
Gene representation bias in spatial transcriptomics

Xinling Li * and Peng Qiu †

The Wallace H. Coulter Department of Biomedical Engineering

Georgia Institute of Technology and Emory University

Atlanta, GA, United States
*xli776@gatech.edu

†peng.qiu@bme.gatech.edu

Received 13 February 2024
Revised 29 March 2024

Accepted 6 April 2024

Published 20 July 2024

For sequencing-based spatial transcriptomics data, the gene-spot count matrix is highly sparse.
This feature is similar to scRNA-seq. The goal of this paper is to identify whether there exist

genes that are frequently under-detected in Visium compared to bulk RNA-seq, and the un-

derlying potential mechanism of under-detection in Visium. We collected paired Visium and
bulk RNA-seq data for 28 human samples and 19 mouse samples, which covered diverse tissue

sources. We compared the two data types and observed that there indeed exists a collection of

genes frequently under-detected in Visium compared to bulk RNA-seq. We performed a motif

search to examine the last 350 bp of the frequently under-detected genes, and we observed that
the poly (T) motif was signi¯cantly enriched in genes identi¯ed from both human and mouse

data, which matches with our previous ¯nding about frequently under-detected genes in

scRNA-seq. We hypothesized that the poly (T) motif may be able to form a hairpin structure

with the poly (A) tails of their mRNA transcripts, making it di±cult for their mRNA transcripts
to be captured during Visium library preparation.

Keywords: Spatial transcriptomics; bulk RNA-seq; sparsity.

1. Introduction

Spatially resolved transcriptomic methods produce transcriptomic data for individual

spatial spots and locations of the spots, which enables researchers to study the spatial

contexts of transcriptional pro¯les of cells.1–3 There are two main categories of spatial

transcriptomic technologies: Imaging-based technologies and sequencing-based

technologies.4–6 Imaging-based technologies include sequential FISH (seqFISH),7 mul-

tiplexed error-robust °uorescence in situ hybridization (MERFISH),8 single-molecule

†Corresponding author.

This is an Open Access article published by World Scienti¯c Publishing Company. It is distributed under
the terms of the Creative Commons Attribution 4.0 (CC BY) License, which permits use, distribution and

reproduction in any medium, provided the original work is properly cited.

OPEN ACCESS
Journal of Bioinformatics and Computational Biology

Vol. 22, No. 3 (2024) 2450007 (14 pages)

#.c The Author(s)

DOI: 10.1142/S0219720024500070

2450007-1

J. 
B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

24
.2

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 G

EO
R

G
IA

 IN
ST

IT
U

TE
 O

F 
TE

C
H

N
O

LO
G

Y
 o

n 
10

/0
4/

24
. R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



°uorescent in situ hybridization (smFISH),9 and spatially resolved transcript ampli-

con readout mapping (STARmap),10 which target 100 s of genes with single-cell and

subcellular resolution. Sequencing-based technologies include Visium and Slide-seq,11

which target the entire transcriptomewith spatial resolution close to but slightly lower

than single-cell resolution. Similar to scRNA-seq technologies, spatial transcriptomics

have limited capture e±ciency. For in-situ capturing technology, the earlier spatial

transcriptomics technology's detection e±ciency is as low as 6.9%, andVisiumonly has

slightly improved e±ciency.3 It is important to achieve high capture e±ciency because

di±culty in capturing mRNA transcripts during Visium library preparation nega-

tively impacts the quality of the data. In addition, spatial transcriptomics data often

contain substantial amounts of zeros in their expression matrices. While some of the

zeros represent true biological signals, some of themmay be caused by technical issues.

Many computational tools originally developed for scRNA-seq have been ex-

tended to spatial transcriptomics. For example, Seurat12 and Scanpy13 can analyze

both data generated by 10X Chromium and data generated by Visium. To address

the sparsity in spatial transcriptomics data, multiple imputation algorithms have

been developed to improve the data quality of spatial transcriptomics. Examples

include FIST,14 Tangram15 and Sprod.16 Meanwhile, there have been discussions

suggesting that considering zero in°ation is not necessary for spatial tran-

scriptomics.17 Therefore, there is no consensus about the best way to handle a high

proportion of zeros in the gene-spot count data in spatial transcriptomics.

