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A B S T R A C T   

Flooding occurs at different scales and unevenly affects urban populations based on the broader social, 
ecological, and technological system (SETS) characteristics particular to cities. As hydrological models improve 
in spatial scale and account for more mechanisms of flooding, there is a continuous need to examine the re-
lationships between flood exposure and SETS drivers of flood vulnerability. In this study, we related fine-scale 
measures of future flood exposure—the First Street Foundation’s Flood Factor and estimated change in chance 
of extreme flood exposure—to SETS indicators like building age, poverty, and historical redlining, at the parcel 
and census block group (CBG) scales in Portland, OR, Phoenix, AZ, Baltimore, MD, and Atlanta, GA. We used 
standard regression models and accounted for spatial bias in relationships. The results show that flood exposure 
was more often correlated with SETS variables at the parcel scale than at the CBG scale, indicating scale 
dependence. However, these relationships were often inconsistent among cities, indicating place-dependence. 
We found that marginalized populations were significantly more exposed to future flooding at the CBG scale. 
Combining newly-available, high-resolution future flood risk estimates with SETS data available at multiple 
scales offers cities a new set of tools to assess the exposure and multi-dimensional vulnerability of populations. 
These tools will better equip city managers to proactively plan and implement equitable interventions to meet 
evolving hazard exposure.   

1. Introduction 

Flooding is one of the most common and destructive natural disasters 
worldwide (Ahern et al., 2005; Hammond et al., 2015). Economic 
damages from flooding have been trending upward for decades around 
the globe (OECD, 2016) and in 2021 totaled USD 82 billion in damages 
(Swiss Re Institute, 2022). Floods can cause mass displacement, loss of 
lives and property, and disruption to transportation and other critical 
infrastructure and services (Chang et al., 2010; Douglas et al., 2010; 
Falconer et al., 2009; Yin et al., 2016). The most expensive floods tend to 
occur in cities, and the frequency and damage of floods in cities are 
expected to increase with sea-level rise (IPCC, 2021; OECD, 2016), 
increasing storm frequency and intensity (IPCC, 2021; Kunkel et al., 
2020; O’Donnell & Thorne, 2020), and from the replacement of natural 

landscape features with impervious ones as part of dominant patterns of 
urbanization (Lashford et al., 2019). 

1.1. The SETS vulnerability framework 

The vulnerability of urban populations to flooding is multidimen-
sional, differential, and dependent on space- and place-based factors. 
The IPCC conceptual framework for vulnerability to natural hazards 
such as flooding has three components: exposure, sensitivity, and 
adaptive capacity (Table 1; IPCC, 2012). Exposure refers to the likeli-
hood and degree to which humans or elements in a landscape may be 
affected by a hazard (Cardona et al., 2012). Sensitivity refers to the 
propensity of exposed elements to experience negative impacts. Adap-
tive capacity refers to the potential for an entity to respond to a hazard 
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like flooding to reduce their negative impacts and risk during future 
exposures (Table 1; Cardona et al., 2012). Exposure to flooding in an 
urban area is differential, with some areas of cities more prone to 
flooding than others for reasons of topography, impervious surface 
cover, and stormwater management practices (Chang et al., 2021; Pal-
lathadka et al., 2022; Qi et al., 2020). Further, the sensitivity and 
adaptive capacity of people to flooding are differential, depending on 
sociodemographic characteristics (Cutter, Boruff, & Shirley, 2003) that 
are in turn influenced by historical legacies of uneven development (e.g., 
settler colonialism, land dispossession, and redlining) and present-day 
socio-political and ecological marginalization (e.g., environmental 
racism, gentrification, and displacement; Anguelovski et al., 2019; 
Curran & Hamilton, 2017; Flores et al., 2022; Grove, Cox, & Barnett, 
2020; Hoffman, Shandas, & Pendleton, 2020; Marlow, Elliott, & Frickel, 
2022; Pulido, 2000; Sovacool, 2018). 

The three components of vulnerability can be unpacked to reveal 
social, ecological, and technological systems (SETS) dimensions 
(Table 1; Chang et al., 2021), but few studies consider all three. For 
example, social exposure might be represented by the total number of 
people in a floodplain area, social sensitivity by median household in-
come, and social adaptive capacity by the proportion of the population 
composed of renters. Ecological and technological vulnerability can be 
similarly divided into SETS domains (Table 1; Chang et al., 2021). 
Chang et al. (2021) derived their conceptualization of cities as SETS 
from prior scholarship (Grimm et al., 2017; Iwaniec et al., 2020; Mar-
kolf et al., 2018; McPhearson et al., 2016), and notable prior studies may 
have related flood vulnerability to one or more SETS domains without 
distinguishing them as such (Adelekan, 2011; Erena and Worku, 2019; 
Sterzel et al., 2020). More recent studies have used the Chang et al. 
(2021) study as a basis for selecting SETS variables for vulnerability 
analyses to flooding and other hazards and have noted that SETS vari-
ables effectively identify historical and intersecting drivers of vulnera-
bility to hazard (Amorim-Maia, et al., 2022; Pallathadka et al., 2022; 
Roy et al., 2021). 

1.2. SETS vulnerability and scale 

SETS domains typically span multiple spatial scales, and scale 
significantly affects the results of vulnerability assessments (Schmidt-
lein et al., 2008), yet most studies on flood vulnerability examine only 
one scale. In the U.S., the smallest spatial unit of sociodemographic 
analysis available for most cities is the census block group (CBG) and 
many studies use this unit to capture the interactions between 
small-scale hazards and community characteristics (Table 1; Chang 
et al., 2021; Pallathadka et al., 2022). However, flooding in cities varies 
at scales finer than the CBG spatial unit, and in modern models can be 
characterized at the resolution of one to several meters (First Street 
Foundation, 2020; Kaźmierczak & Cavan, 2011; Pallthadka et al., 2022; 
Wing et al., 2017). SETS characteristics of cities also vary at scales 
smaller than the CBG. These differences in spatial scales may diminish 

the spatial accuracy of a vulnerability assessment. Finer spatial units, 
such as parcels, have been found to be more accurate than coarser 
spatial units at representing overlap between social vulnerability and 
hazard, and more appropriate for exploring concepts like environmental 
injustice (Nelson, Abkowitz, & Camp, 2015). 

Beyond the accurate representation of SETS indicators and exposure 
to hazards, spatial scale is important because it is associated with forms 
of governance and political representation (Newig, Schulz, & Jager, 
2016) and thus power. Vulnerability is usually examined at a single 
spatial scale (e.g., CBG, census tract) without consideration of what is 
happening at smaller or larger scales (e.g., households or cities), which 
may be the more appropriate scales for analysis or implementing pol-
icies and practices to reduce vulnerability (Ward & Kaczan, 2014). 

Temporal scale is also a critical consideration in addressing envi-
ronmental inequity and systemic racism in cities but there is a lack of 
literature that considers future flood vulnerability of populations. As 
Pulido (2000) argued, urban landscapes are “artifacts of past and pre-
sent racisms.” Past and present forms of inequalities and land use 
practices must therefore be explored to understand how they may be 
addressed. 

To effectively manage flood exposure, it is crucial to consider the 
influence of climate change on the frequency and intensity of flood 
events. This, therefore, requires taking into account both current and 
future climate conditions in a temporal context. Temporal contextuali-
zation allows cities to preempt lock-in of infrastructure that is not 
resilient under future climate conditions (Markolf et al., 2018) and that 
burdens populations with flooding for generations. A literature review 
of peer-reviewed publications between 2002 and 2019 that used flood 
vulnerability indices found a dearth of studies that considered future 
vulnerability (Moreira, de Brito, & Kobiyama, 2021). More recent work 
has highlighted how environmental inequalities and burdens may shift 
with climate change (Wing et al., 2022). Consideration of future flood 
vulnerability is thus valuable for identifying the evolving relationship 
between hazard and populations. Such work is necessary for targeting 
interventions that are equitable through time. 

