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In many high-impact applications, it is important to ensure the quality of the output of 
a machine learning algorithm as well as its reliability in comparison to the complexity of 
the algorithm used. In this paper, we have initiated a mathematically rigorous theory to 
decide which models (algorithms applied on data sets) are close to each other in terms 
of certain metrics, such as performance and the complexity level of the algorithm. This 
involves creating a grid on the hypothetical spaces of data sets and algorithms so as to 
identify a finite set of probability distributions from which the data sets are sampled and 
a finite set of algorithms. A given threshold metric acting on this grid will express the 
nearness (or statistical distance) of each algorithm and data set of interest to any given 
application. A technically difficult part of this project is to estimate the so-called metric 
entropy of a compact subset of functions of infinitely many variables that arise in the 
definition of these spaces.
© 2023 The Authors. Published by Elsevier B.V. on behalf of IMACS. This is an open access 

article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

In many high-impact applications of machine learning, data is limited and training is challenging. For these applications, 
it is desirable to have predictions with the highest assurances from the available data while minimizing uncertainty. In 
particular, it is important to ensure the quality of the output of a machine learning algorithm as well as its reliability 
compared to the complexity of the algorithm used. The objective of this work is to develop a systematic and mathematically 
rigorous approach to decide what is the complexity level of the algorithm that is sufficient in the task domain to produce 
the desired performance, reliability, and uncertainty.

An attractive idea in this context is that of Rashomon curves [5,1]. The question is the following: if one finds that an 
algorithm with a certain complexity level works well on a task on a data set, are there likely to be simpler algorithms that 
will also work within a certain tolerance of this algorithm? More generally, which class of algorithms can be expected to 
behave similarly on which kind of data sets? Unfortunately, there seems to be no mathematically precise formulation of this 
problem. Our purpose in this paper is to initiate such a rigorous study.
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Fig. 1. Different data sets may come from the same probability distribution on a domain. We consider P to be a compact subset of such distributions. A
is the set of algorithms of interest to us, and F ∗ is the function that maps a given probability distribution and an algorithm to an m-dimensional vector of 
quantities of interest.

Intuitively, we wish to obtain a grid on the set of data sets and algorithms, i.e., a finite set of data sets and algorithms 
so that for every algorithm of interest on every data set of interest, there is some point on the grid that is close to the data 
set and algorithm, as measured by some parameters. To make this more precise, we clarify what the terms “data sets” and 
“algorithms” mean for our purposes.

We will assume that each data set is a random sample of an unknown probability distribution in a domain. To be precise, 
we assume that each distribution is supported on some compact subset of an ambient Euclidean space of dimension q, 
without loss of generality, on [−1, 1]q . Of course, different samples may come from the same distribution, in which case 
there is no theoretical difference between two such data sets. On the other hand, problems of sample bias are sometimes 
dealt with by omitting some of the components from each of these samples. Naturally, the resulting data have a different 
distribution, so the reduced data set is considered in this paper to be a different data set from the original.

In view of the Riesz representation theorem and the Banach-Alaoglu theorem, the set of all probability measures is a 
compact subset of the dual space (C([−1, 1]q))∗ . This set is an unmanageably large set representing every possible data set 
that could arise. We model the set of data sets of interest by a smaller compact subset P of the dual space (C([−1, 1]q))∗ .

A clear description of the meaning of the term “algorithm” and a precise mathematical definition of the term can be 
found in [2, Section 1.1]. An algorithm is a function from the input space (the data set) to the output space (real numbers, 
class labels, etc.) with some additional properties. As in the notion of Rashomon sets as explained in [5,1], one is not 
interested in the actual algorithms themselves but more in how they perform different tasks on data sets with respect 
to certain parameters such as stability, accuracy, complexity level of the algorithms, etc. The choice of these parameters 
will depend upon the applications; for example, accuracy might be more important than speed in numerical applications, 
while computational time might be more important in time-sensitive applications. It is unlikely that two algorithms will 
match in terms of all these parameters for all data sets in question. However, if there are two algorithms (or network 
architectures with different complexity levels) that lead to the same measurements of these quantities, then there is no 
need to distinguish between them. The stability of an algorithm should mean that when two data sets (meaning two 
probability distributions) are “close by,” then the accuracy and complexity of the algorithm on the two data sets should be 
close as well. This is captured by the notion of smoothness of the algorithms considered as functions on the data sets.

We assume a set A of algorithms that act on each data set in P . Each of these algorithms gives rise to a certain number 
m of parameters. Thus, we are interested in a mapping F ∗ :P ×A →Rm . Without loss of generality, we may assume m = 1
in this paper. This is represented in Fig. 1.

We do not expect two algorithms to agree on all the data sets with respect to all of these parameters, that is, we assume 
that if a1, a2 ∈A and

F ∗(µ,a1) = F ∗(µ,a2) for all µ ∈ P ⇒ a1 = a2.

This means that every a ∈A corresponds to a unique mapping Fa on P defined by

Fa(µ) = F ∗(µ,a), µ ∈ P . (1.1)

An algorithm a ∈A is defined to be stable if Fa is a continuous function on P with a properly defined topology on P .
These considerations prompt us to consider a set X of continuous functions from P to Rm . We will assume implicitly 

that to every element F ∈ X corresponds a (necessarily unique) algorithm a ∈ A such that F = Fa as defined in (1.1). We 
will then abuse the notation and refer to F ∈ X as an algorithm.

In this paper, we will assume that both P and X are compact metric spaces with appropriate metrics. In fact, in view 
of the Ascoli theorem, X is then an equicontinuous family of functions on P . We then fix a “tolerance” ϵ > 0, and find 
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Fig. 2. The ϵ-net for the set P × A, where A is identified with a set of functionals on P . The problem is to estimate the minimum number of balls of 
radius ϵ to cover the set; the challenge being the fact that A is a set of functionals acting on an infinite-dimensional space P .

ϵ-nets Pϵ and Xϵ for P and X,3 respectively. Then Pϵ × Xϵ is an ϵ-net for P × X. For any data set µ ∈ P and F ∈ X
(equivalently, an algorithm a ∈ A), there are µ1 ∈ Pϵ and F1 ∈ Xϵ (equivalently, an algorithm a1) such that the behavior of 
a on µ is ϵ-similar to the behavior of a1 on µ1. Thus, the problem reduces to finding a minimal ϵ-net for P × X (or, with 
our identification of the space A of algorithms with X, P ×A)) as represented in Figs. 1, 2.

The major technical difficulty here is that X is a set of functions on an infinite-dimensional space rather than a finite-
dimensional Euclidean space as is usual in common machine learning problems. A simplistic idea is to obtain a finite set 
of parameters for the probability distributions and to treat X as a set of functions on these. For example, if P were a set 
of normal distributions, then the means and standard deviations would describe this set completely. However, in practice, 
the distributions are not prescribed in terms of finitely many parameters. Indeed, a central technical challenge in machine 
learning is that the distributions involved are unknown; in particular, one needs nonparametric methods to deal with these.

It is still possible to restrict ourselves to those distributions that have a smooth density function. In turn, this function 
can be expanded in an orthogonal series, such as a multivariate tensor product Chebyshev polynomial expansion, and the 
coefficients of this expansion can be used as parameters for the distribution. If the density functions are smooth enough, 
then finitely many low-order coefficients will approximate the density well enough, and elements of X can be thought of 
as functions of these low-order coefficients.

Although this simple idea reduces the problem to the case of functions on a Euclidean space, there is still a technical 
problem. In order to get a good approximation to the density, one needs a large number of coefficients. The curse of 
dimensionality then poses a big challenge, requiring much more detailed analysis than what is available in the literature.

The organization of this paper is as follows. In Section 2, we review the basic concepts of entropy, analytic, and entire 
functions. Our main results are stated in Section 3, where we develop an abstract framework, which is then applied to 
obtain estimates on entropies for certain classes of analytic and entire functions, culminating in the estimates for a class 
of functionals. In Section 4, we discuss some ideas on how to generate computationally some classes of analytic and entire 
functions, as well as ϵ-nets for finite-dimensional ellipsoids, which form a theoretical backbone for our estimates. The proofs 
of the results in Section 3 are given in Section 5. For the convenience of the reader, we include an Appendix, in which we 
prove certain estimates on the approximation of analytic and entire functions, which motivate our definition of the classes 
defined in Section 3.

2. Basic concepts

In this section, we explain the basic concepts used in this paper. Section 2.1 describes the multivariate notation. Sec-
tion 2.2 summarizes the definition of metric entropy and capacity related to the minimal number of balls of a given radius 
to cover a compact set. The probability measures to be studied have densities that are analytic, while the functionals are 
entire functions of exponential type defined on an infinite-dimensional sequence space. These ideas are described in Sec-
tion 2.3. Section 2.4 reviews certain basic notions regarding multivariate Chebyshev polynomials, which are used to encode 
both analytic and entire functions.

2.1. Multivariate notation

In the sequel, we denote by d ∈ N ∪ {∞} a generic dimension. Vectors will be denoted by boldface letters, for example, 
x = (x1, · · · , xd) ∈Rd . The symbol |x|p will denote the ℓp norm of the vector x. Binary operations among vectors are meant 
to be in component-wise sense; e.g., xy = (x1 y1, · · · , xd yd), xy = ∏d

j=1 x
y j
j , x/y = (x1/y1, · · · , xd/yd). Similarly, x < y means 

x j < y j for j = 1, · · · , d, etc. The inner product between two vectors x, y is denoted by x · y. For r > 0, we write Ir = [−r, r], 
and for a vector r, Ir = ∏d

j=1[−r j, r j]. Finally, I = I1. For 0 < ρ < 1, the ellipse Uρ is defined by

Uρ =
{

z ∈C : |z +
√

z2 − 1| < 1/ρ
}

,

3 If K is a compact subset of a metric space X and ϵ > 0, then a finite set Kϵ ⊂ X is called an ϵ-net for K if K is covered by balls of radius ϵ centered 
at points in Kϵ .
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where the principal branch of the square root is chosen. With the Joukowski transformation w = z +
√

z2 − 1, Uρ is mapped 
onto the disc $ρ =

{
w ∈C : |w| < 1/ρ

}
.

For 0 < ρ = (ρ1, . . . , ρd) < 1, the poly-ellipse Uρ (respectively, the poly-disc $ρ ) is defined by Uρ = ∏d
j=1 Uρ j (respec-

tively, $ρ = ∏d
j=1 $ρ j ). When ρ = (ρ, · · · , ρ), we will abuse the notation and write Uρ,d = U (ρ,...,ρ) . If the dimension is clear 

in the context, we drop the subscript d and write Uρ = U (ρ,...,ρ) . Similar conventions are adopted also for the poly-discs 
and rectangular cells.

2.2. Entropy and capacity

The material in this section is based on [3, Chapter 15].
Let (X, ∥ · ∥) be a normed linear space, K ⊂ X , and ϵ > 0 be given.

