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In this paper, we present a sharper version of the results in the paper [H. N. Mhaskar,
Dimension independent bounds for general shallow networks, Neural Netw. 123 (2020)
142–152]. Let X and Y be compact metric spaces. We consider approximation of func-
tions of the form x "→

R
Y G(x, y)dτ(y), x ∈ X, by G-networks of the form x "→Pn

k=1 akG(x, yk), y1, . . . , yn ∈ Y, a1, . . . , an ∈ R. Defining the dimensions of X and
Y in terms of covering numbers, we obtain dimension independent bounds on the degree
of approximation in terms of n, where also the constants involved are all dependent
at most polynomially on the dimensions. Applications include approximation by power
rectified linear unit networks, zonal function networks, certain radial basis function net-
works as well as the important problem of function extension to higher-dimensional
spaces.
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1. Introduction

An important problem in the study of approximation of functions of a large number
of input variables is the curse of dimensionality. For example, in order to get an
accuracy of ϵ > 0 in the approximation of a function that is r times continuously
differentiable on the unit ball Bq of the Euclidean space Rq, based on continuous
parameter selection (such as values of the function or initial coefficients in an appro-
priate orthogonal polynomial expansion) the number of parameters required is at
least a constant multiple of ϵ−q/r, a quantity that tends to infinity exponentially
fast in terms of the input dimension [9].

Naturally, there are several efforts to mitigate this curse. We mention two of
these.

One idea is to assume the so-called manifold hypothesis ; i.e., to assume that
the nominally high-dimensional input data is actually sampled from a probability
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distribution supported on a low-dimensional sub-manifold of the high-dimensional
ambient space. The theory of function approximation in this context is very well
developed [13, 15, 24, 29, 30, 33, 37]. In practice, this approach has been used
successfully in the context of semi-supervised learning; i.e., in the case when all the
data is available to start with but only a small number of labels are known [4, 5, 16].
However, when the function needs to be evaluated at a new data point, the entire
computation needs to restart. This is referred to as the problem of out of sample
extension. Nyström extension is often made to solve this problem (e.g., [6, 36, 54]),
but then one does not have any approximation guarantees on the processes so
extended.

The other recent idea is to use deep networks. We have observed in [38] that
deep networks help to mitigate the curse of dimensionality when the target functions
have compositional structures. Unlike shallow networks, deep network architectures
can reflect these structures. For example, if one wants to approximate

f(x1, x2, x3, x4) = f1(f11(x1, x2), f12(x3, x4)),

the compositional structure ensures that each channel in a deep network of the form

P (x1, x2, x3, x4) = P1(P11(x1, x2), P12(x3, x4)),

where P1, P11, P12 are suitably constructed neural networks, is working only with
bivariate functions rather than a function of four variables. Therefore, the number
of parameters required to get an accuracy of ϵ is only O(ϵ−2/r) rather than ϵ−4/r.
A major consequence of this observation is that the approximation theory for deep
networks is reduced to that for shallow networks. A second consequence is that
deep networks will not perform better if the functions involved belong to classes
which do not have a curse of dimensionality to begin with. In [31, 32], we have
proved drastically different bounds on the degree of approximation by neural net-
works evaluating the activation function of the form | ◦ |γ (γ not an even integer),
depending upon whether the approximation is constructive or not. In [31], we have
given explicit constructions with many desirable properties, such as weight sharing,
rotation equivariance, stability, etc., but the degree of approximation suffers from
what looks like a curse of dimensionality [53]. For the same class of functions, [32]
gives dimension independent but non-constructive bounds, which are close to the
optimal bound [19]. So, the use of degree of approximation by itself without any
reference to how the approximation is constructed is useless to determine the archi-
tecture and size of a neural network or kernel based machine, etc. which can then
be trained using empirical risk minimization.

Nevertheless, it is an interesting theoretical question with a long history to
investigate function classes which do not exhibit a curse of dimensionality when
the approximation is not required to be based on a continuous parameter selection.
A major class with this property is motivated by the following considerations. A
neural network with N neurons using the so-called ReLUγ activation function,
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t "→ tγ+ for some γ > 0 has the form
∑N

k=1 ak(x · yk + bk)γ
+, where x,yk ∈ Rq,

ak, bk ∈ R, k = 1, . . . , N . By dimension-raising, i.e., writing x′ = (x, 1)/
√
|x|2 + 1,

wk = (yk, bk)/
√
|yk|2 + b2

k, Ak = ak(|yk|2 + b2
k)γ/2, the network becomes

(x′
q+1)−γ/2

∑
k Ak(x′ · wk)γ

+, where Ak ∈ R, x′,wk are on the q-dimensional
sphere Sq embedded in Rq+1. This can be expressed in an integral notation as∫

Sq G(x′,w)dτN (w), where τN is a discrete measure associating the mass Ak

with each wk, and G(x′,w) = (x′
q+1)−γ/2(x · w)γ

+. In the literature, it is usu-
ally assumed that the total variation of τN is bounded independently of N ;
e.g., [19–21, 23, 41, 44, 45]. Clearly, the only functions which can be approximated
by such networks have the form

∫
Sq G(x′,w)dτ(w) for some (signed) measure τ on

Sq. Similarly, with the canonical embedding of a reproducing kernel Hilbert space
(RKHS) into the parent L2 space given in [1], one can describe the RKHS as the
space of functions of the form

∫
G(x, y)DG(f)(y)dµ(y) for some DG(f) ∈ L2(µ).

When G is a radial basis function, such spaces are often called the native spaces
for G (e.g., [14, 18, 22, 43]). More generally, reproducing kernel Banach spaces can
be described as a set of functions of the form

∫
G(x, y)dτ(y), where τ is a (signed)

measure [3, 47, 48].
Accordingly, we pause in our discussion to introduce a terminology to define the

class of all such functions of interest in this paper.

Definition 1.1. Let X and Y be metric measure spaces. A function G : X×Y → R
will be called a kernel. The variation space (generated by G), denoted by V(G), is
the set of all functions of the form x "→

∫
Y G(x, y)dτ(y) for some signed measure

τ on Y whenever the integral is well defined. For integer N ≥ 1, the set VN (G) is
defined by

VN(G) =

{
N∑

k=1

akG(◦, yk) : a1, . . . , aN ∈ R, y1, . . . , yN ∈ Y
}

. (1.1)

An element of VN (G) will be called a G-network (with N neurons).

In much of the literature, approximation of functions in variation spaces is
studied when X and Y are special subsets of a Euclidean space (see Sec. 2 for a
brief discussion). In [32], we had studied in an abstract setting the approximation
of functions in V(G), where G is a kernel defined on general metric spaces. Under
certain conditions, we obtained dimension independent bounds for approximation
of such functions by shallow networks of the form x "→

∑N
k=1 akG(x, yk). In the

special case when Y ⊂ X, this allows us to obtain approximation results in the out
of sample case as well. A novelty of this work is that the smoothness of the kernels
as well as bounds on certain coverings of their domain are used to get bounds on the
degree of approximation better than those obtained by using just the smoothness
(e.g., [29, 33]) or those obtained by using just the bounds on the kernels (as done
commonly in the literature on dimension independent bounds, see Sec. 2).
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All of these results have the form (cf. Sec. 3.3 for definitions)

inf
P∈VN (G)

∥f − P∥∞,X ≤ CN−s∥τ∥TV , (1.2)

for f ∈ V(G) subject to various conditions on G and the measure τ defining f .
Here, s > 0 and C > 0 are constants independent of f (and hence, τ) and N , but
may depend in an unspecified manner on G, X and Y, and the conditions on τ . In
particular, when X and Y are subsets of a Euclidean space, they may depend upon
the dimension of these spaces. The bound (1.2) is called dimension independent if
s is greater than some positive number independent of the dimension, and tractable
if in addition, C depends at most polynomially on the dimension.

The purpose of this paper is to examine the conditions which allow us to obtain
estimates of the form (1.2) that are both dimension independent and tractable,
where the dimensions of the spaces X and Y are defined in an appropriate manner.
The outline of this paper is as follows. In Sec. 2, we review some related works. The
set up including notation and most of the assumptions is described in Sec. 3. The
main theorems are stated in an abstract setting in Sec. 4, and illustrated with
examples in Sec. 5 related to ReLUγ networks, zonal function networks, and certain
radial basis function networks called the Laplace networks. After developing some
preliminary theory in Sec. 6, the proof of all the results in Secs. 4 and 5 are given
in Secs. 7 and 8, respectively.

2. Related Works

We note at the outset that we are not aware of any work other than [32] dealing
with G-networks on general metric spaces. The theory is very well developed on
Euclidean domains. It is not possible to give an exhaustive survey, but we point out
a few papers just to illustrate the kind of results that are available in the literature.

