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1. Introduction

In many high-impact applications of machine learning, data is limited and training is challenging. For these applications,
it is desirable to have predictions with the highest assurances from the available data while minimizing uncertainty. In
particular, it is important to ensure the quality of the output of a machine learning algorithm as well as its reliability
compared to the complexity of the algorithm used. The objective of this work is to develop a systematic and mathematically
rigorous approach to decide what is the complexity level of the algorithm that is sufficient in the task domain to produce
the desired performance, reliability, and uncertainty.

An attractive idea in this context is that of Rashomon curves [5,1]. The question is the following: if one finds that an
algorithm with a certain complexity level works well on a task on a data set, are there likely to be simpler algorithms that
will also work within a certain tolerance of this algorithm? More generally, which class of algorithms can be expected to
behave similarly on which kind of data sets? Unfortunately, there seems to be no mathematically precise formulation of this
problem. Our purpose in this paper is to initiate such a rigorous study.
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Fig. 1. Different data sets may come from the same probability distribution on a domain. We consider PP to be a compact subset of such distributions. A
is the set of algorithms of interest to us, and F* is the function that maps a given probability distribution and an algorithm to an m-dimensional vector of
quantities of interest.

Intuitively, we wish to obtain a grid on the set of data sets and algorithms, i.e., a finite set of data sets and algorithms
so that for every algorithm of interest on every data set of interest, there is some point on the grid that is close to the data
set and algorithm, as measured by some parameters. To make this more precise, we clarify what the terms “data sets” and
“algorithms” mean for our purposes.

We will assume that each data set is a random sample of an unknown probability distribution in a domain. To be precise,
we assume that each distribution is supported on some compact subset of an ambient Euclidean space of dimension q,
without loss of generality, on [—1, 1]9. Of course, different samples may come from the same distribution, in which case
there is no theoretical difference between two such data sets. On the other hand, problems of sample bias are sometimes
dealt with by omitting some of the components from each of these samples. Naturally, the resulting data have a different
distribution, so the reduced data set is considered in this paper to be a different data set from the original.

In view of the Riesz representation theorem and the Banach-Alaoglu theorem, the set of all probability measures is a
compact subset of the dual space (C([—1, 1]9))*. This set is an unmanageably large set representing every possible data set
that could arise. We model the set of data sets of interest by a smaller compact subset IP of the dual space (C([—1, 1]9))*.

A clear description of the meaning of the term “algorithm” and a precise mathematical definition of the term can be
found in [2, Section 1.1]. An algorithm is a function from the input space (the data set) to the output space (real numbers,
class labels, etc.) with some additional properties. As in the notion of Rashomon sets as explained in [5,1], one is not
interested in the actual algorithms themselves but more in how they perform different tasks on data sets with respect
to certain parameters such as stability, accuracy, complexity level of the algorithms, etc. The choice of these parameters
will depend upon the applications; for example, accuracy might be more important than speed in numerical applications,
while computational time might be more important in time-sensitive applications. It is unlikely that two algorithms will
match in terms of all these parameters for all data sets in question. However, if there are two algorithms (or network
architectures with different complexity levels) that lead to the same measurements of these quantities, then there is no
need to distinguish between them. The stability of an algorithm should mean that when two data sets (meaning two
probability distributions) are “close by,” then the accuracy and complexity of the algorithm on the two data sets should be
close as well. This is captured by the notion of smoothness of the algorithms considered as functions on the data sets.

We assume a set A of algorithms that act on each data set in IP. Each of these algorithms gives rise to a certain number
m of parameters. Thus, we are interested in a mapping F* : P x A — R™. Without loss of generality, we may assume m = 1
in this paper. This is represented in Fig. 1.

We do not expect two algorithms to agree on all the data sets with respect to all of these parameters, that is, we assume
that if a1,a; € A and

F*(u,a1) = F*(u,az) forallp e P = ay =a;.

This means that every a € A corresponds to a unique mapping F, on P defined by

Fo(u) =F*(n,a), peP. (11)

An algorithm a € A is defined to be stable if F, is a continuous function on P with a properly defined topology on P.

These considerations prompt us to consider a set X of continuous functions from P to R™. We will assume implicitly
that to every element F € X corresponds a (necessarily unique) algorithm a € A such that F = F; as defined in (1.1). We
will then abuse the notation and refer to F € X as an algorithm.

In this paper, we will assume that both P and X are compact metric spaces with appropriate metrics. In fact, in view
of the Ascoli theorem, X is then an equicontinuous family of functions on P. We then fix a “tolerance” € > 0, and find
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Fig. 2. The e-net for the set P x A, where A is identified with a set of functionals on IP. The problem is to estimate the minimum number of balls of
radius € to cover the set; the challenge being the fact that A is a set of functionals acting on an infinite-dimensional space P.

e-nets P, and X, for P and X, respectively. Then P x ¥¢ is an e-net for P x X. For any data set w € P and F € ¥
(equivalently, an algorithm a € A), there are ©; € Pc and F; € X¢ (equivalently, an algorithm a;) such that the behavior of
a on p is e-similar to the behavior of a; on . Thus, the problem reduces to finding a minimal €-net for P x X (or, with
our identification of the space A of algorithms with X, P x A)) as represented in Figs. 1, 2.

The major technical difficulty here is that X is a set of functions on an infinite-dimensional space rather than a finite-
dimensional Euclidean space as is usual in common machine learning problems. A simplistic idea is to obtain a finite set
of parameters for the probability distributions and to treat X as a set of functions on these. For example, if P were a set
of normal distributions, then the means and standard deviations would describe this set completely. However, in practice,
the distributions are not prescribed in terms of finitely many parameters. Indeed, a central technical challenge in machine
learning is that the distributions involved are unknown; in particular, one needs nonparametric methods to deal with these.

It is still possible to restrict ourselves to those distributions that have a smooth density function. In turn, this function
can be expanded in an orthogonal series, such as a multivariate tensor product Chebyshev polynomial expansion, and the
coefficients of this expansion can be used as parameters for the distribution. If the density functions are smooth enough,
then finitely many low-order coefficients will approximate the density well enough, and elements of X can be thought of
as functions of these low-order coefficients.

Although this simple idea reduces the problem to the case of functions on a Euclidean space, there is still a technical
problem. In order to get a good approximation to the density, one needs a large number of coefficients. The curse of
dimensionality then poses a big challenge, requiring much more detailed analysis than what is available in the literature.

The organization of this paper is as follows. In Section 2, we review the basic concepts of entropy, analytic, and entire
functions. Our main results are stated in Section 3, where we develop an abstract framework, which is then applied to
obtain estimates on entropies for certain classes of analytic and entire functions, culminating in the estimates for a class
of functionals. In Section 4, we discuss some ideas on how to generate computationally some classes of analytic and entire
functions, as well as e-nets for finite-dimensional ellipsoids, which form a theoretical backbone for our estimates. The proofs
of the results in Section 3 are given in Section 5. For the convenience of the reader, we include an Appendix, in which we
prove certain estimates on the approximation of analytic and entire functions, which motivate our definition of the classes
defined in Section 3.

2. Basic concepts

In this section, we explain the basic concepts used in this paper. Section 2.1 describes the multivariate notation. Sec-
tion 2.2 summarizes the definition of metric entropy and capacity related to the minimal number of balls of a given radius
to cover a compact set. The probability measures to be studied have densities that are analytic, while the functionals are
entire functions of exponential type defined on an infinite-dimensional sequence space. These ideas are described in Sec-
tion 2.3. Section 2.4 reviews certain basic notions regarding multivariate Chebyshev polynomials, which are used to encode
both analytic and entire functions.

