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Introduction
Transcriptomics is an informative paradigm to study as it 
reflects the current state of cellular processes in a sample. 
Identifying patterns in gene expression is especially helpful to 
identify active transcriptional programs and draw connec-
tions with known biological pathways.1 In addition, gene 
expression patterns may correspond to disease states, progno-
ses, or drug susceptibilities in cancer, enabling deeper under-
standing of a disease at a given point in time.2,3 Recently, the 
increasing availability of molecular data in cancer has allowed 
mining for molecular patterns to delineate subtypes and 
reveal mechanisms underlying cancer cell processes. 
Clustering of gene expression data can offer an efficient 
approach to delineating molecular patterns and functionally 
related gene subsets.4,5 Moreover, integrating clinical data 

into the analysis and interpretation of gene expression pat-
terns can help uncover cellular mechanisms driving patient 
outcomes in contexts of interest. Identifying tumor gene 
expression patterns that can provide insights into the hetero-
geneity in patient drug response is a promising avenue of 
research toward the development of effective treatment strat-
egies in the era of personalized medicine.6-8

Tumor gene expression and regulation has been linked to 
drug response. The relationship between cancer cell gene 
expression and drug sensitivity has been studied extensively in 
vitro, but the findings have seen limited applicability to real-
world patient outcomes. Large molecular datasets linked to 
patient clinical data, such as The Cancer Genome Atlas 
(TCGA), have made it possible to gain clinically relevant 
insights based on primary samples.9,10 Analysis of TCGA gene 
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expression data has been instrumental in discovering new can-
cer subtypes that impact patient outcomes.11-14 However, char-
acterization of tumor gene expression patterns related to drug 
response has been sparse. Previously, we identified expression-
based gene clusters as biomarkers of patient drug response, and 
a limited investigation of biological interpretation of these 
gene clusters suggested a potential role of transcription factors 
(TFs) in mediating these responses.15 However, the biological 
implications of these gene clusters were not fully explored.

Here, we clustered gene expression data from entire cancer 
cohorts in TCGA and identified gene clusters whose expres-
sion was related to patient outcomes on specific drugs. We then 
employed multiple approaches to identify commonalities that 
could explain the shared expression patterns within these gene 
clusters, either by upstream regulatory elements or genomic 
location. Our findings include evidence supporting the involve-
ment of stem cell self-renewal-related TFs in patient response 
to temozolomide and evidence pointing to drug response dif-
ferences stemming from cancer-related chromosomal struc-
tural changes in the genome. To our knowledge, this study is 
the first to examine pre-treatment transcriptional patterns and 
their implications in the context of real patient outcomes on 
specific treatments. In addition, this analysis highlights the 
potential that gene sets identified by computational methods 
like unsupervised clustering have in identifying critical molec-
ular factors influencing drug efficacy and helps untangle the 
interplay between patient drug response, associated transcrip-
tional patterns, and the underlying biological mechanisms.

Methods
Pipeline

To identify patterns of gene expression related to drug efficacy, 
we used gene clustering to delineate the patterns and survival 
analyses to select those relevant to patient outcomes on vari-
ous drugs. We first binarized RNA-seq data from pre-treat-
ment samples from TCGA using data from 10 237 patients 
from 33 cancer types, and then split the data into cancer-spe-
cific datasets of binarized gene expression data for all 58 364 
genes from all primary tumor samples of that cancer type. For 
each cancer dataset, we obtained clusters of genes that tend to 
be co-expressed in the same patients using co-occurrence clus-
tering.16 This algorithm recursively clusters all genes based on 
their expression patterns across various patient subsets in the 
dataset. Then, for a given drug, we tested each gene cluster 
identified in the cancer cohort to determine if it showed sur-
vival differences in patients who took that drug, stratified 
based on how many of the cluster’s genes they expressed. To 
exclude any survival differences based on the cancer and not 
on the drug, we then performed the same test in patients who 
did not take that drug. We then investigated clusters that 
showed drug-specific survival differences for potential factors 

involved in the observed survival effect using overrepresenta-
tion analysis to identify common features of the cluster genes, 
such as common regulatory elements or transcription factors 
(TFs). Additional drug-specific survival analyses were used to 
verify drug-cluster-TF target relationships and to support 
direct drug-TF relationships in some cases. We further inves-
tigated the driving forces behind the drug-specific survival 
effects of these clusters by finding core sets of genes that clus-
tered together multiple times and identifying cases where all 
genes within the core set related to the same biological 
phenomenon.

Data

We acquired TCGA drug treatment data and gene expression 
data from the Genomic Data Commons (GDC) database, and 
we downloaded the files using the GDC Data Transfer Tool 
and file manifests obtained via the GDC API. When creating 
the manifests, the parameters used were return_type: manifest 
along with the files.data_type: Gene Expression Quantification 
and analysis.workflow_type: HTSeq - FPKM-UQ filters for 
RNA-seq data and the files.data_type: Clinical Supplement 
and files.data_format: BCR Biotab filters for clinical data. 
Other clinical data, such as survival data, were queried using 
the GDC API to ensure up-to-date information. We used a 
drug name mapping (available at https://gdisc.bme.gatech.
edu/Data/DrugCorrection.csv) previously curated manually by 
our group for standardizing drug names in clinical exposure 
data. Cancer types were TCGA study acronyms; full cancer 
names are listed in Table 1 and available at https://gdc.cancer.
gov/resources-tcga-users/tcga-code-tables/tcga-study-abbre-
viations. Data acquisition, wrangling, analysis, and visualiza-
tion were all implemented in Python.