(a) A set K̂ ⊂ X is called an ϵ-net for K if, for each x ∈ K , there is at least one y ∈ K̂ such that ∥x − y∥ ≤ ϵ .
(b) Points y1, . . . , ym ∈ K are called ϵ-separable if

∥yi − y j∥ ≥ ϵ, i ≠ j.

Definition 2.1. Let (X, ∥ · ∥) be a normed linear space, and let K ⊂ X be compact. For any ϵ > 0, let Nϵ(K , ∥ · ∥) be the 
minimal value of n such that there exists an ϵ-net for K consisting of n points. The entropy of K is defined as

Hϵ(K ,∥ · ∥) = logNϵ(K ,∥ · ∥). (2.1)

Let Mϵ(K , ∥ · ∥) be the maximum value of m for which there exist m ϵ-separable points for K . The capacity of K is defined 
as

Cϵ(K ,∥ · ∥) = log Mϵ(K ,∥ · ∥). (2.2)

The connection between capacity and metric entropy is given in the following proposition.

Proposition 2.1. Let X be a normed linear space. For each compact set K ⊂ X and each ϵ > 0,

C2ϵ(K ,∥ · ∥) ≤ Hϵ(K ,∥ · ∥) ≤ Cϵ(K ,∥ · ∥). (2.3)

2.3. Analytic and entire functions

Definition 2.2 (Analytic functions). Let q ∈N , ρ > 0, f be an analytic function on Uρ := {z ∈Cq :
∣∣∣z j +

√
z2

j − 1
∣∣∣ < 1/ρ, j =

1, . . . , q} if it is complex differentiable at each z ∈ Uρ .

Definition 2.3. [Entire functions of exponential type] (a) Let Q ∈ N , τ > 0. A function F : CQ → C is called an entire 
function of exponential type τ if

(i) F is an entire function in all of its variables, i.e., F has an absolutely convergent power series expansion

F (z) =
∑

k∈NQ

akzk, z ∈CQ

with constant coefficients ak ∈C.
(ii) For any ϵ > 0 there exists a positive number Aϵ such that for all z ∈CQ , the inequality

|F (z)| ≤ Aϵ exp

⎛

⎝(τ + ϵ)

Q∑

j=1

|z j|

⎞

⎠

is satisfied.

(b) If v = (v1, . . . , v Q ) ∈ RQ
+ , then F is said to be an entire function of exponential type v if the function z /→

F (z1/v1, · · · , zQ /v Q ) is an entire function of exponential type 1.
(c) Let v ∈ ℓ1(C). A function F : c0(C) → C is called an entire function of exponential type v if, for every Q ∈ N , the 
function (z1, · · · , zQ ) → F (z1, · · · , zQ , 0, 0, · · · ) is an entire function of exponential type (v1, · · · , v Q ).
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An important example of entire functions of finite exponential type on c0(C) is the mapping

z ∈ c0(C) /→
∫

exp(−iz · x)dµ(x),

where µ is a probability measure supported on the infinite cube [−1, 1]∞ .

2.4. Chebyshev polynomials

Let d ∈N .

vd(x) = π−d
d∏

k=1

(1 − x2
k )−1/2, x = (x1, · · · , xd) ∈ Id. (2.4)

The space Lp(Id) will refer to the space of all f for which

∥ f ∥d,p =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎧
⎪⎨

⎪⎩

∫

Id

| f (x)|p vd(x)dx

⎞

⎟⎠

1/p

, if 0 < p < ∞,

ess sup
x∈Id

| f (x)|, if p = ∞,

(2.5)

is finite. As usual, we will identify two functions if they are equal almost everywhere.
We denote the space of all polynomials in d variables of coordinatewise degree < n by 'd

n .
Next, we define the Chebyshev polynomials. We define Chebyshev polynomials in the univariate case by first setting 

x = cos θ for x ∈ [−1, 1] and define

pk(x) =
{

1, if k = 0,√
2 cos(kθ), if k = 1,2, · · · . (2.6)

We note that the expression pk is a polynomial of degree k in x, and the normalization is set so that

1∫

−1

pk(x)p j(x)v1(x)dx = δk, j . (2.7)

The multivariate Chebyshev polynomials are defined by

pk(x) =
d∏

j=1

pk j (x j), k = (k1, · · · ,kd) ∈Zd
+, x = (x1, · · · , xd) ∈ Id, (2.8)

and satisfy
∫

Id

pk(x)pj(x)vd(x)dx = δk,j. (2.9)

We note that even though we have defined the Chebyshev polynomials by their values on Id , they are actually defined on 
Cd because they are polynomials.

Any function f ∈ L2(Id) admits a formal expansion

f =
∑

k∈Nd

f̂ (k)pk, (2.10)

where the Chebyshev coefficients are defined by

f̂ (k) =
∫

Id

f (y)pk(y)vd(y)dy, k ∈Zd
+. (2.11)

For f ∈ L1(Id), we define the partial sums of (2.10) by

sn( f )(x) =
∑

|k|1<n

f̂ (k)pk(x), Sn( f )(x) =
∑

|k|1=n

f̂ (k)pk(x), n ∈N. (2.12)
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There is an important formula that relates Chebyshev expansions to Laurent expansions of meromorphic functions. We 
note that for 0 < ρ < 1, the two branches of the Joukowski transform w = z +

√
z2 − 1 map Uρ to the annulus ρ < |w| <

1/ρ . Hence, for a function f analytic on Uρ for some ρ > 0, the function g(w) = f ((w + w−1)/2) is analytic on the annulus. 
The Laurent expansion of g is given by

f̂ (0) + (1/2)

∞∑

k=1

f̂ (k)(wk + w−k). (2.13)

Thus, the coefficients, the partial sums, and the remainder f − sn( f ) can be expressed as a contour integral on the appro-
priate circles in the w plane. For multivariate functions, of course, one uses the tensor products of circles.

If r > 0, we define Chebyshev polynomials on Ir by

pk,r(x) =
d∏

j=1

pk j (x/r), (2.14)

and the corresponding weights by

vr(x) = π−d

⎛

⎝
d∏

j=1

(r2
j − x2

j )

⎞

⎠
−1/2

. (2.15)

Of course, one has the orthogonality relation
∫

Ir

pk,r(x)pm,r(x)vr(x)dx = δk,m. (2.16)

The Chebyshev coefficients and partial sums are defined in an obvious way and will be indicated by an extra subscript r; 
for example, sn,r .

3. Main results

In this section, we define compact spaces of analytic and entire functions and state our theorems about their entropies. In 
Section 3.1, we encapsulate the procedure in some abstraction. The spaces for analytic functions and their entropy estimates 
are given in Section 3.2. Analogous results for entire functions are given in Section 3.3. We conclude with estimates on the 
entropy of functionals in Section 3.4.

3.1. Direct sums and products

Let X be a Banach space. We assume that there exists a sequence of finite-dimensional subspaces X j , j = 0, 1, . . . , 

b j = dim(X j), Yk =
k−1⊕

j=0
X j , dk = dim(Yk) =

k−1∑

j=0
b j , such that 

∞⋃

k=0
Yk is dense in X . In particular, we assume that for any f ∈ X , 

there is a unique sequence { f j ∈ X j}∞j=0 such that we have a formal expansion of the form f ∼ ∑
j f j . (An example is that 

the space X = C(Iq), X j be the space 'q
j of q-variate polynomials of degree < j, and f j = S j−1( f ), as in (2.12).) We write 

Proj j( f ) = f j and assume that Proj j is a continuous operator for each j. Generalizing the notation established in Section 2.4, 
we define

sn( f ) =
n−1∑

j=0

Proj j( f ), Sk( f ) = Projk( f ).

Let K be a compact subset of X . Then

lim
n→∞ sup

f ∈K
dist( f , Yn) = 0.

In this paper, we are interested in K such that

lim
n→∞ sup

f ∈K
∥ f − sn( f )∥ = 0. (3.1)

More precisely, with a summable sequence {* j}∞j=0 of positive numbers, we define
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K =
{

f ∈ X : ∥S j( f )∥ ≤ * j, j ∈N
}
, K j = Proj j(K), K̃n =

n−1⊕

j=0

K j . (3.2)

Let ϵ > 0. To estimate the entropy of K, we first observe that, in view of (3.1), there exists some n ∈N such that

sup
f ∈K

∥ f − sn( f )∥ ≤ ϵ/2.

Thus, any ϵ/2-net of the set K̃n is an ϵ-net of K, and any ϵ-net of the set K is an ϵ-net of K̃n . Thus,

Hϵ
(
K̃n, X

)
≤ Hϵ (K, X) ≤ Hϵ/2

(
K̃n, X

)
. (3.3)

Therefore, in order to estimate the entropy of K, we only need to estimate the entropy of K̃n .
For this purpose, it is convenient to identify K̃n with a tensor product of balls.

We consider the space X',n =
n−1∏

j=0
X j , and the mapping Tn( f ) = (Proj0( f ), · · · , Projn−1( f )) from 

n−1⊕

j=0
X j to X',n . Obvi-

ously, Tn is a one-to-one mapping. If 1 ≤ p ≤ ∞, we may define a norm on X',n by

∥Tn( f )∥',p,n =
∣∣(∥Proj0( f )∥, . . . ,∥Projn−1( f )∥)

∣∣
p . (3.4)

Since all the spaces involved are finite dimensional, there exist positive constants An,p , Bn,p such that

An,p∥ f ∥ ≤ ∥Tn( f )∥',p,n ≤ Bn,p∥ f ∥, f ∈ Yn. (3.5)

Next, we note that K j is a ball in finite dimensional space X j :

K j =
{

f ∈ X j : ∥ f ∥ ≤ * j
}
, j ∈N. (3.6)

So, we can view K̃n through the mapping Tn as a product of the balls K j . The entropy of this product is given in [3, 
Proposition 1.3]. To summarize, the entropy of K can be estimated as in the following theorem.

Theorem 3.1. Let ϵ > 0, 1 ≤ p, r ≤ ∞, and we recall the notation established in (3.5), (3.6). We have

N−1∑

j=0

b j log
(

* j

2B N,rϵ

)
≤ Hϵ(K) ≤

M−1∑

j=0

b j log

(

max

(
6M1/p* j

AM,pϵ
,1

))

, (3.7)

which holds for all N ≥ 1 and

M ≥ N (ϵ/2) := min

{

m ∈N :
∞∑

n=m

*n ≤ ϵ/2

}

. (3.8)

3.2. Spaces of analytic functions

Let q ∈N , ρ ∈ (0, 1). In view of Theorem A.1, we define the class of analytic functions by

Aρ =
{

f : Iq → R : ∥Sn( f )∥L2(Iq) ≤ ρn, n ∈ N
}
. (3.9)

The goal of this section is to prove Theorem 3.2 to estimate the entropy of Aρ .
We will use Theorem 3.1 with An,2 = Bn,2 = 1, * j = ρ j , b j =

( j+q−1
q−1

)
, j = 0, 1, . . . , to obtain the following theorem.