2.1. Multivariate notation

In the sequel, we denote by d € N U {co} a generic dimension. Vectors will be denoted by boldface letters, for example,
X= (X1, ,Xg) € R4 The symbol || p will denote the €7 norm of the vector X. Binary operations among vectors are meant
to be in component-wise sense; e.g., Xy = (X1 Y1, -+, Xd¥d), X¥ = ]_[‘}:] xj.'j, X/y=(X1/Y1, - ,Xd4/yq). Similarly, X <y means
xj<yjfor j=1,...,d, etc. The inner product between two vectors X,y is denoted by x-y. For r > 0, we write I, = [—r,71],
and for a vector r, Iy = H?Zl[—rj, r;]. Finally, I = I1. For 0 < p < 1, the ellipse U, is defined by

Up={ze(C:|z+\/zz—1|<1/p],

3 If K is a compact subset of a metric space X and € > 0, then a finite set K¢ C X is called an e-net for K if K is covered by balls of radius € centered
at points in Ke.
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where the principal branch of the square root is chosen. With the Joukowski transformation w = z++/z> — 1, U, is mapped
onto the disc 'y = {w e C: |w| < 1/p}.

For 0 < p = (p1,..., pg) <1, the poly-ellipse U, (respectively, the poly-disc I'y) is defined by U, = H?‘:] Up; (respec-

and rectangular cells.
2.2. Entropy and capacity

The material in this section is based on [3, Chapter 15].
Let (X, | -]) be a normed linear space, K C X, and € > 0 be given.

(a) A set K c X is called an e-net for K if, for each x € K, there is at least one ye K such that [x—y|l <e.
(b) Points y1,...,ym € K are called e-separable if

lyi—yjll =€, i#].

Definition 2.1. Let (X, | - |) be a normed linear space, and let K C X be compact. For any € > 0, let 91(K, || - ||) be the
minimal value of n such that there exists an €-net for K consisting of n points. The entropy of K is defined as

He(K, || - D) =log DMe (K, || - D). (21)
Let M (K, || - ||) be the maximum value of m for which there exist m e-separable points for K. The capacity of K is defined
as

Ce(K, I~ 1) = log M (K, | - D). (2.2)

The connection between capacity and metric entropy is given in the following proposition.

Proposition 2.1. Let X be a normed linear space. For each compact set K C X and each € > 0,

Coe (K, || - 1) = He (K, | - ) = Ce (K, | - D). (2.3)

2.3. Analytic and entire functions

Definition 2.2 (Analytic functions). Let ¢ € N, p > 0, f be an analytic function on U, :={z e C1: ‘Zj + /z? - 1‘ <1/p, j=
1,...,q} if it is complex differentiable at each z € U,.

Definition 2.3. [Entire functions of exponential type] (a) Let Q € N, 7 > 0. A function F : C¢ — C is called an entire
function of exponential type 7 if

(i) F is an entire function in all of its variables, i.e., F has an absolutely convergent power series expansion

F(z) = Z akzk, zeC¢
keNQ

with constant coefficients ay € C.
(i) For any € > 0 there exists a positive number A¢ such that for all ze C2, the inequality

Q
IF@|<Acexp | (T +€)) Izl
j=1
is satisfied.
(b) If v= (vq,...,vq) € Rg, then F is said to be an entire function of exponential type v if the function z
F(z1/v1,---,zq/vq) is an entire function of exponential type 1.
(c) Let v e £1(C). A function F : cg(C) — C is called an entire function of exponential type v if, for every Q € N, the
function (zy,---,2zq) — F(z1,---,29,0,0,---) is an entire function of exponential type (v{,---,vq).
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An important example of entire functions of finite exponential type on co(C) is the mapping

zecp(C)— /exp(—iz-x)d,u(x),
where p is a probability measure supported on the infinite cube [—1, 1]°°.
2.4. Chebyshev polynomials

Let d e N.
d
vd(x):n_dl_[(l —x,%)‘”z, X=(xq,-- ,xd)eld. (2.4)
k=1

The space LP(19) will refer to the space of all f for which

1/p
/lf(x)lpvd(x)dx , if0<p<oo,
I lap =1 1] (2.5)
esssup | f(X)], if p = o0,
xeld

is finite. As usual, we will identify two functions if they are equal almost everywhere.

We denote the space of all polynomials in d variables of coordinatewise degree < n by Hﬁ.

Next, we define the Chebyshev polynomials. We define Chebyshev polynomials in the univariate case by first setting
x=cos@ for x € [—1,1] and define

Pr(%) = [ﬁcos(k@), ilfflfz 10,72, e (26)
We note that the expression pj is a polynomial of degree k in x, and the normalization is set so that
1
/ Pk(X)pj)vi(X)dx = by ;. (2.7)
-1
The multivariate Chebyshev polynomials are defined by
d
p® =[] xp). k=i, k) €29, x=(x1.++ . xg) €I, (2.8)
j=1
and satisfy
/ Pr(X)pj(X) Vg (X)dX = Sy j.- (2.9)
1d

We note that even though we have defined the Chebyshev polynomials by their values on 9, they are actually defined on
C? because they are polynomials.
Any function f e L2(I%) admits a formal expansion

f=Y" F®p. (2.10)

keNd
where the Chebyshev coefficients are defined by

fao = / f@pvaydy, kezi. (2.11)
1d
For f € L1(I%), we define the partial sums of (2.10) by
(N =Y FRp®,  Sa(HN®= Y fMpkx), neN. (212)
k|1 <n |K|1=n
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There is an important formula that relates Chebyshev expansions to Laurent expansions of meromorphic functions. We
note that for 0 < p < 1, the two branches of the Joukowski transform w =z + +/z2 — 1 map U, to the annulus p < |w| <
1/p. Hence, for a function f analytic on U, for some p > 0, the function g(w) = f((w+w~1)/2) is analytic on the annulus.
The Laurent expansion of g is given by

FO+1/2) Y Flowk +w™). (213)

k=1

Thus, the coefficients, the partial sums, and the remainder f — s;(f) can be expressed as a contour integral on the appro-
priate circles in the w plane. For multivariate functions, of course, one uses the tensor products of circles.
If r > 0, we define Chebyshev polynomials on I, by

d
Prr®) = [ | o, x/1). (2.14)

j=1
and the corresponding weights by
d -1/2
v,(x):n_d n(r? —x?) . (2.15)
j=1

Of course, one has the orthogonality relation

/ P, r(X) Pm,r (X)Vp (X)dX = Sj .- (2.16)
Ir

The Chebyshev coefficients and partial sums are defined in an obvious way and will be indicated by an extra subscript r;
for example, sy r.

3. Main results

In this section, we define compact spaces of analytic and entire functions and state our theorems about their entropies. In
Section 3.1, we encapsulate the procedure in some abstraction. The spaces for analytic functions and their entropy estimates
are given in Section 3.2. Analogous results for entire functions are given in Section 3.3. We conclude with estimates on the
entropy of functionals in Section 3.4.

