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For sequencing-based spatial transcriptomics data, the gene-spot count matrix is highly sparse.
This feature is similar to scRNA-seq. The goal of this paper is to identify whether there exist
genes that are frequently under-detected in Visium compared to bulk RNA-seq, and the un-
derlying potential mechanism of under-detection in Visium. We collected paired Visium and
bulk RNA-seq data for 28 human samples and 19 mouse samples, which covered diverse tissue
sources. We compared the two data types and observed that there indeed exists a collection of
genes frequently under-detected in Visium compared to bulk RNA-seq. We performed a motif
search to examine the last 350 bp of the frequently under-detected genes, and we observed that
the poly (T) motif was significantly enriched in genes identified from both human and mouse
data, which matches with our previous finding about frequently under-detected genes in
scRNA-seq. We hypothesized that the poly (T) motif may be able to form a hairpin structure
with the poly (A) tails of their mRNA transcripts, making it difficult for their mRNA transcripts
to be captured during Visium library preparation.

Keywords: Spatial transcriptomics; bulk RNA-seq; sparsity.

1. Introduction

Spatially resolved transcriptomic methods produce transcriptomic data for individual
spatial spots and locations of the spots, which enables researchers to study the spatial
contexts of transcriptional profiles of cells.'™ There are two main categories of spatial
transcriptomic technologies: Imaging-based technologies and sequencing-based
technologies.” ® Imaging-based technologies include sequential FISH (seqFISH),” mul-
tiplexed error-robust fluorescence in situ hybridization (MERFISH),” single-molecule
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fluorescent in situ hybridization (smFISH),” and spatially resolved transcript ampli-
con readout mapping (STARmap),'® which target 100 s of genes with single-cell and
subcellular resolution. Sequencing-based technologies include Visium and Slide-seq,’
which target the entire transcriptome with spatial resolution close to but slightly lower
than single-cell resolution. Similar to scRNA-seq technologies, spatial transcriptomics
have limited capture efficiency. For in-situ capturing technology, the earlier spatial
transcriptomics technology’s detection efficiency is as low as 6.9%, and Visium only has
slightly improved efficiency.? It is important to achieve high capture efficiency because
difficulty in capturing mRNA transcripts during Visium library preparation nega-
tively impacts the quality of the data. In addition, spatial transcriptomics data often
contain substantial amounts of zeros in their expression matrices. While some of the
zeros represent true biological signals, some of them may be caused by technical issues.

Many computational tools originally developed for scRNA-seq have been ex-
tended to spatial transcriptomics. For example, Seurat'? and Scanpy'® can analyze
both data generated by 10X Chromium and data generated by Visium. To address
the sparsity in spatial transcriptomics data, multiple imputation algorithms have
been developed to improve the data quality of spatial transcriptomics. Examples
include FIST,'* Tangram'® and Sprod.'® Meanwhile, there have been discussions
suggesting that considering zero inflation is not necessary for spatial tran-
scriptomics.!” Therefore, there is no consensus about the best way to handle a high
proportion of zeros in the gene-spot count data in spatial transcriptomics.

Among the widespread discussion of sparsity in spatial transcriptomics data, in
one of the studies, it was found that the number of zeros in the gene-spot count
matrix increases at higher resolution (fewer number of cells in each spot).'® For
example, the sparsity of Visium count data matrices is lower than scRNA-seq count
data, as each spot of Visium sequencing technology usually contains multiple cells.'
Slide-seq has a much higher spatial resolution (very close to single-cell resolution),
and a higher level of sparsity compared to scRNA-seq, possibly due to its relatively
lower per-cell sequencing depth.'® For both Visium and Slide-seq, the percentages of
zero counts increased with lower average gene expression levels.'® In another study, it
was found that MERFISH has systematically lower sparsity than scRNA-seq.'®

