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Abstract

Among existing computational algorithms for single-cell RNA-seq analysis, clustering and

trajectory inference are two major types of analysis that are routinely applied. For a given

dataset, clustering and trajectory inference can generate vastly different visualizations that

lead to very different interpretations of the data. To address this issue, we propose multiple

scores to quantify the “clusterness” and “trajectoriness” of single-cell RNA-seq data, in other

words, whether the data looks like a collection of distinct clusters or a continuum of progres-

sion trajectory. The scores we introduce are based on pairwise distance distribution, persis-

tent homology, vector magnitude, Ripley’s K, and degrees of connectivity. Using simulated

datasets, we demonstrate that the proposed scores are able to effectively differentiate

between cluster-like data and trajectory-like data. Using real single-cell RNA-seq datasets,

we demonstrate the scores can serve as indicators of whether clustering analysis or trajec-

tory inference is a more appropriate choice for biological interpretation of the data.

Author summary

Single-cell sequencing technologies have motivated development of numerous computa-

tional algorithms. Two main types of these algorithms are clustering and trajectory infer-

ence. When scientists have a scRNA-seq dataset, they usually pick one of these approaches

based on what they think the data shows. If they think the data has distinct clusters of

cells, they will analyze the data using clustering algorithms. If they think the data shows a

continuous progression, they will use trajectory inference algorithms. However, some-

times using clustering and trajectory inference on the same data can lead to very different

interpretations, where clustering algorithms produce distinct cell clusters while trajectory

inference on the same data show continuous trajectories. This makes us wonder: which

way of looking at the data is more appropriate? In this paper, we developed a pipeline for

quantifying the “clusterness” and “trajectoriness” of scRNA-seq data, in other words,

whether the data looks like a collection of distinct clusters or a continuum of progression

trajectory. We think such geometric quantification is an important question that should

be broadly discussed in the single-cell research community.
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Introduction

Advances in sequencing technologies have led to new opportunities that could provide valu-

able insights into diverse biological systems [1], especially single-cell RNA sequencing

(scRNA-seq) which enables biologists to analyze gene expression measurement at the single-

cell level. Such single-cell measurements provide high resolution to reveal the cellular hetero-

geneity in various biological tissues and systems, which was not possible in the traditional bulk

sequencing [2]. A great number of scRNA-seq technologies [3–7], such as SMART-seq, CEL-

seq, Dropseq, were developed in recent years, and have been applied to investigate diverse bio-

logical systems including cellular identification, immunophenotyping, regulatory mechanism,

and development trajectories [8–11].

With the rapidly growing usage of scRNA-seq technologies, various computational analysis

tools have been developed. Although there exist numerous computational questions in the

context of scRNA-seq analysis, many of the existing algorithms could be categorized into two

major types: algorithms developed for clustering analysis [12] and algorithms developed for

trajectory inference [13]. Clustering tools are primarily used to identify distinct cell types in

heterogeneous cell populations. The key assumption of clustering-based algorithms is that the

data contains clusters of cells where each cluster exhibits some unique gene expression pattern

that is different from the other clusters. Hence, focusing on the differences among the clusters,

most of the clustering algorithms try to minimize intra-cluster differences while maximizing

inter-cluster differences. A few examples of clustering algorithms include community detec-

tion in Seurat [3], Co-occurrence clustering [14], and pcaReduce [15]. In contrast, trajectory

inference algorithms are primarily used for extracting continuum of changes that represent

dynamics of biological processes, such as cell cycle, cell differentiation, disease progression,

and drug response. The main assumption of trajectory inference is that the data contains cells

that represent the transitions among well-defined cellular states, and the transitions are mani-

fested as gradual changes in the gene expression space. Therefore, trajectory inference algo-

rithms try to capture the continuous global structure by focusing on the local connections,

hence, ordering cells along a continuous path resembling the evolution of the cellular process.

PAGA [16], Monocle [11], Slingshot [17], DPT [18] are a few examples of trajectory inference

methods [19].

As the two different types of algorithms seek different characteristics based on their respec-

tive underlying assumptions, clustering and trajectory inference algorithms may generate

vastly different visualizations and interpretations. Figs 1 and 2 illustrate eight example datasets

analyzed by both types of algorithms. The first two panels in each row show visualizations

from clustering analysis based on the Louvain algorithm implemented in Seurat, and from tra-

jectory inference using the diffusion pseudo time (DPT). In the four example datasets shown

in Fig 1A–1D, clustering and trajectory inference produced relatively similar visualizations

and interpretations of the geometry of the data, where both types of analysis suggested that the

first two datasets are trajectory-like and the remaining two datasets are cluster-like. In contrast,

the four example datasets in Fig 2A–2D showed the opposite, where clustering analysis identi-

fied clearly distinct cell clusters, while trajectory inference showed continuous progression of

cells, meaning that the two types of analysis led to different and potentially misleading inter-

pretations of the same data. Therefore, the proper choice of analysis type and interpretation is

a critical consideration for scRNA-seq, depending on the geometric characteristics of the data.