Usually, dimension independent bounds are obtained using probabilistic argu-
ments, and as such, are not constructive. An important exception is the so-called
Korobov spaces (or hyperbolic cross spaces) [11, 17, 40, 50] which are defined on
tensor product domains (typically torus or cube) in terms of certain mixed deriva-
tives of the target functions. For example, functions from a Korobov space with
mixed derivatives of second order can be written as an integral of a kernel

f(x) =
∫

Tq

q∏

j=1

B(xj − tj)
∂2qf

∂x2
1 . . .∂x2

q

(t)dt,

where B(x) =
∑

k ̸=0
eikx

(ik)2 . So, such a space is a variation space. Montanelli and
Du [39] proved the optimal approximation rate Õ(N−2)a for Korobov spaces by
using deep neural networks. After this, [26] proved the same rate by using deep
convolutional neural networks with tractable constants. Approximation theorems

aIn this section, Õ means that powers of log N are ignored, while O means that they are not
present.
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for mixed Hölder smoothness classes are obtained by Dũng and Nguyen in [12], for
which the constant term is given explicitly. More generally, Suzuki [49] proved the
optimal rate Õ(N−β) for Besov spaces of mixed smoothness β > 0 with unspecified
constants. It is worth noting the mixed smoothness spaces can be described only on
tensor product spaces, and the required smoothness of the functions is proportional
to the dimension. So, the function spaces are not large even if the functions are
defined on high-dimensional domains.

The problem of approximating functions from V(G) by elements in VN (G) has
been studied widely in the literature. In 1993, Barron [2] proved for functions with∫

Rd |f̂(ω)||ω|dω < ∞ the dimension independent rate O(N−1/2) of shallow sigmoid
neural networks with respect to the L2-norm. A periodic version of this result was
obtained in [35], where dimension independent bounds for shallow periodic neural
networks are obtained for the class of continuous periodic functions whose Fourier
coefficients are summable. The results are unimprovable in the sense of widths. As to
the problem of approximating functions in the variation space by linear combination
of elements in the dictionary, DeVore and Temlyakov [10] showed that the rate
O(N−1/2) also holds for Hilbert spaces generated by orthogonal dictionaries using
the greedy algorithm. Kůrková and Sanguineti [20, 21] proved the rate O(N−1/2) for
Hilbert spaces generated by dictionaries with conditions weaker than orthogonality.
The corresponding constants in these works are tractable.

Although O(N−1/2) is the optimal rate for general dictionaries, this rate can be
improved for particular cases. However, in most literature for the improved rates,
the corresponding constant terms are not necessarily tractable.

For the L2-approximation, Xu [52] considered the approximation of spectral
Barron spaces using ReLUγ neural networks, γ ≥ 1 integer, where the correspond-
ing constant is tractable. Also, the sharp rate Õ(N− 1

2−
2γ+1
2d ) for the variation space

generated by ReLUγ network is proved by Siegel and Xu [46] without tractable
constants. The improved uniform approximation rates are also studied. Klusowski
and Barron [19] proved the rate Õ(N− 1

2−
γ
d ) for approximating functions from

spectral Barron spaces of order γ = {1, 2} by shallow ReLUγ neural networks.
They also proved absolute constants in this work. Using the covering number argu-
ment as in [25], Ma et al. [23] recently obtained the uniform approximation rate
Õ(N− 1

2−
γ−1
d+1 ) for approximating functions in spectral Barron spaces of order γ by

ReLUγ networks with unspecified constants. All these results are applicable in the
case γ ≥ 1 is an integer.

In [27], dimension independent bounds of the form Õ(N−1/2) are obtained for
general G-networks on non-tensor product Euclidean domains, including neural,
radial basis function and zonal function networks, where also the constants involved
in the estimates are dependent polynomially on the dimension. The paper explains
a duality between the tractability of quadrature and approximation from closed,
convex, symmetric hulls of dictionaries. They depend only on the boundedness
properties of the dictionaries rather than taking into account also any smoothness
properties of the kernels. Naturally, our results in [32] are sharper when both
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the results there and the ones in [27] are applicable, but the constant terms are
unspecified.

Our paper seeks to prove the results in [32] with slightly modified conditions to
ensure that the constants involved in the estimates are tractable. In particular, our
results are valid for approximation of functions on arbitrary metric spaces, and hold
for non-symmetric kernels G; i.e., when the approximation of a function is sought
on one metric space given data on another metric space. An important example is
when the data is on a metric space, and the function approximation is sought on a
larger metric space.

3. Set Up

In this section, we describe our basic set up. In Sec. 3.1, we summarize the necessary
concepts and notation related to the metric spaces, including our notion of the
dimension of a metric space. We are interested in the approximation of functions
of the form x "→

∫
Y G(x, y)dτ(y).

Section 3.2 deals with the properties of the kernels G in which we are interested
in this paper, and ideas related to measure theory are reviewed in Sec. 3.3.

3.1. Metric spaces

Definition 3.1 (Balls and Spheres). Let (X, ρ) be a metric space. A ball on
(X, ρ) is a set

BX,ρ(x, δ) := {y ∈ X : ρ(x, y) ≤ δ}, x ∈ X, δ > 0. (3.1)

A sphere is the boundary of a ball defined as

∂BX,ρ(x, δ) := {y ∈ X : ρ(x, y) = δ}, x ∈ X, δ > 0. (3.2)

When the distance ρ is clear from the context, we omit ρ to write BX(x, δ) and
∂BX(x, δ). Likewise, we will omit X from the notation if we do not expect any
confusion.

If A ⊂ X , it is convenient to denote BX(A, δ) =
⋃

x∈A BX(x, δ). We denote the
closure of X \ BX(A, δ) by ∆(A, δ).

Next, we define the notion of the dimension of a metric space in terms of covering
numbers.

Definition 3.2 (ϵ-covering Number and ϵ-net). Given ϵ > 0 and a compact
metric space (X, ρ), the ϵ-covering number for a compact subset A ⊂ X is defined as

Nρ(A, ϵ) := min

{
n ∈ N : ∃ y1, . . . , yn ∈ X, s.t. A ⊂

n⋃

k=1

BX,ρ(yk, ϵ)

}
,

the set {yk}n
k=1 is called an ϵ-net of A.

When the metric ρ is clear from the context, we omit ρ to write N(A, ϵ).
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Definition 3.3 (Dimension of a Family of Sets). Let d ≥ 0, (X, ρ) a metric
space. a compact subset A of X is called (at most) d-dimensional if

CA,ρ := max

{
1, sup

ϵ∈(0,1]
N(A, ϵ)ϵd

}
< ∞. (3.3)

A family F is called (at most) d-dimensional if

CF ,ρ := sup
A∈F

CA,ρ < ∞. (3.4)

When the metric ρ is clear in the context, we omit ρ to write CA and CF .

Remark 3.1. Although the dimension of a metric space itself is invariant under
scaling of the metric, Example 3.1 demonstrates that the constants CA,ρ and CF ,ρ

are not. In this paper, it will be assumed tacitly that the diameter of the metric
space Y satisfies the following normalization:

diam(Y) = sup
y1,y2∈Y

ρ(y1, y2) = 2. (3.5)

We elaborate this definition and the various constants involved in the context
of a Euclidean sphere. The concepts introduced in this example will also be applied
in the proof of Theorems 5.1–5.3.

Example 3.1. For Q ∈ N, we define the Euclidean sphere embedded in RQ+1 by

SQ :=

⎧
⎨

⎩x ∈ RQ+1 :
Q+1∑

j=1

|xj |2 = 1

⎫
⎬

⎭. (3.6)

The purpose of this example is to illustrate the dependence on the constants
involved in Definition 3.3 on the definition of a metric on SQ.

The following proposition, proved by Böröczky and Wintsche in [7, (1) and
Corollary 1.2] (using different notations), plays an important role in our estimations
of the various constants.

Proposition 3.1. Let Q ∈ N, Q ≥ 2, SQ be the unit ball in RQ+1 and ρ∗ be the
geodesic distance on SQ. Then there exists an absolute constant κS ≥ 1 with the
following properties: For 0 < δ ≤ π/2, SQ can be covered by

(κS/2) · cos δ
1

sinQ δ
Q3/2 log(1 + Q cos2 δ) ≤ κS

Q3/2 log Q

sinQ δ
cos δ, (3.7)

spherical balls of radius δ. Furthermore, each point x ∈ SQ can belong to at most
κSQ log Q of these balls.