1.3. SETS vulnerability and place 

Most studies only examine the relationships between flood exposure 
and SETS vulnerability indicators in a single city, but multiple cities are 
necessary for testing the commonality of relationships. While the sem-
inal social vulnerability study by Cutter et al. (2003) considered social 
vulnerability for all U.S. counties, the majority of subsequent work 
examining relationships between flood exposure and vulnerability has 
only considered single cities (Adelekan, 2011; Chakraborty et al., 2014; 
Erena & Worku, 2019; Gu et al., 2018; Kaźmierczak & Cavan, 2011; Lee 
& Jung, 2014). Notable exceptions to this one-city focus have explored 
correlations between present flood exposure and vulnerability among 
multiple cities and have demonstrated that the relationships may vary in 
significance and direction (Chang et al., 2021; Marlow, Elliott, & Frickel, 

Table 1 
Definitions and examples of key terminology, vulnerability components, and SETS indicators.  

Key terminology Component Domain Definition or example Source 

Flood vulnerability   The propensity of exposed elements to suffer adverse effects when impacted by hazard events IPCC, 2012.  
Exposure  Extent to which an entity experiences a hazard Cardona et al., 2012   

Social Total population Chang et al., 2021   
Ecological Standard deviation of topographical slope Chang et al., 2021   
Technological Critical infrastructure facilities in flood area Chang et al., 2021  

Sensitivity  How much an entity is likely to be affected if exposed to the hazard Cardona et al., 2012   
Social Median household income Chang et al., 2021   
Ecological Shape index of green areas Chang et al., 2021   
Technological Road density Chang et al., 2021  

Adaptability  The potential for an entity to adjust after being impacted by a hazard Cardona et al., 2012   
Social Proportion of population that are renters Chang et al., 2021   
Ecological Ecological productivity Chang et al., 2021   
Technological Number of emergency centers Chang et al., 2021  
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2022; Rhubart & Sun, 2021; Sterzel et al., 2020). Nonetheless, multi-city 
studies are useful for identifying relationships that may indicate the 
presence of place-based influences, which can in turn inform the scale of 
appropriate remedy (e.g., city vs. neighborhood). 

In this study, we examine the relationships between future flood 
exposure, characterized here as a function of flood probability over a 30- 
year period and flood magnitude (measured as depth), for residences 
and SETS vulnerability indicators at different spatial scales for four U.S. 
cities (Portland, OR; Phoenix, AZ; Baltimore, MD; Atlanta, GA). We 
explored relationships between flood exposure and SETS vulnerability 
indicators at two spatial scales (parcel and CBG) using spatial statistical 
analyses (ordinary least squares [OLS], spatial lag [SL], spatial error 
[SE], and Spearman’s rank regressions). Our study employs a new and 
robust set of future flood exposure measures and methods to test re-
lationships between SETS vulnerability indicators and flood exposure 
and examine how they interact with space, place, scale, and time in and 
among multiple cities. We asked the following research questions: 

(1) How does parcel-scale future flood exposure correlate with par-
cel- and CBG-scale SETS vulnerability indicators within and 
among cities?  

(2) How are these correlations affected by underlying spatial bias of 
the data used?  

(3) How are the relationships between future flood exposure and 
SETS vulnerability indicators affected by scale? 

At the parcel scale, we expected positive correlations between future 
flood exposure and variables associated with higher vulnerability, e.g., 
older and more valuable (as a measure of the dollar value of the home 
per square foot of living area) residences would face less flood exposure 
than newer and less valuable residences and residences in areas with less 
green land cover would face more flood exposure than areas with more 
green cover. Also, at the CBG scale, we expected positive correlations 
between flood exposure and demographic variables indicating higher 
vulnerability. We hypothesized that, at both spatial scales, spatial re-
gressions would perform better than OLS regression due to known 
spatial clustering of sociodemographic and economic characteristics in 
our study cities (Pallathadka et al., 2022). Finally, we hypothesized that 
many of the correlations revealed at the parcel scale would not persist at 
the CBG-scale as exposure and SETS vulnerability indicators were 
aggregated. 

2. Methods 

2.1. Parcel-scale variables 

The First Street Foundation has made accessible for public use a 
dataset on present-day and future flood exposure at the parcel scale 
(Table 2). The First Street Foundation Flood Model is a probabilistic 
flood model that estimates flood exposure from pluvial flooding, fluvial 
flooding, sea level rise, and hurricane storm surge sources to a spatial 
resolution of three meters, using the climate inputs from twenty-one 
different Coupled Model Intercomparison Project 5 (CMIP5) models of 
climate change (First Street Foundation, 2020). The flood model was 
built on the Fathom-US model, which is one of the first models applied at 
the national scale of the U.S.A. to consider pluvial, fluvial, and coastal 
flooding at high spatial resolutions that also incorporates constructed 
flood defenses (Bates et al., 2021). 

One form of model assessment of flood exposure at the parcel scale, 
termed the parcel’s Flood Factor, is represented by an index between 1 
and 10. The Flood Factor of a parcel is an indicator of its 30-year cu-
mulative probability of flooding to a given depth between the years 
2020 and 2050 (Fig. 1). A Flood Factor of 1 indicates that the parcel is 
unlikely to experience flooding to any appreciable depth in this period 
and is not included in the figure. As an explanatory example, a Flood 
Factor of 10 indicates that a parcel has at least a 47% cumulative chance 
of experiencing flooding to a depth of 24 inches (61.0 cm) in this period, 
or at least a 96% chance of experiencing flooding at least 12 inches (30.5 
cm) in depth in the same period (Fig. 1). 

To represent the change in chance of extreme flood exposure, we 
subtracted First Street Foundation model estimates at the parcel scale of 
the chance of extreme flood exposure to a depth of 5.9 inches (15 cm) in 
the year 2020 from the chance of the same flood occurring in the year 
2050 in the Representative Concentration Pathway 4.5 (RCP 4.5) 
climate warming scenario. For context, the RCP 4.5 climate warming 
scenario represents an increase in global temperatures of 2–3◦C by 2100 
compared to pre-industrial climates and represents the middle range of 
scenarios assessed by the Intergovernmental Panel on Climate Change 
(IPCC, 2021). We refer to the resulting difference between estimates as 
the change in extreme flood exposure. 

The First Street Foundation’s flood model estimates the chance of 
extreme flood exposure for the year 2020 using regional 30-year his-
torical data from the years 1980–2010. It then further extends an esti-
mate of this chance to the year 2050 using the ensemble average of flood 

Table 2 
Descriptions, advantages, and disadvantages of data used in this study at different spatial units.  

Spatial unit Data used Description Advantages Disadvantages 

Sub-parcel Microsoft AI for 
Earth land cover 

Contains spatial data on classes of 
land cover (e.g., urban, green, 
barren, water) 

Same classification model and data for all 
U.S. cities; fine-scale data 

Some misclassification of land cover classes, 
particularly in Phoenix, AZ, where green cover, 
barren cover, and impervious cover may be confused 
due to common spectral qualities 

Parcel First Street 
Foundation 
flooding estimates 

Contains flood exposure variables 
(Flood Factor and change in chance 
of extreme flooding) 

Same flood model applied to all study 
cities; contains most hydrological 
pathways that create flooding as well as 
constructed flood defenses 

Does not consider removal of water by drainage 
systems  

Tax information Contains data on building age and 
building value (except for Atlanta) 

Allows analysis at scale closer to the scale 
of flood exposure 

Very limited set of indicators; not available for use by 
researchers in many cities; data year may be 
mismatched with ACS data year 

Census block 
group 

American 
Community Survey 
5-year averages 

Contains social indicators on 
characteristics like median 
household income, ethnicity, renter 
vs. owner, etc. 