Binarization of gene expression data

Binarization thresholds were calculated using a method imple-
mented in Python based on the Stepminer algorithm.17 For 
each feature, we ordered expression values from low to high 
and then fit a step function to these data based on a specific 
threshold, testing 400 different thresholds and selecting the 
threshold that minimized the mean square error within the 
high and low subsets. For individual genes, log-transformed 
FPKM-UQ values were binarized using thresholds calculated 
across all samples in the TCGA dataset to reflect the natural 
expression ranges of each gene across a variety of cell types. To 
binarize expression levels of features composed of multiple 
genes, such as our gene clusters or their subsets, we calculated a 
given feature’s expression (as measured by how many of the 
feature’s genes were highly expressed) for all patients in the 
cancer cohort in which the feature was identified. We then cal-
culated the binarization thresholds based only on these patients.

https://gdisc.bme.gatech.edu/Data/DrugCorrection.csv
https://gdisc.bme.gatech.edu/Data/DrugCorrection.csv
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Clustering of genes

We clustered 58 364 genes from binarized TCGA pre-treat-
ment gene expression FPKM-UQ values across all patients in a 
cancer cohort. The clustering algorithm we used was adapted 
from a previously described method developed for the analysis 
of single cell RNA-seq data called co-occurrence clustering.16 
This algorithm is an iterative bi-clustering method that clusters 
binarized gene expression data based on similarity of expression 
across patients in a cancer cohort. It constructs a gene-gene 
graph based on chi-square pairwise association and then uses 
the Louvain algorithm for community detection to identify 
gene clusters within the graph. It then clusters patients similarly 
based on their expression levels of each gene cluster. This pro-
cess was then iterated for each patient cluster identified, 

yielding multiple sets of gene clusters for each cancer cohort. 
Clusters produced by this algorithm contain sets of genes that 
tend to be co-expressed in patients with that cancer. No survival 
information was used in the clustering process.

Multiple test corrections

All statistical test P-values were adjusted to control the false 
discovery rate (FDR) for multiple tests using the Benjamini-
Hochberg procedure, as implemented in the fdrcorrection 
method of the statsmodels Python package. Adjusted P-values 
(Q-values) are reported for individual results. Significance 
thresholds for different analyses are reported as the false dis-
covery rate (i.e. 10% FDR, corresponding to Q < .1) at which 
results were considered significant.

Table 1.  TCGA cancer cohorts and clusters.

Cancer TCGA abbreviation # Patients # Gene clusters 
identified

# Drugs analyzed

Bladder Urothelial Carcinoma BLCA 403 89 3

Breast Invasive Carcinoma BRCA 1069 165 15

Cervical Squamous Cell Carcinoma and 
Endocervical Adenocarcinoma

CESC 296 42 1

Colon Adenocarcinoma COAD 446 156 6

Lymphoid Neoplasm Diffuse Large B-Cell 
Lymphoma

DLBC 47 1 1

Glioblastoma Multiforme GBM 143 33 3

Head and Neck Squamous Cell Carcinoma HNSC 493 103 4

Kidney Renal Clear Cell Carcinoma KIRC 526 44 1

Brain Lower Grade Glioma LGG 498 63 5

Liver Hepatocellular Carcinoma LIHC 368 52 1

Lung Adenocarcinoma LUAD 500 98 8

Lung Squamous Cell Carcinoma LUSC 490 70 6

Mesothelioma MESO 80 25 2

Ovarian Serous Cystadenocarcinoma OV 352 76 10

Pancreatic Adenocarcinoma PAAD 177 11 3

Prostate Adenocarcinoma PRAD 481 102 2

Rectum Adenocarcinoma READ 161 42 3

Sarcoma SARC 258 56 4

Stomach Adenocarcinoma STAD 365 78 6

Testicular Germ Cell Tumors TGCT 133 16 3

Thyroid Carcinoma THCA 497 63 1

Uterine Corpus Endometrial Carcinoma UCEC 536 115 4

Table showing the TCGA cancer cohorts clustered, listing the number of patients in the cohort, the number of clusters identified, and the number of drugs taken by a 
sufficient number of patients in the cohort to perform drug-specific survival analysis.
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Of note, we did not adjust P-values from log-rank tests per-
formed on patients not exposed to a drug (see Methods: Drug-
specific survival analysis). Significance in this test was used as 
an exclusion criterion because it indicated that a survival effect 
was not drug-specific; therefore, we used raw P-value to exclude 
any possible cancer-wide, non-drug-specific survival effects.

Drug-specif ic survival analysis

For a given drug, patients within the appropriate cancer cohort 
were split into groups based on whether they were exposed to 
the drug. For each feature of interest (cluster, gene, or gene 
subset), we first performed survival analysis on the patients 
who took the drug, stratifying the patients by expression level 
of the feature and comparing survival times between strata 
using the log-rank test from the lifelines package in Python 
(see Methods: Binarization of gene expression data). Then, for 
features significant according to a 10% false discovery rate 
(FDR), the same log-rank test was performed on patients who 
did not take the drug. Survival tests were only performed if 
there were at least 10 high and 10 low expressors in both drug 
exposure groups. A feature was considered to have a drug-spe-
cific survival effect if we observed a significant (Q < .1) survival 
effect in patients who took the drug and no survival differences 
(P ⩾ .1) or an opposite survival effect in patients who did not 
take the drug.