Among the widespread discussion of sparsity in spatial transcriptomics data, in

one of the studies, it was found that the number of zeros in the gene-spot count

matrix increases at higher resolution (fewer number of cells in each spot).16 For

example, the sparsity of Visium count data matrices is lower than scRNA-seq count

data, as each spot of Visium sequencing technology usually contains multiple cells.16

Slide-seq has a much higher spatial resolution (very close to single-cell resolution),

and a higher level of sparsity compared to scRNA-seq, possibly due to its relatively

lower per-cell sequencing depth.16 For both Visium and Slide-seq, the percentages of

zero counts increased with lower average gene expression levels.16 In another study, it

was found that MERFISH has systematically lower sparsity than scRNA-seq.18

In a recent study,19 we collected paired bulk RNA-seq and scRNA-seq data for 53

samples from various biological contexts, identi¯ed frequently under-detected genes

in scRNA-seq compared to bulk RNA-seq, and observed that the frequently under-

detected genes in scRNA-seq have signi¯cantly enriched poly (T) motif toward the

tail of the genes. We hypothesized that the poly (T) motif may be able to form a

hairpin structure with the poly (A) tail of the transcripts, making them di±cult to

capture during scRNA-seq library preparation, which is a mechanistic conjecture of

why certain genes may be consistently under-detected in scRNA-seq. Given the

similarity between scRNA-seq and sequencing-based spatial transcriptomics, in this

study, we collected paired bulk RNA-seq and Visium data for 28 samples from

diverse human tissues and 19 samples from diverse mouse tissues and examined

whether there exist genes that are consistently under-detected in Visium compared
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to bulk RNA-seq, as well as the potential mechanism that contributes to the under-

detection.

2. Results

2.1. Paired bulk RNA-seq and Visium data for human samples

Through an extensive literature search, we have identi¯ed ¯ve publicly available

datasets with paired bulk RNA-seq and Visium data for the same patient subject or

the same tissue source. In total, these datasets provided paired bulk RNA-seq and

Visium data for 28 samples. The samples originated from diverse biological contexts,

such as patients with breast cancer, ovarian cancer, prostate cancer, brain metas-

tasis, as well as human lung tissue. The bulk RNA-seq data was processed by median-

of-ratios normalization and log transformation, followed by quantile normalization.

For Visium data, gene counts for each spot were divided by the total counts for that

spot and multiplied by 10,000, followed by natural log transformation. Finally, to

compute the pseudo-bulk expression value for each gene, the mean of the log-

transformed counts across all the spots was calculated.

The preprocessed bulk RNA-seq and Visium data is visualized in Fig. 1. Each dot

represents the expression of one gene in one sample so there are 25,353*28 dots in one

scatter plot. We visualized the paired bulk RNA-seq and Visium data for all 28

samples in blue, with one sample highlighted in red. We observed that the bulk RNA-

seq and Visium-based pseudo-bulk expression were positively correlated. Across the

28 sample pairs, the Pearson correlation coe±cients between the two data types had

a mean and standard deviation of 0:399� 0:071, while the Spearman correlation

coe±cients between the two data types had a mean and standard deviation of

0:766� 0:063. This was expected, because the relationship between the two data

types is not linear, as shown in Fig. 1. Our preprocessing analysis successfully aligned

(a) (b)

Fig. 1. Scatter plot visualization of paired bulk and pseudo-bulk expression data for 28 human samples.

Each dot represents one gene in one sample, so there are 25,353 (genes) * 28 (samples) dots in one scatter

plot. (a) A scatter plot of all genes in all 28 samples in blue, overlaid with a scatter plot for all genes in one

sample \HGSC 323T (bulk RNA-seq) versus ER 1 (Visium)" in red. (b) A scatter plot of all genes in all 28
samples in blue, overlaid with all genes in another sample \CID4290A (bulk RNA-seq) versus CID4290

(Visium)" in red.
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the expression data across the 28 samples, which allowed comparison across the

samples to identify genes that may be consistently under-detected in Visium com-

pare to bulk RNA-seq.

2.1.1. Genes that tend to be under-detected in Visium

To identify the genes that are consistently under-detected in Visium compared to

bulk RNA-seq, we converted Fig. 1 into a density plot (Fig. 2(a)), and examined

whether there are genes consistently appearing in the upper-left corner of the plot.