Theorem 3.2.

(a) For

ϵ < min

⎧
⎨

⎩
2

√
1 − ρ2

exp

(

−
ρ2 log 1

ρ

9(1 − ρ2)

)

,
2ρ

√
1 − ρ2

(
2 log 1

ρ

9(ρ−2 − 1)(q + 1)

)q+1
⎫
⎬

⎭ , (3.10)

we have

Hϵ(Aρ ,∥ · ∥L2(Iq)) ≤ 4eq+1
√

2π

⎛

⎜⎜⎝1 +
log

(
2ρ√
1−ρ2

1
ϵ

)

(q + 1) log 1
ρ

⎞

⎟⎟⎠

q+1

log
1
ρ

(3.11)
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(b) For ϵ < 1/2, we have

Hϵ(Aρ ,∥ · ∥L2(Iq)) ≥ 2q+1

8
√

2π(q + 1)

⎛

⎝1 +
log

(
ρ2

4
1
ϵ

)

(q + 1) log 1
ρ

⎞

⎠

q+1

log
1
ρ

. (3.12)

(c) Furthermore, for ϵ sufficiently small, the entropy of Aρ satisfies

1 −
2(q + 1) log 2

ρ

log 1
ϵ

≤ Hϵ(Aρ ,∥ · ∥L2(Iq))

log 1
ρ

(q+1)!

(
log 1

ϵ

log 1
ρ

)q+1 ≤ 1 +
2(q + 1) log 1

ρ

log 1
ϵ

⎛

⎝log log
1
ϵ

+
log 2√

1−ρ2

log 1
ρ

+ q + 4

⎞

⎠ . (3.13)

3.3. Spaces of entire functions

In this section, we are interested in the class of entire functions of finite exponential type, defined in (3.16) below. We 
will use Theorem 3.1 again to estimate the entropy of this class. The main difficulty in this section is keeping track of the 
dependence of the dimension Q . This is important when we consider functional classes in Section 3.4.

Let Q ∈N ,

1 ≤ τ
Q

2e3/2π
, C =

(
2π

Q

)Q /2

, (3.14)

and let

+(N) = C N Q /2 τ N

N! , N ∈N. (3.15)

For r ∈ RQ
+ , let Ir =

Q∏

j=1
[−r j, r j] be a subset of RQ . In view of Theorem A.2 and A.3, we can define the class of entire 

functions by

BQ = BQ (r,τ ) =
{

F : Ir → R : ∥SN(F )∥L∞(Ir) ≤ +(N), N ∈N
}
. (3.16)

Theorem 3.3. Let (3.14) hold.

(a) Under the condition that

ϵ ≤
(

2πeτ
Q

)Q /2 4
(eτ )1/2 exp(e2τ )

, (3.17)

the entropy of BQ defined in (3.16) satisfies

Hϵ(BQ ,∥ · ∥L∞(Ir))

≤ 2

3
√

2π

(
2e
Q

)Q
⎛

⎝ log 4
ϵ + Q

2 log 2eπτ
Q

log
(

log 4
ϵ + Q

2 log 2eπτ
Q

)
− log(eτ )

+ 3Q
4

⎞

⎠
Q +1 (

7 log log
1
ϵ

+ log
(
(Q + 1)2(eτ )6

))
.

(3.18)

(b) Let

ξτ = 16 max{3e2τ ,128} log
(
max{3e2τ ,128}

)

e
+ 2,

under the condition that

ϵ ≤
(

2π

Q

)Q /2 1

4
√

2πeτ
ξ

−2ξτ
τ , (3.19)

Hϵ(BQ ,∥ · ∥L∞(Ir)) ≥ 1

16
√

π Q

(
1
Q

)Q
⎛

⎝
log 1

4
√

2πeτϵ
+ Q

2 log
(

2π
Q

)

log
(

log 1
4
√

2πeτϵ
+ Q

2 log
(

2π
Q

))
− log(eτ )

− 5
2

+ 2Q

⎞

⎠

Q

×

⎛

⎝
log 1

4
√

2πeτϵ
+ Q

2 log
(

2π
Q

)

log
(

log 1
4
√

2πeτϵ
+ Q

2 log
(

2π
Q

))
− log(eτ )

− log(eτ ) − 3
2

⎞

⎠ .

(3.20)
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(c) The following asymptotic result holds:

1
2Q !

(
log 1

ϵ

)Q +1

(
2 log log 1

ϵ

)Q (1 + o(1)) ≤ Hϵ(BQ ,∥ · ∥L∞(Ir)) ≤ 1
Q !

(
2 log 1

ϵ

)Q +1

(
log log 1

ϵ

)Q (1 + o(1)) (3.21)

as ϵ → 0, where the o(1) term is ∼ Q log log(1/ϵ)/ log(1/ϵ).

3.4. Space of functionals

In this section, we are interested in estimating the entropy of a class of functionals F on Aρ with respect to the sup-
norm. Any functional in F can be viewed as a functional on the sequence of Chebyshev coefficients of the input function. 
We will define F to be a set of functionals that are entire functions of certain exponential type as in Definition 2.3(c).

Under the assumption that the functionals are Lipschitz continuous, i.e.,

sup
F̃∈F

sup
f1≠ f2∈Aρ

| F̃ ( f1) − F̃ ( f2)|
∥ f1 − f2∥L2(Iq)

≤ 1,

we conclude for any ϵ > 0, there is some integer n such that for any F̃ ∈ F ,
∣∣∣ F̃ ( f ) − F̃ (sn+1( f ))

∣∣∣ ≤ ∥ f − sn+1( f )∥L2(Iq) ≤ ϵ/2, Aρ .

Consequently, the ϵ-entropy of F is bounded by the ϵ/2-entropy of
{

F̃ ◦ sn+1 : F̃ ∈ F
}

.

In turn, for any f ∈ Aρ , F̃ ◦ sn+1( f ) can be viewed as a function of the Chebyshev coefficients of f up to order n + 1.
We now define the set of functionals formally. Let q ∈ N , ρ < 1, Aρ be as in Theorem 3.2. For any n ∈ N , write 

Q = Q (n) =
(n+q

q

)
. The distance ∥ f − sn+1( f )∥L2(Iq) is bounded as

∥ f − sn+1( f )∥L2(Iq) ≤

⎛

⎝
∞∑

j=n+1

ρ2 j

⎞

⎠
1/2

≤ ρn+1
√

1 − ρ2
.

By definition, the Chebyshev coefficients of f ∈ Aρ satisfy | f̂ (k)| ≤ ρ |k|1 . Let r̃ = (r j)
∞
j=1 be defined by

r j = ρℓ, for
(

q + ℓ − 1
q

)
< j ≤

(
q + ℓ

q

)

and let r = (r j)
Q
j=1. Then, for f ∈ Aρ , 

(
f̂ (k)

)

|k|1≤n
∈ Ir ⊂RQ . Consequently, the functionals on the polynomial space 'q

n+1

are identified as functions on Ir as follows:

F
(
(ak)|k|1≤n

)
/→ F̃

⎛

⎝
∑

k1≤n

ak pk,r

⎞

⎠ .

The functionals on Aρ with which we are concerned are functionals that induce entire functions of some type v by this 
process.

Let ṽ = (v j)
∞
j=1 be a nonnegative sequence. For any n ∈ N , let Q =

(n+q
q

)
, r = (r j)

Q
j=1; we denote the class of functionals 

Fn,ṽ on Aρ by

Fn,ṽ :=
{

F̃ : Aρ → R : ∃F ∈ B̃n,ṽ such that F̃ ( f ) = F
((

f̂ (k)
)

|k|1≤n

)
, f ∈ Aρ

}
, (3.22)

where each B̃n,ṽ is denoted as

B̃n,ṽ =

⎧
⎪⎨

⎪⎩
F : Ir → R : ∥SN(F )∥L∞(Ir) ≤

(
2π

Q

)Q /2

N Q /2 1
N!

⎛

⎝
Q∑

j=1

v jr j

⎞

⎠
N
⎫
⎪⎬

⎪⎭
.

We denote the class of functionals on Aρ in this section Fṽ as

Fṽ =
{

F̃ : Aρ → R : sup
f1≠ f2

| F̃ ( f1) − F̃ ( f2)|
∥ f1 − f2∥L2(Iq)

≤ 1, F̃ ◦ sn+1 ∈ Fn,ṽ, ∀n ∈ N

}

(3.23)
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and the metric on Fṽ is

∥F∥Fṽ = sup
f ∈Aρ

|F ( f )|, F ∈ span (Fṽ) .

We estimate the entropy of the class Fṽ × Aρ , with respect to the metric ∥ · ∥ defined by

∥ · ∥ = ∥ · ∥L2(Iq) + ∥ · ∥Fṽ .

Our main theorem in this subsection gives a bound of the entropy Hϵ
(
Fṽ × Aρ ,∥ · ∥

)
.

Theorem 3.4. Let ṽ = (v j)
∞
j=1 be denoted by

v j = 1
2e3/2πρℓ

, for
(

q + ℓ − 1
q

)
< j ≤

(
q + ℓ

q

)
, (3.24)

then for

ϵ < min

⎧
⎨

⎩
2

√
1 − ρ2

exp

(

−
ρ2 log 1

ρ

9(1 − ρ2)

)

,
2ρ

√
1 − ρ2

(
2 log 1

ρ

9(ρ−2 − 1)(q + 1)

)q+1

,
4ρq

√
1 − ρ2

⎫
⎬

⎭ , (3.25)

the entropy of Fṽ × Aρ is bounded by

Hϵ(Fṽ × Aρ ,∥ · ∥) ≤ 60q

3
√

2π
exp

{
γ q log

(
e3/2

π
+ 2e

)}
γ q log(qγ logγ ) + γ q+1 log

1
ρ

(3.26)

with

γ = 2e log 1
ϵ

q log 1
ρ

. (3.27)

Remark 3.1. At a first glance, the lower bound for the entropy of the set Fn,ṽ can be derived immediately from Theorem 3.3. 
However, in the definition of Fṽ , there is a Lipschitz condition under which we can only consider subsets of Fn,ṽ in the 
proof. These subsets do not fit our abstract framework. Therefore, we are not able to obtain a lower bound at this time. !

4. Computational issues

4.1. Generating analytic and bandlimited functions

A simple way to generate functions that are analytic on the interior of the poly-ellipse Uρ ⊂Cd:

x = x(θ) = ρ + ρ−1

2
cos(θ), y = y(θ) = ρ − ρ−1

2
sin(θ), θ ∈ (−π ,π ]d, (4.1)

is the following. We take a random sample {θ j}M
j=1 on (−π , π ]d and generate points w j = x(θ j) + iy(θ j) on Uρ . We also 

take a random sample {a j}M
j=1 from some compact subset of C. Then the function

f (z) =
M∑

j=1

a j

w j − z
+

M∑

j=1

a j

w j − z

is clearly analytic in the interior of Uρ and real-valued on [−1, 1]d . A probability density on [−1, 1]d can be obtained by 
normalizing f (x)2 to have integral equal to 1. Different choices of the random samples yield different distributions.

