

[13] M. Shinozuka, G. Deodatis, Simulation of multi-dimensional Gaussian stochastic
fields by spectral representation, Appl. Mech. Rev. 49 (1996) 29–53, http:
//dx.doi.org/10.1115/1.3101883.

[14] P.D. Spanos, B.A. Zeldin, Monte Carlo treatment of random fields: A broad
perspective, Appl. Mech. Rev. 51 (1998) 219–237, http://dx.doi.org/10.1115/
1.3098999.

[15] I.A. Kougioumtzoglou, Harmonic Wavelets Procedures and Wiener Path Integral
Methods for Response Determination and Reliability Assessment of Nonlinear
Systems/structures (Ph.D. thesis), Rice University, 2011.

[16] I.A. Kougioumtzoglou, P.D. Spanos, An analytical Wiener path integral technique
for non-stationary response determination of nonlinear oscillators, Probab. Eng.
Mech. 28 (2012) 125–131, http://dx.doi.org/10.1016/j.probengmech.2011.08.
022.

[17] I.A. Kougioumtzoglou, A Wiener path integral solution treatment and effective
material properties of a class of one-dimensional stochastic mechanics problems,
J. Eng. Mech. 143 (6) (2017) 1–12, http://dx.doi.org/10.1061/(ASCE)EM.1943-
7889.0001211.

[18] I. Petromichelakis, A.F. Psaros, I.A. Kougioumtzoglou, Stochastic response de-
termination and optimization of a class of nonlinear electromechanical energy
harvesters: A Wiener path integral approach, Probab. Eng. Mech. 53 (2018)
116–125, http://dx.doi.org/10.1016/j.probengmech.2018.06.004.

[19] A.F. Psaros, O. Brudastova, G. Malara, I.A. Kougioumtzoglou, Wiener Path
Integral based response determination of nonlinear systems subject to non-white,
non-Gaussian, and non-stationary stochastic excitation, J. Sound Vib. 433 (2018)
314–333, http://dx.doi.org/10.1016/j.jsv.2018.07.013.

[20] I. Petromichelakis, I.A. Kougioumtzoglou, Addressing the curse of dimensionality
in stochastic dynamics: A Wiener path integral variational formulation with free
boundaries, Proc. R. Soc. A 476 (2243) (2020) http://dx.doi.org/10.1098/rspa.
2020.0385.

[21] A.F. Psaros, I.A. Kougioumtzoglou, Functional series expansions and quadratic
approximations for enhancing the accuracy of the Wiener path integral tech-
nique, J. Eng. Mech. 146 (7) (2020) 04020065, http://dx.doi.org/10.1061/(asce)
em.1943-7889.0001793.

http://refhub.elsevier.com/S0020-7462(24)00011-8/sb1
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb2
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb2
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb2
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb3
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb3
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb3
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb4
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb4
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb4
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb5
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb5
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb5
http://dx.doi.org/10.1103/PhysRevA.27.2663
http://dx.doi.org/10.1103/PhysRevA.27.2663
http://dx.doi.org/10.1103/PhysRevA.27.2663
http://dx.doi.org/10.1016/0266-8920(93)90003-E
http://dx.doi.org/10.1007/978-3-642-61544-3
http://dx.doi.org/10.1007/978-3-642-61544-3
http://dx.doi.org/10.1007/978-3-642-61544-3
http://dx.doi.org/10.1002/9780470824269
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb10
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb10
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb10
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb11
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb11
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb11
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb12
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb12
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb12
http://dx.doi.org/10.1115/1.3101883
http://dx.doi.org/10.1115/1.3101883
http://dx.doi.org/10.1115/1.3101883
http://dx.doi.org/10.1115/1.3098999
http://dx.doi.org/10.1115/1.3098999
http://dx.doi.org/10.1115/1.3098999
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb15
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb15
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb15
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb15
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb15
http://dx.doi.org/10.1016/j.probengmech.2011.08.022
http://dx.doi.org/10.1016/j.probengmech.2011.08.022
http://dx.doi.org/10.1016/j.probengmech.2011.08.022
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001211
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001211
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001211
http://dx.doi.org/10.1016/j.probengmech.2018.06.004
http://dx.doi.org/10.1016/j.jsv.2018.07.013
http://dx.doi.org/10.1098/rspa.2020.0385
http://dx.doi.org/10.1098/rspa.2020.0385
http://dx.doi.org/10.1098/rspa.2020.0385
http://dx.doi.org/10.1061/(asce)em.1943-7889.0001793
http://dx.doi.org/10.1061/(asce)em.1943-7889.0001793
http://dx.doi.org/10.1061/(asce)em.1943-7889.0001793


