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ABSTRACT

BACKGROUND: Transcriptomics can reveal much about cellular activity, and cancer transcriptomics have been useful in investigating
tumor cell behaviors. Patterns in transcriptome-wide gene expression can be used to investigate biological mechanisms and pathways that
can explain the variability in patient response to cancer therapies.

METHODS: We identified gene expression patterns related to patient drug response by clustering tumor gene expression data and select-
ing from the resulting gene clusters those where expression of cluster genes was related to patient survival on specific drugs. We then inves-
tigated these gene clusters for biological meaning using several approaches, including identifying common genomic locations and
transcription factors whose targets were enriched in these clusters and performing survival analyses to support these candidate transcrip-
tion factor-drug relationships.

RESULTS: We identified gene clusters related to drug-specific survival, and through these, we were able to associate observed variations
in patient drug response to specific known biological phenomena. Specifically, our analysis implicated 2 stem cell-related transcription fac-
tors, HOXB4 and SALL4, in poor response to temozolomide in brain cancers. In addition, expression of SNRNP70 and its targets were impli-
cated in cetuximab response by 3 different analyses, although the mechanism remains unclear. We also found evidence that 2 cancer-related
chromosomal structural changes may impact drug efficacy.

CONCLUSION: In this study, we present the gene clusters identified and the results of our systematic analysis linking drug efficacy to spe-
cific transcription factors, which are rich sources of potential mechanistic relationships impacting patient outcomes. We also highlight the
most promising of these results, which were supported by multiple analyses and by previous research. We report these findings as promis-
ing avenues for independent validation and further research into cancer treatments and patient response.
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Introduction

Transcriptomics is an informative paradigm to study as it
reflects the current state of cellular processes in a sample.
Identifying patterns in gene expression is especially helpful to
identify active transcriptional programs and draw connec-
tions with known biological pathways.! In addition, gene
expression patterns may correspond to disease states, progno-
ses, or drug susceptibilities in cancer, enabling deeper under-
standing of a disease at a given point in time.?3 Recently, the
increasing availability of molecular data in cancer has allowed
mining for molecular patterns to delineate subtypes and
reveal mechanisms underlying cancer cell processes.
Clustering of gene expression data can offer an efficient
approach to delineating molecular patterns and functionally
related gene subsets.*> Moreover, integrating clinical data

into the analysis and interpretation of gene expression pat-
terns can help uncover cellular mechanisms driving patient
outcomes in contexts of interest. Identifying tumor gene
expression patterns that can provide insights into the hetero-
geneity in patient drug response is a promising avenue of
research toward the development of effective treatment strat-
egies in the era of personalized medicine.®

Tumor gene expression and regulation has been linked to
drug response. The relationship between cancer cell gene
expression and drug sensitivity has been studied extensively in
vitro, but the findings have seen limited applicability to real-
world patient outcomes. Large molecular datasets linked to
patient clinical data, such as The Cancer Genome Atlas
(TCGA), have made it possible to gain clinically relevant
insights based on primary samples.”1° Analysis of TCGA gene
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expression data has been instrumental in discovering new can-
cer subtypes that impact patient outcomes.!!-'# However, char-
acterization of tumor gene expression patterns related to drug
response has been sparse. Previously, we identified expression-
based gene clusters as biomarkers of patient drug response, and
a limited investigation of biological interpretation of these
gene clusters suggested a potential role of transcription factors
(TFs) in mediating these responses.”> However, the biological
implications of these gene clusters were not fully explored.
Here, we clustered gene expression data from entire cancer
cohorts in TCGA and identified gene clusters whose expres-
sion was related to patient outcomes on specific drugs. We then
employed multiple approaches to identify commonalities that
could explain the shared expression patterns within these gene
clusters, either by upstream regulatory elements or genomic
location. Our findings include evidence supporting the involve-
ment of stem cell self-renewal-related TFs in patient response
to temozolomide and evidence pointing to drug response dif-
ferences stemming from cancer-related chromosomal struc-
tural changes in the genome. To our knowledge, this study is
the first to examine pre-treatment transcriptional patterns and
their implications in the context of real patient outcomes on
specific treatments. In addition, this analysis highlights the
potential that gene sets identified by computational methods
like unsupervised clustering have in identifying critical molec-
ular factors influencing drug efficacy and helps untangle the
interplay between patient drug response, associated transcrip-
tional patterns, and the underlying biological mechanisms.

Methods
Pipeline

To identify patterns of gene expression related to drug efficacy,
we used gene clustering to delineate the patterns and survival
analyses to select those relevant to patient outcomes on vari-
ous drugs. We first binarized RNA-seq data from pre-treat-
ment samples from TCGA using data from 10237 patients
from 33 cancer types, and then split the data into cancer-spe-
cific datasets of binarized gene expression data for all 58 364
genes from all primary tumor samples of that cancer type. For
each cancer dataset, we obtained clusters of genes that tend to
be co-expressed in the same patients using co-occurrence clus-
tering.'® This algorithm recursively clusters all genes based on
their expression patterns across various patient subsets in the
dataset. Then, for a given drug, we tested each gene cluster
identified in the cancer cohort to determine if it showed sur-
vival differences in patients who took that drug, stratified
based on how many of the cluster’s genes they expressed. To
exclude any survival differences based on the cancer and not
on the drug, we then performed the same test in patients who
did not take that drug. We then investigated clusters that
showed drug-specific survival differences for potential factors

involved in the observed survival effect using overrepresenta-
tion analysis to identify common features of the cluster genes,
such as common regulatory elements or transcription factors
(TFs). Additional drug-specific survival analyses were used to
verify drug-cluster-TF target relationships and to support
direct drug-TF relationships in some cases. We further inves-
tigated the driving forces behind the drug-specific survival
effects of these clusters by finding core sets of genes that clus-
tered together multiple times and identifying cases where all
genes within the core set related to the same biological
phenomenon.