Transcription factor selection

Identification of transcription factors (TFs) related to drug-
specific survival effects observed in our gene sets (clusters or 
their subsets) involved 2 steps. First, we performed over-repre-
sentation analysis to identify TFs whose targets were enriched 
within a gene set. For our reference TF target gene sets, we 
used the  GTRD sub-collection of the Molecular Signatures 
Database (MSigDB),18 which contains gene sets of known or 
predicted targets of TFs. In MSigDB, the target gene set of a 
TF is defined as genes whose predicted binding site for the 
given TF is within −1000 to +500 bp of the transcription start 
site. A detailed explanation can be found at https://www.gsea-
msigdb.org/gsea/msigdb/collection_details.jsp#GTRD. We 
then identified the top TFs (up to 100) whose target genes 
were significantly enriched in each gene set using a 5% FDR to 
determine significance.

Next, for each TF identified in the first step, we tested 
whether the drug-specific survival effects observed in our gene 
set were also observed among the TF targets in the set. We 
performed survival analysis for each proposed gene set-TF pair, 
stratifying patients based on expression of only the subset of 
the TF’s target genes in that gene set. We excluded from fur-
ther analysis TFs whose target genes in a gene set did not show 
a survival effect similar to that of the gene set or showed a simi-
lar survival effect in patients who did not take the drug. This 

limited our results to include only TFs whose target genes in 
the gene set were related to the drug-specific survival effects we 
were investigating.

Results
Clustering identif ies gene sets whose expression 
impacts patient survival on drugs

Within TCGA data, there were 22 cancer cohorts with gene 
expression data and sufficient patients for drug-specific sur-
vival analysis with respect to at least one drug among the can-
cer cohort. Table 1 lists the number of patients in each of the 
cancer datasets and the number of gene clusters identified, 
along with the number of drugs taken by enough patients in 
each cancer cohort to perform drug-specific survival analysis. 
Table 1 also includes the TCGA acronyms for each cancer type 
along with the full name of the cancer. Clusters were named for 
the TCGA acronym of the respective cancer along with a num-
ber for identification (e.g. HNSC.55 for one of the clusters 
from head and neck squamous cell carcinoma). We considered 
gene clusters to show drug-specific survival differences if they 
showed significant (Q < .1) differences in overall patient sur-
vival on a given drug but no survival effect (P ⩾ .1) or an oppo-
site survival effect in patients who did not take the drug. We 
identified 98 cluster-drug pairs with demonstrated impact on 
patient survival across 7 cancers, spanning 73 clusters and 10 
drugs. Table 2 summarizes these analyses. The full list of sig-
nificant cluster-drug pairs and their log-rank statistics are in 
the Supplemental Table S1.

Clusters are enriched for TF targets with drug-
specif ic survival effects

We then investigated these identified drug-specific gene clus-
ters for insights into potential biological mechanisms behind 
their drug-specific survival effects. We put special focus on 
finding transcription factors (TFs) that could be related to 
patient drug response, as TFs are closely tied to gene expression 
and have been implicated in cancer drug efficacy. We used the 
hypergeometric test to identify sets of TF target genes that 
were enriched in our drug-specific gene clusters to identify 
candidate drug-cluster-TF relationships. Because gene clusters 
may capture multiple molecular mechanisms, some of which 
may not be specific to drug response and thus not of interest in 
this study, we only considered instances where the TF’s targets 
in the cluster showed the same drug-specific survival effect 
observed in the cluster. For each putative drug-cluster-TF rela-
tionship, we applied our drug-specific survival analysis to the 
subset of TF-related genes within the cluster and excluded 
from further analysis those with no survival effect, a survival 
effect opposite to the survival effect under investigation, or a 
survival effect not specific to patients taking the drug. Using 
this strategy, we obtained 4947 putative drug-cluster-TF 

https://www.gsea-msigdb.org/gsea/msigdb/collection_details.jsp#GTRD
https://www.gsea-msigdb.org/gsea/msigdb/collection_details.jsp#GTRD


Neary and Qiu	 5

relationships that relate to that cluster’s impact on drug effi-
cacy, representing 1437 potential cancer-drug-TF interactions.

Extending this strategy, we identified strong potential drug-
cluster-TF relationships by finding instances where the TF tar-
gets in a cluster encompass the primary mechanism driving the 
cluster’s effect on drug response. For each of our identified 
drug-cluster-TF relationships, we performed drug-specific 
survival analysis on the subset of genes in the cluster that are 
not targets of the TF. We then identified those cases where the 
cluster lost its drug-specific survival effect when the TF’s target 
genes were excluded from the cluster. Table 3 shows our results. 
In all 5 of these cases, the TF target genes accounted for a small 
portion of the cluster’s genes, demonstrating that the target 

genes of these TFs include the main drivers of these clusters’ 
impact on drug-specific survival.

To support potential mechanistic relationships among our 
identified drug-TF pairs, we also looked for drug-specific sur-
vival differences based on expression levels of the TFs them-
selves. Of the 1437 putative cancer-drug-TF interactions, 876 
had a sufficient number of high and low TF-expressing 
patients to test whether expression of the TF impacted drug-
specific survival in that cancer, and 96 of these showed signifi-
cant drug-specific survival effects in this analysis. These results 
are summarized in Table 2. These additional analyses helped 
identify stronger examples where there may be a more direct 

Table 2.  Summary of individual cluster analysis.