However, there have not been any objective or data-driven methods for informing biologists

whether clustering or trajectory inference is more appropriate for interpreting the data.

Although there exist statistical methods to test the existence or prominence of cluster structure

(e.g., such as Hopkins statistics [20], gap statistics [21], silhouette coefficient [22], Calinski-
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Fig 1. Visualizations of datasets where clustering and trajectory inference produce similar interpretations. (a, b)

Two datasets with clear trajectory-like visualizations from both clustering and trajectory inference. (c, d) Two datasets

with clear clustering-like visualizations from both clustering and trajectory inference.

https://doi.org/10.1371/journal.pcbi.1011866.g001
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Fig 2. Visualizations of datasets where clustering and trajectory inference produce different interpretations.

When applied to these four datasets, clustering analysis showed distinctive clusters while trajectory inference showed

uninterrupted continuum, as shown in the two panels in all four cases.

https://doi.org/10.1371/journal.pcbi.1011866.g002
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Harabasz Index [23]), those methods were not designed to distinguish cluster-like and trajec-

tory-like patterns.

Here, we present several scoring metrics that aim to quantify the “clusterness” and “trajec-

toriness” of the data, in other words, whether the data looks like a collection of distinct clusters

or a continuum of gradual changes. The metrics were designed based on the distribution of

cell-to-cell distances, persistent homology [24], vector magnitude directionality, Ripley’s K

function [25], and degrees of connectivity. Along with the scoring metrics, we present a pipe-

line that can evaluate scRNA-seq datasets in terms of whether their geometry is cluster-like or

trajectory-like. Using simulated datasets, we demonstrate that the proposed metrics could be

used to differentiate between the clustering-like datasets and trajectory-like datasets. Using

real scRNA-seq datasets, we show that the metrics could serve as indicators of whether cluster-

ing or trajectory inference is appropriate for interpreting the geometry of those datasets.

Design and implementation

We propose five scoring metrics to quantify the “clusterness” and “trajectoriness” of scRNA-

seq data. An overview is shown in Fig 3, with each scoring metric providing a single scalar

score that aims to capture a geometric characteristic of the data.

Scoring metric 1 –distribution of pairwise distances

The first scoring metric is the entropy of the distribution of pairwise distances among the data

points. This score was devised based on the following intuition. In a dataset that contains dis-

tinct clusters, if we compute the pairwise distances between all possible pairs of data points,

the distribution of the distances should be bi-modal or multi-modal, because the distances are

either short (between the data points within the same cluster) or long (between data points in

different clusters). In contrast, in a dataset that represents a continuous trajectory, the distribu-

tion of pairwise distances is more spread out and smooth, without large fluctuations that lead

Fig 3. Overview of the proposed pipeline and simulated data used. (a) Given a dataset, five different scoring metrics are used to quantify the dataset. The

output is five numerical scores. (b) Scatter plots visualizing a few examples of simulated datasets. The simulated datasets are two-dimensional. (c) A multitude

of simulated datasets was scored by the scoring metrics, and the scores are projected to UMAP space.

https://doi.org/10.1371/journal.pcbi.1011866.g003
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to clear bi-modality or multi-modality. Therefore, the distribution of pairwise distances in

cluster-like data should exhibit larger fluctuation and thus lower entropy, compared to trajec-

tory-like data.

Since scRNA-seq data are high-dimensional and the underlying geometry is likely nonlin-

ear, Euclidean distance may not be able to sufficiently capture the differences between cluster-

like and trajectory-like datasets. Instead, we decided to use geodesic distances known to be less

affected by dimensionality and nonlinearity. In particular, we used the dpt distance from the

Diffusion Pseudotime (DPT) analysis, which is a scRNA-seq trajectory inference algorithm.

We used the Scanpy [26] python package to generate the pairwise dpt distance matrix. dpt dis-

tances with infinity values are substituted with 1.5 times the maximum distances calculated.

Once all the pairwise distances were calculated, we created a histogram of the distances. Our

default bin size of the histogram is 10. The histogram is then normalized so that the sum of all

bins adds up to 1. The entropy of the normalized histogram is our scoring metric. In general,

the entropy scores for trajectory-like datasets are expected to be larger than the entropy scores

for cluster-like datasets.