Data

We acquired TCGA drug treatment data and gene expression
data from the Genomic Data Commons (GDC) database, and
we downloaded the files using the GDC Data Transfer Tool
and file manifests obtained via the GDC APIL. When creating
the manifests, the parameters used were return_type: manifest
along with the files.data_type: Gene Expression Quantification
and analysis.workflow_type: HT'Seq - FPKM-UQ filters for
RNA-seq data and the files.data_type: Clinical Supplement
and files.data_format: BCR Biotab filters for clinical data.
Other clinical data, such as survival data, were queried using
the GDC API to ensure up-to-date information. We used a
drug name mapping (available at https://gdisc.bme.gatech.
edu/Data/DrugCorrection.csv) previously curated manually by
our group for standardizing drug names in clinical exposure
data. Cancer types were TCGA study acronyms; full cancer
names are listed in Table 1 and available at https://gdc.cancer.
gov/resources-tcga-users/tcga-code-tables/tcga-study-abbre-
viations. Data acquisition, wrangling, analysis, and visualiza-
tion were all implemented in Python.

Binarization of gene expression data

Binarization thresholds were calculated using a method imple-
mented in Python based on the Stepminer algorithm.'” For
each feature, we ordered expression values from low to high
and then fit a step function to these data based on a specific
threshold, testing 400 different thresholds and selecting the
threshold that minimized the mean square error within the
high and low subsets. For individual genes, log-transformed
FPKM-UQ_values were binarized using thresholds calculated
across all samples in the TCGA dataset to reflect the natural
expression ranges of each gene across a variety of cell types. To
binarize expression levels of features composed of multiple
genes, such as our gene clusters or their subsets, we calculated a
given feature’s expression (as measured by how many of the
feature’s genes were highly expressed) for all patients in the
cancer cohort in which the feature was identified. We then cal-
culated the binarization thresholds based only on these patients.
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Table 1. TCGA cancer cohorts and clusters.

CANCER TCGA ABBREVIATION
Bladder Urothelial Carcinoma BLCA
Breast Invasive Carcinoma BRCA
Cervical Squamous Cell Carcinoma and CESC
Endocervical Adenocarcinoma

Colon Adenocarcinoma COAD
Lymphoid Neoplasm Diffuse Large B-Cell DLBC
Lymphoma

Glioblastoma Multiforme GBM
Head and Neck Squamous Cell Carcinoma HNSC
Kidney Renal Clear Cell Carcinoma KIRC
Brain Lower Grade Glioma LGG
Liver Hepatocellular Carcinoma LIHC
Lung Adenocarcinoma LUAD
Lung Squamous Cell Carcinoma LUSC
Mesothelioma MESO
Ovarian Serous Cystadenocarcinoma ov
Pancreatic Adenocarcinoma PAAD
Prostate Adenocarcinoma PRAD
Rectum Adenocarcinoma READ
Sarcoma SARC
Stomach Adenocarcinoma STAD
Testicular Germ Cell Tumors TGCT
Thyroid Carcinoma THCA
Uterine Corpus Endometrial Carcinoma UCEC

# PATIENTS # GENE CLUSTERS  # DRUGS ANALYZED
IDENTIFIED

403 89 3
1069 165 15
296 42 1
446 156 6
47 1 1
143 33 3
493 103 4
526 44 1
498 63 5
368 52 1
500 98 8
490 70 6
80 25 2
352 76 10
177 11 3
481 102 2
161 42 3
258 56 4
365 78 6
133 16 3
497 63 1
536 115 4

Table showing the TCGA cancer cohorts clustered, listing the number of patients in the cohort, the number of clusters identified, and the number of drugs taken by a

sufficient number of patients in the cohort to perform drug-specific survival analysis.

Clustering of genes

We clustered 58364 genes from binarized TCGA pre-treat-
ment gene expression FPKIM-UQ_values across all patients in a
cancer cohort. The clustering algorithm we used was adapted
from a previously described method developed for the analysis
of single cell RNA-seq data called co-occurrence clustering.1®
This algorithm is an iterative bi-clustering method that clusters
binarized gene expression data based on similarity of expression
across patients in a cancer cohort. It constructs a gene-gene
graph based on chi-square pairwise association and then uses
the Louvain algorithm for community detection to identify
gene clusters within the graph. It then clusters patients similarly
based on their expression levels of each gene cluster. This pro-
cess was then iterated for each patient cluster identified,

yielding multiple sets of gene clusters for each cancer cohort.
Clusters produced by this algorithm contain sets of genes that
tend to be co-expressed in patients with that cancer. No survival
information was used in the clustering process.

Multiple test corrections

All statistical test P-values were adjusted to control the false
discovery rate (FDR) for multiple tests using the Benjamini-
Hochberg procedure, as implemented in the fdrcorrection
method of the statsmodels Python package. Adjusted P-values
(Q-values) are reported for individual results. Significance
thresholds for different analyses are reported as the false dis-
covery rate (i.e. 10% FDR, corresponding to Q<C.1) at which
results were considered significant.
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Of note, we did not adjust P-values from log-rank tests per-
formed on patients not exposed to a drug (see Methods: Drug-
specific survival analysis). Significance in this test was used as
an exclusion criterion because it indicated that a survival effect
was not drug-specific; therefore, we used raw P-value to exclude
any possible cancer-wide, non-drug-specific survival effects.