3.1. Direct sums and products

Let X be a Banach space. We assume that there exists a sequence of finite-dimensional subspaces X;, j=0,1,...,

k—1 k—1 00
bj =dim(Xj), Yk = @ Xj, di =dim(Yy) = Y_ bj, such that | Y is dense in X. In particular, we assume that for any f € X,
j=0 j=0 k=0

there is a unique sequence {f; € X;}32, such that we have a formal expansion of the form f ~3; f;. (An example is that
the space X = C(I9), X; be the space 1'1‘} of g-variate polynomials of degree < j, and fj =S;_1(f), as in (2.12).) We write
Proj;(f) = f; and assume that Proj; is a continuous operator for each j. Generalizing the notation established in Section 2.4,
we define

n—1

sn(f) =Y Proj;(f), Sk(f) =Proj(f).

j=0

Let & be a compact subset of X. Then

lim supdist(f, Y,) =0.
n—oo feR

In this paper, we are interested in & such that
lim sup || f —sa ()l =0. (3.1)
n— o0 fes

More precisely, with a summable sequence {A j}?oo of positive numbers, we define
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R={feX:ISj(HI=Aj, jeN}, & =Proj;(R), En:@ﬁj. (3.2)

Let € > 0. To estimate the entropy of K, we first observe that, in view of (3.1), there exists some n € N such that
sup || f —sn(H)Il <€/2.
fer

Thus, any €/2-net of the set JNQH is an e-net of K&, and any e-net of the set £ is an e-net of JNQ,,. Thus,

He (8Rn, X) < He (R, X) < Hej2 (8, X) - (3.3)

Therefore, in order to estimate the entropy of &, we only need to estimate the entropy of ﬁn.
For this purpose, it is convenient to identify K, with a tensor product of balls.

n-1 n—1
We consider the space Xr, = [] X, and the mapping 7,(f) = (Projo(f), -+, Proj,_1(f)) from @ X; to Xp . Obvi-
j=0

j=0
ously, 7 is a one-to-one mapping. If 1 < p < oo, we may define a norm on Xy, by
I T2 ()l pn = |(IProig(HIl, - - - POl (D], - (34)
Since all the spaces involved are finite dimensional, there exist positive constants Ay p, Bp p such that
Anpl fI = ITa(O i pn < Bupl Il f € Ya. (3.5)

Next, we note that £; is a ball in finite dimensional space X;:
Ri={feX;:Ifll<Aj}, jeN. (3.6)

So, we can view ﬁn through the mapping 7, as a product of the balls &;. The entropy of this product is given in [3,
Proposition 1.3]. To summarize, the entropy of & can be estimated as in the following theorem.

Theorem 3.1. Let € > 0, 1 < p, r < oo, and we recall the notation established in (3.5), (3.6). We have

M-1 1/p A .
Zb]10g< ><He(ﬁ)<Zbﬂog(max(%,l)), (3.7)

A
= M,p

which holds for all N > 1 and

M > N(€/2) :=min{meN: ZAnge/zl. (3.8)

3.2. Spaces of analytic functions

Let ge N, p € (0,1). In view of Theorem A.1, we define the class of analytic functions by

Ap={f:1">R: [Sa(Pll2gey < p", neN}. (3.9)
The goal of this section is to prove Theorem 3.2 to estimate the entropy of A,.
We will use Theorem 3.1 with Ap2=Bn2=1, Aj=pl, bj= (“q 1) j=0,1,..., to obtain the following theorem.

Theorem 3.2.
(a) For
. 2 p?log 1 20 2log 1 o
E IV T <_9(1 - p2)> = p? (9(p—2 —D@+ 1)) ’ 10
we have

; q+1
aett [ o g(\/l sz> 1

He(Ap, I - llya9) < + log — (3.11)
e 200 2 (q—H)log; P
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(b) Fore < 1/2, we have

2 q+1
e i) = —— [ os % ) log . (312)
N Ly (19 27 +7 Og_. .
o= s am@rn | @+ Dlogl p

(c) Furthermore, for € sufficiently small, the entropy of A, satisfies

2
2q+DlogZ2  H.(A,, |- 2(q+1log 5 1 e
- B = [loglog - + —Y5 g 4] 313)
lOg € log % log % lOg € € lOg 5
(g+D)! @

3.3. Spaces of entire functions

In this section, we are interested in the class of entire functions of finite exponential type, defined in (3.16) below. We
will use Theorem 3.1 again to estimate the entropy of this class. The main difficulty in this section is keeping track of the
dependence of the dimension Q. This is important when we consider functional classes in Section 3.4.

Let Q e N,

0 27\ 22
1<1——, (== , 3.14
=T 2632y ( Q ) (3.14)
and let
TN
A(N):CNQ/zm, NeN. (3.15)

Q
For r e RS, let Iy = [[[—rj,r;j] be a subset of R<. In view of Theorem A.2 and A.3, we can define the class of entire
j=1

functions by

Bo=Bo,t)={F:Iy > R: [SN(F)ll. ) < AN), Ne N}. (3.16)
Theorem 3.3. Let (3.14) hold.

(a) Under the condition that
2 Q/2
e< 4 , (317)
Q (et)1/2exp(e?t)
the entropy of Bq defined in (3.16) satisfies

HeBo, Il i)

2 [2e\¢ log 2 + % log 2 30\ 1
<= (—) € 2 Q + = <7loglog—+log<(Q+1)2(er)6)>.
3v2r \Q log (logé + Y log 26%) —loger) 4 €
(3.18)
(b) Let
16 max{3e?t, 128} log (max{3e’t, 128})
&r = p + 2,
under the condition that
2 Q/2 1 —2&
€e<|— —_— , 3.19
- ( Q ) 4./2mwet v (319)
Q
1 Q 2
He(Bo. - | )>—*<]>Q o8 e + 108(%) > 120
€OQ, Il " lloc(Ir)) = = -z
16/ Q 1 Q 2m ) _ 2
Q log (log4 — + 3 log( 3 ) log(et) (320)
1 Q1o (27
lOg4 27rere+ 2 lOg(Q) 3
X ; o . — log(et) — 3
T
log (log YW log (@» — log(et)
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(c) The following asymptotic result holds:
)Q—H 1 (2logs
(1+0(1) =HeBa, I - L) = =5

Q! (loglog

1 (logg D

2Q1 (2 loglog%)Q
as € — 0, where the o(1) termis ~ Q loglog(1/€)/log(1/¢).

(o) (321)

3.4. Space of functionals

In this section, we are interested in estimating the entropy of a class of functionals F on A, with respect to the sup-
norm. Any functional in F can be viewed as a functional on the sequence of Chebyshev coefficients of the input function.
We will define F to be a set of functionals that are entire functions of certain exponential type as in Definition 2.3(c).

Under the assumption that the functionals are Lipschitz continuous, i.e.,

IF(f1) — F(f2)]
sup sup ———— <1
Fer hithea, If1 = f2lli2qe)

’

we conclude for any € > 0, there is some integer n such that for any F € F,
F(H) = Fnn ()| < 1f —sen(Dllzgn <€/2. A,

Consequently, the e-entropy of F is bounded by the €/2-entropy of
[Fosw: Fer}.

In turn, for any f e A, F ospp1(f) can be viewed as a function of the Chebyshev coefficients of f up to order n+ 1.
We now define the set of functionals formally. Let g € N, p <1, A, be as in Theorem 3.2. For any n € N, write
Q=Qn) = (”;rq). The distance || f — sp+1(f) |l 2(j0y is bounded as

1/2 ]
pn+

o
If =sor(Dllizgn < | Y. 07| = —F—.
j=n+1 \4 1- '02

By definition, the Chebyshev coefficients of f € A, satisfy |]‘(k)| < plKit, Let = (rj)j°.°=1 be defined by

-1 1
ri=pt, for(q+ ><j§(q+ )
q q

and let r = (rj)j.lzl, Then, for f € A, <}(k))|kl1<n e I, c RQ. Consequently, the functionals on the polynomial space Hg+1

are identified as functions on I; as follows:

F ((ak)lkhfn) > F Z Ak Pk,r

ki <n

The functionals on .4, with which we are concerned are functionals that induce entire functions of some type v by this
process.

Let V= (vj)j; be a nonnegative sequence. For any n € N, let Q = ("j]'q), r= (r]-)]Q:1; we denote the class of functionals
Fnwon A, by

Foi = {F : Ap — R: 3F € B,y such that F(f) = F <(f(k))‘k| <n) , fe Ap} , (3.22)

where each B,y is denoted as

N
- 2T Q/2 1 Q
Byg=1F: I — R: ISNF)llory) < (E) /2 E Virj

We denote the class of functionals on .4, in this section Fy as

By F(fi)—F g
Fy=1F: Ap —>R: sup Msl,Foanan,v, VneN (3.23)

fitfo 1f1 = falli2q)
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and the metric on Fy is
IFll7, = sup |F(f)l, F €span(Fy).
feA,
We estimate the entropy of the class Fy x A,, with respect to the metric | - || defined by

=1 li2gey + 1 -l 7

Our main theorem in this subsection gives a bound of the entropy He (Fy x Ap. || - II).