International Journal of Non-Linear Mechanics 160 (2024) 104646

10

I.G. Mavromatis et al.

[22] A. Di Matteo, I.A. Kougioumtzoglou, A. Pirrotta, P.D. Spanos, M. Di Paola,
Stochastic response determination of nonlinear oscillators with fractional deriva-
tives elements via the Wiener path integral, Probab. Eng. Mech. 38 (2014)
127–135, http://dx.doi.org/10.1016/j.probengmech.2014.07.001.

[23] I.G. Mavromatis, A.F. Psaros, I.A. Kougioumtzoglou, A Wiener path integral
formalism for treating nonlinear systems with non-Markovian response processes,
J. Eng. Mech. 149 (1) (2023) 1–11, http://dx.doi.org/10.1061/JENMDT.EMENG-
6873.

[24] I.G. Mavromatis, I.A. Kougioumtzoglou, A reduced-order Wiener path integral
formalism for determining the stochastic response of nonlinear systems with
fractional derivative elements, ASCE-ASME J. Risk Uncertain Engrgy Syst. B
Mech, Engrgy 9 (3) (2023) 1–9, http://dx.doi.org/10.1115/1.4056902.

[25] Y. Zhang, I.A. Kougioumtzoglou, F. Kong, A Wiener path integral technique
for determining the stochastic response of nonlinear oscillators with frac-
tional derivative elements: A constrained variational formulation with free
boundaries, Probab. Eng. Mech. 71 (2023) 103410, http://dx.doi.org/10.1016/
j.probengmech.2022.103410.

[26] M. Chaichian, A. Demichev, Path Integrals in Physics, Vol. 1, IOP Publishing Ltd,
2001, http://dx.doi.org/10.1887/0750307137.

[27] C. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the
Natural Sciences, third ed., Springer-Verlag, 1985.

[28] B. Øksendal, Stochastic Differential Equations, fifth ed., in: Universitext, Springer,
Berlin, Heidelberg, 2003, http://dx.doi.org/10.1007/978-3-642-14394-6.

[29] I.M. Gelfand, S.V. Fomin, The Calculus of Variations, Prentice Hall, 1963.
[30] I. Petromichelakis, A.F. Psaros, I.A. Kougioumtzoglou, Stochastic response de-

termination of nonlinear structural systems with singular diffusion matrices: A
Wiener path integral variational formulation with constraints, Probab. Eng. Mech.
60 (2020) 103044, http://dx.doi.org/10.1016/j.probengmech.2020.103044.

[31] I. Petromichelakis, R.M. Bosse, I.A. Kougioumtzoglou, A.T. Beck, Wiener path
integral most probable path determination: A computational algebraic geometry
solution treatment, Mech. Syst. Signal Process. 153 (2021) 107534, http://dx.
doi.org/10.1016/j.ymssp.2020.107534.

[32] J.M. Steele, The Cauchy-Schwarz Master Class: An Introduction to the Art of
Mathematical Inequalities, Cambridge University Press, 2004, http://dx.doi.org/
10.1017/CBO9780511817106.

[33] A.F. Psaros, Y. Zhao, I.A. Kougioumtzoglou, An exact closed-form solution
for linear multi-degree-of-freedom systems under Gaussian white noise via the
Wiener path integral technique, Probab. Eng. Mech. 60 (2020) 103040, http:
//dx.doi.org/10.1016/j.probengmech.2020.103040.

[34] R. Haiwu, X. Wei, M. Guang, F. Tong, Response of a Duffing oscillator to
combined deterministic harmonic and random excitation, J. Sound Vib. 242 (2)
(2001) 362–368, http://dx.doi.org/10.1006/jsvi.2000.3329.