We manually drew a gate in the upper-left corner of Fig. 2(a) by positioning the gate

such that the high-density region was avoided, so that genes in the gate represented

outlier cases whose detected expression in Visium was much lower than that detected

in bulk RNA-seq. If a gene appeared in the upper-left gate multiple times, we con-

sidered it to be consistently under-detected in Visium compared to bulk RNA-seq.

The top 20 most frequently under-detected genes in Visium are listed in Table 1,

together with their frequency of occurrences among the 28 paired samples. The range

of frequency is from 9 to 20, which is more than one-third of the sample size.

Therefore, there seem to be genes consistently under-detected in Visium compared to

bulk RNA-seq. The top 20 genes include AHNAK, MACF1, CLTC, DSP, HDLBP,

EIF4G2, RNF213, RMRP, TRPS1, SNHG3, CANX, PRKDC, ITGB1, HSPA8,

SRRM2, ALDOA, DDX17, XIST, MCL1, and PPP1CB. AHNAK encodes a protein

involved in diverse processes such as blood-brain barrier formation, cell structure and

migration, cardiac calcium channel regulation, and tumor metastasis.20 MACF1

encodes a protein which is a member of a family of proteins that form bridges

between di®erent cytoskeleton elements.20 EIF4G2 functions as a general repressor of

translation by forming translationally inactive complexes.20

In Fig. 2(a), the total number of dots in the upper-left gate is 1560, and each dot

represents a gene in one sample. There were 305 genes that occurred more than once

in the upper-left gate. Based on the hypergeometric distribution, if 1560 points were

randomly picked from the scatter plot, the expected number of genes occurring more

than once by chance was 44. The fact that 305 genes occurred more than once in the

upper-left gate was interesting, which was seven times the number expected by

chance. To identify sequence-based motifs among the genes that occurred more than

once in the upper-left gate of Fig. 2(a), we performed a motif search in the last 350 bp

of the genes using the MEME suite. We observed two motifs with signi¯cant

E-values and a large number of sites (Fig. 2(b)). For the poly (C) motif, the bit score

of most positions was low and the motif was not consecutive. In contrast, for the poly

(T) motif, most of the positions had a large bit score, and the motif was consecutive.

Therefore, we conjectured that the poly (T) motif toward the tails of the transcripts

may be associated with the under-detection of those genes in Visium as compared to

bulk RNA-seq. The poly (T) motif toward the tail of the transcripts may be able to

form a hairpin structure with the transcripts' poly (A) tails, making the transcripts

di±cult to capture during the capturing step of Visium library preparation, which is
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a mechanistic conjecture of why those genes were consistently under-detected in

Visium compare to bulk RNA-seq. This poly (T) motif associated with this mech-

anistic conjecture was also observed in a previous study that compared paired bulk

RNA-seq and scRNA-seq data of human samples.19

(a)

(b)

(c)

(d)

Fig. 2. Density plot of paired bulk and Visum data of 28 human samples with gates indicating three types

of candidate genes. The gates were selected based on the distribution shown in the density plot. The gate in
the upper-left corner represents genes that are under-detected in Visium compared to bulk RNA-seq. The

gate in the upper-right corner represents genes that are highly expressed in both bulk RNA-seq and Visium

data. The gate at the bottom represents genes that are over-detected in Visium compared to bulk RNA-seq

(Fig. 2(a)). Signi¯cantly enriched motifs in the last 350 bp of the longest transcripts of genes that occurred
more than once in each gate are shown for the upper-left gate (Fig. 2(b)), upper-right gate (Fig. 2(c)), and

bottom gate (Fig. 2(d)).

Gene representation bias in spatial transcriptomics
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2.1.2. Genes consistently highly expressed in both bulk RNA-seq and Visium

We also manually drew a gate in the upper-right corner of Fig. 2(a). We positioned

the gate such that the dense regions were avoided. There were 963 dots in total and

125 genes with more than one occurrence in the upper-right gate.

For the top 20 genes that occurred more than once, their frequency of occurrences

ranged from 14 to 26, which is more than half of the sample size. Therefore, many genes

are consistently highly expressed in both data types. The top 20 genes include

EEF1A1, ACTB, RPL13, FTH1, TMSB10, RPS18, RPLP1, FTL, RPL10, RPS2,

RPL13A, RPL37, RPL41, TPT1, RPL28, RPS27, GAPDH, B2M, RPL37A, and

ACTG1.Many of them are housekeeping genes involved in diverse biological contexts.