Scoring metric 2 –persistent homology

The second scoring metric is derived from persistent homology. Persistent homology is a con-

cept in topological data analysis to study qualitative features of data that persist across multiple

scales [27]. In this study, we specifically used 0-dimensional persistent homology which

focuses on the ‘birth’ and ‘death’ of connected components as a function of increasing the dis-

tance threshold around each data point in point clouds. To compute the 0-dimensional persis-

tent homology, an increasing distance threshold is applied to the data. At each distance

threshold value, cells are connected if their distances are smaller than the threshold. At thresh-

old 0, all cells form disjoint components. As the threshold increases, the disjoint components

merge and eventually form one connected graph. Thresholds at which merges occur are

recorded, and the entropy of the distribution of the recorded thresholds serves as our scoring

metric. In a cluster-like dataset, data points and components within the same clusters quickly

merge at small threshold values, while components representing different clusters merge at

substantially larger threshold values due to the gaps between distinct cell clusters. In contrast,

in a trajectory-like dataset, the majority of the merges occur at relatively small threshold values.

Therefore, the distribution of thresholds for the merges should be more spread out in cluster-

like data and should be more uniformly distributed for trajectory-like data.

We used the Ripser [28] python package for calculating the persistent homology and used

the geodesic distance matrix from DPT generated from the Scanpy package as distance mea-

sures, rather than the Euclidean or Manhattan distance that are often used in persistent homol-

ogy. Given a dataset, the Ripser package outputs a vector with each element representing at

what distance threshold merging of components occurred. As in the first scoring metric, we

created a histogram of the vector, normalized the histogram to sum up to 1, and calculated its

entropy. The natural log of the calculated entropy serves as our scoring metric. Due to differ-

ences in the shape of the histogram between cluster-like data and trajectory-like data, this

entropy-based persistent homology score is expected to be smaller for cluster-like datasets and

larger for trajectory-like datasets.

Scoring metric 3 –vector magnitude

The third scoring metric is derived by calculating the magnitude of summation of a sequence

of vectors in the point clouds, where the sequence of vectors is generated by connecting neigh-

boring clusters defined by over-clustering of the point cloud. In trajectory-like data, the vectors
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tend to be correlated with the general trend of the trajectory, leading to a large magnitude for

the sum of the vectors. In cluster-like data, the directions of the vectors tend to be random,

and the sum of the vectors tends to be small.

Given a dataset, if its dimension is greater than 5, we apply PCA to reduce the dataset’s

dimensionality to 5. The data is normalized so that elements in each dimension range from 0

to 1. After that, we run K-means clustering on the dataset and identify the cluster centers. The

default value of K is 5% of the number of data points in the dataset. Among the cluster centers,

one cluster center A is chosen, and its closest (Euclidean distance) cluster center B is identified,

and the vector pointing from A to B is calculated. Now from B, a new cluster center C with the

closest distance is identified, and another vector pointing from B to C is calculated. The above

steps are repeated until the distance to the next closest cluster center is above a distance thresh-

old (i.e. 20th percentile of all pairwise distance among the K-means cluster centers). Once the

iteration stops, all the vectors calculated are added to form an overall vector. The magnitude of

the overall vector’s norm is calculated using p-norm, ð
Pn

i¼1
jxij

p
Þ

1
p, where p is the dimesons of

the PCA space, which is 5 for our default setting. Because of the stochastic nature of K-means,

the above process is repeated 5 times and the average of the five magnitudes is used as the final

score. We expect that trajectory-like datasets would have a greater magnitude for the overall

vector because trajectory-like datasets often have strong directionality present in how data

points are continuously spreading out in the space, whereas cluster-like datasets would have a

relatively smaller magnitude for the overall vector.

Scoring method 4 –Ripley’s k function

The fourth score is motivated by Ripley’s k function. Ripley’s k function is a type of spatial clus-

ter analysis tool often used for analyzing datasets with spatial interpretations [25]. Its usage is

mostly limited to spatial analysis of two to three-dimensional data, such as spatial patterns of

trees in a forest or locations of nests of birds. The formula for Ripley’s k function is as follows:

k tð Þ ¼ 1

l

P
i6¼j

Iðdij<tÞ
n , where t refers to distance threshold, λ refers to the average density of

points, dij refers to the distance between two data points i and j, n refers to the number of data

points, and I refer to the indicator function. The value of k is measured across different values

of distance threshold t, and the observed k values for a query dataset are contrasted with k val-

ues computed from uniformly distributed random spatial distributions. Overall, the Ripley’s k
function quantifies the contrast between the data and the uniform distribution. Based on our

observations, the Ripley’s k contrast between cluster-like data and a random uniform distribu-

tion is often larger than the contrast between trajectory-like data and the random uniform dis-

tribution. Therefore, the Ripley’s k function could be used to distinguish between cluster-like

data and trajectory-like data.