Let ρ∗ be the geodesic distance on SQ, then SQ can be covered by
κSQ3/2 log Q cos ϵ 1

sinQ ϵ
balls of radius ϵ. Using the relation π

2 sin ϵ ≥ ϵ, we get

Nρ∗(SQ, ϵ) ≤ κSQ
3/2 log Q cos ϵ

1
sinQ ϵ

≤ κS(log Q)Q3/2
(π

2

)Q
ϵ−Q. (3.8)

In this case, the dimension of SQ is Q and CSQ,ρ∗ ≤ κSQ3/2 log Q(π
2 )Q.
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If we define the ρ1-distance by

ρ1(x,y) =
2
π
ρ∗(x,y), x,y ∈ SQ, (3.9)

then (3.8) shows that

Nρ1(SQ, ϵ) = Nρ∗

(
SQ,

π

2
ϵ
)
≤ κSQ

3/2 log Qϵ−Q, 0 < ϵ ≤ 1, (3.10)

and the term CSQ,ρ1 is tractable; i.e., depends at most polynomially on Q.
Further, if we define the ρ2-distance by

ρ2(x,y) =
1
πκS

ρ∗(x,y), x,y ∈ SQ, (3.11)

then

Nρ2(SQ, ϵ) = Nρ∗(SQ,πκSϵ) ≤ (2κS)−QκSQ
3/2 log Q

1
sinQ(π

2 ϵ)
.

Since 2 log 2 ≥ 3/2 + 1/ log 2, the function Q "→ 2−QQ3/2 log Q is decreasing on
[2,∞). In addition, since κQ−1

S ≥ 1, we conclude that for Q ≥ 2

Nρ2(SQ, ϵ) ≤ ϵ−Q, ϵ < 1/(2κS), (3.12)

so that CSQ,ρ2 ≤ 1.

3.2. Kernels

In the rest of this paper, we will consider two compact metric spaces (X, ρX) and
(Y, ρY) and write G : X × Y → R as a kernel on X × Y. A motivating example is
the ReLU function (x · y)+, x ∈ SQ, y ∈ Sq for some positive integer q ≤ Q. As
a function of x, this is Lipschitz continuous on SQ. As a function of y, we take
a closer look and observe that it is infinitely differentiable away from the equator
{y ∈ Sq : x · y = 0}, while on the equator, it is Lipschitz continuous.

In order to define these notions of smoothness in the abstract, we let {Πk} be
a nested sequence of finite-dimensional subspaces of C(Y): Π1 ⊂ Π2 ⊂ · · · with the
dimension of Πk being Dk. It is convenient to extend the notation to non-integer
values of k by setting Πk = Π⌊k⌋ and Dk = D⌊k⌋. For any A ⊂ X , C(A) denotes
the class of bounded, real-valued, uniformly continuous functions on A, equipped
with the supremum norm ∥ · ∥A. For any A ⊂ X , f ∈ C(A), r > 0, let

Er(A; f) = inf
P∈Πr

∥f − P∥A.

Definition 3.4 (Local Smoothness). Let r > 0, Y ⊂ X and f ∈ C(Y ). The
function f is called r-smooth on Y if

∥f∥Y,r = sup
δ>0

sup
x∈Y

Er(BY (x, δ); f)
δr

< ∞. (3.13)
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Let T ⊂ X. Given x ∈ X, the smoothness of the function G(x, ◦) could be
large outside a low-dimensional subset Ex ⊂ T . Hence, we can make the following
assumptions.

Definition 3.5. Let T ⊂ Y. A kernel G : X × Y → R is called a kernel of class
G(α, r, R, u, T ) if each of the following conditions are satisfied:

• (Hölder Continuity): The kernel G(◦, y) is Hölder α continuous on X

|G|X,α := sup
y∈T

sup
x ̸=z

|G(x, y) − G(z, y)|
ρX(x, z)α

< ∞. (3.14)

• (Global Smoothness): G(x, ◦) is r-smooth on Y with

|G|r := sup
x∈X

∥G(x, ◦)∥Y,r < ∞. (3.15)

• (Smoothness in the Large): For every x ∈ X, there exists a compact set
Ex = Ex(G) ⊂ T with the following property. For every δ > 0, G(x, ◦) is R-
smooth on ∆(Ex, δ) with

|G|∆,R,u := sup
δ>0

sup
x∈X

δu∥G(x, ◦)∥∆(Ex,δ),R < ∞. (3.16)

In this case, we have

∥G(x, ◦)∥∆(Ex,δ),R ≤ |G|∆,R,uδ
−u, x ∈ X, δ > 0.

We define a semi-norm on G(α, r, R, u, T ) by

|G|G := max{|G|X,α, |G|r, |G|∆,R,u}. (3.17)

The following examples illustrate the definition in the case of two of the impor-
tant kernels we are interested in.

Example 3.2. Let Q, q ∈ N and Q ≥ q. We consider the case when X = SQ

Y =

⎧
⎨

⎩x ∈ RQ+1 :
q+1∑

j=1

x2
j = 1, xj = 0 for j > q + 1

⎫
⎬

⎭ ⊂ SQ,

and G(x,y) = (x · y)γ
+ for some γ > 0 and ρY = ρ∗ be the geodesic distance on

SQ. For each k ≥ 1, let Πk be the set of spherical polynomials of degree < k.
Then G(x, ◦) is γ-smooth on SQ for each x ∈ SQ. We take Ex := SQ for x ∈ {z ∈
SQ : z1 = · · · = zq+1 = 0} and take Ex := {y ∈ SQ : x · y = 0} otherwise.
If γ is an integer, G(x, ◦) is a spherical polynomial of degree γ on the set {y ∈
SQ : x · y > 0} and equal to 0 on {y ∈ SQ : x · y < 0}. Therefore, for any set
A ⊂ SQ \ Ex, ∥G(x, ◦)∥A,R = 0 for any R ∈ N. If γ is not an integer, then for
any such set A and R > γ, G(x, ◦) is R-times differentiable, but ∥G(x, ◦)∥A,R ≤
2γκγ−R

S distρ∗(Ex, A)γ−R (see Sec. 8.1.1).

Example 3.3. We consider the case X = Y = BQ, G(x,y) = exp(−|x − y|). It
is clear that for each x ∈ BQ, G(x, ◦) is 1-smooth on BQ. For any A ⊂ Y \ {x},
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G(x, ◦) is infinitely differentiable, and ∥G(x, ◦)∥A,R ≤ R!dist(x, A)−R. So, we take
Ex = {x}, r = α = 1.

3.3. Measures

In the sequel, the term measure will refer to a signed or complex Borel measure (or
positive measure having a bounded total variation) on a metric space Y. The total
variation measure |τ | of a signed measure τ on Y is defined by

|τ |(A) = sup
∑

j

|τ(Uj)|,

where the sum is over all countable partitions of A into Borel measurable sets
Uj ⊆ Y. We will denote |τ |(Y) = |τ |TV . The support supp(τ) is the set of all y ∈ Y
for which |τ |(B(y, δ)) > 0 for every δ > 0. It is easy to see that supp(τ) is a compact
subset of Y.

A measure τ is said to be non-atomic if for any measurable A ⊂ Y with τ(A) > 0,
there exists a measurable subset B ⊂ A with 0 < τ(B) < τ(A).

In this paper, we will require the measure τ involved in the definition of the
target functions to have certain properties, which are summarized in the following
definition.

Definition 3.6. Let (Y, ρY) be a compact metric space. A measure τ is called an
admissible measure on (Y, ρY) if

• τ is non-atomic;
• τ has a finite total variance |τ |TV ;
• the τ -measure of the spheres of Y is zero:

τ(∂BY(y, ϵ)) = 0, y ∈ Y, ϵ > 0. (3.18)

4. Main Results

Given compact metric spaces (X, ρX) and (Y, ρY), and a kernel G : X × Y →
R satisfying the conditions in Definition 3.5, we are interested in approximating
certain functions in V(G), defined with measures τ satisfying the conditions in
Definition 3.6.

Theorem 4.1 is a general theorem governing the approximation of such functions.

