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ARTICLE INFO ABSTRACT
Keywords: Flooding occurs at different scales and unevenly affects urban populations based on the broader social,
disaster vulnerability ecological, and technological system (SETS) characteristics particular to cities. As hydrological models improve

multi-scale analysis

redlining

social-ecological-technological systems (SETS)
Urban flooding

in spatial scale and account for more mechanisms of flooding, there is a continuous need to examine the re-
lationships between flood exposure and SETS drivers of flood vulnerability. In this study, we related fine-scale
measures of future flood exposure—the First Street Foundation’s Flood Factor and estimated change in chance
of extreme flood exposure—to SETS indicators like building age, poverty, and historical redlining, at the parcel
and census block group (CBG) scales in Portland, OR, Phoenix, AZ, Baltimore, MD, and Atlanta, GA. We used
standard regression models and accounted for spatial bias in relationships. The results show that flood exposure
was more often correlated with SETS variables at the parcel scale than at the CBG scale, indicating scale
dependence. However, these relationships were often inconsistent among cities, indicating place-dependence.
We found that marginalized populations were significantly more exposed to future flooding at the CBG scale.
Combining newly-available, high-resolution future flood risk estimates with SETS data available at multiple
scales offers cities a new set of tools to assess the exposure and multi-dimensional vulnerability of populations.
These tools will better equip city managers to proactively plan and implement equitable interventions to meet
evolving hazard exposure.

1. Introduction landscape features with impervious ones as part of dominant patterns of
urbanization (Lashford et al., 2019).

Flooding is one of the most common and destructive natural disasters
worldwide (Ahern et al., 2005; Hammond et al., 2015). Economic
damages from flooding have been trending upward for decades around
the globe (OECD, 2016) and in 2021 totaled USD 82 billion in damages
(Swiss Re Institute, 2022). Floods can cause mass displacement, loss of
lives and property, and disruption to transportation and other critical
infrastructure and services (Chang et al., 2010; Douglas et al., 2010;
Falconer et al., 2009; Yin et al., 2016). The most expensive floods tend to
occur in cities, and the frequency and damage of floods in cities are
expected to increase with sea-level rise (IPCC, 2021; OECD, 2016),
increasing storm frequency and intensity (IPCC, 2021; Kunkel et al.,
2020; O’Donnell & Thorne, 2020), and from the replacement of natural

1.1. The SETS vulnerability framework

The vulnerability of urban populations to flooding is multidimen-
sional, differential, and dependent on space- and place-based factors.
The IPCC conceptual framework for vulnerability to natural hazards
such as flooding has three components: exposure, sensitivity, and
adaptive capacity (Table 1; IPCC, 2012). Exposure refers to the likeli-
hood and degree to which humans or elements in a landscape may be
affected by a hazard (Cardona et al., 2012). Sensitivity refers to the
propensity of exposed elements to experience negative impacts. Adap-
tive capacity refers to the potential for an entity to respond to a hazard
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like flooding to reduce their negative impacts and risk during future
exposures (Table 1; Cardona et al., 2012). Exposure to flooding in an
urban area is differential, with some areas of cities more prone to
flooding than others for reasons of topography, impervious surface
cover, and stormwater management practices (Chang et al., 2021; Pal-
lathadka et al., 2022; Qi et al., 2020). Further, the sensitivity and
adaptive capacity of people to flooding are differential, depending on
sociodemographic characteristics (Cutter, Boruff, & Shirley, 2003) that
are in turn influenced by historical legacies of uneven development (e.g.,
settler colonialism, land dispossession, and redlining) and present-day
socio-political and ecological marginalization (e.g., environmental
racism, gentrification, and displacement; Anguelovski et al., 2019;
Curran & Hamilton, 2017; Flores et al., 2022; Grove, Cox, & Barnett,
2020; Hoffman, Shandas, & Pendleton, 2020; Marlow, Elliott, & Frickel,
2022; Pulido, 2000; Sovacool, 2018).

The three components of vulnerability can be unpacked to reveal
social, ecological, and technological systems (SETS) dimensions
(Table 1; Chang et al., 2021), but few studies consider all three. For
example, social exposure might be represented by the total number of
people in a floodplain area, social sensitivity by median household in-
come, and social adaptive capacity by the proportion of the population
composed of renters. Ecological and technological vulnerability can be
similarly divided into SETS domains (Table 1; Chang et al., 2021).
Chang et al. (2021) derived their conceptualization of cities as SETS
from prior scholarship (Grimm et al., 2017; Iwaniec et al., 2020; Mar-
kolf etal., 2018; McPhearson et al., 2016), and notable prior studies may
have related flood vulnerability to one or more SETS domains without
distinguishing them as such (Adelekan, 2011; Erena and Worku, 2019;
Sterzel et al., 2020). More recent studies have used the Chang et al.
(2021) study as a basis for selecting SETS variables for vulnerability
analyses to flooding and other hazards and have noted that SETS vari-
ables effectively identify historical and intersecting drivers of vulnera-
bility to hazard (Amorim-Maia, et al., 2022; Pallathadka et al., 2022;
Roy et al., 2021).

1.2. SETS vulnerability and scale

SETS domains typically span multiple spatial scales, and scale
significantly affects the results of vulnerability assessments (Schmidt-
lein et al., 2008), yet most studies on flood vulnerability examine only
one scale. In the U.S., the smallest spatial unit of sociodemographic
analysis available for most cities is the census block group (CBG) and
many studies use this unit to capture the interactions between
small-scale hazards and community characteristics (Table 1; Chang
et al., 2021; Pallathadka et al., 2022). However, flooding in cities varies
at scales finer than the CBG spatial unit, and in modern models can be
characterized at the resolution of one to several meters (First Street
Foundation, 2020; Kazmierczak & Cavan, 2011; Pallthadka et al., 2022;
Wing et al., 2017). SETS characteristics of cities also vary at scales
smaller than the CBG. These differences in spatial scales may diminish
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the spatial accuracy of a vulnerability assessment. Finer spatial units,
such as parcels, have been found to be more accurate than coarser
spatial units at representing overlap between social vulnerability and
hazard, and more appropriate for exploring concepts like environmental
injustice (Nelson, Abkowitz, & Camp, 2015).

Beyond the accurate representation of SETS indicators and exposure
to hazards, spatial scale is important because it is associated with forms
of governance and political representation (Newig, Schulz, & Jager,
2016) and thus power. Vulnerability is usually examined at a single
spatial scale (e.g., CBG, census tract) without consideration of what is
happening at smaller or larger scales (e.g., households or cities), which
may be the more appropriate scales for analysis or implementing pol-
icies and practices to reduce vulnerability (Ward & Kaczan, 2014).

Temporal scale is also a critical consideration in addressing envi-
ronmental inequity and systemic racism in cities but there is a lack of
literature that considers future flood vulnerability of populations. As
Pulido (2000) argued, urban landscapes are “artifacts of past and pre-
sent racisms.” Past and present forms of inequalities and land use
practices must therefore be explored to understand how they may be
addressed.