Theorem 3.4. Let V= (v j)j?il be denoted by

1 qg+¢—1 . (q+¢t
Vi=—, or < , 3.24
17 2632 pt f ( q ><1_< q ) G.24)

then for

2 1 1 q+1
p<log — 2 2log - 404
¢ < min p ) L ( ’ L1 (3.25)

2
N (_9(1 —0 ) A= \9pr—Da+1) T Ji-p2

the entropy of F5 x A, is bounded by

60q e3/2 11
He(Fg x Ay, |- 1D < ex { 910 (——i—Ze)} 91og(qy logy) + y 9! log — (3.26)
e(Fy oo -1l 3\/ﬁpygﬂ y"log(qy logy) +vy gp
with
2elogl
y="8e (3.27)
qug;

Remark 3.1. At a first glance, the lower bound for the entropy of the set 7,  can be derived immediately from Theorem 3.3.
However, in the definition of J5, there is a Lipschitz condition under which we can only consider subsets of 7,y in the
proof. These subsets do not fit our abstract framework. Therefore, we are not able to obtain a lower bound at this time. O
4. Computational issues

4.1. Generating analytic and bandlimited functions

A simple way to generate functions that are analytic on the interior of the poly-ellipse U, C (oLs

-1 -1

X=Xx(0) = %cos(()), y=y@) = %sin(a), 0 € (—n,n]d, (4.1)
is the following. We take a random sample {01-}?":] on (=7, )¢ and generate points w; =x(0;) +iy(@;) on U,. We also

take a random sample {a j}?/’: , from some compact subset of C. Then the function
M M

ai a;
fm=Y i Y

j=1 j=1

is clearly analytic in the interior of U, and real-valued on [-1, 119. A probability density on [—1,1]¢ can be obtained by
normalizing f(x)? to have integral equal to 1. Different choices of the random samples yield different distributions.

To generate band-limited functions on co(C), we use a similar idea. We consider random sequences w;j € ¢!, and samples
{a;} on a complex ellipsoid, j =1, .-, M. For any such sequence and random sample, we have a band-limited function of
the form

M M
f@@) = Zaj exp(iz- wj) + Za_jexp(—iz W),
j=1 j=1

which are real-valued for real sequences z.
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4.2. Generating e-nets on ellipsoids
We note first that for any norm || - || on RY, the ellipsoid B(Xo, r) centered at X is parametrized by

Xj=2Xo,j+Tjyjs

where y = (y;) belongs to the unit ball B(0, 1). Therefore, it is enough to generate a net for this ball; the net on the
ellipsoid can be generated by appropriate scaling. Accordingly, we describe the generation of an €-net for B(0, 1).
In [4, Proof of Lemma 7.1], we have proved that if § € (0, 1),

12/€)d
M > (4/6)dlog<( g ) ) :
and C ={zy,---,zy} is a random sample from the uniform distribution on B(0, 1), then with probability exceeding 1 — 4,
C is an €/2-net for B(0, 1). To find a minimal e€-net, we use a greedy algorithm: start with C = {z1}, and for j=2,---, M,

add the point z; to C if dist(C, zj) > €/2. Then clearly, C is an €/2-separated subset and e-net of B(0, 1).
5. Proofs

This section is organized as follows. In Section 5.1, we introduce some basic lemmas on binomial coefficients, which are
used multiple times in the rest of the proof. In Section 5.2, we prove Theorem 3.1. This theorem is an abstract theorem,
which can be applied to prove the entropy of analytic and entire function classes. Section 5.3 is the proof of Theorem 3.2.
Section 5.4 and Section 5.5 are the proof of Theorem 3.3. Section 5.6 is the proof of Theorem 3.4, which shows the entropy

of functional classes defined in Section 3.4.

5.1. Combinatorial identities and inequalities

Lemma 5.1. Let n,d € N, n > 1. Then we have

S (j+d-1\ _ (n+d
> 5= e

j=0
. Sj+d—1 _ n+d n [j+d—1 B n+d
]ZO]< d—1 >_d(d+1>’ JZ;("_])< d—1 )_<d+l)' (5.2)

Proof of Lemma 5.1. The identity (5.1) follows by noticing that (d’l) = (g) =1 and

d—1
j—1+d j+d=1\ (+d-1)..n m+d-1)...(n+1)
( d ) (d—l )‘ d! (d—1)!
_(+d-—1)...(n+1) ny m+d...(n+1)
= d—1)! (HE)_ ]

(7).

The first identity in (5.2) is given by

Zj(]—i—d—l):Z .(J+d—1)...(]+1)= (]+d—1)...(]+1)]d

d—1 d-1n! d!

j=0 j=0 j=0

n .

:Zd j+d—1 —d n+d .
- d d+1
j=0

The second identity in (5.2) is a simple calculation using the first identity and (5.1). O

(5.3)

Lemma 5.2. Let n,d € N, then

1 <2(n+d)>‘”1<(n+d>< 2 (e(n+d)>"+l 54
8 2n(d+1) \ d+1 “\d+1) " 27\ d+1 ’ ’

In particular, if n has the form
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ny = lath+b)], ny=lath—Db)] (5.5)

for some constantsa > 0,b > 0and h > <b + g) (d+1), then

d+1
<n1 +d> <(ah) + (1 N 2(d+1)(ab+d)>

d+1) =~ d+1)! ah
(5.6)
<n2 +d> . (ah)d+1 (1 _ 2(d+1)(ab+ 1))
d+1) ~d+1) ah '

Proof of Lemma 5.1. By Stirling’s approximation formula,

k\¥ k
2k - <k!<242mk .

k

This gives
1 d+1\" 1 /n-1 d+1 n+d n+d
—(1+ +1 — <
4 n—1 d+1 2rd+1H(n—1) d+1 (5.7)
d+1\""!'/n-1 d+1 n+d
<2(1+ +1 —_——
n—1 d+1 2r(d+1H(n—-1)
and hence

1 <2(n+d>>d“<<n+a>< 2 (e(n+d)>"“
82r(d+1) \ d+1 “\d+1) " L2x \ d+1 '
Suppose now
ny = lath +b)J,

then

ni+d <(ah+ab+d)...(ah+ab)<(ah)d“ LR d+1
d+1)~ d+1)! —d+1) ah '

Since h > (b + g (d+1), we have

N—

ab+d 1
<—v
ah —d+1

then

n+d\ _ (ah)d+1 - 2(d+ 1)(ab +d)
d+1)~ d+1)! ah ’
This proves the upper bound in (5.6).
On the other hand, h > (b + 1) (d + 1), hence

ny +d >(ah—ab+d—1)...(ah—ab—l)>(ah)d“ L@+l d+1
d+1)~ d+1)! —d+1) ah '

Similarly, for h > (b + g) (d+1), we have

ny+d\ _ (ah)d+1 - 2(d+ 1)@ +1)
<d+1)_(d+l)!< ah )

This proves the lower bound in (5.6). O
Remark 5.1. We will use the following estimate without explicit reference many times in the following proofs.

x¥ —logx > (1/a) log(ea), x,a > 0. (5.8)

This can be easily verified by computing the minimum of the function y — e*Y —y, y e R.
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5.2. Proof of Theorem 3.1

The proof of Theorem 3.1 requires the following lemma [3, Proposition 1.3].

Lemma5.3.Letd € N, (Y, || - |ly) be a d-dimensional normed linear space, and B = {x € Y : ||x|| <r}. Then

dlog(r/(2€)) < Cae(Br, Il - lly) < He(B, || - ly) < dlog (max(3r/e, 1)). (5.9)

Proof of Theorem 3.1. In this proof, observe

Ri={geX;: lgl=a}.