To generate band-limited functions on c0(C), we use a similar idea. We consider random sequences w j ∈ ℓ1, and samples 
{a j} on a complex ellipsoid, j = 1, · · · , M . For any such sequence and random sample, we have a band-limited function of 
the form

f (z) =
M∑

j=1

a j exp(iz · w j) +
M∑

j=1

a j exp(−iz · w j),

which are real-valued for real sequences z.
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4.2. Generating ϵ-nets on ellipsoids

We note first that for any norm ∥ · ∥ on Rd , the ellipsoid B(x0, r) centered at x0 is parametrized by

x j = x0, j + r j y j,

where y = (y j) belongs to the unit ball B(0, 1). Therefore, it is enough to generate a net for this ball; the net on the 
ellipsoid can be generated by appropriate scaling. Accordingly, we describe the generation of an ϵ-net for B(0, 1).

In [4, Proof of Lemma 7.1], we have proved that if δ ∈ (0, 1),

M ≥ (4/ϵ)d log

(
(12/ϵ)d

δ

)

,

and C = {z1, · · · , zM} is a random sample from the uniform distribution on B(0, 1), then with probability exceeding 1 − δ, 
C is an ϵ/2-net for B(0, 1). To find a minimal ϵ-net, we use a greedy algorithm: start with C = {z1}, and for j = 2, · · · , M , 
add the point z j to C if dist(C, z j) ≥ ϵ/2. Then clearly, C is an ϵ/2-separated subset and ϵ-net of B(0, 1).

5. Proofs

This section is organized as follows. In Section 5.1, we introduce some basic lemmas on binomial coefficients, which are 
used multiple times in the rest of the proof. In Section 5.2, we prove Theorem 3.1. This theorem is an abstract theorem, 
which can be applied to prove the entropy of analytic and entire function classes. Section 5.3 is the proof of Theorem 3.2. 
Section 5.4 and Section 5.5 are the proof of Theorem 3.3. Section 5.6 is the proof of Theorem 3.4, which shows the entropy 
of functional classes defined in Section 3.4.

5.1. Combinatorial identities and inequalities

Lemma 5.1. Let n, d ∈N , n ≥ 1. Then we have

n∑

j=0

(
j + d − 1

d − 1

)
=

(
n + d

d

)
, (5.1)

n∑

j=0

j
(

j + d − 1
d − 1

)
= d

(
n + d
d + 1

)
,

n∑

j=1

(n − j)
(

j + d − 1
d − 1

)
=

(
n + d
d + 1

)
. (5.2)

Proof of Lemma 5.1. The identity (5.1) follows by noticing that 
(d−1

d−1

)
=

(d
d

)
= 1 and

(
j − 1 + d

d

)
+

(
j + d − 1

d − 1

)
= (n + d − 1) . . .n

d! + (n + d − 1) . . . (n + 1)

(d − 1)!

= (n + d − 1) . . . (n + 1)

(d − 1)!
(

1 + n
d

)
= (n + d) . . . (n + 1)

d!

=
(

j + d
d

)
.

The first identity in (5.2) is given by

n∑

j=0

j
(

j + d − 1
d − 1

)
=

n∑

j=0

j
( j + d − 1) . . . ( j + 1)

(d − 1)! =
n∑

j=0

( j + d − 1) . . . ( j + 1) j
d! d

=
n∑

j=0

d
(

j + d − 1
d

)
= d

(
n + d
d + 1

)
.

(5.3)

The second identity in (5.2) is a simple calculation using the first identity and (5.1). !

Lemma 5.2. Let n, d ∈N , then

1

8
√

2π(d + 1)

(
2(n + d)

d + 1

)d+1

≤
(

n + d
d + 1

)
≤ 2√

2π

(
e(n + d)

d + 1

)d+1

. (5.4)

In particular, if n has the form
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n1 = ⌊a(h + b)⌋ , n2 = ⌊a(h − b)⌋ (5.5)

for some constants a > 0, b ≥ 0 and h ≥
(

b + d
a

)
(d + 1), then

(
n1 + d
d + 1

)
≤ (ah)d+1

(d + 1)!

(
1 + 2(d + 1)(ab + d)

ah

)

(
n2 + d
d + 1

)
≥ (ah)d+1

(d + 1)!

(
1 − 2(d + 1)(ab + 1)

ah

)
.

(5.6)

Proof of Lemma 5.1. By Stirling’s approximation formula,

√
2πk

(
k
e

)k

≤ k! ≤ 2
√

2πk
(

k
e

)k

.

This gives

1
4

(
1 + d + 1

n − 1

)n−1 (
n − 1
d + 1

+ 1
)d+1

√
n + d

2π(d + 1)(n − 1)
≤

(
n + d
d + 1

)

≤2
(

1 + d + 1
n − 1

)n−1 (
n − 1
d + 1

+ 1
)d+1

√
n + d

2π(d + 1)(n − 1)

(5.7)

and hence

1

8
√

2π(d + 1)

(
2(n + d)

d + 1

)d+1

≤
(

n + d
d + 1

)
≤ 2√

2π

(
e(n + d)

d + 1

)d+1

.

Suppose now

n1 = ⌊a(h + b)⌋ ,

then
(

n1 + d
d + 1

)
≤ (ah + ab + d) . . . (ah + ab)

(d + 1)! ≤ (ah)d+1

(d + 1)!

(
1 + ab + d

ah

)d+1

.

Since h ≥
(

b + d
a

)
(d + 1), we have

ab + d
ah

≤ 1
d + 1

,

then
(

n1 + d
d + 1

)
≤ (ah)d+1

(d + 1)!

(
1 + 2(d + 1)(ab + d)

ah

)
.

This proves the upper bound in (5.6).
On the other hand, h ≥

(
b + 1

a

)
(d + 1), hence

(
n2 + d
d + 1

)
≥ (ah − ab + d − 1) . . . (ah − ab − 1)

(d + 1)! ≥ (ah)d+1

(d + 1)!

(
1 − ab + 1

ah

)d+1

.

Similarly, for h ≥
(

b + d
a

)
(d + 1), we have

(
n2 + d
d + 1

)
≥ (ah)d+1

(d + 1)!

(
1 − 2(d + 1)(ab + 1)

ah

)

This proves the lower bound in (5.6). !

Remark 5.1. We will use the following estimate without explicit reference many times in the following proofs.

xα − log x ≥ (1/α) log(eα), x,α > 0. (5.8)

This can be easily verified by computing the minimum of the function y /→ eαy − y, y ∈R.
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5.2. Proof of Theorem 3.1

The proof of Theorem 3.1 requires the following lemma [3, Proposition 1.3].

Lemma 5.3. Let d ∈N , (Y , ∥ · ∥Y ) be a d-dimensional normed linear space, and Br = {x ∈ Y : ∥x∥ ≤ r}. Then

d log(r/(2ϵ)) ≤ C2ϵ(Br,∥ · ∥Y ) ≤ Hϵ(B,∥ · ∥Y ) ≤ d log (max(3r/ϵ,1)) . (5.9)

Proof of Theorem 3.1. In this proof, observe

K j =
{

g ∈ X j : ∥g∥ ≤ * j
}
.

Let C j be an η1 = AM,pϵ

2M1/p -net for each K j , j = 0, · · · , M − 1. Then it is easily verified that 
∏M−1

j=0 C j is an (AM,pϵ/2)-net for 
∏M−1

j=1 K j . Therefore, (3.5) shows that T −1
M (

∏M−1
j=0 C j) is an ϵ-net for K with respect to the norm of X . Since the cardinality 

of T −1
M (

∏M−1
j=0 C j) is the same as that of 

∏M−1
j=0 C j , it follows that

Hϵ(K, X) ≤
M∑

j=0

Hη1(K j, X).

Since each K j is a ball of radius * j in the b j -dimensional space X j , Lemma 5.3 leads to

Hϵ(K, X) ≤
M∑

j=0

b j log
(
max

(
3* j/η1,1

))
.

This proves the second inequality in (3.7).
The proof of the first inequality in (3.7) is similar. We let η1 = 2ϵ/B N,r and let C̃ j be the maximal η1-separated subset 

of each K j , j = 0, · · · , N − 1. Then 
∏N−1

j=0 C̃ j is an η1-separated subset of K̃N , and hence, (3.5) shows that T −1(
∏N−1

j=0 C̃ j)

an 2ϵ = η1 B N,r -separated subset of K. The cardinality of T −1(
∏N−1

j=0 C̃ j) is the same as that of 
∏N−1

j=0 C̃ j . Lemma 5.3 then 
shows that

Hϵ(K, X) ≥
N−1∑

j=0

C2ϵ(K j, X) ≥
N−1∑

j=0

b j log
(

* j

2B N,rϵ

)
.

This proves the first equation in (3.7). !

5.3. Proof of Theorem 3.2

In this subsection, we apply Theorem 3.1 with p = r = 2 to give the proof of Theorem 3.2. In this case, X = L2(Iq), 
X j = span{pk : |k|1 = j}, {*n}∞n=0 = {ρn}∞n=0 and K = Aρ .

Moreover, for each n ∈N and each f ∈
n−1⊕

j=0
X j ,

∥Tn( f )∥',2,n =
∣∣∣
(∥∥Proj0( f )

∥∥
L2(Iq)

, . . . ,
∥∥Projn−1( f )

∥∥
L2(Iq)

)∣∣∣
2

=

⎛

⎜⎝
n−1∑

j=0

∥∥∥∥∥∥

∑

|k|1= j

f̂ (k)pk

∥∥∥∥∥∥

2

L2(Iq)

⎞

⎟⎠

1/2

= ∥ f ∥L2(Iq).

Therefore, An,2 = Bn,2 = 1.

Proof of Theorem 3.2. In order to apply Theorem 3.1, we need to find an integer larger than N (ϵ/2) (cf. (3.8)), which is 
the solution of the following inequalities:

∞∑

n=N

ρ2n = ρ2N

1 − ρ2 <
ϵ2

4
≤ ρ2N−2

1 − ρ2 =
∞∑

n=N−1

ρ2n.
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It gives

N (ϵ/2) =

⎢⎢⎢⎣
log 2

ϵ + log 1√
1−ρ2

log 1
ρ

⎥⎥⎥⎦ + 1.