To effectively manage flood exposure, it is crucial to consider the
influence of climate change on the frequency and intensity of flood
events. This, therefore, requires taking into account both current and
future climate conditions in a temporal context. Temporal contextuali-
zation allows cities to preempt lock-in of infrastructure that is not
resilient under future climate conditions (Markolf et al., 2018) and that
burdens populations with flooding for generations. A literature review
of peer-reviewed publications between 2002 and 2019 that used flood
vulnerability indices found a dearth of studies that considered future
vulnerability (Moreira, de Brito, & Kobiyama, 2021). More recent work
has highlighted how environmental inequalities and burdens may shift
with climate change (Wing et al., 2022). Consideration of future flood
vulnerability is thus valuable for identifying the evolving relationship
between hazard and populations. Such work is necessary for targeting
interventions that are equitable through time.

1.3. SETS vulnerability and place

Most studies only examine the relationships between flood exposure
and SETS vulnerability indicators in a single city, but multiple cities are
necessary for testing the commonality of relationships. While the sem-
inal social vulnerability study by Cutter et al. (2003) considered social
vulnerability for all U.S. counties, the majority of subsequent work
examining relationships between flood exposure and vulnerability has
only considered single cities (Adelekan, 2011; Chakraborty et al., 2014;
Erena & Worku, 2019; Gu et al., 2018; Kazmierczak & Cavan, 2011; Lee
& Jung, 2014). Notable exceptions to this one-city focus have explored
correlations between present flood exposure and vulnerability among
multiple cities and have demonstrated that the relationships may vary in
significance and direction (Chang et al., 2021; Marlow, Elliott, & Frickel,

Table 1
Definitions and examples of key terminology, vulnerability components, and SETS indicators.
Key terminology Component Domain Definition or example Source
Flood vulnerability The propensity of exposed elements to suffer adverse effects when impacted by hazard events IPCC, 2012.
Exposure Extent to which an entity experiences a hazard Cardona et al., 2012
Social Total population Chang et al., 2021
Ecological Standard deviation of topographical slope Chang et al., 2021
Technological Critical infrastructure facilities in flood area Chang et al., 2021
Sensitivity How much an entity is likely to be affected if exposed to the hazard Cardona et al., 2012
Social Median household income Chang et al., 2021
Ecological Shape index of green areas Chang et al., 2021
Technological Road density Chang et al., 2021
Adaptability The potential for an entity to adjust after being impacted by a hazard Cardona et al., 2012
Social Proportion of population that are renters Chang et al., 2021
Ecological Ecological productivity Chang et al., 2021
Technological Number of emergency centers Chang et al., 2021
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2022; Rhubart & Sun, 2021; Sterzel et al., 2020). Nonetheless, multi-city
studies are useful for identifying relationships that may indicate the
presence of place-based influences, which can in turn inform the scale of
appropriate remedy (e.g., city vs. neighborhood).

In this study, we examine the relationships between future flood
exposure, characterized here as a function of flood probability over a 30-
year period and flood magnitude (measured as depth), for residences
and SETS vulnerability indicators at different spatial scales for four U.S.
cities (Portland, OR; Phoenix, AZ; Baltimore, MD; Atlanta, GA). We
explored relationships between flood exposure and SETS vulnerability
indicators at two spatial scales (parcel and CBG) using spatial statistical
analyses (ordinary least squares [OLS], spatial lag [SL], spatial error
[SE], and Spearman’s rank regressions). Our study employs a new and
robust set of future flood exposure measures and methods to test re-
lationships between SETS vulnerability indicators and flood exposure
and examine how they interact with space, place, scale, and time in and
among multiple cities. We asked the following research questions:

(1) How does parcel-scale future flood exposure correlate with par-
cel- and CBG-scale SETS vulnerability indicators within and
among cities?

(2) How are these correlations affected by underlying spatial bias of
the data used?

(3) How are the relationships between future flood exposure and
SETS vulnerability indicators affected by scale?

At the parcel scale, we expected positive correlations between future
flood exposure and variables associated with higher vulnerability, e.g.,
older and more valuable (as a measure of the dollar value of the home
per square foot of living area) residences would face less flood exposure
than newer and less valuable residences and residences in areas with less
green land cover would face more flood exposure than areas with more
green cover. Also, at the CBG scale, we expected positive correlations
between flood exposure and demographic variables indicating higher
vulnerability. We hypothesized that, at both spatial scales, spatial re-
gressions would perform better than OLS regression due to known
spatial clustering of sociodemographic and economic characteristics in
our study cities (Pallathadka et al., 2022). Finally, we hypothesized that
many of the correlations revealed at the parcel scale would not persist at
the CBG-scale as exposure and SETS vulnerability indicators were
aggregated.

Table 2
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2. Methods
2.1. Parcel-scale variables

The First Street Foundation has made accessible for public use a
dataset on present-day and future flood exposure at the parcel scale
(Table 2). The First Street Foundation Flood Model is a probabilistic
flood model that estimates flood exposure from pluvial flooding, fluvial
flooding, sea level rise, and hurricane storm surge sources to a spatial
resolution of three meters, using the climate inputs from twenty-one
different Coupled Model Intercomparison Project 5 (CMIP5) models of
climate change (First Street Foundation, 2020). The flood model was
built on the Fathom-US model, which is one of the first models applied at
the national scale of the U.S.A. to consider pluvial, fluvial, and coastal
flooding at high spatial resolutions that also incorporates constructed
flood defenses (Bates et al., 2021).

One form of model assessment of flood exposure at the parcel scale,
termed the parcel’s Flood Factor, is represented by an index between 1
and 10. The Flood Factor of a parcel is an indicator of its 30-year cu-
mulative probability of flooding to a given depth between the years
2020 and 2050 (Fig. 1). A Flood Factor of 1 indicates that the parcel is
unlikely to experience flooding to any appreciable depth in this period
and is not included in the figure. As an explanatory example, a Flood
Factor of 10 indicates that a parcel has at least a 47% cumulative chance
of experiencing flooding to a depth of 24 inches (61.0 cm) in this period,
or at least a 96% chance of experiencing flooding at least 12 inches (30.5
cm) in depth in the same period (Fig. 1).

To represent the change in chance of extreme flood exposure, we
subtracted First Street Foundation model estimates at the parcel scale of
the chance of extreme flood exposure to a depth of 5.9 inches (15 cm) in
the year 2020 from the chance of the same flood occurring in the year
2050 in the Representative Concentration Pathway 4.5 (RCP 4.5)
climate warming scenario. For context, the RCP 4.5 climate warming
scenario represents an increase in global temperatures of 2-3°C by 2100
compared to pre-industrial climates and represents the middle range of
scenarios assessed by the Intergovernmental Panel on Climate Change
(IPCC, 2021). We refer to the resulting difference between estimates as
the change in extreme flood exposure.

The First Street Foundation’s flood model estimates the chance of
extreme flood exposure for the year 2020 using regional 30-year his-
torical data from the years 1980-2010. It then further extends an esti-
mate of this chance to the year 2050 using the ensemble average of flood

Descriptions, advantages, and disadvantages of data used in this study at different spatial units.

Spatial unit Data used Description

Advantages

Disadvantages

Sub-parcel Microsoft Al for Contains spatial data on classes of
Earth land cover land cover (e.g., urban, green,
barren, water)
Parcel First Street Contains flood exposure variables

Foundation
flooding estimates

(Flood Factor and change in chance
of extreme flooding)

Same classification model and data for all
U.S. cities; fine-scale data

Same flood model applied to all study
cities; contains most hydrological
pathways that create flooding as well as

Some misclassification of land cover classes,
particularly in Phoenix, AZ, where green cover,
barren cover, and impervious cover may be confused
due to common spectral qualities

Does not consider removal of water by drainage
systems

constructed flood defenses

Tax information Contains data on building age and

building value (except for Atlanta)

Contains social indicators on
characteristics like median
household income, ethnicity, renter
vs. ownetr, etc.