Am,p€
2M1/p
]_[ RJ Therefore, (3.5) shows that TM (H Cj) is an e-net for K with respect to the norm of X. Since the cardinality

of TM (]_[3\/':01 Cj) is the same as that of 1_[] 01 CJ, it follows that

Let Cj be an 1 = —*—-net for each &;, j=0,---,M — 1. Then it is easily verified that ]_[ C, is an (Apm, pe/2)-net for

M

He(R, X) <Y Hy, (8, X).
j=0

Since each £; is a ball of radius A; in the b;-dimensional space X, Lemma 5.3 leads to

M

He(R,X) <) bjlog(max (3A;/m.1)).
j=0

This proves the second inequality in (3.7).
The proof of the first inequality in (3 7) is similar. We let n; =2¢/By, and let C, be the maximal 7;-separated subset
of each &, j=0,---,N —1. Then ]_[ Cj is an ni-separated subset of Ry, and hence, (3.5) shows that 7! (]_[

an 2e¢ = 11 By r-separated subset of K. The cardinality of 7~ l(]—I?’:Ol C]) is the same as that of ]_[?’:01 C;j. Lemma 5.3 then
shows that

N-1 N-1 A
J
He(R,X) = ]ZO Coe(R), X) 2 Z”f log(zBN,re)

This proves the first equation in (3.7). O
5.3. Proof of Theorem 3.2

In this subsection, we apply Theorem 3.1 with p =r =2 to give the proof of Theorem 3.2. In this case, X = L2(I9),
Xj=span{pk: |Kl1=j}, {An};2o=1{0");2, and R =A,.

n—1
Moreover, for each n € N and each f € @ Xj,

j=0
||7;1(f)||l'[,2,n = ‘(”Prolo(f) ”LZ(Iq) PR || Projrl—] (f) ”LZ(Iq)) ‘2
1 5 1/2
n—
YD Faopk
=0 |||K|1=] 12(19)

= ||f||L2(1q)~

Therefore, Ap2=Bpa=1.

Proof of Theorem 3.2. In order to apply Theorem 3.1, we need to find an integer larger than N'(€/2) (cf. (3.8)), which is
the solution of the following inequalities:

2N

= o
p2n=

2 N2
S

€ o0
02 4= 1- Z,o
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It gives

log + log (s
NEr2y=| —————

+1.
log 7
Now we estimate the bound in (3.1). For simplicity, write
log 2 + log ———
Ny= | ——— = ] (5.10)
log 5

Then we can apply the second inequality in (3.1) to M =Ny + 1. For eachn=0,...,N; —1,

6An/N1+1 6/N1+1p" 64/N1+1p"
log<%>=log(%)slog L slog<3p‘1\/<N1+1)<1—p2>p"‘”l).
2

1-p2

Hence, by Theorem 3.1 and our condition on ¢,

Mo mrqg—1)\ /1 . » 1
H¢ (AP’”'”Lz(”))SZ( a—1 ><§log(N1+1)+log<3p VA =p )>+(N1 —n)log;). (511)
n=0

By Lemma 5.1,

N1+q 1 Ni1+q\1 3
He(Ap,||.||L2(,q))§<q+1 >log;+< . >Elog<9(p —1)(N1+1)). (512)

J1=p2 \9%p2=D(@+1)

log £ + log 715 L4t 90 = DG+ D
. .
log; log; Zlogz
9p2-1@g+1)

1
log — and o’ =log ————— in the trivial inequality
Y 2log 5

2p 2log - gt
Consider the upper bound in (5.12). For € < P , we have

Ni+1>

. Ny
Taking o =
q+1

1
o> E(log(Za) +a), a=a >0,

we have
N1 1 1
—log
q+1 0 2

9p2-1@+D N +1, 1 1 ,2
log— | ==1log(9(Nq1 +1 -1).
g1 i1, )=3 g(9Ni +1)(p 2 - 1))

S

Hence, (5.12) leads to

Q-H q
He(Ap, I i) s\/i_ (e(g":;q)) o5+ + %(@) x 2 log (9(Ns + 1)1 — 7))

<L<e(N1+q))q 1,2 (e(N1+q)>q<q+1>qN1+qlogl
“Vem \ g+l NG q g+1 “p
<2 <e<N1+q))q+‘ 1,2 <e<N1+q>)q Nitgq, 1

_\/ﬁ q+1 o T am gt g+1 “p

ik 1+q>+ log .

_\/ﬁ o

Involving our choice of Ny (5.10) in this formula,

q+1
1
i+l H“’g(ms)
(q+ 1)log5

0N

He(Ap, || - lLyq9) <

N
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Now we prove the asymptotic relation. Applying (5.6) with h <« log% to (5.12), and noticing that (N1q+q) = (N1+q

then for € sufficiently small,

He(Ap, || - llLya9) <

log % log 1

2

V1-p2?

@g+1 (log

g+ 1!

q+1 2
( ) -

. log
Bounding 1/N1 by logi
P

log

He(Ap, || - Ly a9y)

Applied Numerical Mathematics 200 (2024) 209-235

)

g+1

q+1/ Ny

log (90~ = (N1 + 1))

1
+q10gp> (1+ q+1

log 1

~1
- 1) and log(Ny + 1) by loglog 1, we get

) .

2Nq

2 1
logl [logl q+1 2q+1) <log N +qlog5) log 1 1
< P ' gi 1+ 1,0 1+@+1) /1) <loglog — +1log(9(p~2 - 1)))
@+ D! \log log < log £ €
2 1
log% log% q+1 2(g+1) <log 102 +qlog 5) lo % 1 .,
< ' ] 1+ T +2(@q+1) : loglog — +log(9(p™ = — 1))
@+ 1! log log 2 log 2 €
B 2
logl [1og1\7" logl [ (log == 1 2
L gi 1+2@+1)—2 ]1'0 +q | + (loglog — +log(36p?) — 2log ———
@+ D! \log log 1 log 5 € J1—p?
2
logl [logl\"" log 1 1 log =
(2B 142+ 1D—2 [loglog = + —" 4 q+4
@+ D! \ log log 2 € log

Next, we prove the lower bound; for this purpose, we chose N, to be as large as we can under the restriction log<

log (%) > 0.

Solving the inequalities p

Nz{ J_l.

No+1

log =

<2e < pN2, we get

SN

2
2e

)=

5.13
og 1 (513)
Since 2¢ < pN2, we have
n n n -1 1
log L > log p > (N, —n) +a log—, n=<N,.
2¢ pN2 q-1 o
Now by Theorem 3.1 and (5.3),
Nz +q 1
He(Ap, || - > log —. 5.14
e(Ap, I lpaey) = <q+1 ) P (5.14)
1
Similarly as before, involving N, = LEZ%J in (5.14), using (5.4),
P
q+1
Hep - iy = ~— o og 5
Sl 7)) =
= s am@rn | @ Dlogl
This completes the proof of (3.11).
Consider the asymptotic relation. For € sufficiently small,
1
He(p. |- lpm) = (NHq)l 1, logp (logg )™ 2@t Dloe]
- a) > - > R
el Ap Ly(19) q+1 P~ (q+ 1) ]og% log%

The two inequalities prove (3.13). O
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5.4. Proof of Theorem 3.3: upper bound

As in the previous subsection, we apply Theorem 3.1 to give the proof. We recall the condition (3.17) relating Q, t, and

Proof. For the upper bound, we apply Theorem 3.1 with p=1, X = Loo(Iy), Xj =span{py: |kl1 = j},

N
T
AN=A(N)=CNQ/ZW, N=0,1,...

and R=Bq.
n—1
In this case, for F € @ X,
j=0
n—1
17a(P) i1 =D PP,y = IF oo
k=0

which means we can take A, 1 =1 for each n € N. Now we only need to find a proper M > N'(¢/2) to apply Theorem 3.1.
To estimate the sum of A(N), we investigate the decay of this sequence.