Theorem 4.1. Let α, u, R, r > 0, Q, q, s ∈ N satisfy

Q ≥ q ≥ s, R ≥ r, q − s + 2u > 2R − 2r. (4.1)

Let (X, ρX) be Q-dimensional compact metric spaces, τ be an admissible measure on
a compact metric space (Y, ρY) with a q-dimensional support T . Let G : X×Y → R
be a kernel in G(α, r, R, u, T ).
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Let f : X → R be defined by

f(x) =
∫

T
G(x, y)dτ(y), (4.2)

where τ is an admissible measure.
In addition, we assume that

|τ |(BT (Ex(G), ϵ)) ≤ Θτ,G|τ |TV ϵ
q−s, x ∈ X, ϵ > 0, (4.3)

for some Θτ,G < ∞.
Let CT as in (3.3) and

a =
2R − 2r

q − s + 2u
∈ [0, 1). (4.4)

Then for

N ≥ 3CT (DR + 2)(q − s)
q

1−a , (4.5)

there exists {y1, . . . , yN} ⊂ Y and numbers a1, . . . , aN with
∑N

k=1 |ak| ≤ |τ |TV such
that

∥∥∥∥∥f −
N∑

k=1

akG(◦, yk)

∥∥∥∥∥
X
≤ c1|G|G |τ |TV

√
1 + log N

N
1
2+ R−ua

q

, (4.6)

where

c1 = 4e[CT (3DR + 6)]
1
2+ R−ua

q

[(
Q

q + 2R − 2ua

2α
+ log CX

)1/2

×C
−1/2
T (Θτ,G + 1)1/2 + 1

]
. (4.7)

The following example illustrates the role of Θτ,G in (4.3).

Example 4.1. We consider the case when X = Y = SQ, ρ∗ is the geodesic distance
on SQ, and G(x,y) = (x · y)γ

+ for some γ > 0. Again, we take Ex := {y ∈ SQ :
x · y = 0}, and let τ = µ∗ be the volume measure normalized so that µ∗(SQ) = 1.
We denote the volume measure of SQ by νQ. Then it is verified easily that the
µ∗-measure of BSQ(Ex, ϵ) satisfies

µ∗(BSQ,ρ∗(Ex, ϵ)) ≤ νQ−1

νQ

∫ π
2 +ϵ

π
2 −ϵ

sinQ−1 θdθ ≤ 2
√

Q + 2
π

ϵ.

Thus, we can take s = Q − 1 and Θτ,G = Θµ∗,G = 2
√

Q+2
π .

Under certain conditions, Theorem 4.1 can be improved. Specifically, we have
the following result.
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Theorem 4.2. Let α, u, R, r > 0, Q, q ∈ N satisfy

Q ≥ q, R ≥ r.

Let (X, ρX) be a Q-dimensional compact metric spaces, τ be an admissible measure
on a compact metric space (Y, ρY) with a q-dimensional support T . Let G : X×Y →
R be a kernel in G(α, r, R, 0, T ) satisfying

(a) Ex is either empty set or a set of only one point,
(b) |G|∆,R,0 < ∞.

Then for f as defined in (4.2), CT as in (3.3), and

N ≥ 3CT (DR + 2), (4.8)

there exists {y1, . . . , yN} ⊂ Y and numbers a1, . . . , aN with
∑N

k=1 |ak| ≤ |τ |TV such
that ∥∥∥∥∥f −

N∑

k=1

akG(◦, yk)

∥∥∥∥∥
X
≤ c′1|G|G |τ |TV

√
1 + log N

Nmin( 1
2+ R

q ,1+ r
q )

, (4.9)

where

c′1 = 8C
1+ R

q

T (3DR + 6)1+
R
q

[(
Q

q + 2R

2α
+ log CX

)1/2

C
−1/2
T + 1

]
. (4.10)

In the next section, we will apply Theorems 4.1 and 4.2 to various examples. As
we have discussed in Remark 3.1, we will take ρY such that diam(Y) = 2, for which
CT become tractable constants in these examples.

5. Examples

The purpose of this section is to illustrate the general Theorems 4.1 and 4.2. In
Sec. 5.1, we consider power ReLU functions. Positive definite zonal function net-
works as in [28] are discussed in Sec. 5.2. Approximation on the unit ball by Laplace
networks is discussed in Sec. 5.3.

5.1. Approximation by ReLU networks

In Examples 3.1, 3.2, 4.1 and Proposition 3.1, we have studied some properties of
the spheres and ReLUγ functions. Our results in Sec. 4 can be applied in these
settings to get the approximation rates and tractable constants.

Theorem 5.1. Let γ ≥ 1, Q ≥ q ≥ 2 be integers, and κS be the absolute constant
in (3.7). We can identify the unit ball of dimension q as

Sq :=

⎧
⎨

⎩x ∈ RQ+1 :
q+1∑

j=1

|xj |2 = 1 and xj = 0 for j > q + 1

⎫
⎬

⎭ ⊂ SQ, (5.1)

where SQ is the unit ball of dimension Q. Let ρ∗ be the geodesic distance on Sq,
τ be an admissible measure with supp(τ) = Sq on (Sq, ρ∗). We assume that there
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exists Ξτ < ∞ such that

|τ |(BSq ,ρ∗(y, δ)) ≤ Ξτ |τ |TV µ∗(BSq ,ρ∗(y, δ)), y ∈ Sq, δ > 0, (5.2)

where µ∗ is the volume measure normalized so that µ∗(Sq) = 1.
Let G : SQ × Sq → R be the ReLUγ function

G(x,y) = (x · y)γ
+,

and f is a function on Sq denoted by

f(x) =
∫

Sq

G(x,y)dτ(y), x ∈ Sq.

Then for any R ≥ γ and N ≥ κSq3/2(3(q + 1)γ+1 + 6) log q, there exists
{y1, . . . ,yN} ⊂ Sq and numbers a1, . . . , aN , such that

∥∥∥∥∥f −
N∑

k=1

akG(◦,yk)

∥∥∥∥∥
SQ

≤ c2|τ |TV

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
1 + log N

N
1
2+ γ

q + λ
2q

, if q = Q,

√
1 + log N

N
1
2+ γ

q

, if q < Q,

(5.3)

where λ = 2R−2γ
2R−2γ+1 and

c2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

16
√
πeκS(2π)R[κSq3/2(3(q + 1)R+1 + 6) log q]

1
2+ R

q

× [(q + 2R + log(κSq2))(6Ξτ )1/2 + 1], if q = Q,

16κSπγ [κSq3/2(3(q + 1)γ + 6) log q]1+
γ
q

×
[(

Q(q + 2γ)
2

+ log(κSQ2)
)1/2

(κSq3/2 log q)−1/2 + 1

]
, if q < Q.

(5.4)

Remark 5.1. We note that the condition (5.2) leads to a bound of the term Θτ,G

in (4.3) (cf. (8.3)), after changing the metric from geodesic distance to a multiple
of this distance. We feel that (5.2) is more natural and understandable than a
condition on BSq (Ex, ϵ).

Remark 5.2. The difference in the estimates in the cases Q = q and Q > q is
caused by Ex. For Q = q, we can take Ex be the equator Ex = {y ∈ Sq : x · y = 0}
and the function G is arbitrarily smooth outside Ex. Naturally, the measure of the
tube BSq (Ex, ϵ), under proper conditions, can be estimated as O(ϵq−1). So, we can
apply Theorem 4.1 with R > r and s = 1.

However, if Q > q, let x = (0, . . . , 0, 1) ∈ SQ, this set is given as {y ∈ Sq :
0y1 + · · · + 0yq = 0} = Sq. This means we have to take Ex = ∅ and take R = r
globally.
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We can improve upon (5.3) in the case when γ is an integer and q = Q.

Theorem 5.2. Under the conditions in Theorem 5.1, if γ is an integer and Q = q,
we have

∥∥∥∥∥f −
N∑

k=1

akG(◦,yk)

∥∥∥∥∥
SQ

≤ c′2|τ |TV

√
1 + log N

N
1
2+ 2γ+1

2q

, (5.5)

where

c′2 = 32
√
πeκS(2π)γ [κSq

3/2(3(q + 1)γ + 6) log q]1+
γ+1

q

×[(q + γ + 1 + log(κSq
2))(6Ξτ )1/2 + 1]. (5.6)

Remark 5.3. Motivated by a direct comparison with the constructive results
in [31], we have considered in [32] kernels of the form G(x,y) = |x · y|γ , x ∈ SQ,
y ∈ Sq. It is clear that when γ is an integer, |x · y|γ = (x · y)γ

+ + (−x · y)γ
+. So, the

approximation rate we get here is the same as the rate in [32]. This means we are
not losing the approximation rate in exchange for the tractability.

5.2. Approximation by certain zonal function networks

Theorem 5.3. Let Q ≥ q ≥ 2 be integers, γ > 0 be not an integer, and κS be
the absolute constant in (3.7). Let SQ the unit ball in RQ+1, and we identify Sq

as (5.1). Let ρ∗ be the geodesic distance on Sq and τ be an admissible measure on
(Sq, ρ∗) with supp(τ) = Sq.

Let G : SQ × Sq → R be the zonal function

G(x,y) = (1 − x · y)γ ,

and f is a function on SQ denoted by

f(x) =
∫

Sq

G(x,y)dτ(y), x ∈ SQ.