For example, EEF1A1 encodes an isoformof the alpha subunit of the elongation factor-

1 complex, which is responsible for the enzymatic delivery of aminoacyl tRNAs to the

ribosome.20 This gene has been found to have multiple copies on many chromosomes,

and the isoform it encodes is expressed in the brain, placenta, lung, liver, kidney, and

pancreas.20 ACTB encodes one of six di®erent actin proteins, which is a major con-

stituent of the contractile apparatus and one of the two non-muscle cytoskeletal

actions that are ubiquitously expressed.20TPT1 encodes a protein that is a regulator of

cellular growth and proliferation, which is involved in a variety of cellular pathways,

including apoptosis, protein synthesis and cell division.20

For the genes that occurred more than once in the upper-right gate (Fig. 2(a)), we

identi¯ed their signi¯cantly enriched motifs using the MEME suite. We found two

Table 1. List of top 20 genes that are most

frequently under-detected in Visium and their
frequencies.

Gene name

Frequency of occurrence among

28 sample pairs

AHNAK 20

MACF1 15

CLTC 15
DSP 14

HDLBP 13

EIF4G2 13
RNF213 13

RMRP 12

TRPS1 11

SNHG3 10
CANX 10

PRKDC 10

ITGB1 10

HSPA8 10
SRRM2 10

ALDOA 10

DDX17 10
XIST 10

MCL1 9

PPP1CB 9

X. Li & P. Qiu
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motifs that were signi¯cantly enriched with small E-values and a large number

of sites (Fig. 2(c)). Both the poly (C) motif and the poly (A) motif were non-

consecutive, and the bit score for most positions was small. The absence of a poly (T)

motif for the upper-right gate further strengthened our conjecture about the for-

mation of a hairpin structure, which may cause certain genes to be consistently

under-detected in Visium.

2.1.3. Genes that appear to be over-detected in Visium

For completeness, we also tried to identify the genes that were frequently over-

detected in Visium. We manually drew a third gate in the bottom region of Fig. 2(a).

The total number of dots in the bottom gate (Fig. 2(a)) is 1,031, and the number of

genes that occurred more than once (Fig. 2(a)) is 168.

Using the MEME suite, we observed two signi¯cantly enriched motifs for the

genes that occurred more than once in the bottom gate (Fig. 2(d)), a ploy (C) motif

and a poly (A) motif. These two motifs were similar to the enriched motifs in the

upper-right gate that contained genes highly expressed in both bulk RNA-seq and

Visium data. Once again, the absence of a poly (T) motif in the bottom gate further

strengthened our conjecture that sequence-based motifs of transcripts cause certain

genes to be consistently under-detected in Visium.

2.2. Paired bulk RNA-seq and Visium data for mouse samples

We extend this analysis to paired bulk RNA-seq and Visium data for 19 mouse

samples from four studies, with the same data pre-processing steps as our analysis of

the human data. These mouse datasets were from diverse sources including mouse

brain, kidney, and bladder.

The paired bulk and pseudo-bulk RNA-seq data were visualized using scatter

plots (Figs. 3(a) and 3(b)). Each dot represents a gene in one sample. Therefore, the

(a) (b)

Fig. 3. Scatter plot visualization of paired bulk and pseudo-bulk data for 19 mouse samples. Each dot is an

expression of one gene in one sample, so there are 29,089 genes *19 dots in one scatter plot. (a) A scatter

plot of all genes in all 19 samples in blue, overlaid with a scatter plot for all genes in one sample

\2yo VC IN (bulk RNA-seq) versus LPS 1 (Visium)" in red. (b) A scatter plot of all genes in all 19 samples
in blue, overlaid with all genes in another sample \2yo VC IN (bulk RNA-seq) versus Control (Visium)" in

red.