Drug-specific survival analysis

For a given drug, patients within the appropriate cancer cohort
were split into groups based on whether they were exposed to
the drug. For each feature of interest (cluster, gene, or gene
subset), we first performed survival analysis on the patients
who took the drug, stratifying the patients by expression level
of the feature and comparing survival times between strata
using the log-rank test from the lifelines package in Python
(see Methods: Binarization of gene expression data). Then, for
features significant according to a 10% false discovery rate
(FDR), the same log-rank test was performed on patients who
did not take the drug. Survival tests were only performed if
there were at least 10 high and 10 low expressors in both drug
exposure groups. A feature was considered to have a drug-spe-
cific survival effect if we observed a significant (Q <.1) survival
effect in patients who took the drug and no survival differences
(P=.1) or an opposite survival effect in patients who did not
take the drug.

Transcription factor selection

Identification of transcription factors (TFs) related to drug-
specific survival effects observed in our gene sets (clusters or
their subsets) involved 2 steps. First, we performed over-repre-
sentation analysis to identify TFs whose targets were enriched
within a gene set. For our reference TF target gene sets, we
used the GTRD sub-collection of the Molecular Signatures
Database (MSigDB),'® which contains gene sets of known or
predicted targets of TFs. In MSigDB, the target gene set of a
TF is defined as genes whose predicted binding site for the
given TF is within -1000 to +500bp of the transcription start
site. A detailed explanation can be found at https://www.gsea-
msigdb.org/gsea/msigdb/collection_details.jsp#GTRD.  We
then identified the top TFs (up to 100) whose target genes
were significantly enriched in each gene set using a 5% FDR to
determine significance.

Next, for each TF identified in the first step, we tested
whether the drug-specific survival effects observed in our gene
set were also observed among the TF targets in the set. We
performed survival analysis for each proposed gene set-TF pair,
stratifying patients based on expression of only the subset of
the TF’s target genes in that gene set. We excluded from fur-
ther analysis TFs whose target genes in a gene set did not show
a survival effect similar to that of the gene set or showed a simi-
lar survival effect in patients who did not take the drug. This

limited our results to include only TFs whose target genes in
the gene set were related to the drug-specific survival effects we
were investigating.

Results

Clustering identifies gene sets whose expression
impacts patient survival on drugs

Within TCGA data, there were 22 cancer cohorts with gene
expression data and sufficient patients for drug-specific sur-
vival analysis with respect to at least one drug among the can-
cer cohort. Table 1 lists the number of patients in each of the
cancer datasets and the number of gene clusters identified,
along with the number of drugs taken by enough patients in
each cancer cohort to perform drug-specific survival analysis.
Table 1 also includes the TCGA acronyms for each cancer type
along with the full name of the cancer. Clusters were named for
the TCGA acronym of the respective cancer along with a num-
ber for identification (e.g. HNSC.55 for one of the clusters
from head and neck squamous cell carcinoma). We considered
gene clusters to show drug-specific survival differences if they
showed significant (Q<.1) differences in overall patient sur-
vival on a given drug but no survival effect (P=.1) or an oppo-
site survival effect in patients who did not take the drug. We
identified 98 cluster-drug pairs with demonstrated impact on
patient survival across 7 cancers, spanning 73 clusters and 10
drugs. Table 2 summarizes these analyses. The full list of sig-
nificant cluster-drug pairs and their log-rank statistics are in
the Supplemental Table S1.

Clusters are enriched for TF targets with drug-
specific survival effects

We then investigated these identified drug-specific gene clus-
ters for insights into potential biological mechanisms behind
their drug-specific survival effects. We put special focus on
finding transcription factors (TFs) that could be related to
patient drug response, as T'Fs are closely tied to gene expression
and have been implicated in cancer drug efficacy. We used the
hypergeometric test to identify sets of TF target genes that
were enriched in our drug-specific gene clusters to identify
candidate drug-cluster-TF relationships. Because gene clusters
may capture multiple molecular mechanisms, some of which
may not be specific to drug response and thus not of interest in
this study, we only considered instances where the TF’s targets
in the cluster showed the same drug-specific survival effect
observed in the cluster. For each putative drug-cluster-T'F rela-
tionship, we applied our drug-specific survival analysis to the
subset of TF-related genes within the cluster and excluded
from further analysis those with no survival effect, a survival
effect opposite to the survival effect under investigation, or a
survival effect not specific to patients taking the drug. Using
this strategy, we obtained 4947 putative drug-cluster-TF
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Table 2. Summary of individual cluster analysis.

CANCER DRUG # PATIENTS # CLUSTERS RELATED #TFs WITH TARGETS #TFs WITH EXPRESSION
TO DRUG SURVIVAL RELATED TO DRUG RELATED TO DRUG
SURVIVAL SURVIVAL
COAD Capecitabine 31 2 29 0
HNSC Carboplatin 54 25 240 32
HNSC Cetuximab 29 16 182 11
HNSC Paclitaxel 41 17 235 21
LGG Irinotecan 21 4 73 0
LGG Temozolomide 250 8 171 31
LIHC Sorafenib 28 3 104 0
LUAD Pemetrexed 59 15 204 0
LUSC Carboplatin 56 1 1 0
LUSC Cisplatin 70 1 84 0
LUSC Docetaxel 31 2 0 0
ov Cisplatin 104 4 111 1

Table summarizing our analysis results from individual clusters. For each of 12 cancer-drug combinations, we show the number of patients in the cancer-drug cohort, the
number of clusters with significant drug-specific impact on survival, the number of TFs enriched among these clusters, and the number of these TFs whose expression

also impacted drug-specific survival.