Then for any N ≥ κSq3/2 log q(3(q + 1)γ + 6), there exists {y1, . . . ,yN} ⊂ Sq and
numbers a1, . . . , aN , such that

∥∥∥∥∥f −
N∑

k=1

akG(◦,yk)

∥∥∥∥∥
SQ

≤ c3|τ |TV

(
1 + log N

N1+4γ/q

)1/2

, (5.7)

where

c3 = 8κSπ
2γ [κSq

3/2(3(q + 1)2γ+1 + 6) log q]1+
2γ
q

×
[(

Q(q + 2γ)
2

+ log(κSQ
2)
)1/2

(κSq
3/2 log q)−

1
2 + 1

]
. (5.8)
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5.3. Approximation on the unit ball by radial basis function
networks

Theorem 5.4. Let q, Q ∈ N, q ≤ Q, denote the unit balls

Bq :=

⎧
⎨

⎩x ∈ RQ :
q∑

j=1

|xj |2 ≤ 1, xq+1 = · · · = xQ = 0

⎫
⎬

⎭,

BQ :=

⎧
⎨

⎩x ∈ RQ :
Q∑

j=1

|xj |2 ≤ 1

⎫
⎬

⎭.

Let τ be an admissible measure on (Bq, |·|) with supp(τ) = Bq. Let G : BQ×Bq → R
be the Laplace function

G(x,y) = exp(−|x − y|) := exp

⎛

⎝−

√√√√
q∑

j=1

|xj − yj |2 +
Q∑

j=q+1

|xj |2

⎞

⎠,

and f is a function on BQ denoted by

f(x) =
∫

Bq

G(x,y)dτ(y), x ∈ BQ.

Then for any N ≥ 3q + 9, there exists {y1, . . . ,yN} ⊂ Sq and numbers a1, . . . , aN ,
such that

∥∥∥∥∥f −
N∑

k=1

akG(◦,yk)

∥∥∥∥∥
BQ

≤ c4|τ |TV

(
1 + log N

N1+2/q

)1/2

, (5.9)

where

c4 = 8[(κBq3/2 log q)(3q + 9)]1+
1
q

[(
q + 2

2
Q + 2 logQ + log κB

)1/2

×(κBq3/2 log q)−1/2 + 1
]
, (5.10)

and κB is an absolute constant.

6. Preliminaries for the Proofs

Using an obvious scaling and the Hahn decomposition theorem, it suffices to prove
Theorems 4.1 and 4.2 assuming that |G|G = 1 (cf. (3.17)) and that τ is a probability
measure. Thus, we assume throughout this section and Sec. 7 that

|G|G = 1, |τ |TV = 1, τ(Y ) ≥ 0, Y ⊂ Y. (6.1)

The basic idea behind our proof is the same as that of the proof of the main
theorem [32, Theorem 3.1]. Thus, we first construct a partition of the support of
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τ that enables us to take advantage of the smoothness properties of G described
in Definition 3.5. The main technical novelty of our paper is the construction of
the partition which needs to be done more carefully than in [32] to ensure the
tractability of the constants involved. This is described in Sec. 6.1. On each subset
in this partition, we will consider the set of positive quadrature measures exact for
integrating elements of ΠR. Then we use the ideas in [8] to define a probability
measure on the set of such measures. This part is described in Sec. 6.2. The proof is
completed using Höffding’s inequality and its consequences, described in Sec. 6.3.

6.1. “Partition” on T and ε-net on X

In Lemma 6.1, we provide our “partition” of T = supp(τ); i.e., a finite collection
of closed subsets {Ak} such that T ⊂

⋃M
k=1 Ak and |τ |(Ak ∩ Aj) = 0 if k ̸= j.

In all the examples in Sec. 5, we will verify in Sec. 8 that all of the constants
in τ(Ak), ER(Ak; G(x, ◦)), Er(Ak; G(x, ◦)), etc. are tractable, which ensures the
desired tractability property. In this section, we assume the metric space to be
(Y, ρY), and its mention will be omitted from the notation.

Lemma 6.1. Suppose τ is a probability measure on Y. We assume that T = supp(τ)
satisfies

N(T, ϵ) ≤ CT ϵ
−q, ϵ > 0,

and

τ(∂B(x, ϵ)) = 0, x ∈ T, ϵ > 0. (6.2)

Then for any ϵ > 0, there exists closed subsets {Ak}M
k=1 and points y1, . . . , yM ∈ Y

such that T ⊂
⋃M

k=1 Ak

M ≤ 3CT ϵ
−q, (6.3)

τ(Ak) ≤ C−1
T ϵq, (6.4)

Ak ⊂ B(yk, ϵ), k = 1, . . . , M, (6.5)

and each Ak ∩ Aj lies in a finite union of spheres in T of type (3.2). As a result

τ(Ak ∩ Aj) = 0, j ̸= k. (6.6)

The idea behind the proof is the following. An obvious partition obtained from
the covering of T by balls of radius ϵ divides the set T into ⌊CT ϵ−q⌋ subsets of
radius ≤ ϵ. We divide those subsets which have measures greater than C−1

T ϵq into
smaller subsets with measures between (2CT ϵ−q)−1 and (CT ϵ−q)−1, and show that
the number of such subsets is bounded by 2⌊CT ϵ−q⌋ in total.

The following lemma gives the details of this subdivision.
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Lemma 6.2. Let Y ⊂ T and the boundary of Y lie in a finite union of spheres (cf.
(3.2)). Then for any ξ > 0, there exists a partition {Uℓ}L

ℓ=1 with L ≤ 1 + 2τ(Y )ξ−1

such that

τ(Uℓ) ≤ ξ, ℓ = 1, . . . , L.

Proof. Our first step is to divide Y into subsets with τ -measure less than 1
2ξ.

For each x0 ∈ T , by the non-atomic property and the continuity from above,
we have

lim
n→∞

τ(B(x0, n
−1)) = τ

( ∞⋂

n=1

B(x0, n
−1)

)
= τ({x0}) = 0.

Then there exists δx0 > 0 such that τ(B(x0, δx0)) < 1
2ξ. If x0 ∈ Y \ T , then there

exists δx0 such that τ(B(x0, δx0)) = 0. Since Y is compact, there exists some δ > 0
such that τ(B(x, δ)) < 1

2ξ for all x ∈ Y.
There exist points y1, . . . , yJ ∈ Y with J := ⌊CT δ−q⌋ ≥ N(Y, δ) and the relative

balls in Y

BY (yj , δ) = {y ∈ Y : ρY(y, yj) < δ} = B(yj , δ) ∩ Y, j = 1, . . . , J,

such that Y =
⋃J

j=1 BY (yj , δ). Let

B1 = BY (y1, δ), Bj = B(yj , δ)

∖(
j−1⋃

i=1

BY (yi, δ)

)
, j = 2, . . . , J. (6.7)

Then {Bj}J
j=1 is a partition of Y satisfying Bj ⊂ BY (yj , δ) and τ(Bj) ≤ 1

2ξ for
each j.

Also, it is clear from the construction that the boundary of Bj ’s lie in a finite
union of spheres with form (3.2). We will construct our desired subsets of Y from
this partition.

Let n0 = 0, we define the integers nℓ’s, ℓ = 1, 2, . . . , by

nℓ = min

⎧
⎨

⎩n ∈ N : n > nℓ−1,
n∑

j=nℓ−1+1

τ(Bj) ≥
1
2
ξ

⎫
⎬

⎭, (6.8)

for ℓ such that nℓ−1 exists. Clearly, this procedure will stop in one of the two
cases. One is

∑J
j=nL−1+1 τ(Bj) < 1

2 ξ, the other is
∑J

j=nL−1+1 τ(Bj) ≥ 1
2ξ and

∑J−1
j=nL−1+1 τ(Bj) < 1

2ξ for some L ∈ N. In either case, we will denote J by nL.
Then for ℓ ≥ L + 1, the integer nℓ in (6.8) does not exist. Take the unions of Bj ’s
by defining

Uℓ :=
nℓ⋃

j=nℓ−1+1

Bj , ℓ = 1, . . . , L. (6.9)
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By definition, for ℓ = 1, . . . , L − 1, we have

τ(Uℓ) =
nℓ∑

j=nℓ−1+1

τ(Bj) ≥
1
2
ξ. (6.10)

Since each nℓ is taken as the minimum integer in (6.8), we have∑nℓ−1
j=nℓ−1+1 τ(Bj) < 1

2ξ. Consequently

τ(Uℓ) = τ(Bnℓ) +
nℓ−1∑

j=nℓ−1+1

τ(Bj) <
1
2
ξ +

1
2
ξ = ξ. (6.11)

The estimation (6.10) implies

τ(Y ) ≥
L−1∑

ℓ=1

τ(Uℓ) ≥ (L − 1) × 1
2
ξ,

we conclude our desired bound of L

L ≤ 1 + 2τ(Y )ξ−1.