Contains most social indicators 
commonly used in vulnerability analyses; 
updated annually 

Demographic characteristics may vary at spatial scale 
finer than the CBG; flood exposure much finer-scale  

First Street 
Foundation 
flooding estimates 

Contains flood exposure variables 
(Flood Factor and change in chance 
of extreme flooding) 

Same flood model applied to all study 
cities; contains most hydrological 
pathways that create flooding as well as 
constructed flood defenses 

Does not consider removal of water by drainage 
systems 

Neighborhood Home Owner’s 
Loan Corporation 
grades 

Contains polygons indicating the 
grade of neighborhoods as 
determined by the HOLC 

Original paper-copy maps have been 
digitized to a high resolution 

City layouts have changed since these maps were 
drawn  
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exposure from its twenty-one CMIP5 climate models (First Street 
Foundation, 2020). A flooding depth of 15 cm was the shallowest depth 
available of these chance estimates from the First Street Foundation that 
would likely disrupt pedestrian traffic and damage buildings with low 
bases. 

Tax parcel data were used to match Flood Factor and change in 

extreme flood exposure data at the parcel scale (Table 2). Sociodemo-
graphic information such as racial and ethnic group, income, and age 
that are commonly found in vulnerability assessments are generally not 
available at the parcel scale because of privacy concerns. Only tax par-
cels that represented single- and multi-family residences were included 
in this study. 

Green and impervious cover data for each city were derived from 
Microsoft’s AI for Earth 1 meter land-cover dataset, which identified 
land cover in four classes (water, tree canopy, low vegetation/field, 
impervious; Robinson et al., 2019). The AI for Earth dataset was 
generated through neural network analysis of 2016 National Agriculture 
Imagery Program’s aerial imagery, multispectral satellite imagery from 
the United States Geological Survey’s Landsat 8 satellite, land cover 
labels from the Chesapeake Conservancy’s imagery from 2013–2014, 
and land cover labels from the 2011 National Land Cover Database 
(Robinson et al., 2019). In the present study, the land cover type we have 
designated “green and barren cover” represents the tree canopy and low 
vegetation/field classifications in the AI for Earth data. We calculated 
the green and barren cover of a parcel by dividing the area of green and 
barren cover within the parcel by the parcel’s area. 

Information on “redlined” neighborhoods of cities was derived from 
digitized and georeferenced shapefiles of the Home Owners’ Loan Cor-
poration (HOLC) delineations of graded neighborhoods (Table 3; 
Table 4; Appendix A; Appendix B; Nelson et al., 2022). Historically, 
HOLC “redlined” areas to indicate that they were “hazardous” and hence 
high risk for banks and mortgage lenders to provide loans to potential 
homeowners (Nelson et al., 2022). Risk level was largely based on the 
presence of African Americans, immigrants, and other racialized pop-
ulations with low incomes living in the areas. Redlining, along with 
other historical segregationist housing policies such as industrial zoning, 

Figure 1. Relationship between the 30-year cumulative chance of flooding 
between the years 2020 and 2050 and depth of flooding for Flood Factor 2 
through 10. A Flood Factor of 1 indicates that there is virtually no chance of 
flooding to any appreciable depth in this period and is not included in the grid. 
Figure adapted from First Street Foundation (2020). 

Table 3 
SETS indicators of flood vulnerability used in this analysis.  

Indicator SETS domain(s) Source Justification References 

Elders Social ACS 2019 Elders are less mobile and need more assistance during floods Borden et al., 2007; Cutter, Boruff, & 
Shirley, 2003; Foster et al., 2019;  
Pallathadka et al., 2022 

Minors Social ACS 2019 Children need more assistance during floods Cutter, Boruff, & Shirley, 2003; FitzGerald 
et al., 2010; Guha-Sapir, 1993 

Median household 
income 

Social ACS 2019 Households with lower incomes have fewer means to cope with 
and prepare for floods, are more likely to live in flood zones 

Balica, Douben, & Wright, 2009; Gu et al., 
2018; Rufat et al., 2015 

No high school 
diploma 

Social ACS 2019 People without high school diplomas are less likely to perceive 
danger from floods 

Bubeck, Botzen, & Aerts, 2012 

Poverty Social ACS 2019 Households below the poverty line have fewer means to cope 
with and prepare for floods and are more likely to be in areas 
prone to flooding 

Balica, Douben, & Wright, 2009; Bubeck, 
Botzen, & Aerts, 2012 

Redline Social ACS 2019 Redlined areas are associated with neighborhood disinvestment 
and increased exposure to environmental hazards 

Hoffman, Shandas, & Pendleton, 2020;  
Nardone et al., 2021 

Renter Social ACS 2019 Renters have fewer resources to cope with floods and cannot 
adapt their domiciles as readily 

Gu et al., 2018; Ma and Smith, 2020;  
Manturuk, Lindblad, & Quercia, 2010 

American Indian 
and AK Native 

Social ACS 2019 Minoritized populations disproportionately exposed to and 
impacted by floods compared to white populations 

Bakkensen & Ma, 2020; Chakraborty et al., 
2014; Pallathadka et al., 2022 

Asian Social ACS 2019 Minoritized populations disproportionately exposed to and 
impacted by floods compared to white populations 

Bakkensen & Ma, 2020; Chakraborty et al., 
2014; Pallathadka et al., 2022 

Black and African 
American 

Social ACS 2019 Minoritized populations disproportionately exposed to and 
impacted by floods compared to white populations 

Bakkensen & Ma, 2020; Chakraborty et al., 
2014; Pallathadka et al., 2022 

Hispanic and Latino 
Origins 

Social ACS 2019 Minoritized populations disproportionately exposed to and 
impacted by floods compared to white populations 

Bakkensen & Ma, 2020; Chakraborty et al., 
2014; Pallathadka et al., 2022 

Native Hawaiian 
and Pacific 
Islander 

Social ACS 2019 Minoritized populations disproportionately exposed to and 
impacted by floods compared to white populations 

Bakkensen & Ma, 2020; Chakraborty et al., 
2014; Pallathadka et al., 2022 

Other race Social ACS 2019 Minoritized populations disproportionately exposed to and 
impacted by floods compared to white populations 

Bakkensen & Ma, 2020; Chakraborty et al., 
2014; Pallathadka et al., 2022 

Two or more races Social ACS 2019 Minoritized populations disproportionately exposed to and 
impacted by floods compared to white populations 

Bakkensen & Ma, 2020; Chakraborty et al., 
2014; Pallathadka et al., 2022 

Building value Social-technological Tax parcel 
data (Table 1) 

Less valuable buildings are more likely to be in flood zones Lee & Jung, 2014 

Green and barren 
cover 

Ecological- 
technological-social 

AI for Earth 
(2016) 

Green and barren cover promote infiltration and reduce flood 
exposure compared with impermeable cover 

Maragno et al., 2018; Pappalardo et al., 
2017; 

Building age Technological-social Tax parcel 
data (Table 1) 

Older buildings more likely to fail during floods Jansen et al., 2020; Lee & Jung, 2014  
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suburbanization, and blockbusting, had lasting effects that include 
concentrating poverty, stifling homeownership rates, and reducing 
urban tree cover in different cities (Aaronson, Hartley, & Mazumder, 
2021; Chetty et al., 2018; Grove et al., 2015). For this study, redlined 
parcels were those within areas of the city that HOLC graded as “D” 
areas. Parcels in redlined areas were assigned a value of 1, and all par-
cels in HOLC-graded areas “A”, “B”, or “C” were assigned a 0. All parcels 
outside of the areas graded by HOLC were not included in parcel-scale 
analyses of the relationships between flood exposure and redlining. 