Table 3. Transcription factor targets driving drug-specific survival differences.

CLUSTER DRUG # GENES #TF TARGETS CLUSTER EFFECT OF LOG-RANK P-VALUE
IN CLUSTER IN CLUSTER LOG-RANK  CLUSTER OF CLUSTER AFTER
P-VALUE EXPRESSION EXCLUDING TF
ON SURVIVAL TARGETS
HNSC.29 Cetuximab PAX3 899 93 .0225 + .212
HNSC.68 Cetuximab ELF2 331 64 .0014 - .259
HNSC.68 Cetuximab SNRNP70 331 58 .0014 - .212
HNSC.91 Paclitaxel SAFB2 175 13 .0173 - 147
LGG.15 Temozolomide ZBTB7B 120 16 .0209 - A1

Table showing the 5 cases where a gene cluster exhibited a drug-specific survival effect that was lost when targets of a transcription factor were removed from the cluster.

relationships that relate to that cluster’s impact on drug effi-
cacy, representing 1437 potential cancer-drug-TF interactions.

Extending this strategy, we identified strong potential drug-
cluster-TF relationships by finding instances where the TF tar-
gets in a cluster encompass the primary mechanism driving the
cluster’s effect on drug response. For each of our identified
drug-cluster-T'F relationships, we performed drug-specific
survival analysis on the subset of genes in the cluster that are
not targets of the TE. We then identified those cases where the
cluster lost its drug-specific survival effect when the TF’s target
genes were excluded from the cluster. Table 3 shows our results.
Inall 5 of these cases, the TF target genes accounted for a small
portion of the cluster’s genes, demonstrating that the target

genes of these TFs include the main drivers of these clusters’
impact on drug-specific survival.

To support potential mechanistic relationships among our
identified drug-TF pairs, we also looked for drug-specific sur-
vival differences based on expression levels of the TFs them-
selves. Of the 1437 putative cancer-drug-TF interactions, 876
had a sufficient number of high and low TF-expressing
patients to test whether expression of the TF impacted drug-
specific survival in that cancer, and 96 of these showed signifi-
cant drug-specific survival effects in this analysis. These results
are summarized in Table 2. These additional analyses helped
identify stronger examples where there may be a more direct
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Highly overlapping clusters share drug-specific effects
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Pairwise Jaccard similarity index

Figure 1. Histogram showing distribution of pairwise Jaccard index (JI)
when comparing drug-specific clusters from the same cancer. Cluster
pairs that share drug-specific survival effects are shown in red and
cluster pairs with effects in different drugs or in opposite directions are
shown in blue.

relationship between TFs and the drugs in which they influ-
enced patient survival based on the original clusters.

Highly similar clusters contain consistently co-

expressed genes related to drug efficacy

In addition to investigating individual clusters for biological
implications, we explored several strategies based on relation-
ships between clusters. Our clustering algorithm is iterative, so
gene clusters from different iterations of the clustering algo-
rithm can overlap; therefore, we explored the degree of gene
overlap between all clusters. To determine how often our clus-
ters contain overlapping genes and overlapping drug effects, we
used the hypergeometric test to determine significant (5%
FDR) overlaps between clusters. We compared each of our 98
identified drug-specific gene clusters in a pairwise manner
with every other gene cluster and categorized the results
according to whether the clusters being compared shared drug-
specific survival effects. In total, we found that 14% of all clus-
ter pairs and 41% of pairs with the same drug-specific survival
effects significantly overlapped, indicating that clusters with
the same drug effects may be related or have common mecha-
nisms. We also investigated cluster similarity, calculating the
Jaccard similarity index (JI) between pairs of clusters identified
in the same cancer cohort. The distribution of these scores is
shown in Figure 1, which illustrates that all substantially simi-
lar same-cancer cluster pairs had drug-specific survival effects
in common for at least one drug (red), whereas pairs with no
shared drug-specific survival effects (including pairs with sur-
vival effects specific to the same drug but with opposite effects
on survival) (blue) all have low similarity.

We then looked at the cluster pairs with the highest similar-
ity, that is, gene clusters identified in different patient subgroups
in the same cancer containing most of the same genes. Twenty-
eight cluster pairs had a JI >.5, involving 20 unique clusters and
5 drug interactions across 3 cancers. Figure 2 shows a graph
illustrating the relationships between these clusters, with each

of these clusters represented by a node and edges connecting
cluster pairs with significant overlap (hypergeometric test, 5%
FDR). These clusters separated neatly into 5 disconnected sub-
graphs, which are shown in Figure 2 labeled with letters. In con-
trast to the lack of edges between these subgraphs, clusters
within each subgraph were strongly interconnected, indicating a
high degree of overlap between all clusters within these cluster
groups. In addition, all clusters in the same cluster group shared
the same drug-specific survival effects. We therefore identified
the set of genes present in all clusters within each cluster group.
Each of the resulting shared gene sets comprises a consistent set
of co-expressed genes, identified in multiple iterations of co-
occurrence clustering and thus multiple patient subgroups
within a cancer cohort; therefore, they may represent a core set
of genes related to the survival effects shared by the clusters in
the group.

After identifying these gene sets, we first confirmed that the
gene sets retained the same drug-specific survival effects that
the clusters in the cluster group shared. Table 4 summarizes our
analysis of these 5 cluster groups and their shared genes and
shows Kaplan-Meier curves illustrating the survival effects of
their expression in their respective cancer-drug cohorts. In all
cases, the gene sets were as effective in separating responders
and non-responders as the clusters in the cluster group, and
none of the 5 gene sets showed survival differences in the
patients who did not take the drug in question. As expected,
these shared gene sets stratified patients similarly to the indi-
vidual clusters, thereby having the same predictive power; how-
ever, the consistency of their co-expression suggests a biological
relationship between the genes in each set.