Now we estimate the bound in (3.1). For simplicity, write

N1 =

⎢⎢⎢⎣
log 2

ϵ + log 1√
1−ρ2

log 1
ρ

⎥⎥⎥⎦ . (5.10)

Then we can apply the second inequality in (3.1) to M = N1 + 1. For each n = 0, . . . , N1 − 1,

log
(

6*n
√

N1 + 1
ϵ

)
= log

(
6
√

N1 + 1ρn

ϵ

)
≤ log

⎛

⎜⎝
6
√

N1 + 1ρn

2 ρN1+1
√

1−ρ2

⎞

⎟⎠ ≤ log
(

3ρ−1
√

(N1 + 1)(1 − ρ2)ρn−N1

)
.

Hence, by Theorem 3.1 and our condition on ϵ ,

Hϵ
(
Aρ ,∥ · ∥L2(Iq)

)
≤

N1∑

n=0

(
n + q − 1

q − 1

)(
1
2

log(N1 + 1) + log
(

3ρ−1
√

(1 − ρ2)

)
+ (N1 − n) log

1
ρ

)
. (5.11)

By Lemma 5.1,

Hϵ(Aρ ,∥ · ∥L2(Iq)) ≤
(

N1 + q
q + 1

)
log

1
ρ

+
(

N1 + q
q

)
1
2

log
(

9(ρ−2 − 1)(N1 + 1)
)

. (5.12)

Consider the upper bound in (5.12). For ϵ <
2ρ

√
1 − ρ2

(
2 log 1

ρ

9(ρ−2 − 1)(q + 1)

)q+1

, we have

N1 + 1 ≥
log 2

ϵ + log 1√
1−ρ2

log 1
ρ

≥ q + 1

log 1
ρ

log
9(ρ−2 − 1)(q + 1)

2 log 1
ρ

.

Taking α = N1

q + 1
log

1
ρ

and α′ = log
9(ρ−2 − 1)(q + 1)

2 log 1
ρ

in the trivial inequality

α ≥ 1
2
(log(2α) + α′), α ≥ α′ > 0,

we have

N1

q + 1
log

1
ρ

≥ 1
2

log

(
9(ρ−2 − 1)(q + 1)

log 1
ρ

N1 + 1
q + 1

log
1
ρ

)

= 1
2

log
(

9(N1 + 1)(ρ−2 − 1)
)

.

Hence, (5.12) leads to

Hϵ(Aρ ,∥ · ∥L2(Iq)) ≤ 2√
2π

(
e(N1 + q)

q + 1

)q+1

log
1
ρ

+ 2√
2π

(
e(N1 + q)

q

)q

× 1
2

log
(

9(N1 + 1)(1 − ρ2)
)

≤ 2√
2π

(
e(N1 + q)

q + 1

)q+1

log
1
ρ

+ 2√
2π

(
e(N1 + q)

q + 1

)q (
q + 1

q

)q N1 + q
q + 1

log
1
ρ

≤ 2√
2π

(
e(N1 + q)

q + 1

)q+1

log
1
ρ

+ 2√
2π

(
e(N1 + q)

q + 1

)q

e
N1 + q
q + 1

log
1
ρ

≤4eq+1
√

2π

(
N1 + q
q + 1

)q+1

log
1
ρ

.

Involving our choice of N1 (5.10) in this formula,

Hϵ(Aρ ,∥ · ∥L2(Iq)) ≤ 4eq+1
√

2π

⎛

⎜⎜⎝1 +
log

(
2ρ√
1−ρ2

1
ϵ

)

(q + 1) log 1
ρ

⎞

⎟⎟⎠

q+1
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Now we prove the asymptotic relation. Applying (5.6) with h ← log 1
ϵ to (5.12), and noticing that 

(N1+q
q

)
=

(N1+q
q+1

) q+1
N1

, 
then for ϵ sufficiently small,

Hϵ(Aρ ,∥ · ∥L2(Iq)) ≤

log 1
ρ

(q + 1)!

(
log 1

ϵ

log 1
ρ

)q+1

⎛

⎜⎜⎝1 +
2(q + 1)

(
log 2√

1−ρ2
+ q log 1

ρ

)

log 1
ϵ

⎞

⎟⎟⎠

(

1 + (q + 1) log
(
9(ρ−2 − 1)(N1 + 1)

)

2N1

)

.

Bounding 1/N1 by 
(

log 1
ϵ

log 1
ρ

− 1
)−1

and log(N1 + 1) by log log 1
ϵ , we get

Hϵ(Aρ ,∥ · ∥L2(Iq))

≤
log 1

ρ

(q + 1)!

(
log 1

ϵ

log 1
ρ

)q+1

⎛

⎜⎜⎝1 +
2(q + 1)

(
log 2√

1−ρ2
+ q log 1

ρ

)

log 1
ϵ

⎞

⎟⎟⎠

(

1 + (q + 1)
log 1

ρ

log 1
ϵ

(
log log

1
ϵ

+ log(9(ρ−2 − 1))

))

≤
log 1

ρ

(q + 1)!

(
log 1

ϵ

log 1
ρ

)q+1

⎛

⎜⎜⎝1 +
2(q + 1)

(
log 2√

1−ρ2
+ q log 1

ρ

)

log 1
ϵ

+ 2(q + 1)
log 1

ρ

log 1
ϵ

(
log log

1
ϵ

+ log(9(ρ−2 − 1))

)
⎞

⎟⎟⎠

=
log 1

ρ

(q + 1)!

(
log 1

ϵ

log 1
ρ

)q+1
⎡

⎣1 + 2(q + 1)
log 1

ρ

log 1
ϵ

⎛

⎝

⎛

⎝
log 2√

1−ρ2

log 1
ρ

+ q

⎞

⎠ +
(

log log
1
ϵ

+ log(36ρ2) − 2 log
2

√
1 − ρ2

)⎞

⎠

⎤

⎦

<
log 1

ρ

(q + 1)!

(
log 1

ϵ

log 1
ρ

)q+1
⎡

⎣1 + 2(q + 1)
log 1

ρ

log 1
ϵ

⎛

⎝log log
1
ϵ

+
log 2√

1−ρ2

log 1
ρ

+ q + 4

⎞

⎠

⎤

⎦ .

Next, we prove the lower bound; for this purpose, we chose N2 to be as large as we can under the restriction log
(

δN2
2ϵ

)
=

log
(

ρN2

2ϵ

)
≥ 0.

Solving the inequalities ρN2+1 < 2ϵ ≤ ρN2 , we get

N2 =
⌊

log 1
2ϵ

log 1
ρ

⌋

− 1. (5.13)

Since 2ϵ ≤ ρN2 , we have

log
(

ρn

2ϵ

)
≥ log

(
ρn

ρN2

)
≥ (N2 − n)

(
n + q − 1

q − 1

)
log

1
ρ

, n ≤ N2.

Now by Theorem 3.1 and (5.3),

Hϵ(Aρ ,∥ · ∥L2(Iq)) ≥
(

N2 + q
q + 1

)
log

1
ρ

. (5.14)

Similarly as before, involving N2 =
⌊

log 1
2ϵ

log 1
ρ

⌋
in (5.14), using (5.4),

Hϵ(Aρ ,∥ · ∥L2(Iq)) ≥ 2q+1

8
√

2π(q + 1)

⎛

⎝1 + log ρ2

2ϵ

(q + 1) log 1
ρ

⎞

⎠
q+1

.

This completes the proof of (3.11).
Consider the asymptotic relation. For ϵ sufficiently small,

Hϵ(Aρ ,∥ · ∥L2(Iq)) ≥
(

N2 + q
q + 1

)
log

1
ρ

≥
log 1

ρ

(q + 1)!

(
log 1

ϵ

log 1
ρ

)q+1 (

1 −
2(q + 1) log 2

ρ

log 1
ϵ

)

.

The two inequalities prove (3.13). !
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5.4. Proof of Theorem 3.3: upper bound

As in the previous subsection, we apply Theorem 3.1 to give the proof. We recall the condition (3.17) relating Q , τ , and 
ϵ .

Proof. For the upper bound, we apply Theorem 3.1 with p = 1, X = L∞(Ir), X j = span{pk,r : |k|1 = j},

*N = +(N) = C N Q /2 τ N

N! , N = 0,1, . . .

and K = BQ .

In this case, for F ∈
n−1⊕

j=0
X j ,

∥Tn(F )∥',1,n =
n−1∑

k=0

∥∥Projk(F )
∥∥

L∞(Ir)
≥ ∥F∥L∞(Ir),

which means we can take An,1 = 1 for each n ∈N . Now we only need to find a proper M ≥ N (ϵ/2) to apply Theorem 3.1.
To estimate the sum of +(N), we investigate the decay of this sequence.

+(N + 1)

+(N)
=

(
N + 1

N

)Q /2

(N + 1)−1τ = τ

N + 1

((
1 + 1

N

)N
) Q

2N

≤ τ

N + 1
exp

(
Q

2N

)
.

Then for N ≥ Q / 
(

log
(

Q
2τ

))
,

+(N + 1)

+(N)
≤

τ log
(

Q
2τ

)

Q
exp

⎛

⎝
log

(
Q
2τ

)

2

⎞

⎠ ≤ τ

Q
log

(
Q
2τ

)√
Q
2τ

≤ τ

Q

(√
Q
2τ

)2

= 1
2

and consequently

∞∑

N=M+1

+(N) ≤ 2+(M + 1), M ≥ Q /

(
log

(
Q
2τ

))
. (5.15)

This enables us to find a proper N1 ≥ N (ϵ/2). To do this, we only need to find a proper integer N1 with 2+(N1 + 1) ≤ ϵ/2. 
Applying Stirling’s estimation, we have for any M > Q −1

2 and M0 = M − Q −1
2 ,

2+(M + 1) ≤2C(M + 1)Q /2τ M+1 1√
2π(M + 1)

(
e

M + 1

)M+1

≤2C(M + 1)
Q −1

2

(
eτ

M + 1

)M+1

≤ 2C
(

eτ
M0 + 1

)M0+1

(eτ )
Q −1

2 .

So it suffices to find M0 such that

2C
(

eτ
M0 + 1

)M0+1

(eτ )
Q −1

2 ≤ ϵ/2.

This inequality is equivalent to the inequality

M0 + 1
eτ

log
(

M0 + 1
eτ

)
≥

log 4
ϵ + log

(
C(eτ )

Q −1
2

)

eτ
.

Under the condition that

ϵ ≤
(

2πeτ
Q

)Q /2 4
(eτ )1/2 exp(e2τ )

,

we have

M0 + 1
eτ

≥ 2

(
log 4

ϵ + Q
2 log 2eπτ

Q

)
(eτ )−1

log
(

log 4
ϵ + Q

2 log 2eπτ
Q

)
− log(eτ )
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for any

M0 ≥ 2
log 4

ϵ + Q
2 log 2eπτ

Q

log
(

log 4
ϵ + Q

2 log 2eπτ
Q

)
− log(eτ )

− 1. (5.16)

Note x ≥ 2y
log y ⇒ x log x ≥ y for all y > e, we conclude

M0 + 1
eτ

log
(

M0 + 1
eτ

)
≥

log 4
ϵ + Q

2 log
(

2eπτ
Q

)

eτ

holds true for

ϵ <

(
2πeτ

Q

)Q /2 4
(eτ )1/2 exp(e2τ )

.