We modified the conventional Ripley’s k to make it more suitable for higher-dimensional

data like single-cell data. Given a dataset, we created a random dataset that is uniformly dis-

tributed within the convex space that contains all data points in the original dataset. We gener-

ate geodesic DPT distance matrices for both original and random datasets. Respective

maximum values of the geodesic distances across the two distance matrices are identified, and

we create 100 equally spaced distance thresholds ranging from 0 to each maximum value, serv-

ing as t in the above Ripley’s k equation. For each distance threshold t, k values are evaluated

for the original and random datasets separately. Then, the two sets of k values are normalized

to between 0 and 1, the absolute differences between the two sets of normalized k values are

computed in an element-wise fashion, and the area under the curve of the difference is calcu-

lated. This area under the curve is our fourth scoring metric. Since Ripley’s k aims to capture
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the patterns of clustering, we expect that this scoring metric would be able to give clustering-

like datasets high scores, and give trajectory-like datasets lower scores.

Scoring metric 5 –degrees of connectivity

The fifth scoring metric is motivated by the concept of degrees of connectivity which is often

used to quantify social connections. Based on the idea of a chain of ‘friend of a friend’ would

connect everyone, we attempted to quantify the percentage of data points connected as we

vary the number of neighbors (‘friends’). In a dataset that contains distinct clusters, the con-

nections are limited within the clusters when the number of neighbors is small. In contrast, in

a dataset that represents a continuous trajectory, even a small number of neighbors may enable

all data points to be connected directly or indirectly. Therefore, a scoring metric quantifying

connectivity has the potential to distinguish cluster-like data and trajectory-like data.

For this scoring metric, first, we generate a range of different numbers of neighbors from

5% to 95% of the number of data points. For each neighbor size as k, for each data point, we

find its k nearest neighbors. Using the identified neighbors for all cells, the symmetric mutual

nearest neighbor graph is constructed. If there are n cells in the dataset, this graph will be an n-
by-n symmetric matrix with 0 or 1 entries, where an entry is 1 only if the two corresponding

cells are mutually nearest neighbors of each other, i.e., each cell in a pair of cells is contained in

each other cell’s nearest neighbors. Using the symmetric nearest neighbor graph, we could

evaluate, for each cell, how many other cells in the dataset it could reach based on not only its

direct neighbors but also subsequent neighbors’ neighbors, and so on. Hence, for each cell, the

proportion of cells it could reach quantifies its reachability value, and the median reachability

value for all data points for a specific neighbor size is calculated. The above is repeated for dif-

ferent neighbor sizes to generate a series of median reachability values, one for each neighbor

size. The series of reachability values are then summarized into a curve where the x-axis is the

proportion of neighbors, and the y-axis is the reachability values calculated. Finally, we com-

pute the area under the curve, which is our fifth scoring metric. We expect that cluster-like

datasets have relatively weak connections among the clusters, leading to low scores because

each cell’s reachability would be limited to its own cluster until the number of neighbors

increases to be larger than its cluster’s size. In contrast, in trajectory-like datasets, cells could

be potentially connected with many other cells even with relatively smaller neighbor sizes,

leading to higher scores.

Simulated clustering-like and trajectory-like datasets

We generated a variety of simulated datasets to test the five scoring metrics. Specifically, we

designed four types of simulated datasets, including (1) clear clusters data, (2) clear trajectory

data, (3) noisy clusters data, and (4) noisy trajectory data. The simulated datasets were all two-

dimensional. The clear clusters data were generated by random sampling from mixture Gauss-

ian models, with random proportions for the components and relatively small variances for

each component compared to mean differences, so that the simulated data were clearly clus-

ter-like showing distinctive clusters with clear separations that can be visually confirmed. The

clear trajectory data were generated by random sampling from sine functions to create trajec-

tories, followed by adding a relatively small amount of Gaussian noise to create width along

the trajectories, so that the simulated data were trajectory-like showing a clear progression

trend like a belt. The noisy clusters datasets and noisy trajectory datasets were generated in the

same way as the simulated clear clusters and clear trajectory data, except that the variance of

the added noise was larger so that the cluster-like or trajectory-like patterns in the simulated

dataset were less clear. For the noisy trajectory datasets, we included bifurcation cases where a
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trajectory was divided into two separate branches. A total of 12,000 datasets were generated in this

study, 3000 for each of the four types of simulated datasets. Each simulated dataset was scored

using the fiving scoring metrics. A few examples of simulated datasets are shown in Fig 3B.