Shared gene sets link drug efficacy with TFs and

chromosomal differences

We then investigated the shared gene sets from our 5 high-
overlap cluster groups for biological insights. First, we identi-
fied potential TF involvement using the same enrichment and
survival method as we used in the clusters. One interesting
finding was that, even though the gene sets from cluster groups
B and C were disjointed and had no genes in common, com-
monalities existed among the TFs implicated in the carbopl-
atin-specific survival effects of these gene sets. MAFG,
WRNIP1, and ZNF597 were all implicated in carboplatin
efficacy by their enrichment and survival effects among the
shared gene sets from cluster groups B and C. The fact that
these TFs were identified in 2 unrelated, non-overlapping clus-
ter group gene sets reinforces the claim that they play a role in
patient response to carboplatin. Because these gene sets con-
tain only the genes in the intersection of multiple clusters and
represent frequently co-expressed genes, they are more likely to
contain co-regulated genes. We therefore assigned special
importance to TFs where enrichment of target genes within
these cluster group gene sets was stronger than in the original
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Figure 2. Network showing the relationships between gene clusters with high overlap and delineating cluster groups. Every cluster involved in at least
one pair with JI >.5 is represented by a node. Edges are shown between any 2 gene clusters with a significant number of shared genes, as determined by
hypergeometric test (5% FDR), and are weighted by JI. Cluster groups are labeled by letters corresponding to Table 4. COAD clusters are in green, LUAD
clusters are red, and HNSC clusters are blue nodes. Node size indicates cluster size.

Table 4. Survival and features of shared genes of high-overlap cluster groups.

CLUSTER CANCER # # SHARED DRUG EFFECT LOG-RANK KM PLOT NOTABLE FEATURES
GROUP CLUSTERS GENES ON P-VALUE

IN GROUP SURVIVAL FOR
SHARED
GENES

A COAD 2 52 Capecitabine + 7.66E-04 HLH—\ ch:)élﬁé :Iogxe?gs e on
5y chr8p
B HNSC 5 337 Carboplatin + 4.83E-03 ‘l‘_‘; MAFG, WRNII_’1, and
o ﬁ’;ESB?Z\ (also in group C);
Carboplatin + 2.03E-06
% BARX1*, CUX1*, IRF9,
° e e . Cotimab SOIE04 [ | TAFOD2NFide:aNFSST
5y
D HNSC 5 106 Cetuximab - 3.44E-03 ‘E‘T
5y
E LUAD 6 23 Pemetrexed - 6.56E-03 TT_L ?rilrg?nnoessoﬁ:: onY
Sy

Table describing the cluster groups found in network analysis of overlapping clusters. Groups are labeled by letter as shown in Figure 2. The table lists the cancer cohort
the clusters were identified in, the number of clusters in the group, the number of genes that are common to all clusters in the group, the drug and direction of the drug-
specific survival effects shared by the clusters in the group, and the log-rank P-value of the cluster group’s common gene set in the indicated cancer-drug cohorts. It also
shows Kaplan-Meier survival plots for each gene set, along with notable features about the gene set.

*TF was not previously found in clusters in that group.

**TF was not previously implicated in that drug’s efficacy in any clusters.
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clusters in their respective cluster groups. These included 5 TFs
identified in cluster group C whose targets were not identified
in the clusters in group C but which showed both carboplatin-
specific and cetuximab-specific survival effects. This produces
10 drug-TF relationships identified in group C that were not
strong enough to be identified in group C clusters, 7 of which
were implicated in our analysis through other clusters. Table 4
includes these TFs as well as other examples pertaining to
these cluster groups that we highlight in the text.

One striking observation was that 2 of the shared gene sets
(those from cluster groups A and E) were composed entirely of
genes from the same genomic location, further supporting our
hypothesis that these gene sets capture genes with strong bio-
logical relationships. The other 3 gene sets contained genes
distributed across all 23 chromosomes and were therefore not
related by genome location. In group A, all 52 genes shared by
the clusters are located on the short arm of chromosome 8 (8p),
despite the fact that each of the clusters in group A contains
genes from multiple chromosomes. In our analysis, low expres-
sion of these genes in COAD patients was associated with poor
survival outcomes specific to patients treated with capecit-
abine, a formulation of fluorouracil and an antimetabolite that
blocks synthesis of molecules required for cell proliferation.
Interestingly, 8p is known to be a region of high mutation rates
in general®?® and a common site of loss of heterozygosity
(LOH) in cancer.??> Mutations and LOH both typically lead
to lower expression of the affected genes and are generally
associated with worse cancer outcomes, especially in regions
like 8p, which is known to contain several tumor suppressing
genes.?3 More recently, cell line models of 8p LOH were shown
to lose drug sensitivity and showed increased resistance to fluo-
rouracil compared to isogenic non-8p-deleted cells.?* In addi-
tion, in specific 8p bands, copy number alterations?? and single
nucleotide polymorphisms® have been associated with differ-
ences in patient response to chemotherapy. Although these
studies did not specifically investigate capecitabine, our results
are consistent with the poor outcomes and increased drug
resistance reported with aberrations in 8p, suggesting a poten-
tial link between these phenomena and capecitabine efficacy. If
validated, this connection could help identify patients with
higher chances of success on capecitabine and lead to new dis-
coveries of specific drug interactions.