Then 2+ 
(

M0 + Q −1
2 + 1

)
≤ ϵ/2 for M0 satisfying (5.16).

Therefore, in order to make 
∞∑

N=N1+1
+(N) ≤ ϵ/2 hold true, it suffices to take

N1 =

⎢⎢⎢⎣2
log 4

ϵ + Q
2 log 2eπτ

Q

log
(

log 4
ϵ + Q

2 log 2eπτ
Q

)
− log(eτ )

+ Q − 1
2

⎥⎥⎥⎦ , (5.17)

then N1 + 1 is a proper integer for which Theorem 3.1 can be applied. Now we use Stirling’s approximation to bound +(N)

by

C N Q /2 τ N

N! ≤ C(eτ )N
(

1
N

)N−Q /2

≤ C(eτ )N (N1 + 1)Q /2, N ≤ N1 + 1

and notice that

6C(eτ )N (N1 + 1)Q /2(N1 + 1)

ϵ
≥6(eτ )N

(
2π

Q

)Q /2

(Q /2)Q /2+1
(

Q
2πeτ

)Q /2 (eτ )1/2 exp(e2τ )

4

≥6(eτ )Nπ Q /2eQ /4 (eτ )1/2 exp(e2τ )

4
> 1.

Therefore,

log
(

max
{

6+(N)(N1 + 1)

ϵ
,1

})
≤ log

(
6C(eτ )N (N1 + 1)Q /2+1

ϵ

)

=
(

log
6C
ϵ

+ N log(eτ ) + Q + 2
2

log(N1 + 1)

)

and we can apply Lemma 5.1 to get

Hϵ
(
BQ ,∥ · ∥L∞(Ir)

)
≤

N1∑

N=0

(
N + Q − 1

Q − 1

)(
log

6C
ϵ

+ N log(eτ ) + Q + 2
2

log(N1 + 1)

)

≤Q
(

N1 + Q
Q + 1

)
log(eτ ) +

(
N1 + Q

Q

)(
log

6C
ϵ

+ Q + 2
2

log(N1 + 1)

)
.

(5.18)

Observing
(

N1 + Q
Q + 1

)
Q < N1

(
N1 + Q

Q

)
,

Hϵ
(
BQ ,∥ · ∥L∞(Ir)

)
≤

(
N1 + Q

Q

)(
N1 log(eτ ) + log

6C
ϵ

+ Q + 2
2

log(N1 + 1)

)
. (5.19)

Next, we express the bound (5.19) in terms of ϵ . We will apply Lemma 5.2.
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In this proof only, let

B = log

(
4
ϵ

(
2eπτ

Q

) Q
2
)

,

then

N1 =
⌊

2B
log B − log(eτ )

+ Q − 1
2

⌋
≥ 2e2 + Q − 1

2
.

Now we can apply (5.4) to conclude

Hϵ
(
BQ ,∥ · ∥L∞(Ir)

)
≤ 2√

2π

(
e(N1 + Q )

Q

)Q (
N1 log(eτ ) + log

6C
ϵ

+ Q + 2
2

log(N1 + 1)

)

≤ 2√
2π

eQ 2Q

Q Q

(
B

log B − log(eτ )
+ 3Q

4

)Q

×
[(

2
B

log B − log(eτ )
+ Q − 1

2

)
log(eτ ) + B + 1 − Q

2
log(eτ ) + Q + 2

2
log

(
2B

log B − log(eτ )
+ Q + 1

2

)]
.

Bounding

B + 1 − Q
2

log(eτ ) ≤
(

2B
log B − log eτ

+ 3Q
2

)
log B − log eτ

2

and

Q + 2
2

log
(

2B
log B − log(eτ )

+ Q + 1
2

)
≤

(
3 + 3Q

2

)
× 1

3

(
log(2B) + log

Q + 1
2

)

≤
(

2B
log B − log(eτ )

+ 3Q
2

)
× 1

3

(
log(2B) + log

Q + 1
2

)
,

we have

Hϵ
(
BQ ,∥ · ∥L∞(Ir)

)
≤ 2√

2π

(
2e
Q

)Q (
B

log B − log(eτ )
+ 3Q

4

)Q

×
(

2B
log B − log(eτ )

+ 3Q
2

)[
log(eτ ) + log B − log(eτ )

2
+ 1

3

(
log 2B + log

Q + 1
2

)]

≤ 2

3
√

2π

(
2e
Q

)Q
⎛

⎝ log 4
ϵ + Q

2 log 2eπτ
Q

log
(

log 4
ϵ + Q

2 log 2eπτ
Q

)
− log(eτ )

+ 3Q
4

⎞

⎠
Q +1 (

7 log log
1
ϵ

+ 2 log(Q + 1) + 6 log(eτ )

)
.

Finally, consider the asymptotic relation of the bound when ϵ → 0. A simple observation shows

N1 = 2
log 1

ϵ

log log 1
ϵ

(1 + o(1))

as ϵ → 0.
Then (5.19) gives

Hϵ
(
BQ ,∥ · ∥L∞(Ir)

)
≤ (N1 + Q )Q

Q !

(
2 log

1
ϵ

)
(1 + o(1))

≤ 1
Q !

(

(1 + o(1))
2 log 1

ϵ

log log 1
ϵ

)Q (
2 log

1
ϵ

)
(1 + o(1))

≤ 1
Q !

(
2 log 1

ϵ

)Q +1

(
log log 1

ϵ

)Q (1 + o(1)). !
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5.5. Proof of Theorem 3.3: lower bound

In this section, we consider the lower bound. As in the last subsection, we apply Theorem 3.1 with p = 1, X = L∞(Ir), 
X j = span{pk,r : |k|1 = j},

*N = +(N) = C N Q /2 τ N

N! , N = 0,1, . . .

and K = BQ . We recall also the condition (3.19).

Proof. For Chebyshev polynomials, by [6, Section 12, Chapter 2], we have

∥Sn(F )∥L∞(Ir) ≤ (logn + 1)Q ∥F∥L∞(Ir), n ∈N.

Then for F ∈
n−1⊕

j=0
X j ,

∥Tn(F )∥',1,n =
n−1∑

k=0

∥∥Projk(F )
∥∥

L∞(Ir)
≤ n(log n + 1)Q ∥F∥L∞(Ir), n ≥ 1,

which means we can take Bn,1 = n(log n + 1)Q for each n ∈N . Now we only need to find a proper N2 to apply Theorem 3.1.
Like in the proof of Theorem 3.2, our principle of choosing N2 is finding it as large as we can under the restriction

log
(

+(N2)

2(N2 + 1)(log N2 + 1)Q ϵ

)
≥ 0.

To find a solution of
+(N)

2(N + 1)(log N + 1)Q ≥ ϵ,

we make the Stirling’s estimation

+(N) ≥ C N Q /2τ N 1

2
√

2π N

( e
N

)N
= C(eτ )N

2
√

2π

(
1
N

)N− Q −1
2

:= +0(N).

Then

+(N)

2(N + 1)(log N)Q ≥ +0(N)

2(N + 1)(log N)Q = C(eτ )−
1
2

2
√

2π

(eτ
N

)N+ 1
2
(

N
(log N)2

)Q /2 1
N + 1

≥ C

4
√

2πeτ

(eτ
N

)N+ 1
2
.

In this proof only, let

B = log
(

C

4
√

2πeτϵ

)
,

then it suffices to find a solution of

eB
(eτ

N

)N+ 1
2 ≥ 1.

Taking logarithms on both sides, we conclude it suffices to solve
(

N + 1
2

)
log

N
eτ

≤ B. (5.20)

Let

N2 =
⌊

B
log B − log(eτ )

− 1
2

⌋
. (5.21)

Note x ≤ y
log y ⇒ x log x ≤ y for all y ≥ e, and it is clear that B

eτ ≥ e under the condition that

ϵ ≤
(

2π

Q

)Q /2 1

4
√

2πeτ
ξ

−2ξτ
τ ≤ 1

4
√

2πeτ
exp(−e2τ )

(
2π

Q

)Q /2

,

227



K. Doctor, T. Mao and H. Mhaskar Applied Numerical Mathematics 200 (2024) 209–235

then

N2 + 1
2

eτ
log

N2 + 1
2

eτ
≤ B

eτ
.

Consequently, N2 is a solution of (5.20), hence, a solution of

+(N)

2(N + 1)(log N)Q ≥ ϵ.

Now

+(N)

2ϵ(N2 + 1) log N2
≥ +0(N)

2ϵ(N2 + 1)(log N2 + 1)Q = eB
(eτ

N

)N− Q −1
2

(log N2 + 1)−Q .

Together with Theorem 3.1,

Hϵ
(
BQ ,∥ · ∥L∞(Ir)

)
≥

N2∑

N=0

(
N + Q − 1

Q − 1

)
log

(

eB
(eτ

N

)N− Q −1
2

(log N2 + 1)−Q

)

=
N2∑

N=0

(
N + Q − 1

Q − 1

)[

log

(

eB
(eτ

N

)N+ 1
2

)

+ Q
2

log
N
eτ

− Q log (log N2 + 1)

]

.

(5.22)

On one hand,

N2∑

N=0

(
N + Q − 1

Q − 1

)[
Q
2

log
N
eτ

− Q log (log N2 + 1)

]

≥
N2∑

n=⌊N2/2⌋

(
N + Q − 1

Q − 1

)
Q
2

log
N
eτ

−
(

N2 + Q
Q

)
Q log (log N2 + 1)

≥
N2∑

n=⌊N2/2⌋

(
N + Q − 1

Q − 1

)
Q
2

log
N2

3eτ
−

(
N2 + Q

Q

)
Q log (log N2 + 1)

≥1
2

(
N2 + Q

Q

)
Q
2

log
N2

3eτ
−

(
N2 + Q

Q

)
Q log (log N2 + 1)

= Q
4

(
N2 + Q

Q

)
log

N2

3eτ (log N2 + 1)4 .

In this proof only, let aτ = max{128, 3e2τ }. Since ϵ <
(

2π
Q

)Q /2
1

4
√

2πeτ
ξ

−2ξτ
τ , we have

B ≥ 2
16aτ (log aτ )4 + 2e

e
log

16aτ (log aτ )4 + 2e
e

.

For y ≥ e, we have x ≥ 2y log y ⇒ x
log x ≥ y, so

B
log B − log(eτ )

≥ B
log B

≥ 16aτ (log aτ )4 + 2e
e

.

Therefore,

N2 ≥ 16aτ (log aτ )4

e
.