Contains flood exposure variables
(Flood Factor and change in chance
of extreme flooding)

Census block American
group Community Survey

5-year averages

First Street
Foundation
flooding estimates

Allows analysis at scale closer to the scale
of flood exposure

Contains most social indicators
commonly used in vulnerability analyses;
updated annually

Same flood model applied to all study
cities; contains most hydrological
pathways that create flooding as well as

Very limited set of indicators; not available for use by
researchers in many cities; data year may be
mismatched with ACS data year

Demographic characteristics may vary at spatial scale
finer than the CBG; flood exposure much finer-scale

Does not consider removal of water by drainage
systems

constructed flood defenses

Neighborhood Home Owner’s
Loan Corporation

grades

Contains polygons indicating the
grade of neighborhoods as
determined by the HOLC

Original paper-copy maps have been
digitized to a high resolution

City layouts have changed since these maps were
drawn
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©

]
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30-year cumulative chance of flooding

Figure 1. Relationship between the 30-year cumulative chance of flooding
between the years 2020 and 2050 and depth of flooding for Flood Factor 2
through 10. A Flood Factor of 1 indicates that there is virtually no chance of
flooding to any appreciable depth in this period and is not included in the grid.
Figure adapted from First Street Foundation (2020).

exposure from its twenty-one CMIP5 climate models (First Street
Foundation, 2020). A flooding depth of 15 cm was the shallowest depth
available of these chance estimates from the First Street Foundation that
would likely disrupt pedestrian traffic and damage buildings with low
bases.

Tax parcel data were used to match Flood Factor and change in
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extreme flood exposure data at the parcel scale (Table 2). Sociodemo-
graphic information such as racial and ethnic group, income, and age
that are commonly found in vulnerability assessments are generally not
available at the parcel scale because of privacy concerns. Only tax par-
cels that represented single- and multi-family residences were included
in this study.

Green and impervious cover data for each city were derived from
Microsoft’s Al for Earth 1 meter land-cover dataset, which identified
land cover in four classes (water, tree canopy, low vegetation/field,
impervious; Robinson et al., 2019). The AI for Earth dataset was
generated through neural network analysis of 2016 National Agriculture
Imagery Program’s aerial imagery, multispectral satellite imagery from
the United States Geological Survey’s Landsat 8 satellite, land cover
labels from the Chesapeake Conservancy’s imagery from 2013-2014,
and land cover labels from the 2011 National Land Cover Database
(Robinson et al., 2019). In the present study, the land cover type we have
designated “green and barren cover” represents the tree canopy and low
vegetation/field classifications in the Al for Earth data. We calculated
the green and barren cover of a parcel by dividing the area of green and
barren cover within the parcel by the parcel’s area.

Information on “redlined” neighborhoods of cities was derived from
digitized and georeferenced shapefiles of the Home Owners’ Loan Cor-
poration (HOLC) delineations of graded neighborhoods (Table 3;
Table 4; Appendix A; Appendix B; Nelson et al., 2022). Historically,
HOLC “redlined” areas to indicate that they were “hazardous” and hence
high risk for banks and mortgage lenders to provide loans to potential
homeowners (Nelson et al., 2022). Risk level was largely based on the
presence of African Americans, immigrants, and other racialized pop-
ulations with low incomes living in the areas. Redlining, along with
other historical segregationist housing policies such as industrial zoning,

Green and barren
cover
Building age

Ecological-
technological-social
Technological-social

data (Table 1)
Al for Earth
(2016)

Tax parcel
data (Table 1)

Green and barren cover promote infiltration and reduce flood
exposure compared with impermeable cover
Older buildings more likely to fail during floods

Table 3
SETS indicators of flood vulnerability used in this analysis.
Indicator SETS domain(s) Source Justification References
Elders Social ACS 2019 Elders are less mobile and need more assistance during floods Borden et al., 2007; Cutter, Boruff, &
Shirley, 2003; Foster et al., 2019;
Pallathadka et al., 2022
Minors Social ACS 2019 Children need more assistance during floods Cutter, Boruff, & Shirley, 2003; FitzGerald
et al., 2010; Guha-Sapir, 1993
Median household Social ACS 2019 Households with lower incomes have fewer means to cope with Balica, Douben, & Wright, 2009; Gu et al.,
income and prepare for floods, are more likely to live in flood zones 2018; Rufat et al., 2015
No high school Social ACS 2019 People without high school diplomas are less likely to perceive Bubeck, Botzen, & Aerts, 2012
diploma danger from floods
Poverty Social ACS 2019 Households below the poverty line have fewer means to cope Balica, Douben, & Wright, 2009; Bubeck,
with and prepare for floods and are more likely to be in areas Botzen, & Aerts, 2012
prone to flooding
Redline Social ACS 2019 Redlined areas are associated with neighborhood disinvestment Hoffman, Shandas, & Pendleton, 2020;
and increased exposure to environmental hazards Nardone et al., 2021
Renter Social ACS 2019 Renters have fewer resources to cope with floods and cannot Gu et al., 2018; Ma and Smith, 2020;
adapt their domiciles as readily Manturuk, Lindblad, & Quercia, 2010
American Indian Social ACS 2019 Minoritized populations disproportionately exposed to and Bakkensen & Ma, 2020; Chakraborty et al.,
and AK Native impacted by floods compared to white populations 2014; Pallathadka et al., 2022
Asian Social ACS 2019 Minoritized populations disproportionately exposed to and Bakkensen & Ma, 2020; Chakraborty et al.,
impacted by floods compared to white populations 2014; Pallathadka et al., 2022
Black and African Social ACS 2019 Minoritized populations disproportionately exposed to and Bakkensen & Ma, 2020; Chakraborty et al.,
American impacted by floods compared to white populations 2014; Pallathadka et al., 2022
Hispanic and Latino Social ACS 2019 Minoritized populations disproportionately exposed to and Bakkensen & Ma, 2020; Chakraborty et al.,
Origins impacted by floods compared to white populations 2014; Pallathadka et al., 2022
Native Hawaiian Social ACS 2019 Minoritized populations disproportionately exposed to and Bakkensen & Ma, 2020; Chakraborty et al.,
and Pacific impacted by floods compared to white populations 2014; Pallathadka et al., 2022
Islander
Other race Social ACS 2019 Minoritized populations disproportionately exposed to and Bakkensen & Ma, 2020; Chakraborty et al.,
impacted by floods compared to white populations 2014; Pallathadka et al., 2022
Two or more races Social ACS 2019 Minoritized populations disproportionately exposed to and Bakkensen & Ma, 2020; Chakraborty et al.,
impacted by floods compared to white populations 2014; Pallathadka et al., 2022
Building value Social-technological Tax parcel Less valuable buildings are more likely to be in flood zones Lee & Jung, 2014

Maragno et al., 2018; Pappalardo et al.,
2017;
Jansen et al., 2020; Lee & Jung, 2014
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Table 4

Characteristics of each study city at different scales. Total area represents the
total area of the city used in this study and may differ from official boundary
areas. American Community Survey data is the 5-year average for the given year.

General Portland, [Phoenix], Baltimore, Atlanta, GA

information OR AZ MD

Area in urban 375.5 983 238 330.5
boundary (km?)