[35] N. Anh, N. Hieu, The Duffing oscillator under combined periodic and random
excitations, Probab. Eng. Mech. 30 (2012) 27–36, http://dx.doi.org/10.1016/j.
probengmech.2012.02.004.

[36] P.D. Spanos, Y. Zhang, F. Kong, Formulation of statistical linearization for M-
D-O-F systems subject to combined periodic and stochastic excitations, J. Appl.
Mech. 86 (10) (2019) 1–8, http://dx.doi.org/10.1115/1.4044087.

[37] Y. Zhang, P.D. Spanos, A linearization scheme for vibrations due to combined
deterministic and stochastic loads, Probab. Eng. Mech. 60 (January) (2020)
103028, http://dx.doi.org/10.1016/j.probengmech.2020.103028.

[38] L.F. Shampine, M.W. Reichelt, The MATLAB ode suite, SIAM J. Sci. Comput. 18
(1) (1997) 1–22, http://dx.doi.org/10.1137/S1064827594276424.

[39] K. Atkinson, An Introduction to Numerical Analysis, second ed., John Wiley &
Sons, Ltd, 1991.

[40] C.G. Koh, J.M. Kelly, Application of fractional derivatives to seismic analysis
of base-isolated models, Earthq. Eng. Struct. Dyn. 19 (2) (1990) 229–241,
http://dx.doi.org/10.1002/eqe.4290190207.

http://dx.doi.org/10.1016/j.probengmech.2014.07.001
http://dx.doi.org/10.1061/JENMDT.EMENG-6873
http://dx.doi.org/10.1061/JENMDT.EMENG-6873
http://dx.doi.org/10.1061/JENMDT.EMENG-6873
http://dx.doi.org/10.1115/1.4056902
http://dx.doi.org/10.1016/j.probengmech.2022.103410
http://dx.doi.org/10.1016/j.probengmech.2022.103410
http://dx.doi.org/10.1016/j.probengmech.2022.103410
http://dx.doi.org/10.1887/0750307137
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb27
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb27
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb27
http://dx.doi.org/10.1007/978-3-642-14394-6
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb29
http://dx.doi.org/10.1016/j.probengmech.2020.103044
http://dx.doi.org/10.1016/j.ymssp.2020.107534
http://dx.doi.org/10.1016/j.ymssp.2020.107534
http://dx.doi.org/10.1016/j.ymssp.2020.107534
http://dx.doi.org/10.1017/CBO9780511817106
http://dx.doi.org/10.1017/CBO9780511817106
http://dx.doi.org/10.1017/CBO9780511817106
http://dx.doi.org/10.1016/j.probengmech.2020.103040
http://dx.doi.org/10.1016/j.probengmech.2020.103040
http://dx.doi.org/10.1016/j.probengmech.2020.103040
http://dx.doi.org/10.1006/jsvi.2000.3329
http://dx.doi.org/10.1016/j.probengmech.2012.02.004
http://dx.doi.org/10.1016/j.probengmech.2012.02.004
http://dx.doi.org/10.1016/j.probengmech.2012.02.004
http://dx.doi.org/10.1115/1.4044087
http://dx.doi.org/10.1016/j.probengmech.2020.103028
http://dx.doi.org/10.1137/S1064827594276424
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb39
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb39
http://refhub.elsevier.com/S0020-7462(24)00011-8/sb39
http://dx.doi.org/10.1002/eqe.4290190207

	An extrapolation approach within the Wiener path integral technique for efficient stochastic response determination of nonlinear systems
	Introduction
	Preliminaries
	Wiener path integral formalism
	Most probable path approximation

	Mathematical Formulation
	Relationship between the system response PDF estimates at two distinct points
	Approximate analytical evaluation of the difference of the most probable paths corresponding to two neighboring points of the system response PDF domain
	Mechanization of the technique

	Numerical examples
	Duffing nonlinear oscillator subjected both to stochastic loading and to a deterministic harmonic excitation component
	Oscillator with asymmetric nonlinearities and fractional derivative elements

	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