By our construction of Bj ’s, the boundary of each Bj lies in the union of the
boundary of Y and a sphere with form (3.2). By our assumption on Y , we conclude
the boundary of each Bj lies in a finite union of spheres with form (3.2). Thus, the
boundary of each Uℓ also has this property.

Proof of Lemma 6.1. We repeat the procedure (6.7) with T in place of Y and ϵ
in place of δ. Then we get a partition {Yk}K

k=1 of T with K ≤ CT ϵ−q and each Yk

lies in a ball of radius ϵ. Then {Yk}K
k=1 is a partition of T satisfying Yk ⊂ B(yk, ϵ)

for each k. To complete the proof, we apply Lemma 6.2 with ξ = CT ϵq and each
Yk. We have the partitions Yk =

⋃Lk

ℓ=1 Uℓ,k, k = 1, . . . , K. So, we have
K∑

k=1

Lk ≤
K∑

k=1

(1 + 2τ(Yk)CT ϵ
−q) ≤ K + 2CT ϵ

−q
K∑

k=1

τ(Yk) ≤ K + 2CT ϵ
−q ≤ 3CT ϵ

−q.

Rewrite the partition {Uℓ,k}ℓ=Lk,k=K
ℓ=1,k=1 as {Ãk}M

k=1, then M =
∑K

k=1 Lk ≤ 3CT ϵ−q

and (6.11) implies τ(Ãk) ≤ ξ = CT ϵq. Finally, let Ak := Ãk for each k. By
Lemma 6.2, the boundaries of Ãk’s are necessarily contained in finite unions of
spheres with form (6.2). Hence, we have τ(Ak ∩Aj) = 0 and τ(Ak) = τ(Ãk) ≤ ξ =
CT ϵq.

6.2. Quadrature and probability measures

Next, we recall from [32, Theorem 5.2] the construction of quadrature measures and
the probability measure on the set of these measures. We will use the quadrature
formulas for the sets Ak constructed as in Lemma 6.1, exact for integrating elements
of ΠR on each of these sets. The existence of such measures is guaranteed, e.g., by
Tchakaloff’s theorem (cf. [32, Theorem 5.3]).
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Theorem 6.1. Let Y be a compact topological space, {ψj}M−1
j=0 be continuous real-

valued functions on Y, and ν be a probability measure on Y. Let PM (Y) denote the
set of all probability measures ω supported on at most M + 2 points of Y with the
property that

∫

Y
ψj(y)dω(y) =

∫

Y
ψj(y)dν(y), j = 0, . . . , M − 1. (6.12)

Then ν is in the weak-star closed convex hull of PM (Y), and hence, there exists a
measure ω∗

Y on PM (Y) with the property that for any f ∈ C(Y)
∫

Y
f(y)dν(y) =

∫

PM (Y)

(∫

Y
f(y)dω(y)

)
dω∗

Y(ω). (6.13)

6.3. Concentration inequality

In this section, we recall the Höffding inequality and prove a lemma that enables
us to estimate errors in the uniform norms rather than pointwise errors.

The Höffding’s inequality [42, Appendix B, Corollary 3] is given in the following
Lemma 6.3.

Lemma 6.3. Let X1, . . . , Xn be independent random variables with zero means
and bounded ranges: aj ≤ Xj ≤ bj, j = 1, . . . , n. Then

Prob

⎛

⎝

∣∣∣∣∣∣

n∑

j=1

Xj

∣∣∣∣∣∣
≥ t

⎞

⎠ ≤ 2 exp

(
− 2t2∑n

j=1(bj − aj)2

)
, t > 0. (6.14)

Lemma 6.4. Let ε > 0, C be an ε-net for a metric space (X, ρX). Let α > 0,
(W, P,B) be a probability space, g(◦; x) be a random process on (W, P,B) with x ∈
C and |g|W,X,α := supw∈W |g(w, ◦)|X,α < ∞. (cf. (3.14)). Suppose there exists a
positive number Λ such that for each x ∈ C

Prob(|g(w; x) − f(x)| ≥ t) ≤ 2 exp
(
− t2

Λ

)
, t > 0, (6.15)

where f(x) = E(g(◦; x)). Then there exist a choice of w ∈ W such that g(w; x)
satisfies

∥f − g(w; ◦)∥X ≤
√

Λ log(4|C|) + 2|g|W,X,αε
α. (6.16)

Proof. From (6.15), we have

Prob
(

max
x∈C

|g(w; x) − f(x)| ≥ t

)
≤ 2|C| exp

(
− t2

Λ

)
. (6.17)

Choosing

t0 =
√

Λ log(4|C|), (6.18)



March 29, 2024 11:3 WSPC/S0219-5305 176-AA 2440001

554 H. N. Mhaskar & T. Mao

we obtain

Prob
(

max
x∈C

|g(w; x) − f(x)| ≥ t0

)
≤ 1

2
.

Then there exists a choice of w’s such that

max
x∈C

|g(w; x) − f(x)| ≤ t0.

Now for every x′ ∈ X , there exists x ∈ C with ρX(x, x′) ≤ ε. The condition
(3.14) then leads to the fact that

||g(w; x′) − f(x′)|− |g(w; x) − f(x)|| ≤ |g(w; x′) − f(x′) − g(w; x) + f(x)|

≤ |g|W,X,αε
α + |f |X,αε

α ≤ 2|g|W,X,αε
α,

and

∥f − g(w; ◦)∥X ≤ max
x∈C

|g(w; x) − f(x)| + 2|g|W,X,αε
α ≤ t0 + 2|g|W,X,αε

α

≤
√

Λ log(4|C|) + 2|g|W,X,αε
α.

We will construct in the next section an ε-net C ⊂ X for a proper ε and construct
a class of random variables Ωk(ωk; x) satisfying

M∑

k=1

Ωk(ωk; x) = G({ωk}; x) − f(x), x ∈ C,

where G({ωk}; ◦) is a linear combination of the desired form in (4.6). We will get a
realization G({ωk}; x) of the sum which approximates f on C by using Höffding’s
inequality.

7. Proofs of the Main Results

In this section, We prove Theorems 4.1 and 4.2. The proofs of both these theorems
share a great deal of details in common: the construction of certain random variables
and the estimation on the sum of the squares of their ranges. This part is presented
in Sec. 7.1. The proofs of Theorems 4.1 and 4.2 are presented in Secs. 7.2 and 7.3,
respectively.

7.1. The random variables

To construct our desired random variables, we fix ϵ > 0 to be chosen later, use the
“partition” {Ak}M

k=1 as in Lemma 6.1.
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We apply Theorem 6.1 to each Ak with a basis {ψj}DR
j=1 of ΠR, and τk = 1

τ(Ak)τ
in place of ν. This gives a measure ω∗

k on PDR(Ak) such that
∫

Ak

fdτk =
1

τ(Ak)

∫

Ak

fdτ =
∫

PDR (Ak)

(∫

Ak

fdω

)
dω∗

k, f ∈ C(Ak). (7.1)

In particular
∫

Ak

Pdτ =
∫

PDR(Ak)
(τ(Ak)

∫

Ak

Pdω)dω∗
k, P ∈ ΠR. (7.2)

We define a family of independent random variables {Ωk} on PDR , with each Ωk

having ω∗
k as the probability law, by

Ωk(ω) = τ(Ak)
∫

Ak

G(x, y)dω(y) −
∫

Ak

G(x, y)dτ(y), ω ∈ PDR(Ak).

For any realization of these random variables, ωk ∈ PDR(Ak), we write

G({ωk}; x) = G(x) =
M∑

k=1

τ(Ak)
∫

Ak

G(x, y)dωk(y). (7.3)

The random variables Ωk satisfy

M∑

k=1

Ωk(ωk) =
M∑

k=1

τ(Ak)
∫

Ak

G(x, y)dω(y) −
M∑

k=1

∫

Ak

G(x, y)dτ(y)

= G(x) −
∫

T
G(x, y)dτ(y) = G(x) − f(x), (7.4)

since τ(Ak ∩ Aj) = 0 for all k ̸= j.
In view of Lemma 6.4, we only need to estimate the term Prob (|G(x)−f(x)| ≥

t) pointwise for each x ∈ X, and choose ε judiciously to get the estimates in Theo-
rems 4.1 and 4.2.