Gene representation bias in spatial transcriptomics
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total number of dots in one scatter plot is 29,089 (genes) * 19 (samples). We observed

a positive correlation between bulk RNA-seq and spatial-based pseudo-bulk ex-

pression, which was expected. We overlaid two individual samples (red) on all other

samples (blue). Data for the other samples showed similar patterns as the ones in

Figs. 3(a) and 3(b). For the 19 samples, the Pearson correlation coe±cients between

(a)

(b)

(c)

(d)

Fig. 4. Density plot of a scatter plot of 19 paired mouse samples with gates indicating candidate genes in

three aspects. (Fig. 4(a)). Signi¯cantly enriched motifs in the last 350 bp of the longest transcripts of genes
that occurred more than once in each gate are shown for the upper-left gate (Fig. 4(b)), upper-right gate

(Fig. 4(c)), and bottom gate (Fig. 4(d)).
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the two data types is 0:496� 0:102, while the Spearman correlation coe±cient be-

tween the two data types is 0:880� 0:062, similar to the correlation between bulk

RNA-seq and Visium data for human samples.

Similar to the analysis of human data, we made the scatter plot and manually

drew three gates on the plot (Fig. 4(a)) capturing genes that were under-detected in

Visium, genes that were highly expressed in both technologies, and genes that were

over-detected in Visium. The total number of dots in the upper-left, upper-right, and

bottom gates (Fig. 4(a)) were 978, 1348, and 1318, respectively. The genes that

occurred more than once in the upper-left, upper-right, and bottom gates (Fig. 4(a))

were 177, 231, and 139, respectively. Using the MEME suite, we identi¯ed signi¯-

cantly enriched motifs in the last 350bp of the genes that occurred more than once in

each gate. The poly (T) motif was signi¯cantly enriched for the upper-left gate

(Fig. 4(b)), while the poly (A) motif was signi¯cantly enriched in the other two gates

(Figs. 4(c) and 4(d)). This result was consistent with the comparison between bulk

RNA-seq and Visium data based on human data. Therefore, this result further

strengthened our motif-based conjecture of genes frequently under-detected in

Visium compared to bulk RNA-seq.

3. Conclusions and Discussion

In this study, we analyzed paired bulk RNA-seq and Visium data for 28 human

samples and 19 mouse samples, which were generated from diverse biological con-

texts. We compared the bulk RNA-seq and Visium data and found a collection of

genes that were consistently under-detected in Visium compared to bulk RNA-seq.

The genes have signi¯cantly enriched poly (T) motif towards their 3' end. However,

for the genes that are frequently over-detected in Visium and the genes that have

high expression in both technologies, the poly (T) motif was absent. This result is

consistent with our previous study that compared paired bulk RNA-seq and scRNA-

seq samples. We hypothesize that the poly (T) motif may be able to form a hairpin

structure with the poly (A) tails of the mRNA transcripts, making it di±cult for the

mRNA transcripts to be captured during Visium library preparation.

Among the 20 genes frequently under-detected in Visium compared to bulk RNA-

seq, 8 of them are also among the top 20 most frequently under-detected genes in

scRNA-seq compared to bulk RNA-seq.19 The eight genes are AHNAK, MACF1,

EIF4G2, CANX, ITGB1, SRRM2, DDX17, and XIST. It is likely that the mecha-

nistic conjecture of under-detection in Visium also applies to scRNA-seq because

these technologies share similar experimental protocols for library preparation.

The datasets analyzed in this study contain both technical and biological vari-

abilities. The technical variabilities include choices of alignment algorithms and

choices of reference genome and RNA library protocols. The biological variabilities

include a potentially small number of sample pairs with mismatched sex. All these

factors could impact the data and analysis results. In an ideal situation, all the samples

need to be processed using the same experimental procedure, reference genome, and

Gene representation bias in spatial transcriptomics
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alignment tool with the same version. However, this is infeasible since each dataset was

obtained with slight di®erences in its experimental protocols. In addition, not all

FASTQ ¯les are available for the bulk RNA-seq and Visium samples in this study, and

therefore we are unable to run a standardized pre-processing analysis pipeline for all

the samples. Since these factors were ignored in our analysis, we were e®ectively em-

bracing the variabilities in the data. Even with such variabilities in the data, we still

captured a robust motif for the upper-left gate of genes under-detected in Visium.

These variabilities help demonstrate the robustness of our observations.