Green and barren 58.6% 61.0% 44.0% 70.2%
cover (2016)

Impervious cover 34.3% 38.9% 44.3% 29.0%
(2016)

Population (2019) 654,741 1,680,992 593,490 506,811

Annual 915 mm 211 mm 1034 mm 1263 mm
precipitation
(2020)

Annual 7.8-17.2°C 17.2-30.6°C 10.0-18.9°C 11.7-22.2°C
temperature
range (2020)

Median household $73,159 $60,914 $52,164 $64,179
income (2019)

Population, Asian 8.7% 3.9% 2.5% 4.8%
only (2019)

Population, Black 5.9% 7.1% 62.3% 49.8%
only (2019)

Population, Latino 9.8% 42.6% 5.4% 4.9%
(all races; 2019)

Parcel scale

Number of parcels 184,519 389,002 184,693 102,522

Tax parcel data 2021 2020 2021 2020
year

CBG scale

Number of CBGs 448 944 605 336

American 2019 2019 2019 2019
Community
Survey year

suburbanization, and blockbusting, had lasting effects that include
concentrating poverty, stifling homeownership rates, and reducing
urban tree cover in different cities (Aaronson, Hartley, & Mazumder,
2021; Chetty et al., 2018; Grove et al., 2015). For this study, redlined
parcels were those within areas of the city that HOLC graded as “D”
areas. Parcels in redlined areas were assigned a value of 1, and all par-
cels in HOLC-graded areas “A”, “B”, or “C” were assigned a 0. All parcels
outside of the areas graded by HOLC were not included in parcel-scale
analyses of the relationships between flood exposure and redlining.

2.2. Census block group-scale variables

For CBG-level analysis, we used 2019 data from the American
Community Survey’s (ACS) 5-year estimates on sociodemographic
characteristics of CBGs (Table 3) and parcel-level data that were aver-
aged at the level of the CBG. Green and barren cover was calculated by
dividing the area of green and barren cover within a CBG by the CBG’s
area. Sociodemographic indicators were selected based on previous
scholarship indicating that they are critical determining factors of flood
vulnerability (Table 3; Chang et al., 2021). SETS vulnerability analyses
may include more, fewer, or different indicators (Chang et al., 2021;
Pallathadka et al., 2022) and there is no definitive set of variables
necessary to assess SETS vulnerability. Rather it is a framework that
emphasizes the importance of considering all three SETS domains. We
selected SETS indicators found to have significant relationships with
modeled flooding in the present day in study cities (Pallathadka et al.,
2022) to examine these relationships under modeled flooding in the
future and at different scales. In our analyses of the relationships be-
tween flood exposure and redlining, we only included CBGs for which at
least 50% of the parcels the CBG contained were within areas graded by
HOLC. CBGs that met this threshold proportion then received a redlining
score ranging between 0 and 1, where 0 indicates that no parcels in a
given CBG were in redlined areas and 1 indicates that > 50% parcels in
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the CBG were in redlined areas.
2.3. Statistical analysis

At parcel and CBG scales, we conducted ordinary least squares (OLS)
regression analysis of the available SETS indicators, Flood Factor, and
change in extreme flood exposure to examine potential multicollinearity
between indicators. Indicators exhibiting variance inflation factors (VIF)
greater than 5, indicating multicollinearity between indicators, were
removed from analysis (Belsley, Kuh, & Welsch, 1980). In the case that
the Multicollinearity Condition Number (MCN) from an OLS regression
was greater than or equal to 40, the SETS indicator with the highest VIF
was removed, and the regression was rerun. In the case that the MCN
was still not below 40, this process was repeated until the MCN was less
than 40 (Belsley, Kuh, & Welsch, 1980).

Given the likely spatial autocorrelation in our data, we calculated
Moran’s I (Moran, 1950) and then used spatial lag (SL) and spatial error
(SE) analyses (Elhorst, 2010) to identify how SETS indicators may
explain the spatial variation of Flood Factor and future flood exposure.
SL is a variable that averages the neighboring values of a location and
accounts for autocorrelation in the model via a weights matrix. Simi-
larly, SE is a variable that accounts for autocorrelation in the error using
a weights matrix. OLS, SL, and SE analyses were conducted in GeoDa
version 1.20 (Anselin, Syrabi, & Kho, 2006), which automatically
determined spatial weights using queen’s contiguity in the matrices of
the SL and SE models. Spatial autocorrelation may provide better
explanatory power than non-spatial statistics when data have underly-
ing spatial bias. Clustering of people of similar income groups, ages, and
racial and ethnic minorities is common in cities throughout the world.
Pluvial flooding tends to occur at discrete locations where the ground
surface is lower than the surrounding areas. Comparing spatial models
like SL and SE with non-spatial models like OLS allows researchers to
determine whether and how space may influence correlations between
variables, and the degree to which correlations may persist once this
influence is accounted for.

Additionally, we employed Spearman’s rank correlation analysis
(Kendall, 1948) to examine correlations between available Flood Factor
change in extreme flood exposure, and SETS indicators. Spearman’s
rank is a nonparametric test used at the global level on data with stan-
dard errors that are not normally distributed that considers ordinal ranks
of input variables rather than their raw values (Kendall, 1948).

2.4. Study area

The study areas in this analysis consisted of four U.S. cities—Portland,
OR, Phoenix, AZ, Baltimore, MD, and Atlanta, GA-that vary in their
geography, climate, hydrology, land cover, and demography (Fig. 2;
Table 4). Notably, Phoenix is the only desert city in our study and fea-
tures more low vegetation and barren cover than other cities as a pro-
portion of its overall area, in addition to receiving the lowest amount of
rainfall (Fig. 2; Table 4). Additionally, Phoenix is the only city examined
that is projected to have reduced annual rainfall by the year 2050, ac-
cording to the CMIP5 models used by the First Street Foundation to
generate their flood estimates (IPCC, 2014). For ease of recognition and
distinction by readers who do not readily associate Phoenix with the
desert we have bracketed the city name: [Phoenix]. A common factor
among all four cities is that a portion of each is in the floodplain of at
least one major US waterway (Fig. 2): the Willamette and Columbia
Rivers (Portland), the Agua Fria, Salt, and Gila Rivers ([Phoenix]), the
Patapsco River (Baltimore), and the Chattahoochee and South Rivers
(Atlanta). All cities have experienced pronounced flooding from storms
in the past decades, and, in the future, all regions in which they are
located are expected to experience extreme storms with increased fre-
quency and magnitude (Swain et al., 2020). As such, these cities serve as
representative cities for many parts of the U.S. and abroad. These four
study cities were selected on the bases of having available recent, though
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Figure 2. Left: Location of four study cities in the United States in the context of average annual precipitation from 1971 to 2009 and the locations of major
waterways. Right: Land cover, rivers, and major arterial roads in the four study cities. [Phoenix], AZ, is the only desert city and is not as green in satellite view as it

appears in this false-color rendition.

incomplete, SETS indicator data at the parcel scale (Table 4) and an
existing body of published research (Chang et al., 2021, Pallathadka
et al., 2022) with which to compare this work. Previous work in these
study cities was necessary for sourcing tax parcel data, identifying and
rectifying errors in analysis, and contextualizing findings. Tax parcel
data are not commonly available in U.S. cities and even when techni-
cally available may be difficult to obtain.