Single-cell RNA-seq Data

scRNA-seq datasets used in this study are as follows: planaria dataset [29], mouse bone-marrow

dataset [30], mouse epidermis dataset [31], monkey epiblast dataset [32], fibroblast dataset [33],

natural killer T cell dataset [34], mouse cell atlas dataset [30], Tabular Sapiens dataset [35], as

well as the single-cell datasets from benchmark papers for single-cell trajectory inference and

clustering methods [12,13,36]. These datasets were used to evaluate robustness and accuracy of

our scores in quantifying the clusterness and trajectoriness. The quality control and data pre-

processing methods used in the benchmark study [13] were applied, including filtering of genes

with too few non-zeros entries, filtering of cells with abnormal library size or high mitochon-

drial expression, library-size normalization, and highly variable gene selection. The dimension-

ality of the data was further reduced to 20 using PCA transformation for all scRNA-seq datasets.

UMAP projection of the scores

For each of the 12,000 simulated datasets, we computed the five scoring metrics, resulting in a

12,000 by 5 matrix of scores. Uniform Manifold Approximation and Projection (UMAP) [37]

was applied to the matrix of scores to generate a 2-dimensional visualization of the landscape of

the simulated datasets in the 5-dimensional space of the scoring metrics, resulting in a dimen-

sion-reduced matrix of size 12,000 by 2. The distance metric used for UMAP was the Euclidean

distance, with the number of neighbors set to be 30 and the minimum distance set to be 0.6. For

a given real scRNA-seq dataset, we computed the five scoring metrics and project the resulting

scores onto the UMAP of the simulated datasets. We hypothesize that simulated datasets located

close to the projection of the real dataset could share similar geometric characteristics (cluster-

like or trajectory-like), thereby, providing an indicator for the geometry of the real dataset.

Results

Proposed scores can differentiate between cluster-like and trajectory-like

datasets

The simulated datasets were used to test whether the proposed scores could quantify cluster-

ness and trajectoriness, and thus, differentiate datasets with the different underlying geometry.

Violin plots for the scores across the four simulated types of data were shown in Fig 4, demon-

strating that each of the five metrics had some ability to distinguish the simulated cluster-like

and trajectory-like datasets. Combination of these scores could provide enhanced power to

classify whether a dataset is cluster-like or trajectory-like.

Proposed scores define a geometric landscape of clusterness and

trajectoriness

Scores of the 12,000 simulated datasets across the four simulated types (clear clusters, clear tra-

jectory, noisy clusters, and noisy trajectory) were projected to two-dimensional space using

UMAP, as shown in Fig 5. In the UMAP visualization in Fig 5A, scatter plots of the simulated

datasets are used to represent dots in the UMAP. Clear clusters data (bottom-right region of

UMAP) and clear trajectory data (bottom-left region of UMAP) were well separated, indicat-

ing that the combination of the five scores were able to differentiate them. Noisy clusters data

and noisy trajectory data were located in between the clear clusters data and clear trajectory

PLOS COMPUTATIONAL BIOLOGY Clusterness vs trajectoriness in scRNA-seq
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data. In Fig 5B, dots in the UMAP plot were colored by the proportion of neighboring dots/

datasets belonging to clear or noisy trajectory-like datasets. The boundary on the colored

UMAP showed the separation between noisy clusters data and noisy trajectory data. Overall,

we observed that datasets with similar geometry (similar-looking scatter plots) were located

close to each other on the UMAP. In addition, we observed gradual changes in clusterness and

trajectoriness geometry on the UMAP in Fig 5A. The gradual changes in geometric character-

istics in the UMAP space were further reflected in Fig 5C, which showed the variations of each

scoring metric in the UMAP space. In addition to the dichotomy of clusterness and trajectori-

ness, Fig 5C also showed variation of some metrics within one type of geometry. Within the

right side of cluster-like data, we observed variations in P-dist, Ripley’s k and Degree of Con-

nectivity, especially at the bottom-right tip. This was because the bottom right tip corre-

sponded to cluster-like data with larger number of clusters compared to the rest of cluster-like

datasets. Within the left side of trajectory-like data, the Homology metric showed a gradient

that correlated to the level of noise we simulated, where smaller amount of simulation noise

(i.e., narrower width of the trajectories) led to smaller value of the Homology metric.

Mapping scRNA-seq datasets to the clusterness and trajectoriness

geometric landscape

To evaluate whether the simulated clusterness and trajectoriness geometric landscape is gener-

ally applicable, we collected 169 scRNA-seq datasets from previously published benchmark

Fig 4. Proposed scores show meaningful differences between cluster-like and trajectory-like datasets. For each scoring metric, a violin plot shows the scores

across simulated clear clusters data (n = 3000), simulated clear trajectory data (n = 3000), simulated noisy clusters data (n = 3000), and simulated noisy

trajectory data (n = 3000). Blue solid lines represent the median of the distributions. All score metrics exhibit meaningful differences across the four simulated

types of data.

https://doi.org/10.1371/journal.pcbi.1011866.g004
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studies for clustering and trajectory inference algorithms, computed the scoring metrics for

these datasets, and projected the resulting scores onto the clusterness and trajectoriness geo-

metric landscape defined by the simulated datasets. As shown in Fig 6A, the projections of

these 169 real datasets scattered and covered both cluster-like and trajectory-like regions of the

geometric landscape. The overlap between the projections of real and simulated datasets indi-

cated that scores were comparable. Fig 6B further demonstrated that the range and distribu-

tion of the scores were indeed comparable between simulated and real datasets.