Cancer Drug # patients # Clusters related 
to drug survival

# TFs with targets 
related to drug 
survival

# TFs with expression 
related to drug 
survival

COAD Capecitabine 31 2 29 0

HNSC Carboplatin 54 25 240 32

HNSC Cetuximab 29 16 182 11

HNSC Paclitaxel 41 17 235 21

LGG Irinotecan 21 4 73 0

LGG Temozolomide 250 8 171 31

LIHC Sorafenib 28 3 104 0

LUAD Pemetrexed 59 15 204 0

LUSC Carboplatin 56 1 1 0

LUSC Cisplatin 70 1 84 0

LUSC Docetaxel 31 2 0 0

OV Cisplatin 104 4 111 1

Table summarizing our analysis results from individual clusters. For each of 12 cancer-drug combinations, we show the number of patients in the cancer-drug cohort, the 
number of clusters with significant drug-specific impact on survival, the number of TFs enriched among these clusters, and the number of these TFs whose expression 
also impacted drug-specific survival.

Table 3.  Transcription factor targets driving drug-specific survival differences.

Cluster Drug TF # Genes
in cluster

# TF targets 
in cluster

Cluster 
log-rank 
P-value

Effect of 
cluster 
expression 
on survival

Log-rank P-value 
of cluster after 
excluding TF 
targets

HNSC.29 Cetuximab PAX3 899 93 .0225 + .212

HNSC.68 Cetuximab ELF2 331 64 .0014 – .259

HNSC.68 Cetuximab SNRNP70 331 58 .0014 – .212

HNSC.91 Paclitaxel SAFB2 175 13 .0173 – .147

LGG.15 Temozolomide ZBTB7B 120 16 .0209 – .111

Table showing the 5 cases where a gene cluster exhibited a drug-specific survival effect that was lost when targets of a transcription factor were removed from the cluster.
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relationship between TFs and the drugs in which they influ-
enced patient survival based on the original clusters.

Highly similar clusters contain consistently co-
expressed genes related to drug eff icacy

In addition to investigating individual clusters for biological 
implications, we explored several strategies based on relation-
ships between clusters. Our clustering algorithm is iterative, so 
gene clusters from different iterations of the clustering algo-
rithm can overlap; therefore, we explored the degree of gene 
overlap between all clusters. To determine how often our clus-
ters contain overlapping genes and overlapping drug effects, we 
used the hypergeometric test to determine significant (5% 
FDR) overlaps between clusters. We compared each of our 98 
identified drug-specific gene clusters in a pairwise manner 
with every other gene cluster and categorized the results 
according to whether the clusters being compared shared drug-
specific survival effects. In total, we found that 14% of all clus-
ter pairs and 41% of pairs with the same drug-specific survival 
effects significantly overlapped, indicating that clusters with 
the same drug effects may be related or have common mecha-
nisms. We also investigated cluster similarity, calculating the 
Jaccard similarity index ( JI) between pairs of clusters identified 
in the same cancer cohort. The distribution of these scores is 
shown in Figure 1, which illustrates that all substantially simi-
lar same-cancer cluster pairs had drug-specific survival effects 
in common for at least one drug (red), whereas pairs with no 
shared drug-specific survival effects (including pairs with sur-
vival effects specific to the same drug but with opposite effects 
on survival) (blue) all have low similarity.

We then looked at the cluster pairs with the highest similar-
ity, that is, gene clusters identified in different patient subgroups 
in the same cancer containing most of the same genes. Twenty-
eight cluster pairs had a JI >.5, involving 20 unique clusters and 
5 drug interactions across 3 cancers. Figure 2 shows a graph 
illustrating the relationships between these clusters, with each 

of these clusters represented by a node and edges connecting 
cluster pairs with significant overlap (hypergeometric test, 5% 
FDR). These clusters separated neatly into 5 disconnected sub-
graphs, which are shown in Figure 2 labeled with letters. In con-
trast to the lack of edges between these subgraphs, clusters 
within each subgraph were strongly interconnected, indicating a 
high degree of overlap between all clusters within these cluster 
groups. In addition, all clusters in the same cluster group shared 
the same drug-specific survival effects. We therefore identified 
the set of genes present in all clusters within each cluster group. 
Each of the resulting shared gene sets comprises a consistent set 
of co-expressed genes, identified in multiple iterations of co-
occurrence clustering and thus multiple patient subgroups 
within a cancer cohort; therefore, they may represent a core set 
of genes related to the survival effects shared by the clusters in 
the group.

After identifying these gene sets, we first confirmed that the 
gene sets retained the same drug-specific survival effects that 
the clusters in the cluster group shared. Table 4 summarizes our 
analysis of these 5 cluster groups and their shared genes and 
shows Kaplan-Meier curves illustrating the survival effects of 
their expression in their respective cancer-drug cohorts. In all 
cases, the gene sets were as effective in separating responders 
and non-responders as the clusters in the cluster group, and 
none of the 5 gene sets showed survival differences in the 
patients who did not take the drug in question. As expected, 
these shared gene sets stratified patients similarly to the indi-
vidual clusters, thereby having the same predictive power; how-
ever, the consistency of their co-expression suggests a biological 
relationship between the genes in each set.