In a recent study,'” we collected paired bulk RNA-seq and scRNA-seq data for 53
samples from various biological contexts, identified frequently under-detected genes
in scRNA-seq compared to bulk RNA-seq, and observed that the frequently under-
detected genes in scRNA-seq have significantly enriched poly (T) motif toward the
tail of the genes. We hypothesized that the poly (T) motif may be able to form a
hairpin structure with the poly (A) tail of the transcripts, making them difficult to
capture during scRNA-seq library preparation, which is a mechanistic conjecture of
why certain genes may be consistently under-detected in scRNA-seq. Given the
similarity between scRNA-seq and sequencing-based spatial transcriptomics, in this
study, we collected paired bulk RNA-seq and Visium data for 28 samples from
diverse human tissues and 19 samples from diverse mouse tissues and examined
whether there exist genes that are consistently under-detected in Visium compared
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to bulk RNA-seq, as well as the potential mechanism that contributes to the under-
detection.

2. Results
2.1. Paired bulk RNA-seq and Visium data for human samples

Through an extensive literature search, we have identified five publicly available
datasets with paired bulk RNA-seq and Visium data for the same patient subject or
the same tissue source. In total, these datasets provided paired bulk RNA-seq and
Visium data for 28 samples. The samples originated from diverse biological contexts,
such as patients with breast cancer, ovarian cancer, prostate cancer, brain metas-
tasis, as well as human lung tissue. The bulk RNA-seq data was processed by median-
of-ratios normalization and log transformation, followed by quantile normalization.
For Visium data, gene counts for each spot were divided by the total counts for that
spot and multiplied by 10,000, followed by natural log transformation. Finally, to
compute the pseudo-bulk expression value for each gene, the mean of the log-
transformed counts across all the spots was calculated.

The preprocessed bulk RNA-seq and Visium data is visualized in Fig. 1. Each dot
represents the expression of one gene in one sample so there are 25,353*28 dots in one
scatter plot. We visualized the paired bulk RNA-seq and Visium data for all 28
samples in blue, with one sample highlighted in red. We observed that the bulk RN A-
seq and Visium-based pseudo-bulk expression were positively correlated. Across the
28 sample pairs, the Pearson correlation coefficients between the two data types had
a mean and standard deviation of 0.399 £ 0.071, while the Spearman correlation
coefficients between the two data types had a mean and standard deviation of
0.766 + 0.063. This was expected, because the relationship between the two data
types is not linear, as shown in Fig. 1. Our preprocessing analysis successfully aligned
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Fig. 1. Scatter plot visualization of paired bulk and pseudo-bulk expression data for 28 human samples.
Each dot represents one gene in one sample, so there are 25,353 (genes) * 28 (samples) dots in one scatter
plot. (a) A scatter plot of all genes in all 28 samples in blue, overlaid with a scatter plot for all genes in one
sample “HGSC_323T (bulk RNA-seq) versus ER_1 (Visium)” in red. (b) A scatter plot of all genes in all 28
samples in blue, overlaid with all genes in another sample “CID4290A (bulk RNA-seq) versus CID4290
(Visium)” in red.
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the expression data across the 28 samples, which allowed comparison across the
samples to identify genes that may be consistently under-detected in Visium com-
pare to bulk RNA-seq.

2.1.1. Genes that tend to be under-detected in Visium

To identify the genes that are consistently under-detected in Visium compared to
bulk RNA-seq, we converted Fig. 1 into a density plot (Fig. 2(a)), and examined
whether there are genes consistently appearing in the upper-left corner of the plot.
We manually drew a gate in the upper-left corner of Fig. 2(a) by positioning the gate
such that the high-density region was avoided, so that genes in the gate represented
outlier cases whose detected expression in Visium was much lower than that detected
in bulk RNA-seq. If a gene appeared in the upper-left gate multiple times, we con-
sidered it to be consistently under-detected in Visium compared to bulk RNA-seq.