These 169 datasets were considered by previous studies as suitable benchmarking data for

either clustering analysis or trajectory inference because of researchers’ presumed geometric

intuitions based on the experimental design and underlying biology. The presumed geometry

of these datasets included “clusters”, “organs”, “disconnected graph”, which should be cluster-

like. The presumed geometry also included “tree”, “convergence”, “linear”, “cycle”, “acyclic

graph”, “bifurcation”, “multifurcation”, which should be trajectory-like. After projecting these

169 datasets onto our clusterness and trajectoriness landscape, we applied the k-nearest neigh-

bors idea to classify each dataset based on the location of its projection, and thereby, generat-

ing our computational prediction of whether the datasets were cluster-like or trajectory-like.

The table in Fig 6C summarized the prediction results organized by the presumed geometry

types. For “clusters”, “organs” and “disconnected graph” datasets which were presumed to be

Fig 5. Simulated geometric landscape of clusterness and trajectoriness. (a) Each dot in the UMAP represents one

simulated dataset, and is visualized by the scatter plot of the simulated dataset itself. (b) Dots in the UMAP plot were

colored by the proportion of neighboring dots belonging clear or noisy trajectory-like data. The boundary on the

colored UMAP showed the separation between cluster-like and trajectory-like datasets. (c) Colored visualizations by

values of each of the five scoring metrics, showing variations of the scores in the UMAP space. Red represents higher

values, and blue represents lower values.

https://doi.org/10.1371/journal.pcbi.1011866.g005
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cluster-like, 74% of them were predicted to be cluster-like in our approach. For “linear” which

was presumed to be the most trajectory-like, 56% were predicted to be trajectory-like in our

approach. For the “tree”, “bifurcation” and “multifurcation” datasets, the presumed geometry

and our prediction were uncorrelated and even somewhat opposite. The number of datasets in

other types were too few to meaningfully compare. Overall, this comparison showed that the

presumed geometry based on biological intuition and the prediction based on our quantitative

Fig 6. Projections of scRNA-seq datasets onto the simulated geometric landscape. (a) Each red triangle represents

the projection of one of the 169 real scRNA-seq datasets projected to the simulated geometric landscape. (b) Violin

plots of the scoring metrics in the simulated data versus the real scRNA-seq data, showing that the distribution of

scores were similar between simulated and real datasets. (c) A tabular summary of the presumed geometric intuition

and predicted geometric property for the 169 datasets, showing roughly 70% agreement.

https://doi.org/10.1371/journal.pcbi.1011866.g006
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metrics agreed in roughly 70% of the datasets. This agreement was an encouraging validation

of the proposed clusterness and trajectoriness geometric landscape. In the meantime, the dis-

agreement was alarming, indicating that the presumed geometry based on biological intuition

may be questionable in up to 30% of the cases.

Clustering reduces both clusterness and trajectoriness of the data

For each of the 169 scRNA-seq data above, we applied the Seurat package to cluster the data,

and divided one dataset into multiple datasets based on the clustering result, so that we

obtained smaller datasets that correspond to individual clusters derived from the 169 datasets.

We then scored these smaller datasets and mapped them to the clusterness and trajectoriness

geometric landscape, shown as the red dots in Fig 7A. Compared to the projections of the 169

datasets shown in Fig 6A, projections of these individual clusters were more enriched toward

the boundary region in the geometric landscape. Fig 7B highlighted one cluster-like dataset

whose projection was the red triangle deep in the cluster-like region of the geometric land-

scape, while projections of its clusters were all in the region occupied by simulated noisy trajec-

tory-like datasets. This example showed that individual clusters of a cluster-like datasets were

less cluster-like, which was expected. Fig 7C highlighted a trajectory-like dataset whose projec-

tion was in the trajectory-like region of the geometric landscape, whereas projections of its

Fig 7. Projection of individual clusters onto the simulated geometric landscape. (a) After clustering analysis of the 169 scRNA-seq datasets, each resulting

cluster is treated as a separate dataset and projected onto the simulated geometric landscape. The resulting projections, shown as the red dots were enriched

toward the boundary between cluster-like and trajectory-like regions of the geometric landscape. (b) Projections of one cluster-like dataset and its individual

clusters, shown by the red triangle and red dots respectively. (c) Projections of one trajectory-like dataset and its individual clusters, shown by the red triangle

and red dots respectively.

https://doi.org/10.1371/journal.pcbi.1011866.g007
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clusters were again in the region occupied by simulated noisy trajectory-like datasets. This was

also expected, because clustering would divide a long trajectory into shorter pieces whose tra-

jectoriness became less prominent.