We have also x ≥ 16y(log y)4 ⇒ x
(log x)4 ≥ y for y ≥ 128, then

eN2

log(eN2)4 ≥ aτ ≥ 3e2τ ,

this is
N2

3eτ (log N2 + 1)4 ≥ 1.
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Consequently,

N2∑

N=0

(
N + Q − 1

Q − 1

)[
Q
2

log
N
eτ

− Q log (log N2 + 1)

]
≥ 0.

On the other hand, since eB
(

eτ
N2

)N2+ 1
2 ≥ 1, we have for N ≤ ⌊N2/2⌋,

eB
(eτ

N

)N+ 1
2 ≥

(eτ
N

)N+ 1
2
(

N2

eτ

)N2+ 1
2

=
(

N2

N

)N+ 1
2
(

N2

eτ

)N2−N

≥
(

N2

eτ

) N2
2

.

Then

Hϵ
(
BQ ,∥ · ∥L∞(Ir)

)
≥

⌊N2/2⌋∑

N=0

(
N + Q − 1

Q − 1

)
N2

2
(log N2 − log eτ ) + Q

4

(
N2 + Q

Q

)
log

N2

3eτ (log N2 + 1)4 .

By Lemma 5.1,

Hϵ
(
BQ ,∥ · ∥L∞(Ir)

)
≥ 1

2

(⌊N2/2⌋ + Q
Q

)
N2(log N2 − log eτ ) + Q

4

(
N2 + Q

Q

)
log

N2

3eτ (log N2 + 1)4 . (5.23)

Next we express the bound (5.23) in terms of ϵ . To begin with, we see that

⌊
N2

2

⌋
≥ 1

2
N2 − 1

2
≥ 1

2

(
B

log B − log(eτ )
− 1

2
− 1

)
− 1

2
= 1

2
B

log B − log(eτ )
− 5

4
.

Apply Lemma 5.2 and substitute (5.21),

Hϵ
(
BQ ,∥ · ∥L∞(Ir)

)
≥ 1

2
1

8
√

π Q

(
2(⌊N2/2⌋ + Q )

Q

)Q

N2(log N2 − log eτ )

≥ 1

16
√

π Q

(
2
Q

)Q (
1
2

B
log B − log(eτ )

− 5
4

+ Q
)Q (

B
log B − log(eτ )

− 3
2

− log(eτ )

)

≥ 1

16
√

π Q

(
1
Q

)Q
⎛

⎝
log 1

4
√

2πeτϵ
+ Q

2 log
(

2π
Q

)

log
(

log 1
4
√

2πeτϵ
+ Q

2 log
(

2π
Q

))
− log(eτ )

− 5
2

+ 2Q

⎞

⎠

Q

×

⎛

⎝
log 1

4
√

2πeτϵ
+ Q

2 log
(

2π
Q

)

log
(

log 1
4
√

2πeτϵ
+ Q

2 log
(

2π
Q

))
− log(eτ )

− 3
2

− log(eτ )

⎞

⎠ .

For the asymptotic relation of the bound when ϵ → 0, a simple observation shows

N2 = log 1
ϵ

log log 1
ϵ

(1 + o(1))

as ϵ → 0. Similarly as before, (5.23) gives

Hϵ
(
BQ ,∥ · ∥L∞(Ir)

)
≥1

2
(⌊N2/2⌋)Q

Q !
log 1

ϵ

log log 1
ϵ

(

log
log 1

ϵ

log log 1
ϵ

)

(1 + o(1))

≥ 1
2Q !

(
log 1

ϵ

2 log log 1
ϵ

)Q (
log 1

ϵ

log log 1
ϵ

)(
log log

1
ϵ

− log log log
1
ϵ

)
(1 + o(1))

≥ 1
2Q !

(
log 1

ϵ

2 log log 1
ϵ

)Q (
log

1
ϵ

)
(1 + o(1)).

This proves (3.21). !
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5.6. Proof of Theorem 3.4

Proof. Since ϵ <

√
1−ρ2

4 ρq , by Theorem 3.2, the ϵ/2-entropy of Aρ can be bounded by

Hϵ/2(Aρ ,∥ · ∥L2(Iq)) ≤ 4eq+1
√

2π

⎛

⎜⎜⎝1 +
log

(
2ρ√
1−ρ2

2
ϵ

)

(q + 1) log 1
ρ

⎞

⎟⎟⎠

q+1

log
1
ρ

≤ 4(2e)q+1
√

2π

(
log 1

ϵ

(q + 1) log 1
ρ

)q+1

log
1
ρ

. (5.24)

Consider the upper bound of the ϵ/2-entropy of F . By taking n as the integer N1 in the proof of Theorem 3.2,

n =

⎢⎢⎢⎣
log 1

ϵ + log 4√
1−ρ2

log 1
ρ

⎥⎥⎥⎦ ,

we get from there that ∥ f − sn+1( f )∥L2(Iq) ≤ ϵ/4 holds for all f ∈ Aρ . Now n is fixed in the rest of the proof. For conve-

nience, denote τ =
Q∑

j=1
v jr j . Then τ = Q

2e3/2π
.

In this case,
∥∥∥ F̃ − F̃ ◦ sn+1

∥∥∥ = sup
f ∈Aρ

∥∥∥ F̃ ( f ) − F̃ (sn+1( f ))
∥∥∥ ≤ sup

f ∈Aρ

∥ f − sn+1( f )∥L2(Iq) ≤ ϵ/4.

Thus, any ϵ/4-cover of the set {F ◦ sn+1 : F̃ ∈ F} ⊂ F is an ϵ/2-cover of F .
The map F̃ /→ F denoted by

F̃ ( f ) = F
((

f̂ (k)
)

|k|1≤n

)
, f ∈ Aρ

is an isometry from {F ◦ sn+1 : F̃ ∈ F} ⊂ F to B̃n with the L∞(Ir) norm. Therefore, for the entropy of the former, we only 
need to consider the entropy of B̃n .

Therefore, the ϵ-entropy of F × Aρ is bounded by

Hϵ(F × Aρ ,∥ · ∥) ≤ Hϵ/2(Aρ ,∥ · ∥L2(Iq)) + Hϵ/4(B̃n,∥ · ∥L∞(Ir)). (5.25)

Let

η = min

{
ϵ

4
,

(
2πeτ

Q

)Q /2 4
(eτ )1/2 exp(e2τ )

}

.

Then using Theorem 3.2 and Theorem 3.3, we conclude

Hϵ(F × Aρ ,∥ · ∥) ≤ 4eq+1
√

2π

⎛

⎜⎜⎝1 +
log

(
2ρ√
1−ρ2

2
ϵ

)

(q + 1) log 1
ρ

⎞

⎟⎟⎠

q+1

log
1
ρ

+ 2

3
√

2π

(
2e
Q

)Q
⎛

⎝
log 4

η + Q
2 log 2eπτ

Q

log
(

log 4
η + Q

2 log 2eπτ
Q

)
− log(eτ )

+ 3Q
4

⎞

⎠
Q +1 (

7 log log
1
η

+ log
(
(Q + 1)2(eτ )6

))

(5.26)

with Q =
(n+q

q

)
.

Substituting τ = Q
2e3/2π

into η and noticing that Q ≫ log 1
ϵ ,

η = min

{
ϵ

4
, eQ /44

(
2
√

eπ
Q

)1/2

exp
{
−

√
e Q

2π

}}

= 4
(

2
√

eπ
Q

)1/2

exp
{
−Q

(√
e

2π
− 1

4

)}
.

Then
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log
4
η

+ Q
2

log
2eπτ

Q
= log

((
Q

2
√

eπ

)1/2

exp
{

Q
(√

e
2π

− 1
4

)}(
2eπ

Q
Q

2e3/2π

)Q /2
)

= log

((
Q

2
√

eπ

)1/2

exp
{

Q

√
e

2π

})

= e2τ + 1
2

log(eτ ).

Substituting

τ = Q
2e3/2π

and

2 log (Q + 1) + 6 log(eτ ) = log

(

(Q + 1)2
(

Q
2e3/2π

)6
)

≤ log(Q 8)

into the latter term in (5.26), we can bound this term as

2

3
√

2π

(
2e
Q

)Q
⎛

⎝
log 4

η + Q
2 log 2eπτ

Q

log
(

log 4
η + Q

2 log 2eπτ
Q

)
− log(eτ )

+ 3Q
4

⎞

⎠
Q +1 (

7 log log
1
η

+ log
(
(Q + 1)2(eτ )6

))

≤ 2

3
√

2π

(
2e
Q

)Q (
e2τ + 1

2
log(eτ ) + 3

4
Q

)Q +1

(7 log(Q log Q ) + 2 log (Q + 1) + 6 log(eτ ))

≤ 2

3
√

2π

(
2e
Q

)Q (
e2 Q

2e3/2π
+ 1

2
log

(
e

Q
2e3/2π

)
+ 3

4
Q

)Q +1 (
7 log(Q log Q ) + log(Q 8)

)

≤ 2

3
√

2π

(
2e
Q

)Q (√
e Q

2π
+ Q

4
+ 3

4
Q

)Q +1 (
7 log(Q log Q ) + log(Q 8)

)

≤ 2

3
√

2π

(
2e

(√
e

2π
+ 1

))Q (√
e

2π
+ 1

)
Q × 15 log(Q log Q )

≤ 30

3
√

2π

(
2e

(√
e

2π
+ 1

))Q (√
e

2π
+ 1

)
Q log(Q log Q ).

The fact that ϵ <

√
1−ρ2

4 ρq implies

log
1
ϵ

+ log
4

√
1 − ρ2

+ q log
1
ρ

≤ 2 log
1
ϵ

.

Then we can bound Q by (5.4) and get

Q ≤ 2√
2π

(
e(L + q)

q

)q

≤ eq

⎛

⎝
log 1

ϵ + log 4√
1−ρ2

q log 1
ρ

+ 1

⎞

⎠
q

≤
(

2e log 1
ϵ

q log 1
ρ

)q

.

Consequently,

2

3
√

2π

(
2e
Q

)Q
⎛

⎝
log 4

η + Q
2 log 2eπτ

Q

log
(

log 4
η + Q

2 log 2eπτ
Q

)
− log(eτ )

+ 3Q
4

⎞

⎠
Q +1 (

7 log log
1
η

+ log
(
(Q + 1)2(eτ )6

))

≤ 60q

3
√

2π
exp

{
γ q log

(
e3/2

π
+ 2e

)}
γ q log(qγ logγ ).
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Combining this with (5.24) and substituting the values of C and τ into the inequality,

Hϵ(F × Aρ ,∥ · ∥) ≤ 4(2e)q+1
√

2π

(
log 1

ϵ

(q + 1) log 1
ρ

)q+1

log
1
ρ

+ 60q

3
√

2π
exp

{
γ q log

(
e3/2

π
+ 2e

)}
γ q log(qγ logγ )

≤ 4√
2π

γ q+1 log
1
ρ

(
q

q + 1

)q+1

+ 60q

3
√

2π
exp

{
γ q log

(
e3/2

π
+ 2e

)}
γ q log(qγ logγ )

≤γ q+1
(

q
q + 1

)q+1

log
1
ρ

+ 60q

3
√

2π
exp

{
γ q log

(
e3/2

π
+ 2e

)}
γ q log(qγ logγ ),

where

γ = 2e log 1
ϵ

q log 1
ρ

.