The top 20 most frequently under-detected genes in Visium are listed in Table 1,
together with their frequency of occurrences among the 28 paired samples. The range
of frequency is from 9 to 20, which is more than one-third of the sample size.
Therefore, there seem to be genes consistently under-detected in Visium compared to
bulk RNA-seq. The top 20 genes include AHNAK, MACF1, CLTC, DSP, HDLBP,
EIF4G2, RNF213, RMRP, TRPS1, SNHG3, CANX, PRKDC, ITGB1, HSPAS,
SRRM2, ALDOA, DDX17, XIST, MCL1, and PPP1CB. AHNAK encodes a protein
involved in diverse processes such as blood-brain barrier formation, cell structure and
migration, cardiac calcium channel regulation, and tumor metastasis.?’ MACF1
encodes a protein which is a member of a family of proteins that form bridges
between different cytoskeleton elements.”’ EIF4G2 functions as a general repressor of
translation by forming translationally inactive complexes.?’

In Fig. 2(a), the total number of dots in the upper-left gate is 1560, and each dot
represents a gene in one sample. There were 305 genes that occurred more than once
in the upper-left gate. Based on the hypergeometric distribution, if 1560 points were
randomly picked from the scatter plot, the expected number of genes occurring more
than once by chance was 44. The fact that 305 genes occurred more than once in the
upper-left gate was interesting, which was seven times the number expected by
chance. To identify sequence-based motifs among the genes that occurred more than
once in the upper-left gate of Fig. 2(a), we performed a motif search in the last 350 bp
of the genes using the MEME suite. We observed two motifs with significant
E-values and a large number of sites (Fig. 2(b)). For the poly (C) motif, the bit score
of most positions was low and the motif was not consecutive. In contrast, for the poly
(T) motif, most of the positions had a large bit score, and the motif was consecutive.
Therefore, we conjectured that the poly (T) motif toward the tails of the transcripts
may be associated with the under-detection of those genes in Visium as compared to
bulk RNA-seq. The poly (T) motif toward the tail of the transcripts may be able to
form a hairpin structure with the transcripts’ poly (A) tails, making the transcripts
difficult to capture during the capturing step of Visium library preparation, which is
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Fig. 2. Density plot of paired bulk and Visum data of 28 human samples with gates indicating three types
of candidate genes. The gates were selected based on the distribution shown in the density plot. The gate in
the upper-left corner represents genes that are under-detected in Visium compared to bulk RNA-seq. The
gate in the upper-right corner represents genes that are highly expressed in both bulk RNA-seq and Visium
data. The gate at the bottom represents genes that are over-detected in Visium compared to bulk RNA-seq
(Fig. 2(a)). Significantly enriched motifs in the last 350 bp of the longest transcripts of genes that occurred
more than once in each gate are shown for the upper-left gate (Fig. 2(b)), upper-right gate (Fig. 2(c)), and
bottom gate (Fig. 2(d)).

a mechanistic conjecture of why those genes were consistently under-detected in
Visium compare to bulk RNA-seq. This poly (T) motif associated with this mech-
anistic conjecture was also observed in a previous study that compared paired bulk
RNA-seq and scRNA-seq data of human samples.'’
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Table 1. List of top 20 genes that are most
frequently under-detected in Visium and their

frequencies.
Frequency of occurrence among

Gene name 28 sample pairs
AHNAK 20
MACF1 15
CLTC 15
DSP 14
HDLBP 13
EIF4G2 13
RNF213 13
RMRP 12
TRPS1 11
SNHG3 10
CANX 10
PRKDC 10
ITGB1 10
HSPAS 10
SRRM2 10
ALDOA 10
DDX17 10
XIST 10
MCL1 9
PPP1CB 9

2.1.2. Genes consistently highly expressed in both bulk RNA-seq and Visium

We also manually drew a gate in the upper-right corner of Fig. 2(a). We positioned
the gate such that the dense regions were avoided. There were 963 dots in total and
125 genes with more than one occurrence in the upper-right gate.