Geometric landscape as a guide for choosing proper analysis for

interpretation

We examined datasets that showed clear trajectory-like geometry in previous studies. Two

published datasets on mouse placenta trophoblast and inter-follicular epidermis [30,31,38]

were analyzed using both clustering and trajectory-inference methods. As shown in the two

panels in Fig 1A and 1B, both types of analyses suggested these two datasets were trajectory-

like, which was consistent with the fact that these two datasets were generated for understand-

ing continuum of progressions, defined by the development to cell types in the placenta tro-

phoblast [39] and the differentiation from the epidermis stem cells to various epidermis cell

types [40]. We computed the proposed scoring metrics for these two datasets, and projected

the scores to the simulated geometric landscape. In Fig 8A, we observed that these two datasets

were both projected to the left-side of the UMAP where simulated trajectory-like datasets were

located, meaning that the proposed scoring metrics also considered these two datasets to be

trajectory-like. Similarly, we examined two datasets that showed clear cluster-like geometry.

Two published datasets on the mouse cell atlas and the monkey epiblast [29,32] were analyzed

using both clustering and trajectory-inference methods, and the results indicated clearly dis-

tinctive clusters as visualized in the two panels of Fig 1C and 1D. The cluster-like geometry

was expected, because of the diversity of the mouse cell atlas covering multiple distinct organs

[41] and the diverging pluripotent nature of epiblast [42]. We computed the proposed scoring

metrics for these two datasets, and their projections to the simulated geometric landscape were

shown in Fig 8A. We observed that these two datasets were projected to the middle and the

right side of the UMAP where simulated cluster-like datasets were located, meaning that the

proposed scoring metrics correctly captured the cluster-like nature of these two datasets.

Fig 8. Projections of example scRNA-seq datasets to the simulated geometric landscape. (a) Projections of the four

datasets visualized in Fig 1 to the simulated geometric landscape. The two datasets with clear trajectory-like

visualizations in Fig 1A and 1B are both mapped to the bottom-left side of the UMAP landscape which contains

predominantly simulated trajectory-like datasets. The two datasets with clear clustering-like visualizations in Fig 1C

and 1D are both mapped to the mid and right side of the UMAP landscape which contains mostly simulated cluster-

like datasets. (b) Projection of the four datasets visualized in Fig 2, whose geometric interpretations are different based

on clustering and trajectory inference analyses. The two datasets in Fig 2A and 2B are mapped to the left side of the

geometric landscape, surrounded by simulated trajectory-like datasets. The two datasets in Fig 2C and 2D are mapped

to the middle region of the geometric landscape, surrounded by simulated cluster-like datasets.

https://doi.org/10.1371/journal.pcbi.1011866.g008
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We further examined four scRNA-seq datasets whose geometry was less clear based on existing

analysis methods. These four datasets were generated in the contexts of bone marrow mesen-

chyme differentiation, mouse embryonic fibroblast, planaria whole-body, and natural killer cell

subtypes [29, 30, 33, 34]. We analyzed these four datasets using both clustering and trajectory-

inference methods, and visualized the results in Fig 2. First panel of Fig 2A–2D visualized results

of the clustering analysis, and showed distinctive cell clusters underlying these four datasets. In

contrast, second panel of Fig 2A–2D provided visualizations of trajectory-inference analysis,

which revealed trajectories underlying these four datasets. Given the contradictory geometry from

clustering and trajectory inference of these datasets, it was difficult to conclude whether these

datasets were cluster-like or trajectory-like. We computed our scoring metrics for these four data-

sets, and projected them to the simulated geometric landscape as shown in Fig 8B. The first two

datasets were mapped to the left side of the geometric landscape, surrounded mostly by trajec-

tory-like simulated datasets, indicating that these two datasets were both trajectory-like. Since

these two datasets were generated to study mouse bone marrow mesenchyme erythrocyte differ-

entiation [43] and the induction of fibroblast to neuronal cells [33], it is plausible that these data-

sets contain trajectories driven by the differentiation processes. The third and fourth datasets were

mapped to the middle region of the geometric landscape which contained mostly cluster-like sim-

ulated datasets, suggesting that these two datasets have cluster-like geometry containing distinct

cell types, such as the gut, muscle, neuronal, epidermal cells in the planaria differentiated from

neoblasts [29], as well as various subtypes of natural killer T cells [34]. From these four examples,

we observed that the projected location of a scRNA-seq dataset on the simulated geometric land-

scape could capture the clusterness and trajectoriness of the data, which facilitates our under-

standing of the distribution of the data and provides guidance of whether clustering analysis or

trajectory inference would be more appropriate for interpreting the data.