Shared gene sets link drug eff icacy with TFs and 
chromosomal differences

We then investigated the shared gene sets from our 5 high-
overlap cluster groups for biological insights. First, we identi-
fied potential TF involvement using the same enrichment and 
survival method as we used in the clusters. One interesting 
finding was that, even though the gene sets from cluster groups 
B and C were disjointed and had no genes in common, com-
monalities existed among the TFs implicated in the carbopl-
atin-specific survival effects of these gene sets. MAFG, 
WRNIP1, and ZNF597 were all implicated in carboplatin 
efficacy by their enrichment and survival effects among the 
shared gene sets from cluster groups B and C. The fact that 
these TFs were identified in 2 unrelated, non-overlapping clus-
ter group gene sets reinforces the claim that they play a role in 
patient response to carboplatin. Because these gene sets con-
tain only the genes in the intersection of multiple clusters and 
represent frequently co-expressed genes, they are more likely to 
contain co-regulated genes. We therefore assigned special 
importance to TFs where enrichment of target genes within 
these cluster group gene sets was stronger than in the original 

Figure 1.  Histogram showing distribution of pairwise Jaccard index (JI) 

when comparing drug-specific clusters from the same cancer. Cluster 

pairs that share drug-specific survival effects are shown in red and 

cluster pairs with effects in different drugs or in opposite directions are 

shown in blue.
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Figure 2.  Network showing the relationships between gene clusters with high overlap and delineating cluster groups. Every cluster involved in at least 

one pair with JI >.5 is represented by a node. Edges are shown between any 2 gene clusters with a significant number of shared genes, as determined by 

hypergeometric test (5% FDR), and are weighted by JI. Cluster groups are labeled by letters corresponding to Table 4. COAD clusters are in green, LUAD 

clusters are red, and HNSC clusters are blue nodes. Node size indicates cluster size.

Table 4.  Survival and features of shared genes of high-overlap cluster groups.

Cluster 
group

Cancer # 
Clusters 
in group

# shared 
genes

Drug Effect 
on 
Survival

Log-rank 
P-value 
for 
shared 
genes

KM plot Notable features

A COAD 2 52 Capecitabine + 7.66E-04 HOXA2, HOXB6, 
NFRKB; all genes are on 
chr8p

B HNSC 5 337 Carboplatin + 4.83E-03 MAFG, WRNIP1, and 
ZNF597 (also in group C); 
NFKBIA

C  HNSC 2 424

Carboplatin + 2.03E-06

BARX1*, CUX1*, IRF9, 
NCOA4, NCOA6**, 
TAF9B*, ZNF146*, ZNF597 Cetuximab + 3.91E-04

D HNSC 5 106 Cetuximab - 3.44E-03  

E LUAD 6 23 Pemetrexed - 6.56E-03 All genes are on Y 
chromosome

Table describing the cluster groups found in network analysis of overlapping clusters. Groups are labeled by letter as shown in Figure 2. The table lists the cancer cohort 
the clusters were identified in, the number of clusters in the group, the number of genes that are common to all clusters in the group, the drug and direction of the drug-
specific survival effects shared by the clusters in the group, and the log-rank P-value of the cluster group’s common gene set in the indicated cancer-drug cohorts. It also 
shows Kaplan-Meier survival plots for each gene set, along with notable features about the gene set.
*TF was not previously found in clusters in that group.
**TF was not previously implicated in that drug’s efficacy in any clusters.
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clusters in their respective cluster groups. These included 5 TFs 
identified in cluster group C whose targets were not identified 
in the clusters in group C but which showed both carboplatin-
specific and cetuximab-specific survival effects. This produces 
10 drug-TF relationships identified in group C that were not 
strong enough to be identified in group C clusters, 7 of which 
were implicated in our analysis through other clusters. Table 4 
includes these TFs as well as other examples pertaining to 
these cluster groups that we highlight in the text.

One striking observation was that 2 of the shared gene sets 
(those from cluster groups A and E) were composed entirely of 
genes from the same genomic location, further supporting our 
hypothesis that these gene sets capture genes with strong bio-
logical relationships. The other 3 gene sets contained genes 
distributed across all 23 chromosomes and were therefore not 
related by genome location. In group A, all 52 genes shared by 
the clusters are located on the short arm of chromosome 8 (8p), 
despite the fact that each of the clusters in group A contains 
genes from multiple chromosomes. In our analysis, low expres-
sion of these genes in COAD patients was associated with poor 
survival outcomes specific to patients treated with capecit-
abine, a formulation of fluorouracil and an antimetabolite that 
blocks synthesis of molecules required for cell proliferation. 
Interestingly, 8p is known to be a region of high mutation rates 
in general19,20 and a common site of loss of heterozygosity 
(LOH) in cancer.21,22 Mutations and LOH both typically lead 
to lower expression of the affected genes and are generally 
associated with worse cancer outcomes, especially in regions 
like 8p, which is known to contain several tumor suppressing 
genes.23 More recently, cell line models of 8p LOH were shown 
to lose drug sensitivity and showed increased resistance to fluo-
rouracil compared to isogenic non-8p-deleted cells.24 In addi-
tion, in specific 8p bands, copy number alterations22 and single 
nucleotide polymorphisms25 have been associated with differ-
ences in patient response to chemotherapy. Although these 
studies did not specifically investigate capecitabine, our results 
are consistent with the poor outcomes and increased drug 
resistance reported with aberrations in 8p, suggesting a poten-
tial link between these phenomena and capecitabine efficacy. If 
validated, this connection could help identify patients with 
higher chances of success on capecitabine and lead to new dis-
coveries of specific drug interactions.

In cluster group E, all 23 genes shared by the clusters in the 
group were located on the Y chromosome. Unsurprisingly, strati-
fying patients by expression of these Y-chromosome genes 
among patients who took pemetrexed effectively split the popu-
lation by gender. Pemetrexed is an antimetabolite, like capecit-
abine, which in this case acts as a folate antagonist that blocks 
multiple synthesis pathways required in cell survival and growth. 
Although no gender differences have been reported in patient 
response to pemetrexed, many factors determining drug response 
differ by gender,26 and emerging evidence shows sex differences 
in cellular drug metabolism pathways in lung cancer.27,28 In 

addition, TCGA clinical data shows pemetrexed-specific sur-
vival differences between genders in LUAD patients: among 
LUAD patients who took pemetrexed, females had better sur-
vival than male patients in the TCGA dataset (P = 7e−3), whereas 
no gender differences in survival were observed among LUAD 
patients who did not take pemetrexed (P = .71).