For the top 20 genes that occurred more than once, their frequency of occurrences
ranged from 14 to 26, which is more than half of the sample size. Therefore, many genes
are consistently highly expressed in both data types. The top 20 genes include
EEF1A1, ACTB, RPL13, FTH1, TMSB10, RPS18, RPLP1, FTL, RPL10, RPS2,
RPL13A, RPL37, RPL41, TPT1, RPL28, RPS27, GAPDH, B2M, RPL37A, and
ACTG1. Many of them are housekeeping genes involved in diverse biological contexts.
For example, EEF1A1 encodes an isoform of the alpha subunit of the elongation factor-
1 complex, which is responsible for the enzymatic delivery of aminoacyl tRNAs to the
ribosome.?” This gene has been found to have multiple copies on many chromosomes,
and the isoform it encodes is expressed in the brain, placenta, lung, liver, kidney, and
pancreas.’” ACTB encodes one of six different actin proteins, which is a major con-
stituent of the contractile apparatus and one of the two non-muscle cytoskeletal
actions that are ubiquitously expressed.?’ TPT1 encodes a protein that is a regulator of
cellular growth and proliferation, which is involved in a variety of cellular pathways,
including apoptosis, protein synthesis and cell division.?"

For the genes that occurred more than once in the upper-right gate (Fig. 2(a)), we
identified their significantly enriched motifs using the MEME suite. We found two
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motifs that were significantly enriched with small E-values and a large number
of sites (Fig. 2(c)). Both the poly (C) motif and the poly (A) motif were non-
consecutive, and the bit score for most positions was small. The absence of a poly (T)
motif for the upper-right gate further strengthened our conjecture about the for-
mation of a hairpin structure, which may cause certain genes to be consistently
under-detected in Visium.

2.1.3. Genes that appear to be over-detected in Visium

For completeness, we also tried to identify the genes that were frequently over-
detected in Visium. We manually drew a third gate in the bottom region of Fig. 2(a).
The total number of dots in the bottom gate (Fig. 2(a)) is 1,031, and the number of
genes that occurred more than once (Fig. 2(a)) is 168.

Using the MEME suite, we observed two significantly enriched motifs for the
genes that occurred more than once in the bottom gate (Fig. 2(d)), a ploy (C) motif
and a poly (A) motif. These two motifs were similar to the enriched motifs in the
upper-right gate that contained genes highly expressed in both bulk RNA-seq and
Visium data. Once again, the absence of a poly (T) motif in the bottom gate further
strengthened our conjecture that sequence-based motifs of transcripts cause certain
genes to be consistently under-detected in Visium.

2.2. Paired bulk RNA-seq and Visium data for mouse samples

We extend this analysis to paired bulk RNA-seq and Visium data for 19 mouse
samples from four studies, with the same data pre-processing steps as our analysis of
the human data. These mouse datasets were from diverse sources including mouse
brain, kidney, and bladder.

The paired bulk and pseudo-bulk RNA-seq data were visualized using scatter
plots (Figs. 3(a) and 3(b)). Each dot represents a gene in one sample. Therefore, the

«  Scatter plot of all genes in 19 samples «  Scatter plot of all genes in 19 samples.
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Fig. 3. Scatter plot visualization of paired bulk and pseudo-bulk data for 19 mouse samples. Each dot is an
expression of one gene in one sample, so there are 29,089 genes *19 dots in one scatter plot. (a) A scatter
plot of all genes in all 19 samples in blue, overlaid with a scatter plot for all genes in one sample
“2y0_VC_N (bulk RNA-seq) versus LPS_1 (Visium)” in red. (b) A scatter plot of all genes in all 19 samples
in blue, overlaid with all genes in another sample “2yo_VC_IN (bulk RNA-seq) versus Control (Visium)” in
red.
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Fig. 4. Density plot of a scatter plot of 19 paired mouse samples with gates indicating candidate genes in
three aspects. (Fig. 4(a)). Significantly enriched motifs in the last 350 bp of the longest transcripts of genes
that occurred more than once in each gate are shown for the upper-left gate (Fig. 4(b)), upper-right gate
(Fig. 4(c)), and bottom gate (Fig. 4(d)).

total number of dots in one scatter plot is 29,089 (genes) * 19 (samples). We observed
a positive correlation between bulk RNA-seq and spatial-based pseudo-bulk ex-
pression, which was expected. We overlaid two individual samples (red) on all other
samples (blue). Data for the other samples showed similar patterns as the ones in
Figs. 3(a) and 3(b). For the 19 samples, the Pearson correlation coefficients between
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the two data types is 0.496 £ 0.102, while the Spearman correlation coefficient be-
tween the two data types is 0.880 + 0.062, similar to the correlation between bulk
RNA-seq and Visium data for human samples.