For Portland, [Phoenix], and Baltimore, this tax-parcel data included
building or apartment value ($USD/ft? of living area) and building age;
for Atlanta, data included building age, but due to a lack of data on
living area were not able to determine building value (Table 4). Tax

Table 5

parcel data came from different years for each city, but for all cities
represented the most recent data available at the time of this study
(Table 3). At the CBG scale, ACS data on sociodemographic SETS vari-
ables were available for all cities.

3. Results
3.1. Parcel scale

At the parcel scale, spatial regression models tended to perform
better than OLS in all study cities (Table 5). Coefficients for Moran’s I,

Parcel-scale ordinary least squares (OLS), spatial lag (SL), and spatial error (SE) regressions of SETS indicators and Flood Factor and change in extreme flood exposure.

+ indicates a positive correlation and - indicates negative correlation. N = number of parcels included in analysis. * indicates p < 0.05, ** indicates p < 0.01,

indicates p < 0.001

Flood Factor Portland (N = [Phoenix] (N = Baltimore (N = Atlanta (N =
184,519) 389,002) 184,693) 102,522)

SETS Indicator OLS SL SE OLS SL SE OLS SL SE OLS SL SE
Building age (years) kK ek Rk ek ek ko ek ek ek k%
Bllildillg value ($USD/ﬁ2) ek ke ek ke ek _kkk Rk
Cover, green (%) k% _kk% kK k% kK k% _kk% k% Rk R S R
Moran’s I 0.377%%* 0.89%** 0.34%** 0.24***
W (Spatial lag) 0.68%** 0.81%** 0.71%** 0.65***
A (Spatially correlated errors) 0.72%** 0.82%%** 0.72%** 0.66%**
AIC 712877 588949 574415 1125660 595571 576034 575656 411914 406508 412091 354605 353686
R? 0.03 0.59 0.64 0.01 0.83 0.84 0.00 0.70 0.72 0.00 0.53 0.54
Change in extreme flood

exposure
Building age (years) ek ek ek ek ek ke ek ek ek
Building value ($USD/ft%) - -* - R R R R R R
Cover, green (%) kA% kKK kA% 4% 4% kkk _Ekx Rk R e R
Moran’s I 0.19%** 0.64*** 0.34%%* 0.17%**
W (spatial lag) 0.32%%* 0.60%** 0.72%** 0.50%**
A (spatially correlated errors) 0.32%** 0.60%** 0.72%** 0.50%**
AIC -150113  -153023  -153020  -4017620  -4209010  -4208990  -139088  -155571  -155544  -674609 -701635 -701626
R? 0.00 0.18 0.17 0.00 0.49 0.49 0.01 0.71 0.71 0.00 0.30 0.30
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spatial lag (W), and spatial error (\) were all significant and large,
indicating a spatial effect in all study cities. For all study cities, the
spatial regressions exhibited lower Akaike Information Criterion (AIC)
scores compared to the OLS regressions and higher values for R%, indi-
cating a better fit by spatial models over OLS (Table 5).

In spatial models, green cover was negatively correlated with Flood
Factor in Portland, [Phoenix], and Baltimore, but was positively corre-
lated with Flood Factor in Atlanta (Table 5). Green cover was negatively
correlated with change in extreme flood exposure in Portland and Bal-
timore but positively correlated with change in extreme flood exposure
in [Phoenix] and Atlanta. For Flood Factor and change in extreme flood
exposure, building age was negatively correlated for all cities except for
Atlanta, where it was only negatively correlated with Flood Factor in the
SL model. Building values, when available in cities, were in some cases
significantly correlated with Flood Factor and change in extreme flood
exposure, but the direction of the relationship was inconsistent within
and among cities (Table 5).

Spearman’s rank correlations were significant and negative between
Flood Factor and redlined parcels in Portland and Atlanta (Table 6).
Spearman’s rank correlations between change in extreme flood exposure
and redlining also were positive in Portland and Atlanta but negative in
Baltimore (Table 6).

3.2. Census block-group scale

At the CBG scale, spatial regressions did not perform better than OLS
depending on the study city and the flood exposure variable. Moran’s I
revealed significant autocorrelation between SETS indicators and Flood
Factor in all four study cities, and values for AIC and R? indicated better
model fits for spatial models compared to OLS (Table 7). Flood Factor
and green cover were negatively correlated in spatial regressions in
Portland, and negatively correlated in spatial regressions with Black and
African American populations in Baltimore and Atlanta. Otherwise, for
Flood Factor, the spatial regression coefficients were the only signifi-
cantly correlated variables, indicating that space was the primary factor
in explaining relationships between SETS indicators and Flood Factor.
Indicators present in Table 3 that are not present in Table 7, such as
social indicators of White, American Indian or AK Native, Native Ha-
waiian or Pacific Islander, Other Race, and Two or More Races, were

Table 6

Parcel-scale Spearman’s Rank correlations between Flood Factor, change in
extreme flood risk, and SETS indicators. + indicates a positive correlation and -
indicates negative correlation. Building value was not available for Atlanta. N =
number of parcels included in analysis. * indicates p < 0.05, ** indicates p <
0.01, *** indicates p < 0.001.

Flood Factor Portland (N
=184,519)

Spearman

[Phoenix] (N
= 389,002)
Spearman

Atlanta (N =
102,522)
Spearman

Baltimore (N
= 184,693)

SETS Indicator Spearman

Building age B ke
(years)

Building value ek ek R
($/f€ living
area)

Cover, green
%)

Redline (%) Hk .

Change in
extreme
flood
exposure

Building age Bkl ek
(years)

Building value
($/f2 living
area)

Cover, green
%)

Redline (%)

ke _dkk R

Sustainable Cities and Society 99 (2023) 104880

removed from statistical analyses in order to reduce the MCN to below
40 (Table 7).

Moran’s [ indicated significant clustering in Portland and [Phoenix]
only, where spatial models provided better fits compared to OLS (AIC
and R? Table 7). Change in extreme flood exposure was significantly
correlated with green cover in Portland, with households with minors in
[Phoenix], and Black and African American populations in Atlanta
(Table 7). Spearman’s rank correlations were positive for Flood Factor
and redlining only in Portland, and negative for change in extreme flood
risk and redlining only in Baltimore (Appendix D).

4. Discussion

Flood hazards are caused by a combination of natural and anthro-
pogenic factors and are therefore inextricably linked to the wider social,
ecological, and technological (SETS) context of cities. Knowledge about
future flood magnitude and potential exposure can inform the decisions
society makes about urbanization, housing, poverty reduction, provision
of social services, and redressing legacies of historical disinvestments in
redlined neighborhoods (social); expanding trees planting programs,
restoring wetlands, increasing riparian buffer zones, and other nature-
—based solutions (ecological); and drainage systems improvement and
sustainable stormwater management (technological). Using a SETS
framework as a conceptual lens for understanding the complex rela-
tionship between future flood exposure and vulnerability at multiple
scales supports decision-making and intervention tools of policy makers,
urban planners, flood risk managers, and the public, seeking to reduce
flood vulnerability-especially in the context of projected increasing
flood frequency and intensity in cities.