2.2. Census block group-scale variables 

For CBG-level analysis, we used 2019 data from the American 
Community Survey’s (ACS) 5-year estimates on sociodemographic 
characteristics of CBGs (Table 3) and parcel-level data that were aver-
aged at the level of the CBG. Green and barren cover was calculated by 
dividing the area of green and barren cover within a CBG by the CBG’s 
area. Sociodemographic indicators were selected based on previous 
scholarship indicating that they are critical determining factors of flood 
vulnerability (Table 3; Chang et al., 2021). SETS vulnerability analyses 
may include more, fewer, or different indicators (Chang et al., 2021; 
Pallathadka et al., 2022) and there is no definitive set of variables 
necessary to assess SETS vulnerability. Rather it is a framework that 
emphasizes the importance of considering all three SETS domains. We 
selected SETS indicators found to have significant relationships with 
modeled flooding in the present day in study cities (Pallathadka et al., 
2022) to examine these relationships under modeled flooding in the 
future and at different scales. In our analyses of the relationships be-
tween flood exposure and redlining, we only included CBGs for which at 
least 50% of the parcels the CBG contained were within areas graded by 
HOLC. CBGs that met this threshold proportion then received a redlining 
score ranging between 0 and 1, where 0 indicates that no parcels in a 
given CBG were in redlined areas and 1 indicates that ≥ 50% parcels in 

the CBG were in redlined areas. 

2.3. Statistical analysis 

At parcel and CBG scales, we conducted ordinary least squares (OLS) 
regression analysis of the available SETS indicators, Flood Factor, and 
change in extreme flood exposure to examine potential multicollinearity 
between indicators. Indicators exhibiting variance inflation factors (VIF) 
greater than 5, indicating multicollinearity between indicators, were 
removed from analysis (Belsley, Kuh, & Welsch, 1980). In the case that 
the Multicollinearity Condition Number (MCN) from an OLS regression 
was greater than or equal to 40, the SETS indicator with the highest VIF 
was removed, and the regression was rerun. In the case that the MCN 
was still not below 40, this process was repeated until the MCN was less 
than 40 (Belsley, Kuh, & Welsch, 1980). 

Given the likely spatial autocorrelation in our data, we calculated 
Moran’s I (Moran, 1950) and then used spatial lag (SL) and spatial error 
(SE) analyses (Elhorst, 2010) to identify how SETS indicators may 
explain the spatial variation of Flood Factor and future flood exposure. 
SL is a variable that averages the neighboring values of a location and 
accounts for autocorrelation in the model via a weights matrix. Simi-
larly, SE is a variable that accounts for autocorrelation in the error using 
a weights matrix. OLS, SL, and SE analyses were conducted in GeoDa 
version 1.20 (Anselin, Syrabi, & Kho, 2006), which automatically 
determined spatial weights using queen’s contiguity in the matrices of 
the SL and SE models. Spatial autocorrelation may provide better 
explanatory power than non-spatial statistics when data have underly-
ing spatial bias. Clustering of people of similar income groups, ages, and 
racial and ethnic minorities is common in cities throughout the world. 
Pluvial flooding tends to occur at discrete locations where the ground 
surface is lower than the surrounding areas. Comparing spatial models 
like SL and SE with non-spatial models like OLS allows researchers to 
determine whether and how space may influence correlations between 
variables, and the degree to which correlations may persist once this 
influence is accounted for. 

Additionally, we employed Spearman’s rank correlation analysis 
(Kendall, 1948) to examine correlations between available Flood Factor 
change in extreme flood exposure, and SETS indicators. Spearman’s 
rank is a nonparametric test used at the global level on data with stan-
dard errors that are not normally distributed that considers ordinal ranks 
of input variables rather than their raw values (Kendall, 1948). 

2.4. Study area 

The study areas in this analysis consisted of four U.S. cities–Portland, 
OR, Phoenix, AZ, Baltimore, MD, and Atlanta, GA–that vary in their 
geography, climate, hydrology, land cover, and demography (Fig. 2; 
Table 4). Notably, Phoenix is the only desert city in our study and fea-
tures more low vegetation and barren cover than other cities as a pro-
portion of its overall area, in addition to receiving the lowest amount of 
rainfall (Fig. 2; Table 4). Additionally, Phoenix is the only city examined 
that is projected to have reduced annual rainfall by the year 2050, ac-
cording to the CMIP5 models used by the First Street Foundation to 
generate their flood estimates (IPCC, 2014). For ease of recognition and 
distinction by readers who do not readily associate Phoenix with the 
desert we have bracketed the city name: [Phoenix]. A common factor 
among all four cities is that a portion of each is in the floodplain of at 
least one major US waterway (Fig. 2): the Willamette and Columbia 
Rivers (Portland), the Agua Fría, Salt, and Gila Rivers ([Phoenix]), the 
Patapsco River (Baltimore), and the Chattahoochee and South Rivers 
(Atlanta). All cities have experienced pronounced flooding from storms 
in the past decades, and, in the future, all regions in which they are 
located are expected to experience extreme storms with increased fre-
quency and magnitude (Swain et al., 2020). As such, these cities serve as 
representative cities for many parts of the U.S. and abroad. These four 
study cities were selected on the bases of having available recent, though 

Table 4 
Characteristics of each study city at different scales. Total area represents the 
total area of the city used in this study and may differ from official boundary 
areas. American Community Survey data is the 5-year average for the given year.  

General 
information 

Portland, 
OR 

[Phoenix], 
AZ 

Baltimore, 
MD 

Atlanta, GA 

Area in urban 
boundary (km2) 

375.5 983 238 330.5 

Green and barren 
cover (2016) 

58.6% 61.0% 44.0% 70.2% 

Impervious cover 
(2016) 

34.3% 38.9% 44.3% 29.0% 

Population (2019) 654,741 1,680,992 593,490 506,811 
Annual 

precipitation 
(2020) 

915 mm 211 mm 1034 mm 1263 mm 

Annual 
temperature 
range (2020) 

7.8–17.2◦C 17.2–30.6◦C 10.0–18.9◦C 11.7–22.2◦C 

Median household 
income (2019) 

$73,159 $60,914 $52,164 $64,179 

Population, Asian 
only (2019) 

8.7% 3.9% 2.5% 4.8% 

Population, Black 
only (2019) 

5.9% 7.1% 62.3% 49.8% 

Population, Latino 
(all races; 2019) 

9.8% 42.6% 5.4% 4.9% 

Parcel scale     
Number of parcels 184,519 389,002 184,693 102,522 
Tax parcel data 

year 
2021 2020 2021 2020 

CBG scale     
Number of CBGs 448 944 605 336 
American 

Community 
Survey year 

2019 2019 2019 2019  
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incomplete, SETS indicator data at the parcel scale (Table 4) and an 
existing body of published research (Chang et al., 2021, Pallathadka 
et al., 2022) with which to compare this work. Previous work in these 
study cities was necessary for sourcing tax parcel data, identifying and 
rectifying errors in analysis, and contextualizing findings. Tax parcel 
data are not commonly available in U.S. cities and even when techni-
cally available may be difficult to obtain. 