However, this gene set may have captured biological differ-
ences that go beyond separating by gender and may be involved 
in more subtle sex-related differences. It is likely that several of 
the clusters in group E were identified in all-male patient sub-
sets in the clustering process, which would suggest these genes 
tend to be co-expressed among males and may be related to 
differences among male LUAD patients. This is plausible, as 
low expression of Y-chromosome genes in males, especially in 
cancer, has been linked to loss of the Y chromosome (LOY),29 
which is common in cancer and is associated with increased 
risk and negative patient outcomes in several cancer con-
texts.30,31 These consequences have been attributed to the loss 
of 6 Y chromosome genes that act as tumor suppressors,29,30 all 
of which are among cluster group E’s shared genes, further sup-
porting a relationship between our gene set and LOY. Although 
LOY has not been previously reported as impacting peme-
trexed efficacy, there is evidence of male-specific pathways that 
impact pemetrexed response in male lung cancer cells but are 
absent in female cells.27 Such pathways and their resulting dif-
ferences in pemetrexed sensitivity could be related to expres-
sion differences in these genes and could also confound the 
identification of gender differences in pemetrexed response 
and explain conflicting reports about the effect of gender on 
pemetrexed efficacy. We therefore also investigated whether 
this gene set might have pemetrexed-related effects among 
male LUAD patients. Recalculating our high/low threshold to 
be appropriate for the male patient subset, we observed a mod-
est pemetrexed-specific survival effect (P = .07) where males 
with low expression of these genes had worse survival than 
high-expressing males. The potential for these genes to be 
related to a male-specific pemetrexed response is promising, 
considering evidence of sex differences in pemetrexed response 
pathways, the similarity of this gene expression pattern to gene 
expression in LOY, and the modest but still pemetrexed-spe-
cific survival effects observed among LUAD males despite a 
small (n = 24) sample size.

Nuclear hormone receptors associated with better 
drug response in cetuximab

In identifying TFs in the shared gene sets of each cluster group, 
nuclear receptor coactivator 6 (NCOA6) emerged as an inter-
esting example in cluster group C. NCOA6 target genes were 
significantly enriched (Q = 3e−7) in the 424 genes shared by 
clusters in cluster group C, but not in the clusters themselves or 
in any other HNSC clusters. NCOA6 targets in the cluster 
group C shared gene set showed the same drug-specific 
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survival effects in both carboplatin (P = 1e−4) and cetuximab 
(P = 2e−3) as the group C genes. A potential relationship 
between NCOA6 and cetuximab was further supported by our 
subsequent observation that high expression of NCOA6 itself 
was significantly and drug-specifically associated with better 
patient outcomes in cetuximab (P = 6e−5) (Figure 3A).

NCOA6 is a hormone-responsive coactivator of transcrip-
tion of its target genes. Cetuximab is an inhibitor of epidermal 
growth factor receptor (EGFR), which is involved in cell 
growth. While the mechanism by which it could interact with 
cetuximab is unknown, NCOA6 has been identified as an 
upstream regulator of 2 common EGFR ligands.32,33 Although 
NCOA6 target genes were not significantly enriched in any 
individual HNSC cluster, our observations from the cluster 
group C gene set and from survival differences based on expres-
sion of NCOA6 point to a significant relationship between 
NCOA6 and cetuximab, and potentially between NCOA6 and 
carboplatin.

Although many of our putative TF-drug relationships have 
not been previously characterized, our results included several 
TF-drug relationships that have already been reported. For 
example, abnormalities in nuclear receptor coactivator 4 
(NCOA4), another hormone-sensitive coactivator of transcrip-
tion,34 have been reported in cetuximab resistant patients.35 This 
is in accordance with our observation that expression of NCOA4 
is associated with better survival in HNSC patients taking 
cetuximab (P = .01, Q = .067), a relationship first suggested 

because we found 4 HNSC clusters where expression of their 
NCOA4 target genes showed better cetuximab-specific survival. 
One of these clusters (HNSC.100) was in cluster group C, 
whose shared gene set showed a similar relationship between 
NCOA4 and cetuximab (P = 4e−4). These results, along with the 
previously reported evidence, provide support for a likely protec-
tive effect of high NCOA4 expression in patients taking 
cetuximab.

SNRNP70 activity is associated with worse patient 
outcomes on cetuximab

One of the most notable results from this analysis involves the 
relationship between SNRNP70 and cetuximab within cluster 
HNSC.68. SNRNP70 target genes were significantly enriched 
within HNSC.68 (Q = 1e−29), accounting for 58 out of the 331 
genes in HNSC.68. We found that the cetuximab-specific sur-
vival benefit conferred by low expression of HNSC.68 genes 
(P = 1e−3, Q = .016) was even more pronounced (P = 1e−4, 
Q = 4e−4) when limited to just SNRNP70s target genes. 
Moreover, we found that these 58 target genes encompassed 
the genes driving the drug-specific survival effects observed in 
HNSC.68: we found no survival difference when stratifying 
patients based on only the subset of HNSC.68 genes that were 
not SNRNP70 target genes (P = .2). Furthermore, we found 
that low expression of SNRNP70 was associated with better 
patient survival on cetuximab (P < .001, Q = .026). Figure 3B 