4.1. Influence of space and place

Broadly, we found persistent influence of historical waterways and
floodplains areas on future flood exposure (Figs. 3a, 3b, 4a, 4b, 5a, 5b,
6a, 6b), indicating that flooding may worsen locally in cities where
storms are intensifying under climate change. Urban streams in the U.S.
and across the globe have been rerouted, buried, or have otherwise
disappeared, ostensibly to reduce flood exposure and reclaim land for
agricultural and residential development (Brown et al., 2018; Chang
et al., 2020; Elmore & Kaushal, 2008; Napieralski & Welsh, 2016; Post,
Chang, & Banis, 2022). However, former streams still act as collectors
and conveyors of flood waters due to their low elevation relative to their
surroundings. In Atlanta, higher Flood Factor was apparent north of
downtown, especially along the course of Peachtree Creek, a major
feeder of the Chattahoochee River and a well-documented site of floods
(SAWSC, 2016). Other smaller and more discrete areas of elevated Flood
Factor occur throughout the city along more minor waterways like the
Utoy and Proctor Creeks. Baltimore surrounds the mouth of the Patapsco
River, only a short distance from Chesapeake Bay, and high Flood Factor
was found in the downtown and other points close to the river estuary.
Additionally in Baltimore, many areas of very high risk appear to follow
the paths of buried streams, which are common in the city (Elmore &
Kaushal, 2008).

Areas with positive changes in extreme flood risk were generally
those with high Flood Factors (Figs. 3¢, 3d, 5¢, 5d, 6¢, 6d), except for
[Phoenix] (Figs. 4c, 4d), where change in extreme flood risk was
negative overall. The change in extreme flood risk reflected estimated
trends of increased and reduced storm intensity, respectively, in our
study cities (IPCC, 2014). Cities with similar changes in precipitation
should target historical waterways for intervention or they may be sites
of new or worsening floods (Post, Chang, & Banis, 2022).

Future flood exposure clustered and increased around areas of high
slopes (Figs. 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6b)., indicating that these areas
are critical for cities to target with stormwater management in-
terventions. While areas with high slopes in the study cities are generally
associated with green and barren cover, high slopes promote runoff
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Table 7
CBG-scale Ordinary least squares (OLS), spatial lag (SL), and spatial error (SE) regressions of SETS indicators and Flood Factor and change in extreme flood exposure.
SETS indicators from Table 4 missing in this table were not significant for any city under any form of analysis. N = number of census block groups included in analysis. *

indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. Only those variables exhibiting significant correlations in at least one city are listed.

Flood Factor Portland [Phoenix] Baltimore Atlanta
(N = 448) (N=853) (N = 469) (N = 288)
SETS Indicator OLS SL SE OLS SL SE OLS SL SE OLS SL SE
Building age (years) - - -
Building value ($USD/ft%) -
Cover, green (%) _kkk kKK _kk
H.H. with minor(s) (%) +* +*
Median H.H. income ($) - -
Poverty (%) 4
Renter (%) B
Pop. Black and A.A. (%) - - -k - -k
Moran’s 1 0.19%** 0.45%** 0.26** 0.14%**
W (Spatial lag) 0.45%** 0.76%** 0.15* 0.28%**
A (Spatially correlated errors) 0.46%** 0.77%%* 0.16* 0.327%**
AIC 1194 1149 1148 1760 1353 1352 1038 1035 1033 803 794 790
R? 0.11 0.23 0.23 0.05 0.49 0.49 0.04 0.05 0.05 0.07 0.12 0.13
Change in extreme flood risk
Cover, green (%) e Bl B
H.H. with minor(s) (%)
Median H.H. income ($) +*
Pop. Black and A.A. (%) -
Moran’s I 0.13%** 0.10**
W (spatial lag) 0.34%* 0.25%++
2 (spatially correlated errors) 0.35%** 0.25%**
AlIC -4767 -4786 -4786 -12314 -12337 -12336 -5054 -5052 -5054 -2413 -2411 -2413
R? 0.08 0.14 0.14 0.05 0.09 0.08 0.03 0.03 0.03 0.04 0.04 0.04
a.
Flood Factor N
.1-2
E3-4
mS-6
m7-8
o - 10
O City limit
B Major rivers and open water
— Major arterials
C. d. Change in extreme flood exposure
%,‘m [ Reduced exposure
1 No change

[J Increased exposure, quartile 1

B8 Increased exposure, quartile 2

BB Increased exposure, quartile 3
LA B Increased exposure, quartile 4

2 pu 51 O3City limit

B Major rivers and open water

— Major arterials

0 25 5 10Km

[
Figure 3. Portland, OR, Flood Factor at (a) the parcel scale and (b) the CBG scale; and change in extreme flood exposure at (c) the parcel scale and (d) the CBG scale.
Rectangles (in magenta) indicate subset of historic or present waterways and areas of high slope. Quartile values of change in chance of extreme flood exposure can
be found in Appendix C.

rather than infiltration, and this runoff pools in and is conveyed by adjacent to hill/mountain features (rectangle (1) in Fig. 3a). In
proximal areas. In Portland, high Flood Factors are clustered adjacent to [Phoenix], high Flood Factors are clustered around Camelback Moun-
Johnson Creek in the southeast of the city, which is a relatively flat area tain in the north of the city and South Mountain in the south (rectangles
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Flood Factor N
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B Major rivers and open water
— Major arterials

Change in extreme flood exposure
[ Reduced exposure

I No change

[ Increased exposure, quartile 1
@8 Increased exposure, quartile 2
B Increased exposure, quartile 3
B Increased exposure, quartile 4
CICity limit

B Major rivers and open water

— Major arterials
0255 10Km

[

Figure 4. [Phoenix], AZ, Flood Factor in at (a) the parcel scale and (b) the CBG scale; and change in extreme flood exposure at (c) the parcel scale and (d) the CBG
scale. Rectangles (in magenta) indicate subset of historic or present waterways and areas of high slope. Quartile values of change in chance of extreme flood exposure

can be found in Appendix C.

(1) and (2), respectively, in Fig. 4a). Areas with high slopes relative to
the surrounding topography in Baltimore and Atlanta were usually those
co-located with waterways, historical or current, in the city (rectangles
in Figs. 5a, 6a). Similar to the pattern with Flood Factor in cities, areas
with high slopes also generally had increases in the chance of extreme
flooding (Figs. 3c, 3d, 5c¢, 5d, 6¢, 6d) except for [Phoenix] (Figs. 4c, 4d),
again reflecting estimated changes to future patterns of precipitation in
study cities. Future research on flood exposure should ensure the use of
statistical models that account for spatial bias in underlying data For
example, spatial bias altered presence, direction, and degree of corre-
lations in our cities. Spatial models may then aid cities in more accurate
and efficient targeting of interventions to address environmental in-
equities. Flood exposure variables exhibited clear spatial biases in our
study cities, providing necessary context for the finding that spatial
regression models generally performed better than OLS and had more
explanatory power. Even when no SETS indicators were significantly
correlated with Flood Factor, spatial regression coefficients were sig-
nificant in all cities, indicating that space was a key explanatory factor in
the relationships between SETS indicators and flood exposure. For
change in extreme flood exposure, spatial regressions were superior only
in Portland and [Phoenix]. Previous studies have found better explan-
atory power in spatial regressions of present-day urban flood exposure
and vulnerability indicators over non-spatial models (Pallathadka et al.,
2022; Wang et al., 2017). Our study is the first to extend this principle to
studies of future flood exposure and vulnerability.