For Portland, [Phoenix], and Baltimore, this tax-parcel data included 
building or apartment value ($USD/ft2 of living area) and building age; 
for Atlanta, data included building age, but due to a lack of data on 
living area were not able to determine building value (Table 4). Tax 

parcel data came from different years for each city, but for all cities 
represented the most recent data available at the time of this study 
(Table 3). At the CBG scale, ACS data on sociodemographic SETS vari-
ables were available for all cities. 

3. Results 

3.1. Parcel scale 

At the parcel scale, spatial regression models tended to perform 
better than OLS in all study cities (Table 5). Coefficients for Moran’s I, 

Figure 2. Left: Location of four study cities in the United States in the context of average annual precipitation from 1971 to 2009 and the locations of major 
waterways. Right: Land cover, rivers, and major arterial roads in the four study cities. [Phoenix], AZ, is the only desert city and is not as green in satellite view as it 
appears in this false-color rendition. 

Table 5 
Parcel-scale ordinary least squares (OLS), spatial lag (SL), and spatial error (SE) regressions of SETS indicators and Flood Factor and change in extreme flood exposure. 
+ indicates a positive correlation and - indicates negative correlation. N = number of parcels included in analysis. * indicates p < 0.05, ** indicates p < 0.01, *** 
indicates p < 0.001  

Flood Factor Portland (N =
184,519)  

[Phoenix] (N =
389,002)  

Baltimore (N =
184,693)  

Atlanta (N =
102,522)  

SETS Indicator OLS SL SE OLS SL SE OLS SL SE OLS SL SE 

Building age (years) -*** -*** -*** -*** -*** -*** -*** -*** -***  -**  
Building value ($USD/ft2) -*** -*** -*** -*** -*** -*** +***      
Cover, green (%) -*** -*** -*** -*** -*** -*** -*** -*** -*** +*** +*** +*** 
Moran’s I 0.37***   0.89***   0.34***   0.24***   
W (Spatial lag)  0.68***   0.81***   0.71***   0.65***  
λ (Spatially correlated errors)   0.72***   0.82***   0.72***   0.66*** 
AIC 712877 588949 574415 1125660 595571 576034 575656 411914 406508 412091 354605 353686 
R2 0.03 0.59 0.64 0.01 0.83 0.84 0.00 0.70 0.72 0.00 0.53 0.54 
Change in extreme flood 

exposure         
Building age (years) -*** -*** -*** -*** -*** -*** -*** -*** -***    
Building value ($USD/ft2) -* -* -* +*** +*** +*** +*** +*** +***    
Cover, green (%) -*** -*** -*** +*  +* -*** -*** -*** +** +** +*** 
Moran’s I 0.19***   0.64***   0.34***   0.17***   
W (spatial lag)  0.32***   0.60***   0.72***   0.50***  
λ (spatially correlated errors)   0.32***   0.60***   0.72***   0.50*** 
AIC -150113 -153023 -153020 -4017620 -4209010 -4208990 -139088 -155571 -155544 -674609 -701635 -701626 
R2 0.00 0.18 0.17 0.00 0.49 0.49 0.01 0.71 0.71 0.00 0.30 0.30  
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spatial lag (W), and spatial error (λ) were all significant and large, 
indicating a spatial effect in all study cities. For all study cities, the 
spatial regressions exhibited lower Akaike Information Criterion (AIC) 
scores compared to the OLS regressions and higher values for R2, indi-
cating a better fit by spatial models over OLS (Table 5). 

In spatial models, green cover was negatively correlated with Flood 
Factor in Portland, [Phoenix], and Baltimore, but was positively corre-
lated with Flood Factor in Atlanta (Table 5). Green cover was negatively 
correlated with change in extreme flood exposure in Portland and Bal-
timore but positively correlated with change in extreme flood exposure 
in [Phoenix] and Atlanta. For Flood Factor and change in extreme flood 
exposure, building age was negatively correlated for all cities except for 
Atlanta, where it was only negatively correlated with Flood Factor in the 
SL model. Building values, when available in cities, were in some cases 
significantly correlated with Flood Factor and change in extreme flood 
exposure, but the direction of the relationship was inconsistent within 
and among cities (Table 5). 

Spearman’s rank correlations were significant and negative between 
Flood Factor and redlined parcels in Portland and Atlanta (Table 6). 
Spearman’s rank correlations between change in extreme flood exposure 
and redlining also were positive in Portland and Atlanta but negative in 
Baltimore (Table 6). 

3.2. Census block-group scale 

At the CBG scale, spatial regressions did not perform better than OLS 
depending on the study city and the flood exposure variable. Moran’s I 
revealed significant autocorrelation between SETS indicators and Flood 
Factor in all four study cities, and values for AIC and R2 indicated better 
model fits for spatial models compared to OLS (Table 7). Flood Factor 
and green cover were negatively correlated in spatial regressions in 
Portland, and negatively correlated in spatial regressions with Black and 
African American populations in Baltimore and Atlanta. Otherwise, for 
Flood Factor, the spatial regression coefficients were the only signifi-
cantly correlated variables, indicating that space was the primary factor 
in explaining relationships between SETS indicators and Flood Factor. 
Indicators present in Table 3 that are not present in Table 7, such as 
social indicators of White, American Indian or AK Native, Native Ha-
waiian or Pacific Islander, Other Race, and Two or More Races, were 

removed from statistical analyses in order to reduce the MCN to below 
40 (Table 7). 

Moran’s I indicated significant clustering in Portland and [Phoenix] 
only, where spatial models provided better fits compared to OLS (AIC 
and R2; Table 7). Change in extreme flood exposure was significantly 
correlated with green cover in Portland, with households with minors in 
[Phoenix], and Black and African American populations in Atlanta 
(Table 7). Spearman’s rank correlations were positive for Flood Factor 
and redlining only in Portland, and negative for change in extreme flood 
risk and redlining only in Baltimore (Appendix D). 

4. Discussion 

Flood hazards are caused by a combination of natural and anthro-
pogenic factors and are therefore inextricably linked to the wider social, 
ecological, and technological (SETS) context of cities. Knowledge about 
future flood magnitude and potential exposure can inform the decisions 
society makes about urbanization, housing, poverty reduction, provision 
of social services, and redressing legacies of historical disinvestments in 
redlined neighborhoods (social); expanding trees planting programs, 
restoring wetlands, increasing riparian buffer zones, and other nature-
–based solutions (ecological); and drainage systems improvement and 
sustainable stormwater management (technological). Using a SETS 
framework as a conceptual lens for understanding the complex rela-
tionship between future flood exposure and vulnerability at multiple 
scales supports decision-making and intervention tools of policy makers, 
urban planners, flood risk managers, and the public, seeking to reduce 
flood vulnerability–especially in the context of projected increasing 
flood frequency and intensity in cities. 

4.1. Influence of space and place 

Broadly, we found persistent influence of historical waterways and 
floodplains areas on future flood exposure (Figs. 3a, 3b, 4a, 4b, 5a, 5b, 
6a, 6b), indicating that flooding may worsen locally in cities where 
storms are intensifying under climate change. Urban streams in the U.S. 
and across the globe have been rerouted, buried, or have otherwise 
disappeared, ostensibly to reduce flood exposure and reclaim land for 
agricultural and residential development (Brown et al., 2018; Chang 
et al., 2020; Elmore & Kaushal, 2008; Napieralski & Welsh, 2016; Post, 
Chang, & Banis, 2022). However, former streams still act as collectors 
and conveyors of flood waters due to their low elevation relative to their 
surroundings. In Atlanta, higher Flood Factor was apparent north of 
downtown, especially along the course of Peachtree Creek, a major 
feeder of the Chattahoochee River and a well-documented site of floods 
(SAWSC, 2016). Other smaller and more discrete areas of elevated Flood 
Factor occur throughout the city along more minor waterways like the 
Utoy and Proctor Creeks. Baltimore surrounds the mouth of the Patapsco 
River, only a short distance from Chesapeake Bay, and high Flood Factor 
was found in the downtown and other points close to the river estuary. 
Additionally in Baltimore, many areas of very high risk appear to follow 
the paths of buried streams, which are common in the city (Elmore & 
Kaushal, 2008). 