Availability and future directions

In the literature of computational analysis of scRNA-seq, a common practice is to choose anal-

ysis approach based on the biological intuition and expected geometry of the experimental

design that generates the data. However, we demonstrated example scRNA-seq datasets where

clustering and trajectory inference produced drastically different visualizations and interpreta-

tions of the same data. Since clustering analysis tends to produce clusters and trajectory infer-

ence tends to generate trajectories, selecting analysis approach based on the expected geometry

can introduce bias that reinforces the prior expectations. This is potentially dangerous and

misleading in cases where the actual geometry of the data is different from expected. There-

fore, it is important to be aware of such bias, and develop objective methods to quantify the

geometry of scRNA-seq data, which could provide a guide for selecting appropriate analysis

approach for biological interpretation.

We present five scoring metrics and a computational pipeline to quantify the clusterness

and trajectoriness of scRNA-seq data. The proposed scoring metrics are based on pairwise dis-

tance distribution, persistent homology, vector magnitude, Ripley’s K, and degrees of connec-

tivity. Using simulated datasets, we demonstrated that these scoring metrics are able to

differentiate cluster-like data and trajectory-like data. UMAP visualization of the scores from

simulated data revealed a geometric landscape of clusterness vs. trajectoriness. With a large

collection of real scRNA-seq datasets, we showed that the proposed scoring metrics and the

simulated geometric landscape are applicable to real scRNA-seq data. We demonstrated the

utility of the simulated geometric landscape to infer the geometric characteristics of real

scRNA-seq data, which could serve as an indicator for choosing whether clustering or trajec-

tory inference is a more appropriate type of analysis approach for interpreting a given dataset.
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We acknowledge that there may exist alternative metrics for geometric quantification of

scRNA-seq data. The five metrics presented here were tailored to capture intuitive differences

between the two types of geometry, and each of them indeed exhibited a decent level of dis-

criminatory power. An interesting future direction is to develop additional metrics that can

lead to insights beyond the five presented here, and examine whether any additional metric is

able to further enrich the variations captured by the geometric landscape.

Previous benchmarking studies of clustering and trajectory inference algorithms provided

extensive datasets with presumed geometric intuitions of whether those datasets were suitable

for clustering or trajectory inference. Those benchmarking datasets were valuable resources

for validating the proposed clusterness and trajectoriness geometric landscape. When project-

ing those scRNA-seq datasets onto the clusterness and trajectoriness geometric landscape, the

predicted geometry and the presumed geometry agreed in roughly 70% of the datasets. This

result was both encouraging and alarming, especially because the 30% disagreements were

observed among datasets that were previously chosen for benchmarking analyses of clustering

and trajectory inference. This result suggested a non-trivial possibility that how an scRNA-seq

dataset looks like is different from how we think it should look like. Beyond the specific scoring

metrics and geometric landscape, a more general goal of this study is to inspire discussions

about quantifying data geometry and choosing appropriate analysis type in an objective and

quantitative manner, which is an important question that has not been recognized and dis-

cussed in the single-cell research community.

The concept of clusterness and trajectoriness may not be sufficient to fully capture the rich

geometry that scRNA-seq data can exhibit. There definitely can exist datasets with both clus-

ter-like and trajectory-like characteristics. One example is “clusters of trajectories” where a

dataset could be composed of distinct clusters and each cluster itself is a trajectory. Another

example is “a trajectory of clusters” where a dataset could be made of spherical-shaped clusters

that are separated but lined up to form a trajectory. When projecting such datasets onto the

clusterness and trajectoriness geometric landscape, the predicted geometry may not be robust

and will be dependent on the prominence of the trajectories and separation among the clusters

in the data. As a potential solution, we could first apply clustering analysis to the data, and

then evaluate the clusterness and trajectoriness for both the original dataset and the individual

clusters. The predicted geometry of the original dataset and its clusters collectively can provide

more detailed descriptions of the geometric characteristics of the original dataset. Therefore,

quantification of clusterness and trajectoriness can serve as a good first attempt toward devel-

oping a comprehensive set of descriptors for characterizing the geometry of scRNA-seq data.

The code for the proposed geometric quantification, along with use examples and docu-

mentations, is available at https://github.com/pqiu/Quantifying_clusterness_trajectoriness
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