Similar to the analysis of human data, we made the scatter plot and manually
drew three gates on the plot (Fig. 4(a)) capturing genes that were under-detected in
Visium, genes that were highly expressed in both technologies, and genes that were
over-detected in Visium. The total number of dots in the upper-left, upper-right, and
bottom gates (Fig. 4(a)) were 978, 1348, and 1318, respectively. The genes that
occurred more than once in the upper-left, upper-right, and bottom gates (Fig. 4(a))
were 177, 231, and 139, respectively. Using the MEME suite, we identified signifi-
cantly enriched motifs in the last 350bp of the genes that occurred more than once in
each gate. The poly (T) motif was significantly enriched for the upper-left gate
(Fig. 4(b)), while the poly (A) motif was significantly enriched in the other two gates
(Figs. 4(c) and 4(d)). This result was consistent with the comparison between bulk
RNA-seq and Visium data based on human data. Therefore, this result further
strengthened our motif-based conjecture of genes frequently under-detected in
Visium compared to bulk RNA-seq.

3. Conclusions and Discussion

In this study, we analyzed paired bulk RNA-seq and Visium data for 28 human
samples and 19 mouse samples, which were generated from diverse biological con-
texts. We compared the bulk RNA-seq and Visium data and found a collection of
genes that were consistently under-detected in Visium compared to bulk RNA-seq.
The genes have significantly enriched poly (T) motif towards their 3’ end. However,
for the genes that are frequently over-detected in Visium and the genes that have
high expression in both technologies, the poly (T) motif was absent. This result is
consistent with our previous study that compared paired bulk RNA-seq and scRNA-
seq samples. We hypothesize that the poly (T) motif may be able to form a hairpin
structure with the poly (A) tails of the mRNA transcripts, making it difficult for the
mRNA transcripts to be captured during Visium library preparation.

Among the 20 genes frequently under-detected in Visium compared to bulk RNA-
seq, 8 of them are also among the top 20 most frequently under-detected genes in
scRNA-seq compared to bulk RNA-seq.!” The eight genes are AHNAK, MACF1,
EIF4G2, CANX, ITGB1, SRRM2, DDX17, and XIST. It is likely that the mecha-
nistic conjecture of under-detection in Visium also applies to scRNA-seq because
these technologies share similar experimental protocols for library preparation.

The datasets analyzed in this study contain both technical and biological vari-
abilities. The technical variabilities include choices of alignment algorithms and
choices of reference genome and RNA library protocols. The biological variabilities
include a potentially small number of sample pairs with mismatched sex. All these
factors could impact the data and analysis results. In an ideal situation, all the samples
need to be processed using the same experimental procedure, reference genome, and

2450007-9



J. Bioinform. Comput. Biol. 2024.22. Downloaded from www.worldscientific.com

by GEORGIA INSTITUTE OF TECHNOLOGY on 10/04/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

X. Li & P. Qiu

alignment tool with the same version. However, this is infeasible since each dataset was
obtained with slight differences in its experimental protocols. In addition, not all
FASTQ files are available for the bulk RN A-seq and Visium samples in this study, and
therefore we are unable to run a standardized pre-processing analysis pipeline for all
the samples. Since these factors were ignored in our analysis, we were effectively em-
bracing the variabilities in the data. Even with such variabilities in the data, we still
captured a robust motif for the upper-left gate of genes under-detected in Visium.
These variabilities help demonstrate the robustness of our observations.

Because there were a limited number of studies that generated both bulk and
Visium data for the same biological samples, among eight out of nine datasets in this
study, the bulk RNA-seq and Visium data we collected are from different research
studies that examined the same tissue sources. However, even though many of the
paired data in our analysis were not generated from the exact same samples, we still
observed the enrichment of poly (T) motif among genes frequently under-detected in
Visium for both human and mouse samples, which was encouraging.