In cluster group E, all 23 genes shared by the clusters in the
group were located on the Y chromosome. Unsurprisingly, strati-
fying patients by expression of these Y-chromosome genes
among patients who took pemetrexed effectively split the popu-
lation by gender. Pemetrexed is an antimetabolite, like capecit-
abine, which in this case acts as a folate antagonist that blocks
multiple synthesis pathways required in cell survival and growth.
Although no gender differences have been reported in patient
response to pemetrexed, many factors determining drug response
differ by gender,?® and emerging evidence shows sex differences
in cellular drug metabolism pathways in lung cancer.?-?8 In

addition, TCGA clinical data shows pemetrexed-specific sur-
vival differences between genders in LUAD patients: among
LUAD patients who took pemetrexed, females had better sur-
vival than male patients in the TCGA dataset (P=7e-3), whereas
no gender differences in survival were observed among LUAD
patients who did not take pemetrexed (P=.71).

However, this gene set may have captured biological differ-
ences that go beyond separating by gender and may be involved
in more subtle sex-related differences. It is likely that several of
the clusters in group E were identified in all-male patient sub-
sets in the clustering process, which would suggest these genes
tend to be co-expressed among males and may be related to
differences among male LUAD patients. This is plausible, as
low expression of Y-chromosome genes in males, especially in
cancer, has been linked to loss of the Y chromosome (LOY),?’
which is common in cancer and is associated with increased
risk and negative patient outcomes in several cancer con-
texts.3%3! These consequences have been attributed to the loss
of 6 Y chromosome genes that act as tumor suppressors,?30 all
of which are among cluster group E’s shared genes, further sup-
porting a relationship between our gene set and LOY. Although
LOY has not been previously reported as impacting peme-
trexed efficacy, there is evidence of male-specific pathways that
impact pemetrexed response in male lung cancer cells but are
absent in female cells.?” Such pathways and their resulting dif-
ferences in pemetrexed sensitivity could be related to expres-
sion differences in these genes and could also confound the
identification of gender differences in pemetrexed response
and explain conflicting reports about the effect of gender on
pemetrexed efficacy. We therefore also investigated whether
this gene set might have pemetrexed-related effects among
male LUAD patients. Recalculating our high/low threshold to
be appropriate for the male patient subset, we observed a mod-
est pemetrexed-specific survival effect (P=.07) where males
with low expression of these genes had worse survival than
high-expressing males. The potential for these genes to be
related to a male-specific pemetrexed response is promising,
considering evidence of sex differences in pemetrexed response
pathways, the similarity of this gene expression pattern to gene
expression in LOY, and the modest but still pemetrexed-spe-
cific survival effects observed among LUAD males despite a
small (n=24) sample size.

Nuclear hormone receptors associated with better
drug response in cetuximab

In identifying TFs in the shared gene sets of each cluster group,
nuclear receptor coactivator 6 (NCOAG6) emerged as an inter-
esting example in cluster group C. NCOA® target genes were
significantly enriched (Q=3e-7) in the 424 genes shared by
clusters in cluster group C, but not in the clusters themselves or
in any other HNSC clusters. NCOA®6 targets in the cluster
group C shared gene set showed the same drug-specific
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Figure 3. Kaplan-Meier survival plots showing survival differences between high-expressing patients (orange) and low-expressing patients (blue) of the
indicated gene or gene set. Plot pairs each feature a TF and the cancer-drug cohort in which it was identified through gene set overrepresentation
analysis. The left plot shows survival differences in patients based on expression of the TF’s targets in the relevant gene set and the right plot shows the
survival effect of expression of the TF itself. P-values are indicated within the plots. (A) Survival plots by expression of NCOAG targets within the genes
shared by clusters in group C (left) and by expression of NCOA® (right) in HNSC patients taking cetuximab. (B) Survival by expression of SNRNP70
targets in cluster HNSC.68 (left) and by expression of SNRNP70 (right) in HNSC patients on cetuximab. (C) Survival by expression of SALL4 targets in
LGG.59 (left) and by expression of SALL4 (right) in LGG patients on temozolomide. (D) Survival of LGG patients taking temozolomide, stratified by
expression of HOXB4 target genes in LGG.50 (left) and by expression of HOXB4 (right). HOXB4 expression shows significant survival effects, but they
could not be confirmed as drug-specific due to too few high expressors among LGG patients who did not take temozolomide.

survival effects in both carboplatin (P=1e-4) and cetuximab
(P=2e-3) as the group C genes. A potential relationship
between NCOAG6 and cetuximab was further supported by our
subsequent observation that high expression of NCOAS® itself
was significantly and drug-specifically associated with better
patient outcomes in cetuximab (P=6e-5) (Figure 3A).

NCOAG® is a hormone-responsive coactivator of transcrip-
tion of its target genes. Cetuximab is an inhibitor of epidermal
growth factor receptor (EGFR), which is involved in cell
growth. While the mechanism by which it could interact with
cetuximab is unknown, NCOA6 has been identified as an
upstream regulator of 2 common EGFR ligands.3>33 Although
NCOA®6 target genes were not significantly enriched in any
individual HNSC cluster, our observations from the cluster
group C gene set and from survival differences based on expres-
sion of NCOA®6 point to a significant relationship between
NCOAS6 and cetuximab, and potentially between NCOAG6 and
carboplatin.