Because there were a limited number of studies that generated both bulk and

Visium data for the same biological samples, among eight out of nine datasets in this

study, the bulk RNA-seq and Visium data we collected are from di®erent research

studies that examined the same tissue sources. However, even though many of the

paired data in our analysis were not generated from the exact same samples, we still

observed the enrichment of poly (T) motif among genes frequently under-detected in

Visium for both human and mouse samples, which was encouraging.

The observed under-detection of certain genes in Visum has implications for

downstream analysis and interpretation of results. If the goal of a study is to in-

vestigate a speci¯c gene that is frequently under-detected in Visium, the expression

value of the gene in Visium is less reliable compared to the expression value in bulk

RNA-seq. Although imputation algorithms have been proposed to improve the

quality of Visium data, such statistical approaches are often a®ected by systematic

bias in the data, and in this case, the hypothesis of hairpin structure formation

between poly (T) motif and poly (A) tail of mRNA could be a systematic bias in the

data. Recognizing the possibility of such a systematic bias is bene¯cial for the de-

velopment of both computational algorithms and experimental methods. Beyond

Visium, the analysis here can be applied to study paired bulk and other sequencing-

based spatial transcriptomics data to identify mechanisms that may contribute to

the under-detection of certain genes in those technologies.

4. Materials and Methods

4.1. Summary of datasets

Paired bulk RNA-seq and Visium data for 28 human samples were obtained from ¯ve

studies. Paired bulk RNA-seq and Visium data for 19 mouse samples were obtained

from four studies. The paired data were generated from either the same subject or the

same tissue source. A summary of the nine datasets and references is available in

Table 2. Details about the accession ID of individual samples and how bulk RNA-seq

and Visium data were paired can be found in Supplementary Table 1.

4.2. Data preprocessing of bulk RNA-seq

For each bulk RNA-seq dataset, median-of-ration normalization was performed using

DESeq2. Then log transformation was performed on the normalized data. Next,
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overlapping genes among paired bulk RNA-seq andVisium data were identi¯ed, and a

matrix representing the normalized bulk RNA-seq expression of the overlapping genes

was created. Finally, quantile normalization was performed on the matrix.

4.3. Data preprocessing of Visium

For each Visium sample, ¯rst, gene counts for each spot were divided by the total

counts for that spot and multiplied by 10,000; then, the library-size normalized data

was further transformed by a natural log. Next, to compute the pseudo-bulk ex-

pression value for each gene, the mean of the log-transformed counts across all the

spots was calculated. Finally, a matrix representing the normalized Visium data of

the overlapping genes was created.

4.4. Correlation analysis between bulk RNA-seq and Visium

Pearson correlation coe±cients and Spearman correlation coe±cients were calcu-

lated between normalized bulk RNA-seq and Visium-based pseudo-bulk pro¯les for

the human and mouse samples.

4.5. Motif enrichment analysis

MEME Suite was used to identify signi¯cantly enriched motifs of the last 350 bp of

cDNA sequences of the longest transcripts of candidate genes. The longest tran-

scripts of the genes together with their cDNA sequences were obtained from BioMart

during April 2023. For motif site distribution, zero or one occurrence was selected for

the analysis. MEME Suite reports E-value which serves as an indicator of the

Table 2. Summary of datasets.

Bulk RNA-seq and Visium datasets Source of samples Number of samples

https://zenodo.org/record/4739739#.YqrNv-

IWFPb (Wu et al.21), GSE176078 (Wu

et al.21)

Human breast cancer 6

GSE189843 (Stur et al.22) and GSE102094 (Ducie

et al.23)

Human high-grade

serous ovarian tumor

12

GSE159697 (McCray et al.24) and TCGA Human prostate cancer 2

GSE179572 (Sudmeier et al.25) and GSE164150
(Su et al.26)

Human brain metastases 6

GSE178361 (Murthy et al.27) and GSE111892

(Clarke et al.28)

Human lung tissue 2

GSE180128 (Baker et al.) Mouse urinary bladder 3
GSE148612 (Hasel et al.29) and GSE99791

(Boisvert et al.30)

Mouse brain 6

GSE171406 (Ferreira et al.31) and GSE141115
(Denisenko et al.32)

Mouse kidney 3

GSE182127 (Buzzi et al.33) and GSE99791

(Boisvert et al.30)

Mouse brain 7
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statistical signi¯cance of a motif. A motif with an E-value smaller than 0.05 is

considered to be signi¯cant.
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