The observed under-detection of certain genes in Visum has implications for
downstream analysis and interpretation of results. If the goal of a study is to in-
vestigate a specific gene that is frequently under-detected in Visium, the expression
value of the gene in Visium is less reliable compared to the expression value in bulk
RNA-seq. Although imputation algorithms have been proposed to improve the
quality of Visium data, such statistical approaches are often affected by systematic
bias in the data, and in this case, the hypothesis of hairpin structure formation
between poly (T) motif and poly (A) tail of mRNA could be a systematic bias in the
data. Recognizing the possibility of such a systematic bias is beneficial for the de-
velopment of both computational algorithms and experimental methods. Beyond
Visium, the analysis here can be applied to study paired bulk and other sequencing-
based spatial transcriptomics data to identify mechanisms that may contribute to
the under-detection of certain genes in those technologies.

4. Materials and Methods
4.1. Summary of datasets

Paired bulk RNA-seq and Visium data for 28 human samples were obtained from five
studies. Paired bulk RNA-seq and Visium data for 19 mouse samples were obtained
from four studies. The paired data were generated from either the same subject or the
same tissue source. A summary of the nine datasets and references is available in
Table 2. Details about the accession ID of individual samples and how bulk RNA-seq
and Visium data were paired can be found in Supplementary Table 1.

4.2. Data preprocessing of bulk RNA-seq

For each bulk RN A-seq dataset, median-of-ration normalization was performed using
DESeq2. Then log transformation was performed on the normalized data. Next,
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Table 2. Summary of datasets.

Bulk RNA-seq and Visium datasets Source of samples Number of samples

https://zenodo.org/record /47397394 .Y qrNv- Human breast cancer 6
IWFPb (Wu et al.”"), GSE176078 (Wu
et al.”™")

GSE189843 (Stur et al.””) and GSE102094 (Ducie  Human high-grade 12
et al.”) serous ovarian tumor

GSE159697 (McCray et al”*) and TCGA Human prostate cancer 2

GSE179572 (Sudmeier et al.””) and GSE164150 Human brain metastases 6
(Su et al.™)

GSE178361 (Murthy et al.””) and GSE111892 Human lung tissue 2
(Clarke et al.”®)

GSE180128 (Baker et al.) Mouse urinary bladder 3

GSE148612 (Hasel et al.””) and GSE99791 Mouse brain 6
(Boisvert et al.*)

GSE171406 (Ferreira et al.’') and GSE141115 Mouse kidney 3
(Denisenko et al.*?)

GSE182127 (Buzzi et al.”’) and GSE99791 Mouse brain 7

(Boisvert et al.™)

overlapping genes among paired bulk RN A-seq and Visium data were identified, and a
matrix representing the normalized bulk RN A-seq expression of the overlapping genes
was created. Finally, quantile normalization was performed on the matrix.

4.3. Data preprocessing of Visium

For each Visium sample, first, gene counts for each spot were divided by the total
counts for that spot and multiplied by 10,000; then, the library-size normalized data
was further transformed by a natural log. Next, to compute the pseudo-bulk ex-
pression value for each gene, the mean of the log-transformed counts across all the
spots was calculated. Finally, a matrix representing the normalized Visium data of
the overlapping genes was created.

4.4. Correlation analysis between bulk RNA-seq and Visium

Pearson correlation coefficients and Spearman correlation coefficients were calcu-
lated between normalized bulk RNA-seq and Visium-based pseudo-bulk profiles for
the human and mouse samples.

4.5. Motif enrichment analysis

MEME Suite was used to identify significantly enriched motifs of the last 350 bp of
c¢DNA sequences of the longest transcripts of candidate genes. The longest tran-
scripts of the genes together with their cDNA sequences were obtained from BioMart
during April 2023. For motif site distribution, zero or one occurrence was selected for
the analysis. MEME Suite reports E-value which serves as an indicator of the

2450007-11
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statistical significance of a motif. A motif with an E-value smaller than 0.05 is
considered to be significant.
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