Figure 3.  Kaplan-Meier survival plots showing survival differences between high-expressing patients (orange) and low-expressing patients (blue) of the 

indicated gene or gene set. Plot pairs each feature a TF and the cancer-drug cohort in which it was identified through gene set overrepresentation 

analysis. The left plot shows survival differences in patients based on expression of the TF’s targets in the relevant gene set and the right plot shows the 

survival effect of expression of the TF itself. P-values are indicated within the plots. (A) Survival plots by expression of NCOA6 targets within the genes 

shared by clusters in group C (left) and by expression of NCOA6 (right) in HNSC patients taking cetuximab. (B) Survival by expression of SNRNP70 

targets in cluster HNSC.68 (left) and by expression of SNRNP70 (right) in HNSC patients on cetuximab. (C) Survival by expression of SALL4 targets in 

LGG.59 (left) and by expression of SALL4 (right) in LGG patients on temozolomide. (D) Survival of LGG patients taking temozolomide, stratified by 

expression of HOXB4 target genes in LGG.50 (left) and by expression of HOXB4 (right). HOXB4 expression shows significant survival effects, but they 

could not be confirmed as drug-specific due to too few high expressors among LGG patients who did not take temozolomide.
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shows KM curves of HNSC patients on cetuximab, stratified 
by expression of HNSC.68′s SNRNP70 target genes and by 
SNRNP70 expression. SNRNP70 was thus implicated in 
cetuximab-specific survival by multiple analysis strategies, fur-
ther supporting a potential mechanistic relationship with 
patient outcomes on cetuximab.

Although to our knowledge no relationship between cetuxi-
mab and SNRNP70 has been reported, it is interesting to con-
sider the implications of this putative relationship based on 
what is known about them. SNRNP70 is a component of the 
spliceosome and is involved in mRNA splicing. The implica-
tion of SNRNP70 in drug-specific survival differences may 
point to differences in gene splicing, which in some cases have 
been linked to alterations in drug response.36,37 Interestingly, 
there is also evidence that splice variants of EGFR itself may 
behave differently in response to inhibition by cetuximab.38,39 
While there is no known mechanism relating SNRNP70 and 
cetuximab efficacy, it is conceivable that changes in splicing 
could alter signaling pathways involved in cetuximab’s effect, 
such as the EGFR signaling pathway, leading to altered drug 
responses. Therefore, further studies elucidating the specific 
molecular interplay relating SNRNP70 functions and patient 
outcomes on cetuximab may be warranted.

An interesting observation related to the effects seen in 
SNRNP70 target genes in cetuximab is a similar relationship 
between ELF2 target genes and cetuximab. As seen in Table 3, 
removal of target genes of ELF2 and removal of SNRNP70 tar-
get genes each eliminated cluster HNSC.68′s cetuximab-spe-
cific survival effect, suggesting that either or both of these sets of 
TF targets could be driving the observed survival differences. Of 
note, ELF2 and SNRNP70 share 20 targets among HNSC.68 
genes. Interestingly, these 2 were the only ones of the 5 drug-
cluster-TF relationships highlighted in Table 3 with enough 
high- and low-expressing patients to test the TF’s expression 
level for drug-specific survival differences. While expression of 
SNRNP70 showed cetuximab-specific survival effects, ELF2 
expression was not associated with survival differences in HNSC 
patients on cetuximab (P = .83). Therefore, although the possibil-
ity remains of a relationship between ELF2 and the cetuximab-
specific survival effects seen in HNSC.68, this observation may 
also be an artifact of the overlap of ELF2 target genes with those 
of SNRNP70 among HNSC.68 genes.

TFs regulating self-renewal are associated with 
increased temozolomide resistance in LGG

One of the most promising putative relationships we identified 
in this analysis is a potential detrimental role of SALL4 in 
temozolomide response in LGG, which was supported by mul-
tiple lines of evidence in our analysis and by previous studies. 
SALL4 is a transcription factor known for its role in promot-
ing self-renewal and “stemness” in stem cells, and one study 
showed that inhibiting SALL4 increases sensitivity to 

temozolomide.40 SALL4 has also been associated with glioma 
stem cells (GSCs),41 which have increased resistance to alkylat-
ing agents such as temozolomide.42 SALL4 target genes were 
implicated in the temozolomide-specific survival effects 
observed in two LGG clusters, one positively (LGG.59) and 
one negatively (LGG.50), which aligns with reports that some 
SALL4 targets are activated by SALL4 and some are 
repressed.43 Furthermore, expression of SALL4 was strongly 
associated with poor temozolomide-specific survival (Q = 5e−8) 
in our analysis. Figure 3C illustrates survival in LGG patients 
on temozolomide, stratified by expression of SALL4 target 
genes in LGG.59 and by expression of SALL4 itself. In addi-
tion, previous analyses of other molecular TCGA datasets have 
also implicated an antagonistic relationship between SALL4 
and temozolomide: high levels of promoter-region methyla-
tion among SALL4 target genes, which could inhibit SALL4′s 
transcriptional effects, were associated with significantly better 
temozolomide-specific survival in LGG patients,44 and 
increased copy number of the SALL4 gene, a state associated 
with an increase in SALL4 expression, showed poor LGG 
patient survival among those taking temozolomide.45 Taken 
together, these suggest that SALL4 may be detrimental to 
temozolomide efficacy in LGG patients, potentially related to 
its expression in GSCs.