Q
AN+1)  (N+1\%? 4. T n\"\" _ < Q
A(N) _< N ) N+D T =3 <1+N> SN—HeXp<W)‘

Then for N> Q/ (log(%)),

anv+n Tlog(#)  f(log(£)\ ¢ o\ @« {[a) 1
AN ST g | |=qles z) »=oW=) =2

and consequently

> AN <2AM+1), M= Q/(log(%)). (5.15)

N=M+1

This enables us to find a proper N1 > N'(€/2). To do this, we only need to find a proper integer N1 with 2A(Nq +1) <¢€/2.
Applying Stirling’s estimation, we have for any M > % and Mo =M — %,

1 e M+1
2A(M + 1) <2C(M + 1)Q/2¢M+1 < )
( ) ( ) V2aM+1) \M+1
Mo+1 0-1
) (et) 2 .

o1 eT M+1
<2C(M +1)z <2C

M+1 Mo +1

So it suffices to find Mg such that

Mo+1 0-1
C 2 < €/2.
(Mo +1) (er) = <¢/

This inequality is equivalent to the inequality

Q-1
log2 +log(C(et) 7
M 1 M 1
0o+ log ( o+ ) s ( ) .
et et et

Under the condition that

c < 2mer\ /2 4
- Q (et)1/2exp(et)’

we have

Mo +1 , (logg + Y log —26(’2”) (eT)™!
>
et log (log 4+ % log Z?T’”) — log(et)
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for any

log + Q log =¢Z% 237”
Mo > 2 1. (5.16)
log (log + $ log 22 T) — log(et)

Note x > % = xlogx >y for all y > e, we conclude

Q 2
Mo+l (Mo+1y ot + Glog(PFE)
et & et - et

holds true for

. 2mer \ ¢/? 4
< .
Q (eT)1/2 exp(e?t)

Then 2A <M0 + % + 1) <¢€/2 for My satisfying (5.16).

o0
Therefore, in order to make Y A(N) <¢€/2 hold true, it suffices to take
N=Ni+1
log + 3 Q log 2e7T 2971‘[ Q-1

Ny =

n ’ (5.17)
log (log + 3 L 1og 2"””) — log(et) 2

then Ny + 1 is a proper integer for which Theorem 3.1 can be applied. Now we use Stirling’s approximation to bound A(N)
by

N N—-Q/2
T 1
CNQ”W <Cen)V (N) <CenNINy + 12 N<N1+1

and notice that

S M+ DEPM 4D g <2(;T>Q/2(Q/2)Q/2+1< Q )Q/Z ()12 exp(e?T)

€ 2wet 4
4 (eT)/2 exp(e?1)

>6(et)Nm ©/2e?/ 2

> 1.

Therefore,

6A(N)(N1 +1) 6C(eT)N(Ny +1)@/2+!
log<maxif,1}>§log< c )

2
= (log% + Nlog(et) + Q+ log(N1 + 1))

and we can apply Lemma 5.1 to get

N1
N+Q -1 6C Q+2
He (BQ, Il - ||Lw(,r)) < Z ( > (log? + Nlog(et) + 5 log(N1 + 1))

vy 2t (5.18)
1+Q Ni1+Q 6C Q+2
1 log — —1 Ny +1
§Q<Q+ )0(r)+< 0 )(g + g(1+)>
Observing
<N1+Q)Q<N1<N1+Q>,
Q+1 Q
N 6C 2
He (BQ7||'||LOO(I,))S< 1;Q> <N1 log(er)—i—log?—i— Q;_ log(N1+1)>. (5.19)

Next, we express the bound (5.19) in terms of €. We will apply Lemma 5.2.
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)

2B -1 —1
Ny = + 8 >2e% + Q-1
log B — log(et) 2

Now we can apply (5.4) to conclude

In this proof only, let

B = log (4 <Zenr>
= - A

N/’

2 N1+
He (Bo. - Ity < (u

2 Q+2
V2 Q 2

Q 6C
N1log(et) + log - + log(N1 + 1)

.2 e22¢ B +£
~V2r Q2 \logB —log(er) 4

Q-1 Q Q+2 2B Q+1
2 log(et) + B+ 1— —log(et lo .
X|:< logB—log(er)+ 2 ) get) + B+ 2 gler) + 2 g(logB—log(er)+ 2 >]
Bounding
Q 2B 3Q \ logB —loget
B+1——=1 <\l——t = )| —
+ 2 Og(er)_<logB—loger + 2 ) 2
and

: 3+ —) x = (log(2B) +1
2 Og<logB—lo‘,<;(ez)Jr 2 )5< + 2) 3<0g( ) + log
2B 32 1 Q +1
1o R —lnolory | 5 — [ log(2B) +1
E<logB—log(e1’)+ 2 >X3<Og( ) + log 5 )

we have

H. (B )< —(% ) g oges T 4 Q
e( Qo I st r( ) (logB—log(e‘L') 4>

32Q> [log(e v) 4 8B loger) | Zlog(et) (logZB—HogQ;—lﬂ

)

Q+1

X

(logB log(et)
2 1

(7 loglog < +2log(Q +1) + 6log(er)> )

.2 <2e> logﬂ—i-glogzeé” +3Q
-~ 3V2m log (log + Ylog 2‘3’”) —logler) 4

Finally, consider the asymptotic relation of the bound when € — 0. A simple observation shows

log 1
loglog 1

N1 =2 (140(1))

as € — 0.
Then (5.19) gives

(N1 +Q)¢
Q!

2logl ¢ 1
(1+0(1 )) € (2108—> (1+0(1))
Q loglog 1 €

€

1
He (B, Il - llLatp) < (2 log E) (1 +o(1))

)Q-H
<1 (o). o
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5.5. Proof of Theorem 3.3: lower bound

In this section, we consider the lower bound. As in the last subsection, we apply Theorem 3.1 with p =1, X = Ly (Iy),
Xj=span{pi;r: |kl1=j},

N
T
AN =A(N) = CNQ/ZW, N=0,1,...
and 8 = Bqo. We recall also the condition (3.19).

Proof. For Chebyshev polynomials, by [6, Section 12, Chapter 2], we have

ISn(F) Loty < (logn+ D@ Flloan, neN.

n—1
Then for F € @ Xj,
j=0
n—1
1Ta(P) im0 =D [Proi(F) [, _ ., <nlogn+DeIFlLean, n=1,
k=0

which means we can take B, 1 =n(logn+1)2 for each n € N. Now we only need to find a proper N3 to apply Theorem 3.1.
Like in the proof of Theorem 3.2, our principle of choosing N, is finding it as large as we can under the restriction

I A(N3)
og > 0.
2(N2 +1)(log Ny + 1)Qe
To find a solution of
A(N)
> €,
2(N+1(dogN +1)Q —

we make the Stirling’s estimation

Q-1

A(N) > CNQ2gN (E)N _ Clet)N <1>N—T Ao,
2427 N \N 2+/27 \N
Then
A(N) ) _ Cler)? (er)N+}< N )Q/z 1
2(N+1)(logN)2 ~—2(N + 1)(logN)Q 227 \N (log N)2 N+1
= ()
“4y2mer \N
In this proof only, let
B =log <L> ,
42mete
then it suffices to find a solution of
oB (e_r)NJr% >1
N
Taking logarithms on both sides, we conclude it suffices to solve
<N + 1) log N <B. (5.20)
2 et —
Let
| e tozen 1)
Ny=| ———— - |. (5.21)
logB —log(et) 2

Note x < % = xlogx <y for all y >e, and it is clear that e% > e under the condition that

€< <2n)Q/2 ! 5_2& < ! exp(—e®T) (27T>Q/2
—\Q 42mer | T 42met P Q ’
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then

No+1 Nyl
2 + 3 log 2 + 7 < B .
et et et
Consequently, N is a solution of (5.20), hence, a solution of
A(N) -
2(N+1)(logN)Q ~

Now

A(N) _ Ag(N) B <er>Nf%
2¢(N3 +1)logNy ~ 2€(N3 +1)(log Ny + 1)Q N
Together with Theorem 3.1,

Ny Q-1
N+Q-— N-O7t _
He (Bo. I+ 1.0 zX_j( 2 )log<e3 (55) 7 dogNa+1) Q)
—Z<N+Q_1 |: ( N+2) %logﬁ—Qlog(logNz—l—l)}

(log N, + 1)*Q .