This completes the proof. !

6. Conclusions

We studied the question of which algorithms and data sets are close to each other in terms of some performance metrics. 
The problem was formulated mathematically rigorously as finding an optimal ϵ-net for a tensor product of two (infinite-
dimensional) sets: one representing the data sets and one the algorithms. We solved this problem under certain simplifying 
assumptions.

Appendix A. Degree of approximation

A.1. Analytic functions

The following lemma is a straightforward consequence of the corresponding well-known one-dimensional results.

Lemma A.1. (a) If r > 0, k ∈Nd then for z ∈Cd \ Ir , we have

|pk,r(z)| ≤ (r)−k
d∏

j=1

∣∣∣z j +
√

z2
j − r2

j

∣∣∣
k j

. (A.1)

(b) If 0 < ρ < 1, f is analytic on the closure of Uρ , ∂$ρ is the boundary of $ρ and g(w) = f ((w + w−1)/2), then

f̂ (k) = 1
(2π i)d

∫

∂$ρ

g(w)

wk+1
dw. (A.2)

In particular,
∣∣∣ f̂ (k)

∣∣∣ ≤ (ρ)k max
w∈∂$ρ

|g(w)|. (A.3)

A.2. Analytic functions

Theorem A.1. Let Sn, n = 0, 1, . . . be the operators denoted in (2.12). A function f is analytic on Uρ if and only if

lim sup
n→∞

∥Sn( f )∥
1
n
L2(Iq)

≤ ρ. (A.4)

Proof of Theorem A.1. Suppose f is analytic on Uρ , then f is analytic on the closure of U1/(ρ+η) . By (A.3) and (A.2),

∥Sn( f )∥L2(Iq) =

⎛

⎝
∑

|k|1=n

∣∣∣ f̂ (k)
∣∣∣
2

⎞

⎠
1/2

≤
√(

n + q − 1
q − 1

)
(ρ + η)|k|1 max

z∈U1/(ρ+η)

| f (z)| ≤ C(η)(ρ + 2η)n.
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Thus,

lim sup
n→∞

∥Sn( f )∥1/n
L2(Iq)

≤ ρ.

Now suppose ∥Sn( f )∥L2(Iq) ≤ ρn for all n ∈N , then

∣∣∣ f̂ (k)
∣∣∣ ≤

⎛

⎝
∑

|j|1=|k|1

∣∣∣ f̂ (j)
∣∣∣
2

⎞

⎠
1/2

=
∥∥S |k|1( f )

∥∥
L2(Iq)

≤ ρ|k|1 , k ∈N.

For any z ∈ U1/ρ , let ρ ′ :=
(

max
1≤ j≤q

∣∣∣z j +
√

z2
j − 1

∣∣∣
)−1

> ρ , then (A.1) implies that

|pk(z)| ≤ max
w∈∂$ρ

|g(w)|
q∏

j=1

∣∣∣z j +
√

z2
j − 1

∣∣∣
k j

≤
q∏

j=1

(1/ρ ′)k j .

Together with (A.3),

∑

k∈Nq

∣∣∣ f̂ (k)pk(z)
∣∣∣ ≤ max

w∈∂Uρ

|g(w)|
∞∑

n=0

∑

|k|1=n

ρn

ρ ′n = max
w∈∂$ρ

|g(w)|
∞∑

n=0

(
n + q − 1

q − 1

)(
ρ

ρ ′

)n

< ∞.

Hence, f is analytic at z, which implies f is analytic on Uρ . !

A.3. Entire functions

Theorem A.2. Let Q ∈ N , v = (v1, . . . , v Q ), r = (r1, . . . , rQ ) ∈ RQ
+ , Ir =

Q∏

j=1
[−r j, r j] ⊂ RQ and 

{
pk,r

}
k∈NQ the multivariable 

Chebyshev polynomials orthonormal on Ir. Let F : CQ →C be an entire function with

sup
z∈CQ

|F (z)| ≤ exp

⎧
⎨

⎩

Q∑

j=1

v j|z j|

⎫
⎬

⎭ , (A.5)

then
∥∥∥∥∥∥

∑

|k|1=N

F̂r(k)pk,r

∥∥∥∥∥∥
L∞(Ir)

≤ 2
(

2π

Q

)Q /2

N Q /2 (v · r)N

N! . (A.6)

Conversely, if F is a function on CQ satisfying (A.6) for each r ∈RQ
+ , then we can prove it is an entire function.

Theorem A.3. Let Q ∈N , v = (v1, . . . , v Q ) ∈RQ
+ . If a function F : CQ →C satisfies (A.6) for any r ∈RQ , then for any z ∈CQ ,

sup
z∈CQ

⎛

⎜⎜⎜⎜⎝
|F (z)|

exp

{

2

(
Q∑

j=1
v j|z j|

)

(1 + η)

}

⎞

⎟⎟⎟⎟⎠
< ∞, ∀η > 0. (A.7)

Proof of Theorem A.2. First, we consider Ir = Iq as the unit cube. In this case, we write pk,r as pk for k ∈NQ .
By (A.2), we have

∣∣∣ F̂ (k)
∣∣∣ ≤ 1

kk
max
z∈Uρ

|F (z)| ≤ e|k|1 vk

kk
.

By Stirling’s approximation,

∣∣∣ F̂ (k)
∣∣∣ ≤ 2

(
√

2π)Q (k1 . . .kQ )1/2(v + η)k

k!
for some A′

η depending only on η and Q .
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Observing that

(y1 + · · · + y Q )N =
∑

∥k∥1=N

N!
k1!k2! . . .kQ !

Q∏

j=1

y
k j
j , (A.8)

we have

∥SN (F )∥L∞(I Q ) = sup
x∈Iq

∣∣∣∣∣∣

∑

|k|1=N

F̂ (k)Pk(x)

∣∣∣∣∣∣
≤

∑

|k|1=N

∣∣∣ F̂ (k)
∣∣∣ ≤ 2

(
2π

Q

)Q /2 N Q /2

N! |v|N
1 .

Now we make a change of variables. For r ∈RQ
+ , let G(z) = F (zr), then G is an entire function with

sup
z∈CQ

|G(z)| ≤ exp

⎧
⎨

⎩

Q∑

j=1

v jr j|z j|

⎫
⎬

⎭ .

Hence,
∥∥∥∥∥∥

∑

|k|1=N

Ĝ(k)pk

∥∥∥∥∥∥
L∞(Iq)

≤ 2
(

2π

Q

)Q /2

N Q /2 (v · r)N

N! ,

where

Ĝ(k) =
∫

Iq

G(x)pk(x)dx =
∫

Iq

F (r ◦ x)pk(x)v Q (x)dx =

⎛

⎝
Q∏

j=0

r j

⎞

⎠
∫

Ir

F (y)pk

(
y1

r1
, . . . ,

y Q

rQ

)
v Q ,r (y)dy.

It is known that 
{

pk,r
}

k∈NQ is denoted by

pk,r(y) = pk

(
y1

r1
, . . . ,

y Q

rQ

)
, y ∈ Ir,

hence F̂r(k) = Ĝ(k). Therefore,

∥SN (F )∥L∞(Ir) =

∥∥∥∥∥∥

∑

|k|1=N

F̂r(k)pk,r

∥∥∥∥∥∥
L∞(Ir)

≤

∥∥∥∥∥∥

∑

|k|1=N

Ĝ(k)pk

∥∥∥∥∥∥
L∞(Iq)

≤ 2
(

2π

Q

)Q /2

N Q /2 (v · r)N

N! .

This proves Theorem A.2. !

Proof of Theorem A.3. Suppose

∥SN (F )∥L∞(Ir) ≤ 2
(

2π

Q

)Q /2

N Q /2 (v · r)N

N!
holds true for every r ∈RQ .

For any z ∈CQ , take r = (|z1|, . . . , |zQ |). Since

sup
|z|=1,z∈C

∣∣∣z +
√

z2 − 1
∣∣∣

|z| ≤ 2,

by (A.1),

|pk,r(z)| ≤ 2N∥pk,r∥L∞(Ir), k ∈NQ .

With C = 2 
(

2π
Q

)Q /2
,

∑

|k|1=N

∣∣∣ F̂ (k)pk,r(z)
∣∣∣ ≤ C N Q /2 (2v · r)N

N! .

We will use Stirling’s approximation to eliminate the N Q /2 term. By Stirling’s approximation, for N ≥ Q /2,
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∑

|k|1=N

∣∣∣ F̂ (k)pk,r(z)
∣∣∣ ≤ C√

2π N
N Q /2

( e
N

)N
(2v · r)N ≤ C√

2π N

(
e

N − Q /2

)N−Q /2

eQ /2 (2v · r)N

≤ C√
2π N

2
√

2π(N − Q /2)

(N − Q /2)! eQ /2 (2v · r)N

≤ 2
(

2π

Q

)Q /2

(ev · r)Q /2 (2v · r)N−Q /2

(N − Q /2)! .

Therefore for r ∈RQ
≥1, 

∑

|k|1<Q /2

∣∣∣ F̂ (k)pk,r(z)
∣∣∣ is bounded by P1 (2v · r) with P1 a polynomial of degree Q /2 − 1 and

∑

|k|1≥Q /2

∣∣∣ F̂ (k)pk,r(z)
∣∣∣ ≤

∞∑

N=Q /2

2C (ev · r)Q /2 (2v · r)N−Q /2

(N − Q /2)! =
∞∑

N=0

2C (ev · r)Q /2 (2v · r)N

N!

= 2C (ev · r)Q /2 exp (2v · r) ≤ 4
(

2π

Q

)Q /2

(ev · r)Q /2 exp (2v · r) .

Now we can bound F (z) by

|F (z)| ≤
∑

|k|1<Q /2

∣∣∣ F̂ (k)pk,r(z)
∣∣∣ +

∑

|k|1≥Q /2

∣∣∣ F̂ (k)pk,r(z)
∣∣∣ ≤ P1 (2v · r) + P2 (2v · r)exp (2v · r)

with P2(x) = 4 
(

2π
Q

)Q /2
(ex)Q /2.

Since P1 and P2 are polynomials of degree at most Q , we conclude for any η > 0, there exists some constant Aη

depending on η and Q such that

|F (z)| ≤ Aη exp (2(v + η) · r(1 + η)) = Aη exp

⎛

⎝

⎛

⎝2
Q∑

j=1

(v j + η)|z j|

⎞

⎠ (1 + η)

⎞

⎠ . !
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