Given (7.4), we will estimate the probability that |
∑M

k=1 Ωk(ωk)| ≥ t for t > 0
and choose this t later. To this end, we need to consider the sum of the squares of
the ranges of the random variables Ωk to apply Höffding’s inequality (6.14). This
estimation is the key step in our proof.

In view of the definition of PDR(Ak), we see that for every ωk ∈ PDR(Ak) and
P ∈ ΠR

τ(Ak)
∫

Ak

G(x, y)dωk(y) −
∫

Ak

G(x, y)dτ(y)

= τ(Ak)
∫

Ak

(G(x, y) − P (y))dωk(y) −
∫

Ak

(G(x, y) − P (y))dτ(y). (7.5)
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Let x ∈ X. Since Ak ⊂ B(yk, ϵ) for each k, we deduce from (3.13) that for every
ωk ∈ PDR(Ak) and δ ≥ ϵ

|Ωk(ωk)| ≤ 2τ(Ak) inf
P∈ΠR(Ak)

∥G(x, ◦) − P∥Ak

≤ 2τ(Ak)min{ER(Ak; G(x, ◦)), Er(Ak; G(x, ◦))}

≤ 2τ(Ak)

{
ϵr∥G(x, ◦)∥Ak,r, if Ak ∩ B(Ex, δ) ̸= ∅,

ϵR∥G(x, ◦)∥Ak,R,u, otherwise.
(7.6)

We have assumed |G|G = 1 in (6.1). Hence, if Ak ∩ B(Ex, δ) ̸= ∅, we have
∥G(x, ◦)∥Ak,r ≤ ∥G(x, ◦)∥X,r ≤ 1 and likewise (cf. (3.16)), ∥G(x, ◦)∥Ak,R ≤
∥G(x, ◦)∥∆(Ex,δ),R ≤ δ−u when Ak ∩ B(Ex, δ) = ∅. Then we get from (3.15) and
(3.16) that

|Ωk(ωk)| ≤ βk = 2τ(Ak)

{
ϵr, if Ak ∩ B(Ex, δ) ̸= ∅,

ϵRδ−u, otherwise.
(7.7)

In view of (6.4), we have τ(Ak) ≤ C−1
T ϵq for each k. We deduce that

M∑

k=1

β2
k =

∑

k:Ak∩BT (Ex,δ) ̸=∅
β2

k +
∑

k:Ak∩BT (Ex,δ)=∅
β2

k

≤
∑

k:Ak∩BT (Ex,δ) ̸=∅
τ(Ak)(4τ(Ak)ϵ2r)

+
∑

k:Ak∩BT (Ex,δ)=∅
τ(Ak)(4τ(Ak)ϵ2Rδ−2u)

≤ 4C−1
T ϵqϵ2r

⎛

⎝
∑

k:Ak∩BT (Ex,δ) ̸=∅
τ(Ak)

⎞

⎠

+ 4C−1
T ϵqϵ2Rδ−2u

⎛

⎝
∑

k:Ak∩BT (Ex,δ)=∅
τ(Ak)

⎞

⎠

≤ 4C−1
T ϵq

⎧
⎨

⎩ϵ
2r

∑

k:Ak∩BT (Ex,δ) ̸=∅
τ(Ak) + ϵ2Rδ−2u

∑

k:Ak∩BT (Ex,δ)=∅
τ(Ak)

⎫
⎬

⎭.

(7.8)

In the proof of Theorems 4.1 and 4.2, we will use slightly different arguments
to arrive at a bound on

∑
β2

k in terms of ϵ and then use Lemma 6.4 with judicious
choices of Λ and ε to arrive at an estimation of ∥G({ωk}, ◦) − f∥X in terms of ϵ.
To complete the proofs in both cases, we now describe the choice of ϵ in terms of a
given budget N of neurons.
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We note that G({ωk}; ◦) is a function with the form
∑N

k=1 akG(◦, yk) in (4.6)
and (4.9). To see this, we recall each ωk is a discrete probability measure supported
in at most DR + 2 points, so we can write

τ(Ak)
∫

Ak

G(x, y)dωk(y) = τ(Ak)
DR+2∑

j=1

bk,jG(◦, ỹk,j).

Together with the fact
∑M

k=1 τ(Ak) = 1, we see the function G({ωk}; ◦) has the
form

∑N
k=1 akG(◦, yk) with (cf. (6.3))

N ≤ M(DR + 2) ≤ 3CT (DR + 2)ϵ−q,
N∑

k=1

|ak| ≤ |τ |TV . (7.9)

Thus, given N ≥ 1, we choose

ϵ =
(

3CT (DR + 2)
N

)1/q

. (7.10)

In view of (7.10), and the fact that 3CT (DR + 2) ≥ 1, we deduce that

log(1/ϵ) ≤ log N. (7.11)

7.2. Proof of Theorem 4.1

If Ak ∩ B(Ex, δ) ̸= ∅, we have Ak ⊂ B(Ex, δ + 2ϵ). Hence, (cf. (4.3))
∑

k:Ak∩B(Ex,δ) ̸=∅
τ(Ak) ≤ τ(B(Ex, δ + 2ϵ)) ≤ Θτ,G(δ + 2ϵ)q−s.

Further
∑

k:Ak∩B(Ex,δ)=∅
τ(Ak) ≤ τ(Y) = 1.

Therefore, (7.8) becomes
M∑

k=1

β2
k ≤ 4C−1

T ϵq{Θτ,G(δ + 2ϵ)q−sϵ2r + δ−2uϵ2R}. (7.12)

We can balance the two terms (δ + 2ϵ)q−sϵ2r and δ−2uϵ2R by taking δ = ϵa with a
as in (4.4). Clearly, ϵ

δ = ϵ1−a < 1. If ϵ
δ ≤ 1

q−s , that is

ϵ ≤ (q − s)−
1

1−a , (7.13)

we have

(δ + 2ϵ)q−s ≤ δq−s

(
1 +

2
q − s

)q−s

≤ e2δq−s = e2ϵa(q−s). (7.14)

Substituting the choice of δ into (7.12), we obtain
M∑

k=1

β2
k ≤ 4C−1

T (e2Θτ,G + 1)ϵq+2R−2ua. (7.15)
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This estimation and the Höffding inequality (6.14) gives us the pointwise upper
bound

Prob (|G({ωk}, x) − f(x)| ≥ t) ≤ 2 exp
(
− t2

8C−1
T (e2Θτ,G + 1)ϵq+2R−2ua

)
, t > 0.

(7.16)

We now take

ε = ϵ
q+2R−ua

2α ,

so that there exists an ε-net C of X that satisfies |C| ≤ CXε−Q (cf. (3.3)). Then
applying Lemma 6.4 with

Λ = 8C−1
T (e2Θτ,G + 1)ϵq+2R−2ua,

we deduce the existence of some {ω̃k} such that

∥f − G({ω̃k}, ◦)∥X

≤ 2Λ1/2

(
Q log

(
1
ε

)
+ log CX

)1/2

+ 2εα

≤ 8C
−1/2
T

(
Q

q + 2R − 2ua

2α
log

1
ϵ

+ log CX

)1/2

×(e2Θτ,G + 1)1/2ϵq/2+R−ua + 2ϵq/2+R−ua

≤ 4eC−1/2
T (Θτ,G + 1)1/2

[
max

(
Q

q + 2R − 2ua

2α
, log CX

)(
log

1
ϵ

+ 1
)]1/2

×(2ϵq/2+R−ua) + (2ϵq/2+R−ua)

≤ 8e

[
C
−1/2
T (Θτ,G + 1)1/2

(
Q

q + 2R − 2ua

2α
+ log CX

)1/2

+ 1

]

×
(

log
1
ϵ

+ 1
)1/2

ϵq/2+R−ua. (7.17)

In light of Eqs. (7.10) and (7.11), this completes the proof of (4.6). We note
that our choice of ϵ in (7.10) shows that (7.13) is equivalent to the condition (4.5)
on N .

7.3. Proof of Theorem 4.2

In this theorem, we suppose Ex is a set of at most one point for each x ∈ X, and
u = 0 for some R ≥ r.

Without loss of generality, we assume Ex is contained in the interior of some Ak.
Then since u = 0, we can simply take δ small enough so that Aj ∩ B(x, δ) = ∅ for
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all j ̸= k. In this case, we can estimate (7.8) without more conditions on ϵ similar
to (7.13) as follows, where we recall that CT ≥ 1

M∑

k=1

β2
k ≤ 4C−1

T ϵ2r+q max
1≤k≤M

τ(Ak) + 4C−1
T ϵ2R+q ≤ 4C−2

T ϵ2r+2q + 4C−1
T ϵ2R+q

≤ 4C−1
T (ϵ2r+2q + ϵ2R+q). (7.18)

This estimation and (6.14) gives us the pointwise upper bound

Prob
(

max
x∈C

|G({ωk}, x) − f(x)| ≥ t

)
≤ 2 exp

(
− t2

8C−1
T (ϵ2r+2q + ϵ2R+q)

)
, t > 0.