Areas with positive changes in extreme flood risk were generally 
those with high Flood Factors (Figs. 3c, 3d, 5c, 5d, 6c, 6d), except for 
[Phoenix] (Figs. 4c, 4d), where change in extreme flood risk was 
negative overall. The change in extreme flood risk reflected estimated 
trends of increased and reduced storm intensity, respectively, in our 
study cities (IPCC, 2014). Cities with similar changes in precipitation 
should target historical waterways for intervention or they may be sites 
of new or worsening floods (Post, Chang, & Banis, 2022). 

Future flood exposure clustered and increased around areas of high 
slopes (Figs. 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6b)., indicating that these areas 
are critical for cities to target with stormwater management in-
terventions. While areas with high slopes in the study cities are generally 
associated with green and barren cover, high slopes promote runoff 

Table 6 
Parcel-scale Spearman’s Rank correlations between Flood Factor, change in 
extreme flood risk, and SETS indicators. + indicates a positive correlation and - 
indicates negative correlation. Building value was not available for Atlanta. N =
number of parcels included in analysis. * indicates p < 0.05, ** indicates p <
0.01, *** indicates p < 0.001.  

Flood Factor Portland (N 
= 184,519) 

[Phoenix] (N 
= 389,002) 

Baltimore (N 
= 184,693) 

Atlanta (N =
102,522) 

SETS Indicator Spearman Spearman Spearman Spearman 

Building age 
(years) 

-*** +*** -*** -*** 

Building value 
($/ft2 living 
area) 

-*** -*** +***  

Cover, green 
(%) 

-*** -*** -*** +*** 

Redline (%) +***   +*** 
Change in 

extreme 
flood 
exposure     

Building age 
(years) 

-*** +*** -*** -*** 

Building value 
($/ft2 living 
area) 

-*** +*** +***  

Cover, green 
(%) 

-*** +*** -*** +** 

Redline (%) +***  -*** +***  
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rather than infiltration, and this runoff pools in and is conveyed by 
proximal areas. In Portland, high Flood Factors are clustered adjacent to 
Johnson Creek in the southeast of the city, which is a relatively flat area 

adjacent to hill/mountain features (rectangle (1) in Fig. 3a). In 
[Phoenix], high Flood Factors are clustered around Camelback Moun-
tain in the north of the city and South Mountain in the south (rectangles 

Table 7 
CBG-scale Ordinary least squares (OLS), spatial lag (SL), and spatial error (SE) regressions of SETS indicators and Flood Factor and change in extreme flood exposure. 
SETS indicators from Table 4 missing in this table were not significant for any city under any form of analysis. N = number of census block groups included in analysis. * 
indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. Only those variables exhibiting significant correlations in at least one city are listed.  

Flood Factor Portland  [Phoenix]  Baltimore  Atlanta   

(N = 448)  (N= 853)  (N = 469)  (N = 288)  

SETS Indicator OLS SL SE OLS SL SE OLS SL SE OLS SL SE 

Building age (years)          -* -* -* 
Building value ($USD/ft2)    -*         
Cover, green (%) -*** -*** -**          
H.H. with minor(s) (%)           +* +* 
Median H.H. income ($)           -* -* 
Poverty (%)    +*         
Renter (%)    -***         
Pop. Black and A.A. (%)       -*  -* -* -* -* 
Moran’s I 0.19***   0.45***   0.26**   0.14***   
W (Spatial lag)  0.45***   0.76***   0.15*   0.28***  
λ (Spatially correlated errors)   0.46***   0.77***   0.16*   0.32*** 
AIC 1194 1149 1148 1760 1353 1352 1038 1035 1033 803 794 790 
R2 0.11 0.23 0.23 0.05 0.49 0.49 0.04 0.05 0.05 0.07 0.12 0.13 
Change in extreme flood risk         
Cover, green (%) -*** -*** -*          
H.H. with minor(s) (%)    -* -* -*       
Median H.H. income ($)    +*         
Pop. Black and A.A. (%)          -*   
Moran’s I 0.13***   0.10**         
W (spatial lag)  0.34**   0.25***        
λ (spatially correlated errors)   0.35***   0.25***       
AIC -4767 -4786 -4786 -12314 -12337 -12336 -5054 -5052 -5054 -2413 -2411 -2413 
R2 0.08 0.14 0.14 0.05 0.09 0.08 0.03 0.03 0.03 0.04 0.04 0.04  

Figure 3. Portland, OR, Flood Factor at (a) the parcel scale and (b) the CBG scale; and change in extreme flood exposure at (c) the parcel scale and (d) the CBG scale. 
Rectangles (in magenta) indicate subset of historic or present waterways and areas of high slope. Quartile values of change in chance of extreme flood exposure can 
be found in Appendix C. 
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(1) and (2), respectively, in Fig. 4a). Areas with high slopes relative to 
the surrounding topography in Baltimore and Atlanta were usually those 
co-located with waterways, historical or current, in the city (rectangles 
in Figs. 5a, 6a). Similar to the pattern with Flood Factor in cities, areas 
with high slopes also generally had increases in the chance of extreme 
flooding (Figs. 3c, 3d, 5c, 5d, 6c, 6d) except for [Phoenix] (Figs. 4c, 4d), 
again reflecting estimated changes to future patterns of precipitation in 
study cities. Future research on flood exposure should ensure the use of 
statistical models that account for spatial bias in underlying data For 
example, spatial bias altered presence, direction, and degree of corre-
lations in our cities. Spatial models may then aid cities in more accurate 
and efficient targeting of interventions to address environmental in-
equities. Flood exposure variables exhibited clear spatial biases in our 
study cities, providing necessary context for the finding that spatial 
regression models generally performed better than OLS and had more 
explanatory power. Even when no SETS indicators were significantly 
correlated with Flood Factor, spatial regression coefficients were sig-
nificant in all cities, indicating that space was a key explanatory factor in 
the relationships between SETS indicators and flood exposure. For 
change in extreme flood exposure, spatial regressions were superior only 
in Portland and [Phoenix]. Previous studies have found better explan-
atory power in spatial regressions of present-day urban flood exposure 
and vulnerability indicators over non-spatial models (Pallathadka et al., 
2022; Wang et al., 2017). Our study is the first to extend this principle to 
studies of future flood exposure and vulnerability. 

Exposure of marginalized populations (e.g., households with low 
median income, households below the poverty line, racial and ethnic 
minorities) to future floods depends on place-specific actions 

undertaken in cities. Other studies have similarly found inconsistent 
relationships between present-day floods and SETS indicators of 
marginalization among cities (Maldonado et al., 2016; Messager et al., 
2021; Pallathadka et al., 2022). Place-specific factors, such as higher 
desirability of property along coasts and streams by wealthier pop-
ulations in one city and low desirability along streams into which in-
dustries emit waste in another, may account for differences in 
relationships (Maldonado et al., 2016; Messager et al., 2021; Palla-
thadka et al., 2022). That there are evidently place-based factors that 
determine relationships between future flood risk and marginalized 
populations should be concerning but helpful to city planners and re-
searchers: this is evidence that such relationships can be broken through 
policies and actions taken by communities, city planners, and politi-
cians. That is, the future flood risk of marginalized populations should 
not be taken as a curse but rather as the natural result of past human 
efforts. In the present and near future, efforts could instead be focused 
on proactively eliminating such inequities in areas revealed by the 
methods used in this study. For example, cities may enact housing pol-
icies to combat the concentration of poverty in future flood zones and/or 
expand green infrastructure and green space in areas where marginal-
ized populations will become exposed. 