Although many of our putative TF-drug relationships have
not been previously characterized, our results included several
TF-drug relationships that have already been reported. For
example, abnormalities in nuclear receptor coactivator 4
(NCOA4), another hormone-sensitive coactivator of transcrip-
tion,** have been reported in cetuximab resistant patients.3* This
is in accordance with our observation that expression of NCOA4
is associated with better survival in HNSC patients taking
cetuximab (P=.01, Q=.067), a relationship first suggested

because we found 4 HNSC clusters where expression of their
NCOAA4 target genes showed better cetuximab-specific survival.
One of these clusters (HNSC.100) was in cluster group C,
whose shared gene set showed a similar relationship between
NCOA4 and cetuximab (P=4e-4). These results, along with the
previously reported evidence, provide support for a likely protec-
tive effect of high NCOA4 expression in patients taking
cetuximab.

SNRNP70 activity is associated with worse patient
outcomes on cetuximab

One of the most notable results from this analysis involves the
relationship between SNRNP70 and cetuximab within cluster
HNSC.68. SNRNP70 target genes were significantly enriched
within HNSC.68 (Q=1e-29), accounting for 58 out of the 331
genes in HNSC.68. We found that the cetuximab-specific sur-
vival benefit conferred by low expression of HNSC.68 genes
(P=1e-3, Q=.016) was even more pronounced (P=1le-4,
O=4e-4) when limited to just SNRNP70s target genes.
Moreover, we found that these 58 target genes encompassed
the genes driving the drug-specific survival effects observed in
HNSC.68: we found no survival difference when stratifying
patients based on only the subset of HNSC.68 genes that were
not SNRNP70 target genes (P=.2). Furthermore, we found
that low expression of SNRNP70 was associated with better
patient survival on cetuximab (P<<.001, Q=.026). Figure 3B
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shows KM curves of HNSC patients on cetuximab, stratified
by expression of HNSC.68's SNRNP70 target genes and by
SNRNP70 expression. SNRNP70 was thus implicated in
cetuximab-specific survival by multiple analysis strategies, fur-
ther supporting a potential mechanistic relationship with
patient outcomes on cetuximab.

Although to our knowledge no relationship between cetuxi-
mab and SNRNP70 has been reported, it is interesting to con-
sider the implications of this putative relationship based on
what is known about them. SNRNP70 is a component of the
spliceosome and is involved in mRNA splicing. The implica-
tion of SNRNP70 in drug-specific survival differences may
point to differences in gene splicing, which in some cases have
been linked to alterations in drug response.3%37 Interestingly,
there is also evidence that splice variants of EGFR itself may
behave differently in response to inhibition by cetuximab.3%39
While there is no known mechanism relating SNRNP70 and
cetuximab efficacy, it is conceivable that changes in splicing
could alter signaling pathways involved in cetuximab’s effect,
such as the EGFR signaling pathway, leading to altered drug
responses. Therefore, further studies elucidating the specific
molecular interplay relating SNRNP70 functions and patient
outcomes on cetuximab may be warranted.

An interesting observation related to the effects seen in
SNRNP70 target genes in cetuximab is a similar relationship
between ELF2 target genes and cetuximab. As seen in Table 3,
removal of target genes of ELF2 and removal of SNRNP70 tar-
get genes each eliminated cluster HNSC.68's cetuximab-spe-
cific survival effect, suggesting that either or both of these sets of
TF targets could be driving the observed survival differences. Of
note, ELEF2 and SNRNP70 share 20 targets among HNSC.68
genes. Interestingly, these 2 were the only ones of the 5 drug-
cluster-TF relationships highlighted in Table 3 with enough
high- and low-expressing patients to test the TF’s expression
level for drug-specific survival differences. While expression of
SNRNP70 showed cetuximab-specific survival effects, ELF2
expression was not associated with survival differences in HNSC
patients on cetuximab (P=.83). Therefore, although the possibil-
ity remains of a relationship between ELF2 and the cetuximab-
specific survival effects seen in HNSC.68, this observation may
also be an artifact of the overlap of ELF2 target genes with those
of SNRNP70 among HNSC.68 genes.

TFs regulating self~renewal are associated with
increased temozolomide resistance in LGG

One of the most promising putative relationships we identified
in this analysis is a potential detrimental role of SALL4 in
temozolomide response in LGG, which was supported by mul-
tiple lines of evidence in our analysis and by previous studies.
SALLA4 is a transcription factor known for its role in promot-
ing self-renewal and “stemness” in stem cells, and one study
showed that inhibiting SALL4 increases sensitivity to

temozolomide.** SALL4 has also been associated with glioma
stem cells (GSCs),* which have increased resistance to alkylat-
ing agents such as temozolomide.* SALL4 target genes were
implicated in the temozolomide-specific survival effects
observed in two LGG clusters, one positively (LGG.59) and
one negatively (LGG.50), which aligns with reports that some
SALL4 targets are activated by SALL4 and some are
repressed.® Furthermore, expression of SALL4 was strongly
associated with poor temozolomide-specific survival (Q=5e-8)
in our analysis. Figure 3C illustrates survival in LGG patients
on temozolomide, stratified by expression of SALL4 target
genes in LGG.59 and by expression of SALLA4 itself. In addi-
tion, previous analyses of other molecular TCGA datasets have
also implicated an antagonistic relationship between SALLA4
and temozolomide: high levels of promoter-region methyla-
tion among SALL4 target genes, which could inhibit SALLA4's
transcriptional effects, were associated with significantly better
temozolomide-specific survival in LGG patients,* and
increased copy number of the SALL4 gene, a state associated
with an increase in SALL4 expression, showed poor LGG
patient survival among those taking temozolomide.* Taken
together, these suggest that SALL4 may be detrimental to
temozolomide efficacy in LGG patients, potentially related to
its expression in GSCs.