Exposure of marginalized populations (e.g., households with low
median income, households below the poverty line, racial and ethnic
minorities) to future floods depends on place-specific actions

undertaken in cities. Other studies have similarly found inconsistent
relationships between present-day floods and SETS indicators of
marginalization among cities (Maldonado et al., 2016; Messager et al.,
2021; Pallathadka et al., 2022). Place-specific factors, such as higher
desirability of property along coasts and streams by wealthier pop-
ulations in one city and low desirability along streams into which in-
dustries emit waste in another, may account for differences in
relationships (Maldonado et al., 2016; Messager et al., 2021; Palla-
thadka et al., 2022). That there are evidently place-based factors that
determine relationships between future flood risk and marginalized
populations should be concerning but helpful to city planners and re-
searchers: this is evidence that such relationships can be broken through
policies and actions taken by communities, city planners, and politi-
cians. That is, the future flood risk of marginalized populations should
not be taken as a curse but rather as the natural result of past human
efforts. In the present and near future, efforts could instead be focused
on proactively eliminating such inequities in areas revealed by the
methods used in this study. For example, cities may enact housing pol-
icies to combat the concentration of poverty in future flood zones and/or
expand green infrastructure and green space in areas where marginal-
ized populations will become exposed.

Nevertheless, it is worth highlighting such place-specific factors as
examples to other researchers and cities, within and outside the US
context. First, the lesson that examining how seemingly unrelated pol-
icies at various levels of governance may indirectly influence exposure
to hazard is a useful one (for instance, Georgia’s riparian buffer law is
primarily intended as a water quality measure but has other effects as
well). Also, these examples provide other cities with indicators of policy
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Change in extreme flood exposure
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Figure 5. Baltimore, MD, Flood Factor at (a) the parcel scale and (b) the CBG scale; and change in extreme flood exposure at (c) the parcel scale and (d) the CBG
scale. Rectangles (in magenta) indicate subset of historic or present waterways and areas of high slope.Quartile values of change in chance of extreme flood exposure

can be found in Appendix C.

and planning measures that may be worth pursuing. Such place-specific
avenues of analysis may be helpful in reducing hazard and risk even
where fine-resolution datasets of social characteristics are not available.

4.2. Scale matters

Though data at fine spatial scales like parcels are not commonly
used, their use nonetheless allows for more accurate capture of signifi-
cant relationships between hazard and vulnerability than coarser units
(Nelson, Abkowitz, & Camp, 2015) and are likely better for targeting
interventions to right environmental injustice (Ward & Kaczan, 2014).
Fine-spatial-scale hazard data should be paired with fine-spatial-scale
SETS indicators or relationships may be inaccurately estimated or
altogether missed. Studies that have only some variables available at
fine scales should conduct their analyses at multiple scales in order to
assess the validity of their results. In the present study, the parcel spatial
unit better captured the spatially nuanced relationships between flood
exposure and available SETS indicators than the CBG spatial unit.

Scaling up the estimates of future flooding from modern models like
the one employed by the First Street Foundation to match the scales at
which SETS indicators are available may obscure important relation-
ships, as it appeared to do in this study. Other vulnerability researchers
have applied dasymetric methods to downscale indicators typically only
available at coarser scales like the census tract and block usable to finer
scales (Mennis, 2003) and related them to hazards (Hamstead, Farmer,
& McPhearson, 2018; Nelson, Abkowitz, & Camp, 2015; Shepard et al.,
2012). These studies revealed correlations between hazard exposure and
marginalized populations at this finer scale. Future work around the
globe could address issues of parcel data availability and quality through
these or similar methods though they do add uncertainty.

10

Researchers and governments interested in targeting interventions to
mitigate environmental hazard would benefit from sociodemographic
and socioeconomic information on populations collected at finer scales
(parcel) than those typically available (CBG) and sharing such data with
robust privacy and publication agreements. These efforts would likely be
more costly in monetary terms compared to current work conducted in
many countries. However, repetitive damages caused by floods to
infrastructure and human lives may compel government expenditure to
invest in such research and data-gathering efforts. Under present con-
ditions, other cities in the U.S. that can obtain tax parcel data may
replicate our research partially or fully given our use of otherwise
available future flood exposure and SETS indicators at the CBG scale.

To improve flood mitigation planning and interventions, we suggest
taking into account not only present-day environmental hazards but also
potential future hazards. Comparing our findings with those of Palla-
thadka et al. (2022), which related present-day flood risk and many of
the same SETS indicators in three of the same study cities as those in the
present study, we find differences in relationships that may be explained
in part by this temporal difference. In our study, we found significant
positive relationships between SETS variables like GI, households with
minors, and poverty at one or both scales that were not detected in
previous work. Cities seeking to address environmental inequities be-
tween populations then should understand that such work must evolve
with the climate of their regions, targeting present-day inequalities
(Pallathadka et al., 2022) while also planning for the future. Proactive
rather than reactive planning made possible by including estimates of
future hazards may provide cost savings in addition to preventing
hardship of vulnerable populations.
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Figure 6. Atlanta, GA, Flood Factor at (a) the parcel scale and (b) the CBG scale; and change in extreme flood exposure at (c) the parcel scale and (d) the CBG scale.
Rectangles (in magenta) indicate subset of historic or present waterways and areas of high slope. Quartile values of change in chance of extreme flood exposure can

be found in Appendix C.

4.3. Legacy effects of development and interactions with environmental
hazard

Finally, this study examined the relationship between future hazard
and marginalized populations with the conception that environmental
injustices at any time are the product of the actions and inactions in the
past and present (Pulido, 2000; Schell et al., 2020). Racist and classist
development practices exist in the recent pasts or presents of cities
across the globe (Ljunggren & Andersen, 2015; Shen & Xiao, 2020), and
contribute to differential exposure to environmental hazard in the pre-
sent (Hoffman, Shandas, & Pendleton, 2020; Pallathadka et al., 2022).
Pairing flood forecasting model data with SETS variables allowed us to
assess the presence and strength of such legacy effects in our study cities.
This method can be applied globally where data are available to com-
munity organizations and professionals to manage evolving environ-
mental injustice and inequality under a changing climate. We
discourage generalizing findings on legacy effects from one city to
others, as correlations were inconsistent among our four study cities.

Our work offers tools and information for targeted policy and
infrastructure interventions to alter or even break the ties between
segregationist development policies and future flood hazard. For
example, since HOLC'’s redlining policies ended roughly 54 years ago
with the Fair Housing Act of 1968, all study cities have constructed flood
defenses along their rivers and coasts (which are captured in the First
Street flood model). In [Phoenix], where there was no significant cor-
relation at any scale, these new defenses have alleviated flood risk
specifically in previously redlined areas that were all more proximal to
the Salt River than were A-, B-, or C-graded areas. [Phoenix] then il-
lustrates a case of redlining aligning with areas of former higher flood
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risk, such that minority residents were specifically restricted to areas
with higher probability of flooding (Bolin, Grineski, & Collins, 2005),
but recent investment in infrastructure has reduced the risk in these
segregated areas.

4.4. Limitations of the First Street Foundation’s flood model

The hydrological model produced by the First Street Foundation does
not account for removal of water by subterranean drainage systems, and
this exclusion has implications regarding their estimates of the distri-
bution and severity of parcels exposed to flooding in cities. While their
flood model does account for the surface routing effects of some surface
elements of drainage systems like levees and floodwalls, it does not
allow subterranean systems to remove water from the surface or to move
water back to the surface when operating above capacity. When storms
are particularly intense, as with 100-year return interval storms and
cloudburst events, one may assume a minor, or even negligible, volume
of removal by the drainage system relative to input volumes and for flow
to be overwhelmingly along the surface (Balstrgm & Crawford, 2018).