Nevertheless, it is worth highlighting such place-specific factors as 
examples to other researchers and cities, within and outside the US 
context. First, the lesson that examining how seemingly unrelated pol-
icies at various levels of governance may indirectly influence exposure 
to hazard is a useful one (for instance, Georgia’s riparian buffer law is 
primarily intended as a water quality measure but has other effects as 
well). Also, these examples provide other cities with indicators of policy 

Figure 4. [Phoenix], AZ, Flood Factor in at (a) the parcel scale and (b) the CBG scale; and change in extreme flood exposure at (c) the parcel scale and (d) the CBG 
scale. Rectangles (in magenta) indicate subset of historic or present waterways and areas of high slope. Quartile values of change in chance of extreme flood exposure 
can be found in Appendix C. 
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and planning measures that may be worth pursuing. Such place-specific 
avenues of analysis may be helpful in reducing hazard and risk even 
where fine-resolution datasets of social characteristics are not available. 

4.2. Scale matters 

Though data at fine spatial scales like parcels are not commonly 
used, their use nonetheless allows for more accurate capture of signifi-
cant relationships between hazard and vulnerability than coarser units 
(Nelson, Abkowitz, & Camp, 2015) and are likely better for targeting 
interventions to right environmental injustice (Ward & Kaczan, 2014). 
Fine-spatial-scale hazard data should be paired with fine-spatial-scale 
SETS indicators or relationships may be inaccurately estimated or 
altogether missed. Studies that have only some variables available at 
fine scales should conduct their analyses at multiple scales in order to 
assess the validity of their results. In the present study, the parcel spatial 
unit better captured the spatially nuanced relationships between flood 
exposure and available SETS indicators than the CBG spatial unit. 

Scaling up the estimates of future flooding from modern models like 
the one employed by the First Street Foundation to match the scales at 
which SETS indicators are available may obscure important relation-
ships, as it appeared to do in this study. Other vulnerability researchers 
have applied dasymetric methods to downscale indicators typically only 
available at coarser scales like the census tract and block usable to finer 
scales (Mennis, 2003) and related them to hazards (Hamstead, Farmer, 
& McPhearson, 2018; Nelson, Abkowitz, & Camp, 2015; Shepard et al., 
2012). These studies revealed correlations between hazard exposure and 
marginalized populations at this finer scale. Future work around the 
globe could address issues of parcel data availability and quality through 
these or similar methods though they do add uncertainty. 

Researchers and governments interested in targeting interventions to 
mitigate environmental hazard would benefit from sociodemographic 
and socioeconomic information on populations collected at finer scales 
(parcel) than those typically available (CBG) and sharing such data with 
robust privacy and publication agreements. These efforts would likely be 
more costly in monetary terms compared to current work conducted in 
many countries. However, repetitive damages caused by floods to 
infrastructure and human lives may compel government expenditure to 
invest in such research and data-gathering efforts. Under present con-
ditions, other cities in the U.S. that can obtain tax parcel data may 
replicate our research partially or fully given our use of otherwise 
available future flood exposure and SETS indicators at the CBG scale. 

To improve flood mitigation planning and interventions, we suggest 
taking into account not only present-day environmental hazards but also 
potential future hazards. Comparing our findings with those of Palla-
thadka et al. (2022), which related present-day flood risk and many of 
the same SETS indicators in three of the same study cities as those in the 
present study, we find differences in relationships that may be explained 
in part by this temporal difference. In our study, we found significant 
positive relationships between SETS variables like GI, households with 
minors, and poverty at one or both scales that were not detected in 
previous work. Cities seeking to address environmental inequities be-
tween populations then should understand that such work must evolve 
with the climate of their regions, targeting present-day inequalities 
(Pallathadka et al., 2022) while also planning for the future. Proactive 
rather than reactive planning made possible by including estimates of 
future hazards may provide cost savings in addition to preventing 
hardship of vulnerable populations. 

Figure 5. Baltimore, MD, Flood Factor at (a) the parcel scale and (b) the CBG scale; and change in extreme flood exposure at (c) the parcel scale and (d) the CBG 
scale. Rectangles (in magenta) indicate subset of historic or present waterways and areas of high slope.Quartile values of change in chance of extreme flood exposure 
can be found in Appendix C. 
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4.3. Legacy effects of development and interactions with environmental 
hazard 

Finally, this study examined the relationship between future hazard 
and marginalized populations with the conception that environmental 
injustices at any time are the product of the actions and inactions in the 
past and present (Pulido, 2000; Schell et al., 2020). Racist and classist 
development practices exist in the recent pasts or presents of cities 
across the globe (Ljunggren & Andersen, 2015; Shen & Xiao, 2020), and 
contribute to differential exposure to environmental hazard in the pre-
sent (Hoffman, Shandas, & Pendleton, 2020; Pallathadka et al., 2022). 
Pairing flood forecasting model data with SETS variables allowed us to 
assess the presence and strength of such legacy effects in our study cities. 
This method can be applied globally where data are available to com-
munity organizations and professionals to manage evolving environ-
mental injustice and inequality under a changing climate. We 
discourage generalizing findings on legacy effects from one city to 
others, as correlations were inconsistent among our four study cities. 

Our work offers tools and information for targeted policy and 
infrastructure interventions to alter or even break the ties between 
segregationist development policies and future flood hazard. For 
example, since HOLC’s redlining policies ended roughly 54 years ago 
with the Fair Housing Act of 1968, all study cities have constructed flood 
defenses along their rivers and coasts (which are captured in the First 
Street flood model). In [Phoenix], where there was no significant cor-
relation at any scale, these new defenses have alleviated flood risk 
specifically in previously redlined areas that were all more proximal to 
the Salt River than were A-, B-, or C-graded areas. [Phoenix] then il-
lustrates a case of redlining aligning with areas of former higher flood 

risk, such that minority residents were specifically restricted to areas 
with higher probability of flooding (Bolin, Grineski, & Collins, 2005), 
but recent investment in infrastructure has reduced the risk in these 
segregated areas. 

4.4. Limitations of the First Street Foundation’s flood model 

The hydrological model produced by the First Street Foundation does 
not account for removal of water by subterranean drainage systems, and 
this exclusion has implications regarding their estimates of the distri-
bution and severity of parcels exposed to flooding in cities. While their 
flood model does account for the surface routing effects of some surface 
elements of drainage systems like levees and floodwalls, it does not 
allow subterranean systems to remove water from the surface or to move 
water back to the surface when operating above capacity. When storms 
are particularly intense, as with 100-year return interval storms and 
cloudburst events, one may assume a minor, or even negligible, volume 
of removal by the drainage system relative to input volumes and for flow 
to be overwhelmingly along the surface (Balstrøm & Crawford, 2018). 

For our study cities except for [Phoenix], rainfall is expected to in-
crease in the climate models used by the First Street Foundation to 
produce their flood exposure estimates. Stormwater management sys-
tems may have a lifespan of 50- to 100-years (Hirabayashi et al., 2013) 
So, many of the components of the system designed for past and present 
climate conditions will likely still be present in future climates. It follows 
then that the flood model’s estimates of surface flood volumes in cities 
are likely overestimates and that the spatial distribution of at-risk par-
cels is inaccurate, particularly in areas with substantial investment in 
subterranean drainage. Flood models developed and applied 

Figure 6. Atlanta, GA, Flood Factor at (a) the parcel scale and (b) the CBG scale; and change in extreme flood exposure at (c) the parcel scale and (d) the CBG scale. 
Rectangles (in magenta) indicate subset of historic or present waterways and areas of high slope. Quartile values of change in chance of extreme flood exposure can 
be found in Appendix C. 
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internationally, or future flood models for the U.S., should incorporate 
drainage systems to more accurately assess flood risk and develop 
interventions. 