(5.22)

On one hand,
N>
N -1 N
Z( +Q )[glog——Qlog(logNz+1)]
Q-1 2 et
N=0
N3
N -1 N N
> Z ( le )%log——< 2:{Q>Qlog(logNz+1)
n=INo /2] - et
N3
N -1 N N
> Z < EQ] )%log3—2—< 2(JlrQ>Qlog(logNz+1)
n=INy /2] - et
1/N,+Q\Q N> N2+ Q
>— —log — — log (log N; + 1
_2< 0 )203” < 0 )Qog(og 2+ 1)
:g<N2+Q>lo N>
4 Q 3et (log Ny + 1%’
2\ /2 2k
In this proof only, let a; = max{128, 3e21}. Slncee<<Q) 4%5 ¥, we have

_5 16a; (loga;)* + 2e log 16a; (loga;)* + 26.
e e

For y > e, we have szylogy:@zy_ S0

B _ B 16a; (loga;)* + 2e
log B —log(et) ~ logB — e '

Therefore,

4
. 16a; (loga;) .
e

We have also x > 16y(log y)* = >y for y > 128, then

(long‘ =
eNy
log(eNy)* ~
this is

af>3e T,

N>
_ —>1
3et (logNy + 1)*
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Consequently,

N3
Z(N+Q—l> [glogﬁ_Qlog(logNz—H)] >0
N=0 Q-1 2 °r

No+1
On the other hand, since e? (,‘(fz) E > 1, we have for N < |Ny/2],

N-
63(2>N+%>(E)N+% N \ME (N \MEE N\ Ny
N =\N et “\N et —\er )

Then
[N2/2]
N+Q —1\ Ny Q (N>+Q Ny
He (Bo. Il lewitn) = Y ( )—(lo Ny —lo er)+—< >lo SR —
“Barlllwm) = 2, |7 g Zy )5 toshelogen (7, 3t (logN + 1)*
By Lemma 5.1,
[N2/2] + Q> Q (Nz + Q) N,
B N> (log Ny —loget) + — log —mM8¥ ————. 5.23
He (Bo, Il i) = ( 0 2(log N3 ger) 2 0 3et (logNy + 1) (5.23)

1
2
d

Next we express the bound (5.23) in terms of €. To begin with, we see that

N> lN 1>1 B 1 l_l B 5
2 |72 272 log B —log(et) 2 2 2logB —log(er) 4

Apply Lemma 5.2 and substitute (5.21),

1 1 2(IN2/2
He (B Il lawtn) = 5 ( (IN2/2] + Q)

738 2 ) Ny (log N, —logert)

\/ ( ) ; j Q)Q< b N )
16 2 log B — log(et) log(et) 4_1+ m_i_"g(”)

)=
lOg 27‘[61’6 Q lOg (2_7-[) _ E + 2Q :
+4 log( )) — log(eT) 2

16«/ log

27re Te

log + 2log 2
x 2reze 2 ( 2 ) 3l log(eT)

log (log + % log (%’)) —log(er) 2

For the asymptotic relation of the bound when € — 0, a simple observation shows

2mete

log 1
Ny= —2E_(140(1))
loglog -

as € — 0. Similarly as before, (5.23) gives

Q 1 1
He (Ba. I - lioay) = (N2/2D7 _logg (10 lologfl>(1+o<1>)

1
2 Q! loglog 1 glog 1

€

Q 1
1 log 1 log 1 ( 1 1)
> loglog — —logloglog — ) (1 +o0(1
2Q!<210glog% loglog 1 Bl08 ¢ T I0BI0BI08 ( 1)

Q
1 log 1 ( 1)
>——y —— log— | (1+o0(1)).
_ZQ!<210glog% g ) (1+o()
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5.6. Proof of Theorem 3.4

Proof. Since € < —”;pzpq, by Theorem 3.2, the €/2-entropy of .4, can be bounded by

log —
2 (q@+1)log 5 ,0 N2

q+1
log 2 a+1
4et! (W f) 1 _4@e™ log 1
Hepp(Ap. Il - llr2aay) < 1+ € 3 log —. (5.24)
(@+1)log ; Jo
Consider the upper bound of the €/2-entropy of F. By taking n as the integer N in the proof of Theorem 3.2

1 _4
o log ¢ +logm
log%

we get from there that || f — sp+1(f)ll;2e) < €/4 holds for all f € A,. Now n is fixed in the rest of the proof. For conve-
Q

; _ e - _Q
nience, denote T = Zl vjrj. Then T = o—.
J:
In this case,

[F—Fosu = sup HF(f) Fonn ()] = 30 11 = swr(Dliean) < /4.

Thus, any €/4-cover of the set {F o Sp+1
The map F +— F denoted by

F(H=F <(}(k)>lkl1§n> . fed

is an isometry from {F oS;41: I~<'~e F} C F to B, with the Lo (Iy) norm. Therefore, for the entropy of the former, we only
need to consider the entropy of 5.

Therefore, the e-entropy of 7 x A, is bounded by

. F e F)c Fisan €/2-cover of F.

He(F x Ap. - 1D < Hepa(Ap, Il - l2a)) + HeyaBa. ||+ lLsoin)- (5.25)
Let

o )e 2met\ 472 4
7= min 4’( Q ) (et)12exp(e?t) |-

Then using Theorem 3.2 and Theorem 3.3, we conclude

5 q+1
log <
4eq+] (\/1 —p2 6) 1
He(F x Ap, I - 1D < 1+ ——=

log —
V2 (q@+1)log 5 Y
Q+1
2 [2¢)\° log 2 + § log 27~ 3Q 1 i
+ — + — 710g10g—+10g((Q+1) (e1) )
3v2mr \Q log (log + Q log 2‘””) — log(et) n
(5.26)

with Q = ("}9).

Substituting T = ﬁ into 1 and noticing that Q > log %

s () oo 2] (52) "o (D)

2r 4

Then
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g 4 1 Qo 2677 _log o \? 2er Q \¢2
ouy+ glo g =g (57 ) ool (57 1)} (5 5

1/2
:10g<<2 ) exp{Qz—fD :ezr—f—%log(er).

Substituting

Q

= 26327

and

6
2log(Q +1) +6log(er) =log ((Q +17? <2e3%2n> ) <log(Q®)

into the latter term in (5.26), we can bound this term as

JZ <2€)Q log + 3 108 5 = Q+1<71 log - + log ((Q + 1)’ )6)>
— +— oglog — + log + et
3v2r \Q log(log +Qlog2"’“)—log(er) 4 n
2 (2)° L 30)" " Froga1 I I
= 7 2 1)+6
53«/E<Q> (e f+ og(et) + — Q) (710g(Q log Q) +2log (Q + 1) + 6log(et))
2 22\%/, Q 1 Q 3\ 8
me <a> <€ m+510g<92€3/2n>+ Q) (710g(Q10gQ)+10g(Q ))
2 [2\%/veQ @ 3\ N
< (6) (m +Z+ZQ> (7108(Q log Q) + log(@®))
2 Je ¢ e
53«/5 <28<E—H)> (E—H)QxlSlog(QlogQ)
30 Je ¢ /e
N <ze (E * 1)) (E * 1) @ log(Qlog Q).