For our study cities except for [Phoenix], rainfall is expected to in-
crease in the climate models used by the First Street Foundation to
produce their flood exposure estimates. Stormwater management sys-
tems may have a lifespan of 50- to 100-years (Hirabayashi et al., 2013)
So, many of the components of the system designed for past and present
climate conditions will likely still be present in future climates. It follows
then that the flood model’s estimates of surface flood volumes in cities
are likely overestimates and that the spatial distribution of at-risk par-
cels is inaccurate, particularly in areas with substantial investment in
subterranean drainage. Flood models developed and applied
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internationally, or future flood models for the U.S., should incorporate
drainage systems to more accurately assess flood risk and develop
interventions.

However, in our experience, data on urban drainage systems are
seldom shared between municipal agencies and researchers. Reasons for
not sharing such data include lack of existing relationships between
universities and municipalities, city conventions, paywalls, and national
security laws. The inclusion of drainage networks in a nation-wide flood
modeling effort like that accomplished by the First Street Foundation,
which would substantially improve the model, is all but impossible
without addressing barriers to data sharing. Future studies in cities with
access to the appropriate types and scales of social and geospatial data
may explore the ways that stormwater management systems change the
severity and distribution of at-risk parcels. Changes to municipal,
county, state, and national laws on data sharing of drainage systems
could benefit efforts to increase urban resilience to flooding by estab-
lishing exceptions for and privacy agreements with researchers.

5. Conclusions

To explore the relationships between future flood exposure and so-
cial, ecological, and technological indicators of vulnerability, we con-
ducted correlations that accounted for spatial bias at two different
spatial scales in four U.S. cities. Flood exposure was related to flood
vulnerability indicators available at the parcel scale, as well as to parcel-
level indicators that were either summarized to CBG or available only at
the scale of the CBG. Four study cities-Portland, OR, [Phoenix], AZ,
Baltimore, MD, and Atlanta, GA-were selected because they are pro-
jected to experience extreme storms with increased frequency and
magnitude and because of data availability.

The results showed strong spatial relationships between future flood
exposure and SETS indicators at the parcel scale, with flood exposure
positively correlated with building age across all cities, but with
inconsistent directional relationships between flood exposure and green
cover. Flood exposure was variably correlated with redlined parcels and
CBGs, indicating that place-specific factors shape such relationships.
Relationships between indicators available only at the census block-
group scale were most often insignificant. We found that the parcel
was the more appropriate spatial unit to relate to fine-scale flood
exposure data. We found evidence for place- and space-based effects that
likely explained some of the differences in relationships at both scales
between our study cities.

We conclude with four major recommendations based on our work.
These recommendations should be designed and implemented through
collaborations with affected communities in order to ensure the
consideration of location-specific factors that may be missed by top-
down or technocratic forms of assessment and execution and that may
undermine the efficacy of the recommendations.

1 Targeted flood responses: Historical waterways and areas of high
slope may become sites of worsening or new flooding under future
climate conditions. Flood management interventions should target
these areas or likely face futures of worsening or new flood
conditions.

2 Anticipatory governance: Flood management must account for not
just current but also future hazard exposure when implementing
interventions to prevent the deepening of inequalities in hazard
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exposure among marginalized populations. While interventions
designed for the present may address existing disparities, they may
prove insufficient under more intense rainfall in the future or fail to
protect new flood-prone areas. New and comprehensive projections
of pluvial flood exposure like those from the First Street Foundation
represent great opportunities to advance anticipatory governance.

3 Social-ecological-technological systems: To better address urban
flooding and other hazards, flood management and planning should
integrate analyses across aspects of social (e.g., demographics, pol-
icies, awareness levels), ecological (e.g., area hydrography and hy-
drodynamics, soil types, vegetative cover), and technological (e.g.,
stormwater and wastewater systems, impervious surface) inputs.
SETS vulnerability analysis allows cities to identify areas of vulner-
ability along social, environmental, and technological dimensions
and to target interventions in the same or different contributing di-
mensions. For example, cities may reduce the vulnerability of
ethnically and racially diverse communities (S) by targeting invest-
ment in building upgrades (S-T), expanding green infrastructure (S-
E-T), and developing community-based adaptations like early
warning systems (S-T).

4 Multi-scale analysis: Even when fine-scale data are only partially
available for SETS vulnerability analyses, such analyses should be
conducted at multiple scales to appropriately target the intervention.
Further, multi-scale analyses may be necessary to verify the direction
and significance of correlations detected at coarser scales. The gen-
eration and sharing of fine-scale flood model results and SETS in-
dicators should be a priority for researchers and governments to
assess relationships between future flood exposure and SETS char-
acteristics of cities to design appropriate and effective interventions.
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Appendix A. Parcel-scale SETS vulnerability index overlaid with Home Owner’s Loan Corporation neighborhood grades

Portland, OR Baltimore, MD
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Appendix B. CBG-scale SETS vulnerability index overlaid with Home Owner’s Loan Corporation neighborhood grades
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Portland, OR
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Appendix C. Quartile values for the change in chance of an extreme storm event for parcels and CBGs

Parcel-scale CBG-scale
Quartile Portland Phoenix Baltimore Atlanta Portland Phoenix Baltimore Atlanta
1 0.001 0.001 0.001 0.001 0.000420 0.000123 0.000178 0.000333
2 0.003 0.002 0.003 0.003 0.000135 0.000195 0.000350 0.000866
3 0.007 0.006 0.007 0.014 0.003300 0.000379 0.000943 0.001871
4 0.272 0.137 0.244 0.182 0.016483 0.002220 0.109191 0.047917

Appendix D. CBG-scale Spearman’s Rank correlations between Flood Factor, change in extreme flood risk, and SETS indicators. N
indicates number of CBGs included in analysis. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001

Flood Factor Portland (n Phoenix (n Baltimore (n Atlanta (n Change in extreme Portland (n Phoenix (n Baltimore (n Atlanta (n
= 448) = 853) = 469) = 288) flood exposure = 448) = 853) = 469) = 288)

SETS Indicator SETS Indicator

Building age +* Building age (years) A
(years)

Building value R i Building value ($/f¢ frrx
($/f¢ living living area)
area)

Cover, green (%) - HE* Cover, green (%) 4 4 "

H.H. with elder(s) +* H.H. with elder(s) R i
%) (%)

H.H. with minor(s) kel +* S H.H. with minor(s) Bkl X el
(%) (%)

(continued on next page)
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(continued)
Flood Factor Portland (n Phoenix (n Baltimore (n Atlanta (n Change in extreme Portland (n Phoenix (n Baltimore (n Atlanta (n
= 448) = 853) = 469) = 288) flood exposure = 448) = 853) = 469) = 288)

Median H.H. - - Median H.H. income R
income ($) (€]

No H. S. diploma SR +* No H.S. diploma Bk +*
%) (%)

Poverty (%) S Rkl Poverty (%) B

Renter (%) R Renter (%) +* - -

Pop Asian (%) Bl Pop. Asian (%) B

Pop. Black and A. +* Pop. Black and A.A. -
A. (%) (%)

Pop. Hispanic and SR Pop. Hispanic and Bk
Latino (%) Latino (%)

Pop. other race (%) A Pop. other race (%) -

Pop. two or more Rl Pop two or more Bl
races (%) races (%)

Redline +* Redline -
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