However, in our experience, data on urban drainage systems are 
seldom shared between municipal agencies and researchers. Reasons for 
not sharing such data include lack of existing relationships between 
universities and municipalities, city conventions, paywalls, and national 
security laws. The inclusion of drainage networks in a nation-wide flood 
modeling effort like that accomplished by the First Street Foundation, 
which would substantially improve the model, is all but impossible 
without addressing barriers to data sharing. Future studies in cities with 
access to the appropriate types and scales of social and geospatial data 
may explore the ways that stormwater management systems change the 
severity and distribution of at-risk parcels. Changes to municipal, 
county, state, and national laws on data sharing of drainage systems 
could benefit efforts to increase urban resilience to flooding by estab-
lishing exceptions for and privacy agreements with researchers. 

5. Conclusions 

To explore the relationships between future flood exposure and so-
cial, ecological, and technological indicators of vulnerability, we con-
ducted correlations that accounted for spatial bias at two different 
spatial scales in four U.S. cities. Flood exposure was related to flood 
vulnerability indicators available at the parcel scale, as well as to parcel- 
level indicators that were either summarized to CBG or available only at 
the scale of the CBG. Four study cities–Portland, OR, [Phoenix], AZ, 
Baltimore, MD, and Atlanta, GA–were selected because they are pro-
jected to experience extreme storms with increased frequency and 
magnitude and because of data availability. 

The results showed strong spatial relationships between future flood 
exposure and SETS indicators at the parcel scale, with flood exposure 
positively correlated with building age across all cities, but with 
inconsistent directional relationships between flood exposure and green 
cover. Flood exposure was variably correlated with redlined parcels and 
CBGs, indicating that place-specific factors shape such relationships. 
Relationships between indicators available only at the census block- 
group scale were most often insignificant. We found that the parcel 
was the more appropriate spatial unit to relate to fine-scale flood 
exposure data. We found evidence for place- and space-based effects that 
likely explained some of the differences in relationships at both scales 
between our study cities. 

We conclude with four major recommendations based on our work. 
These recommendations should be designed and implemented through 
collaborations with affected communities in order to ensure the 
consideration of location-specific factors that may be missed by top- 
down or technocratic forms of assessment and execution and that may 
undermine the efficacy of the recommendations.  

1 Targeted flood responses: Historical waterways and areas of high 
slope may become sites of worsening or new flooding under future 
climate conditions. Flood management interventions should target 
these areas or likely face futures of worsening or new flood 
conditions.  

2 Anticipatory governance: Flood management must account for not 
just current but also future hazard exposure when implementing 
interventions to prevent the deepening of inequalities in hazard 

exposure among marginalized populations. While interventions 
designed for the present may address existing disparities, they may 
prove insufficient under more intense rainfall in the future or fail to 
protect new flood-prone areas. New and comprehensive projections 
of pluvial flood exposure like those from the First Street Foundation 
represent great opportunities to advance anticipatory governance.  

3 Social-ecological-technological systems: To better address urban 
flooding and other hazards, flood management and planning should 
integrate analyses across aspects of social (e.g., demographics, pol-
icies, awareness levels), ecological (e.g., area hydrography and hy-
drodynamics, soil types, vegetative cover), and technological (e.g., 
stormwater and wastewater systems, impervious surface) inputs. 
SETS vulnerability analysis allows cities to identify areas of vulner-
ability along social, environmental, and technological dimensions 
and to target interventions in the same or different contributing di-
mensions. For example, cities may reduce the vulnerability of 
ethnically and racially diverse communities (S) by targeting invest-
ment in building upgrades (S-T), expanding green infrastructure (S- 
E-T), and developing community-based adaptations like early 
warning systems (S-T).  

4 Multi-scale analysis: Even when fine-scale data are only partially 
available for SETS vulnerability analyses, such analyses should be 
conducted at multiple scales to appropriately target the intervention. 
Further, multi-scale analyses may be necessary to verify the direction 
and significance of correlations detected at coarser scales. The gen-
eration and sharing of fine-scale flood model results and SETS in-
dicators should be a priority for researchers and governments to 
assess relationships between future flood exposure and SETS char-
acteristics of cities to design appropriate and effective interventions. 
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Appendix A. Parcel-scale SETS vulnerability index overlaid with Home Owner’s Loan Corporation neighborhood grades

Appendix B. CBG-scale SETS vulnerability index overlaid with Home Owner’s Loan Corporation neighborhood grades 
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Appendix C. Quartile values for the change in chance of an extreme storm event for parcels and CBGs   

Parcel-scale   CBG-scale   

Quartile Portland Phoenix Baltimore Atlanta Portland Phoenix Baltimore Atlanta 

1 0.001 0.001 0.001 0.001 0.000420 0.000123 0.000178 0.000333 
2 0.003 0.002 0.003 0.003 0.000135 0.000195 0.000350 0.000866 
3 0.007 0.006 0.007 0.014 0.003300 0.000379 0.000943 0.001871 
4 0.272 0.137 0.244 0.182 0.016483 0.002220 0.109191 0.047917  

Appendix D. CBG-scale Spearman’s Rank correlations between Flood Factor, change in extreme flood risk, and SETS indicators. N 
indicates number of CBGs included in analysis. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001  

Flood Factor Portland (n 
= 448) 

Phoenix (n 
= 853) 

Baltimore (n 
= 469) 

Atlanta (n 
= 288) 

Change in extreme 
flood exposure 

Portland (n 
= 448) 

Phoenix (n 
= 853) 

Baltimore (n 
= 469) 

Atlanta (n 
= 288) 

SETS Indicator     SETS Indicator     
Building age 

(years)    
+* Building age (years)    +** 

Building value 
($/ft2 living 
area)  

-***   Building value ($/ft2 

living area)  
+***   

Cover, green (%) -**  +**  Cover, green (%)  +* +* +* 
H.H. with elder(s) 

(%)    
+* H.H. with elder(s) 

(%)    
+*** 

H.H. with minor(s) 
(%)  

+*** +* +** H.H. with minor(s) 
(%)  

-*** +** +*** 

(continued on next page) 
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(continued ) 

Flood Factor Portland (n 
= 448) 

Phoenix (n 
= 853) 

Baltimore (n 
= 469) 

Atlanta (n 
= 288) 

Change in extreme 
flood exposure 

Portland (n 
= 448) 

Phoenix (n 
= 853) 

Baltimore (n 
= 469) 

Atlanta (n 
= 288) 

Median H.H. 
income ($)  

-*  -* Median H.H. income 
($)  

+***   

No H. S. diploma 
(%)  

+***  +* No H.S. diploma 
(%)  

-***  +* 

Poverty (%) +** +***   Poverty (%)  -**   
Renter (%) +***    Renter (%) +* -* -*  
Pop Asian (%)    -** Pop. Asian (%)    -* 
Pop. Black and A. 

A. (%)  
+*   Pop. Black and A.A. 

(%)  
-*   

Pop. Hispanic and 
Latino (%)  

+***   Pop. Hispanic and 
Latino (%)  

-***   

Pop. other race (%)  +***   Pop. other race (%)  -*   
Pop. two or more 

races (%)    
-** Pop two or more 

races (%)    
-** 

Redline +*    Redline   -*   
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