The fact that € < —”4_"2,04 implies

1 1 1
log — + log +qlog— <2log —.
€ P €

4
V11— p2?

Then we can bound Q by (5.4) and get

q
o< 2 (e(L+q))q o log { + log ﬁ ) - 2elog 1 1
T 27 q - qlog— - qlog% '

Consequently,

Zen T

Q+1
2 <z_e>Q log  + % log *3* 432 (7 loglog ~ + log (@+ 1)2(er)6))
3727 \Q log (log + Q log Zenr) — log(et) 4 "
03/2

60
53 q exp{yqlog (——}—Ze)}yqlog(qylogy).

9
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Combining this with (5.24) and substituting the values of C and t into the inequality,

q+1
4(2e)1H1 log 1 1
He(Fx Ap, II- ) < < log —

NG (q+1)log% 0
60q Tiog (C7 +2¢) a1 I
+ ex og| — +2e o] o
EWor p{y g( )}y g(qy logy)
4 1/ q ™ e3/2
<—yit1 o —(—) + ex { 9o, <—+Ze>} 1o, lo
_JEV gp g+1 wﬁpy ] W y*log(qy logy)
1 q q+1 1 60q . e3/2 ]
< — log — + exp{ log<—+2e)} log(qy logy),
Y <q+1) P \/— 14 14 ylogy
where
2elogl
qlog§

This completes the proof. O
6. Conclusions

We studied the question of which algorithms and data sets are close to each other in terms of some performance metrics.
The problem was formulated mathematically rigorously as finding an optimal e-net for a tensor product of two (infinite-
dimensional) sets: one representing the data sets and one the algorithms. We solved this problem under certain simplifying
assumptions.
Appendix A. Degree of approximation
A.1. Analytic functions

The following lemma is a straightforward consequence of the corresponding well-known one-dimensional results.
Lemma Al (a)Ifr > 0, k € N9 then for ze C?\ I, we have

kj

d
— J
Prr@ = O ] |2+ /2212 (A1)
j=1
(b)If0 < p <1, f is analytic on the closure of U, 9T p is the boundary of T'p and g(w) = f (W + w~1)/2), then
5 1 g(w)
k) = = A2
o,
In particular,
’f(k)‘ < (@* max |gw)]. (A3)
wedl,
A.2. Analytic functions
Theorem A.l. Let Sy, n =0, 1, ... be the operators denoted in (2.12). A function f is analytic on U, if and only if
lim sup [ISn(f) ”Lz([q) <p. (A4)

n—oo
Proof of Theorem A.1. Suppose f is analytic on U, then f is analytic on the closure of U1,(p4y). By (A.3) and (A.2),
1/2
Faol? n+ q ki1 n
ISa(Hllizgny = Y ]f(k)\ = glg Jetm max 1f@)=conco+2m"

zeU, +
K|y =n /(p+m)
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Thus,
lim sup 1Sl 50, < -

Now suppose [|Sn(f)ll;2gay < p" for all n € N, then
1/2

Jao|<| X \f(j)f =[S (D 2oy <A™ KeN.

lil1 =1kl
1<j<q

q kj q
Pe@| = max lgw)| [ ] |z5+,/22 -1]" <[Jase)b.
P . .
j=1 j=1

Together with (A.3),

> ‘f(k)Pk(Z)‘ max |g(w)|2 Z = max |g(w)|2(n;rq >(£> o

keN4 =0 |k, =n *

For any ze Uy, let p/:= (max ‘z] + /z — 1‘) > p, then (A.1) implies that

Hence, f is analytic at z, which implies f is analytic on U,. O

A.3. Entire functions

Q
Theorem A.2.Let Q e N, v=(v1,...,vq), r=(1,...,Iq) € Rg, Ir = [[[-rj,rjlc RQ and {pk,,}keNQ the multivariable
j=1
Chebyshev polynomials orthonormal on Ir. Let F : C2 — C be an entire function with

Q
sup [F@)| <exp{> vjlzjl ¢ . (A.5)
zeCQ =1

then

R 2 Q/2 .m\N
3 Fepice 52(—”> NLYCIAALIAY (A6)
_ Q N!
Ikl =N Loo(Iy)

Conversely, if F is a function on C satisfying (A.6) for each r e Rg, then we can prove it is an entire function.

Theorem A3.Let Q € N,v=(vy,...,vq) € R$. Ifafunction F : C2 — C satisfies (A.6) for any r € RQ, then for anyz e C<,

|F(z)]
sup

, Q
et exp[2<2vj|zj|><1+n>}
=1

Proof of Theorem A.2. First, we consider I = I9 as the unit cube. In this case, we write py ; as py for ke NQ,
By (A.2), we have

<00, VYn=>0. (A7)

e‘kllvk

- 1
[F0] < (e max | F@)| <

By Stirling’s approximation,

(V2m)Q(ky .. ko) V2 (v + K
k!
for some A’n depending only on 7 and Q.

)ﬁ(k)' <2
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Observing that

N _
Wit +yoN= ) k1'kz ]_[y,,
IIklli=N
we have
. Q/2 NQ/z N
ISw (P10 = sup Z F (0P| < \F(k)\<2< Q) i,
[kl1= |kl1= :

Now we make a change of variables. For r € Rg, let G(z) = F(zr), then G is an entire function with

Q
sup |G(z)| <exp Zv irilzjl
zeCQ j=1
Hence,

Q/2 N
> Gop 52<%T> Ne2V DT

N!
|kl1=N Loo (I9)

where

Q
@(k)=/G(X)pk(X)dX=/F(rOX)pk(X)vQ(X)dX= [ /F(y)pk<y; . ig)er(y)dy-

19 19 j=0 Iy
It is known that {pyr}, o is denoted by
Y1 y
Pr.r(¥) = Pk (7’ cees 7Q> , yel,
I ro
hence I:"r(k) = @(k). Therefore,

ISN ()l = | Y Fr@picr
[kj1=N

IA

Q/2 N
> Gopx §2<%T> ner D

Loo(lp)  IKIi=N Loo (1)
This proves Theorem A.2. O

Proof of Theorem A.3. Suppose

27\ ¢/2 w-rN
SN(F <2(= NQ/2
ISNC) Loty = (Q) NI

holds true for every r € R<.
For any ze C¢, take r= (|z1], ..., |zq ). Since

‘z +z2 — 1‘
sup —— 1 <2
|z1=1,2eC |z|
by (A.1),

1Pk r@| <2V Iprliaay), keNQ.
Q/2
With C = 2( ) ,

> |Fpie@)| < CNQ/Z%

|k|1=N

We will use Stirling’s approximation to eliminate the N2/2 term. By Stirling’s approximation, for N > Q /2,

234
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C e N-Q/2 5 N
V2N (N—Q/2> et v

NQ/2 (E)N Quv-nN <

> [0 = — -

Kl =N V2N
C 22n(N-— Q/Z)eQ/2
2N (N—Q/2)!

Q/2 .r)N-Q/2
§2<2_T[> (ev.r)Q/Z&.
Q (N-Q/2)!

Therefore for r € RSP > ‘I:"(k)pk’,(z)‘ is bounded by P; (2v-r) with P; a polynomial of degree Q /2 — 1 and
T kh<Q/2

Q@v-nN

~ S (2v.r)N—Q/2 00 (2v-r)N
NP = Q2T
Ik\g(:l/z ‘F(k)pk!r(Z)‘ = N=2Q:/22C ev-n (N—Q/2)! NXZE)ZC (ev-r) NI

27\ ¢/
=2C (ev~r)Q/2 exp(2v-r) <4 (E) (ev- r)Q/2 exp(2v-r).
Now we can bound F(z) by

F@ls Y [Fwpe@|+ Y [Faope@|=Pi@v n+P v nepvon
lkli<Q/2 kl1=Q/2

Q/2
with P2 =4 (%)™ (ex /2,
Since P; and P, are polynomials of degree at most Q, we conclude for any 5 > 0, there exists some constant A;
depending on 1 and Q such that

Q
[F(Z)| < Ayexp 2(v+n) -r(1+n)) = A, exp ZZ(Vj+77)|Zj| I+m|. O
j=1
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