Another interesting, potentially related finding involves 
the transcription factor HOXB4, whose targets were signifi-
cantly enriched (Q = 5e−5) in LGG.50. Drug-specific survival 
analysis showed that the HOXB4 target genes in LGG.50 
showed even stronger (P = 2e−6, Q = 5e−5) temozolomide-
specific survival differences in LGG patients than the origi-
nal cluster (P = 2e−4, Q = 8e−4). Figure 3D shows the 
Kaplan-Meier curves showing the survival effects of expres-
sion of LGG.50′s HOXB4 target genes in LGG among 
patients on temozolomide. Although expression of HOXB4 
is also significantly associated with survival of LGG patients 
on temozolomide (P = 6e−12, Q = 4e−10), there were too few 
high expressors of HOXB4 among LGG patients who did 
not take temozolomide to test whether this observation is 
temozolomide-specific or true of LGG patients in general. 
Much like SALL4, HOXB4 is involved in stemness and self-
renewal in stem cells. Moreover, HOXB4 has been directly 
shown to be overexpressed in drug-resistant GSCs, and in 
addition, HOXB4 targets include key regulators of pathways 
that are also implicated in self-renewal in GSCs.46,47 While 
HOXB4 has not previously been implicated in temozolomide 
efficacy, our observation of temozolomide-specific survival 
effects of LGG.50′s HOXB4 targets in LGG patients sug-
gests a role for HOXB4-related pathways in temozolomide 
efficacy. Indeed, the implication of these two stemness-related 
TFs in temozolomide outcomes suggests a promising avenue 
for further exploration into a potential interaction between 
the regulation of self-renewal in GSCs and temozolomide 
resistance mechanisms in LGG patients.
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Discussion
Our investigation utilized a gene clustering approach to explore 
connections between gene expression patterns and drug 
response across diverse cancer types, successfully identifying 
biologically meaningful clusters linked to drug-specific patient 
survival. Our drug-specific survival analysis strategy helped us 
identify which of these clusters influence drug efficacy while 
excluding those primarily tied to general cancer-related sur-
vival effects. Notably, our approach used binarized gene expres-
sion data, demonstrating that binarized gene expression retains 
sufficient information to find biologically informative gene 
expression signatures with drug-specific effects. Exploring 
these clusters yielded promising findings that shed light on 
transcription factors (TFs) and other biological relationships 
potentially involved in drug efficacy.

Recognizing the pivotal role of TFs in drug response, much 
of our analysis focused on identifying TFs whose targets are 
associated with drug-specific survival through our clusters and 
gene sets to generate potential TF-drug relationships. The 
number of putative TF-drug relationships we identified 
reflects the complexity of the regulatory landscape. We expect 
that some of these relationships may represent more direct 
involvement of the TF in drug response, especially those where 
both the TF target expression and expression of the TF itself 
were associated with drug-specific survival effects. Others are 
less direct but represent transcriptional states related to drug-
specific survival.

In this study, we were able to trace drug-specific survival 
effects in clusters to biological relationships, such as chromo-
somal location and TF target enrichment. Examining the rela-
tionships identified by our most promising results in the 
context of known biology helped elucidate potential interac-
tions. In several cases, we identified TF-drug relationships that 
have been reported previously. For example, we reported that 
expression of SALL4 and SALL4 target genes impact patient 
outcomes on temozolomide, which agrees with previous 
reports. Aligning with that was our observed interaction 
between temozolomide and expression of targets of HOXB4, a 
TF involved in similar processes as SALL4. To our knowledge, 
a relationship between temozolomide and HOXB4 has not 
been reported or studied, but such a relationship is plausible 
given HOXB4′s overexpression and functionality in cells with 
known resistance to temozolomide. These examples demon-
strate the ability of our analysis strategies to identify biological 
relationships that were already known and suggest that the 
remaining results, most of which we could not find discussed in 
the literature, likely include novel relationships important to 
drug response. The strongest of these, like SNRNP70 in cetux-
imab efficacy or the isolation of chromosome-specific gene sets 
that cluster together, point to biological phenomena potentially 
involved in drug efficacy that are worth investigating.

While the results we present are significant, there are several 
important limitations to acknowledge. First, although our 

highlighted examples were supported by multiple separate 
analysis strategies, we were unable to find sufficiently compara-
ble public datasets for independent validation of our results, 
nor have they been experimentally validated; thus, further 
study is needed to confirm the putative relationships we have 
identified. In addition, our analysis may be confounded by clus-
ters encompassing multiple biological phenomena, not all of 
which may be directly linked to drug response but which tend 
to co-occur with drug response mechanisms. The complexity 
of cancer biology and the variety of factors influencing patient 
outcomes also pose challenges in pinpointing specific mecha-
nisms solely based on clustering patterns. Lastly, while TCGA 
is an extensive resource, it is not unlimited. Separating patients 
by cancer type and drug for survival analysis often leads to 
small and sometimes too small sample sizes. For example, in 
many cases, there were too few high- or low-expressing patients 
to test if there were survival differences based on TF expression 
that were both significant and specific to the drug. Despite 
these limitations, our study provides a rich source of putative 
TF-drug interactions that are ripe for further study.

Conclusions
This study offers novel insights into relationships between 
gene expression patterns, drug efficacy, and transcriptional 
regulation across multiple cancer cohorts. We identified 
expression-based gene clusters associated with patient out-
comes on specific drugs and linked the patterns within and 
among these clusters to known biology, shedding light on the 
underlying molecular mechanisms influencing patient 
responses to treatment. By suggesting potential relationships 
between gene expression clusters related to drug response and 
the commonalities shared by their genes, such as common 
transcriptional regulation or genomic location, our study con-
tributes to the ongoing efforts in understanding the complexi-
ties of cancer treatment and offers promising avenues for 
future research for improving therapeutic strategies in the 
pursuit of precision medicine.
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