Another interesting, potentially related finding involves
the transcription factor HOXB4, whose targets were signifi-
cantly enriched (Q=5e-5) in LGG.50. Drug-specific survival
analysis showed that the HOXB4 target genes in LGG.50
showed even stronger (P=2e-6, Q=5e-5) temozolomide-
specific survival differences in LGG patients than the origi-
nal cluster (P=2e-4, Q=8e-4). Figure 3D shows the
Kaplan-Meier curves showing the survival effects of expres-
sion of LGG.50's HOXB4 target genes in LGG among
patients on temozolomide. Although expression of HOXB4
is also significantly associated with survival of LGG patients
on temozolomide (P=6e-12, Q=4e-10), there were too few
high expressors of HOXB4 among LGG patients who did
not take temozolomide to test whether this observation is
temozolomide-specific or true of LGG patients in general.
Much like SALL4, HOXB4 is involved in stemness and self-
renewal in stem cells. Moreover, HOXB4 has been directly
shown to be overexpressed in drug-resistant GSCs, and in
addition, HOXB4 targets include key regulators of pathways
that are also implicated in self-renewal in GSCs.*0#7 While
HOXB4 has not previously been implicated in temozolomide
efficacy, our observation of temozolomide-specific survival
effects of LGG.50's HOXB4 targets in LGG patients sug-
gests a role for HOXB4-related pathways in temozolomide
efficacy. Indeed, the implication of these two stemness-related
TFs in temozolomide outcomes suggests a promising avenue
for further exploration into a potential interaction between
the regulation of self-renewal in GSCs and temozolomide
resistance mechanisms in LGG patients.
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Discussion

Our investigation utilized a gene clustering approach to explore
connections between gene expression patterns and drug
response across diverse cancer types, successfully identifying
biologically meaningful clusters linked to drug-specific patient
survival. Our drug-specific survival analysis strategy helped us
identify which of these clusters influence drug efficacy while
excluding those primarily tied to general cancer-related sur-
vival effects. Notably, our approach used binarized gene expres-
sion data, demonstrating that binarized gene expression retains
sufficient information to find biologically informative gene
expression signatures with drug-specific effects. Exploring
these clusters yielded promising findings that shed light on
transcription factors (TFs) and other biological relationships
potentially involved in drug efficacy.

Recognizing the pivotal role of TFs in drug response, much
of our analysis focused on identifying TFs whose targets are
associated with drug-specific survival through our clusters and
gene sets to generate potential TF-drug relationships. The
number of putative TF-drug relationships we identified
reflects the complexity of the regulatory landscape. We expect
that some of these relationships may represent more direct
involvement of the TF in drug response, especially those where
both the TF target expression and expression of the TF itself
were associated with drug-specific survival effects. Others are
less direct but represent transcriptional states related to drug-
specific survival.

In this study, we were able to trace drug-specific survival
effects in clusters to biological relationships, such as chromo-
somal location and TF target enrichment. Examining the rela-
tionships identified by our most promising results in the
context of known biology helped elucidate potential interac-
tions. In several cases, we identified TF-drug relationships that
have been reported previously. For example, we reported that
expression of SALL4 and SALL4 target genes impact patient
outcomes on temozolomide, which agrees with previous
reports. Aligning with that was our observed interaction
between temozolomide and expression of targets of HOXB4, a
TF involved in similar processes as SALLA4. To our knowledge,
a relationship between temozolomide and HOXB4 has not
been reported or studied, but such a relationship is plausible
given HOXB4's overexpression and functionality in cells with
known resistance to temozolomide. These examples demon-
strate the ability of our analysis strategies to identify biological
relationships that were already known and suggest that the
remaining results, most of which we could not find discussed in
the literature, likely include novel relationships important to
drug response. The strongest of these, like SNRNP70 in cetux-
imab efficacy or the isolation of chromosome-specific gene sets
that cluster together, point to biological phenomena potentially
involved in drug efficacy that are worth investigating.

While the results we present are significant, there are several
important limitations to acknowledge. First, although our

highlighted examples were supported by multiple separate
analysis strategies, we were unable to find sufficiently compara-
ble public datasets for independent validation of our results,
nor have they been experimentally validated; thus, further
study is needed to confirm the putative relationships we have
identified. In addition, our analysis may be confounded by clus-
ters encompassing multiple biological phenomena, not all of
which may be directly linked to drug response but which tend
to co-occur with drug response mechanisms. The complexity
of cancer biology and the variety of factors influencing patient
outcomes also pose challenges in pinpointing specific mecha-
nisms solely based on clustering patterns. Lastly, while TCGA
is an extensive resource, it is not unlimited. Separating patients
by cancer type and drug for survival analysis often leads to
small and sometimes too small sample sizes. For example, in
many cases, there were too few high- or low-expressing patients
to test if there were survival differences based on TF expression
that were both significant and specific to the drug. Despite
these limitations, our study provides a rich source of putative
TF-drug interactions that are ripe for further study.

Conclusions

This study offers novel insights into relationships between
gene expression patterns, drug efficacy, and transcriptional
regulation across multiple cancer cohorts. We identified
expression-based gene clusters associated with patient out-
comes on specific drugs and linked the patterns within and
among these clusters to known biology, shedding light on the
underlying molecular mechanisms influencing patient
responses to treatment. By suggesting potential relationships
between gene expression clusters related to drug response and
the commonalities shared by their genes, such as common
transcriptional regulation or genomic location, our study con-
tributes to the ongoing efforts in understanding the complexi-
ties of cancer treatment and offers promising avenues for
future research for improving therapeutic strategies in the

pursuit of precision medicine.
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