(7.19)

We now use Lemma 6.4 with

ε = ϵ
2R+q
2α , Λ = 8C−1

T (ϵ2r+2q + ϵ2R+q),

to deduce the existence of {ω̃k} such that, as in (7.17)

∥f − G({ω̃k}; ◦)∥X

≤ 2Λ1/2

(
Q log

(
1
ε

)
+ log CX

)1/2

+ 2εα

≤ 2
√

2

[(
Q

q + 2R

2α
+ log CX

)1/2

(8C−1
T )1/2 + 1

]

×

√

1 + log
(

1
ϵ

)
max(ϵq/2+R, ϵq+r)

≤ 8

[(
Q

q + 2R

2α
+ log CX

)1/2

C
−1/2
T + 1

]

×

√

1 + log
(

1
ϵ

)
max(ϵq/2+R, ϵq+r). (7.20)

In light of Eqs. (7.10) and (7.11), this completes the proof of (4.9).

8. Proof of theorems in Sec. 5

In this section, we prove the theorems in Sec. 5. The proofs consist of applying the
main theorems in Sec. 4, for which we need to explain what the spaces Πk are in
each case, and estimate the various parameters involved, such as Dk, Θτ,G, u, CT ,
etc. We prove Theorems 5.1–5.4 in Secs. 8.1–8.4, respectively.
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8.1. Proof of Theorem 5.1

8.1.1. Proof for q = Q

We are going to estimate all the quantities in Theorem 4.1 for our particular case
here.

Step 1. Πk and upper bound of Dk

For any k ≥ 1, let Πk be the space of polynomials on Sq of degree < k. Then

Dk ≤
(

q + ⌊k⌋
⌊k⌋

)
≤ (q + 1)k, k ≥ 1. (8.1)

Step 2. Upper bound of CX and CT

We have studied the set Sq in our previous examples in Sec. 3. In order to prove
the tractability, it is natural to consider Sq as a metric space with diameter equal
to 2 (cf. Remark 3.1). To this end, we define

ρX(x,y) = ρY(x,y) =
2
π
ρ∗(x,y), x,y ∈ Sq,

where ρ∗ be the geodesic distance on X = Y = T = Sq. Then by Proposition 3.1

NρY(Sq, ϵ) = NρX(X, ϵ) ≤ κSq
3/2 log q cos ϵ

1
sinq ϵ

(
2
π

)q

≤ κSq
3/2 log qϵ−q.

So, we can use CX = κSq2 and CT = κSq3/2 log q.
In this proof only, we write

BSq(y, ϵ) := BSq ,ρY(y, ϵ).

Step 3. Choice of r and upper bound of |G|r
Fix x ∈ Sq, write Gx = G(x, ◦) and take

r := γ.

In each interval I of length 2δ0, the univariable function xγ
+ can be approximated

by the ⌊γ⌋-degree Taylor polynomial PI at the midpoint of I with

sup
x∈I

|xγ
+ − PI(x)| ≤ 2γδγ

0 .

For any ball BSq(y, δ) ⊂ Sq, we have

|x · y − x · y′| ≤ |y − y′| ≤ max
y′∈BSq (y,δ)

ρ∗(y,y′) =
π

2
δ,

where | · | is the Euclidean norm. Then x · y′ ∈ Iy,δ := [x · y − π
2 δ,x · y + π

2 δ] and

Er(BSq (y, δ); Gx) ≤ max
y′∈BSq (y,δ)

|(x · y′)γ
+ − PIy,δ (x · y′)| ≤ 2γ

(π
2
δ
)γ

= (πδ)γ .

So, we have |G|r ≤ πγ .
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Step 4. Choice of u and upper bound of |G|∆,R,u

Ex is the equator of Sq given by

Ex = {y1 ∈ Sq : y1 · x = 0}.

If an interval I of length 2δ0 satisfies dist(I, 0) ≥ δ1, then by using the Taylor
polynomials again, xγ

+ can be approximated by the polynomial PI of degree ⌊R⌋
with

sup
x∈I

|xγ
+ − PI(x)| ≤ 2Rδγ−R

1 δR
0 .

For any δ, δ̃ > 0 and A ⊂ ∆(Ex, δ̃) ∩ BSq (y, δ) with some y ∈ A, consider the set
IA := {x · y′ : y′ ∈ A}. Since maxy′∈A |x · y − x · y′| ≤ |y − y′| ≤ πδ, we have
IA ⊂ [x ·y− πδ,x ·y + πδ]. So, we can take δ0 ≤ πδ for IA. Also, for any z ∈ A, let
z′ ∈ Ex be the unique nearest point on the geodesic containing both x and z. Then
ρ∗(x, z) + ρ∗(z, z′) = ρ∗(z′,x) = π

2 . Hence

|x · z| = cos(ρ∗(x, z)) = sin
(π

2
− ρ∗(x, z)

)
= sin(ρ∗(z, z′))

≥ 2
π
ρ∗(z, z′) = ρY(z, z′) ≥ δ̃.

So, the distance dist(IA, 0) can be estimated as dist(IA, 0) = minz∈A |x · z− 0| ≥ δ̃,
and we can take δ1 ≥ δ̃. Thus

ER(A; Gx) ≤ 2Rδγ−R
1 δR

0 ≤ 2Rδ̃γ−R(πδ)R.

Consequently, we can take u = R − γ and |G|∆,R,R−γ ≤ (2π)R in Theorem 4.1.

Step 5. Upper bound of |G|X,α and |G|G
It is also easy to observe

∥G(x, ◦) − G(x′, ◦)∥ ≤ γ|x− x′| ≤ rρ∗(x,x′) ≤ πκSγρX(x,x′).

Hence, we take |G|Sq,1 ≤ πκSγ. Thus, |G|G can be bounded as

|G|G = max{|G|X,α, |G|r, |G|∆,R,u} ≤ κS(2π)R.

Step 6. Choice of s and upper bound of Θτ,G

Now consider Θτ,G and s. By definition, Sq can be covered by κSq3/2 log qϵ−q balls
BSq (x, ϵ) with each point on Sq be overlapped at most κSq log(1 + q) times. Let
{BSq(zj , ϵ)}K

j=1 be the collection of those balls satisfying BSq (zj , ϵ)∩BSq (Ex, ϵ) ̸= ∅,
then

BSq (zj , ϵ) ⊂ BSq(Ex, 3ϵ), j = 1, . . . , K.
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We have Ex = {y ∈ Sq : x · y = 0}. Then using the formula [34, (7.31)], the
µ∗-measure of BSq (Ex, 3ϵ) satisfies

µ∗(BSq (Ex, 3ϵ)) ≤ νq−1

νq

∫ π
2 +3 π

2 ϵ

π
2 −3 π

2 ϵ
sinq−1 θdθ ≤ 3

√
π(q + 2)ϵ, (8.2)

where νn is the measure of the n-dimensional unit sphere for n ∈ N. Since each
point can belong to at most κSq log(1 + q) of these balls (cf. Proposition 3.1), we
have

Kµ∗(BSq (z1, ϵ)) =
K∑

j=1

µ∗(BSq (zj , ϵ)) ≤ κSq log(1 + q)µ∗(BSq (Ex, 3ϵ))

≤ 3κSq
√
π(q + 2) log(1 + q)ϵ.

Thus

K ≤
3κSq

√
π(q + 2) log(1 + q)

µ∗(BSq (z1, ϵ))
ϵ =

3κSq
√
π(q + 2) log(1 + q)

µ∗(BSq ,ρ∗(z1,
π
2 ϵ))

ϵ.

Since BSq (z1, ϵ), . . . , BSq(zK , ϵ) are all the balls that intersects with BSq (Ex, ϵ), we
get from (5.2) that

|τ |(BSq (Ex, ϵ)) ≤
K∑

j=1

|τ |(BSq (zj , ϵ)) =
K∑

j=1

|τ |
(

BSq ,ρ∗

(
zj ,

π

2
ϵ
))

≤
K∑

j=1

Ξτ |τ |TV µ∗
(

BSq ,ρ∗

(
zj ,

π

2
ϵ
))

= Ξτ |τ |TV Kµ∗
(

BSq,ρ∗

(
z1,

π

2
ϵ
))

≤ 3κSΞτ |τ |TV q
√
π(q + 2) log(1 + q).

Thus, we get s = q − 1 and

Θτ,G ≤ 3κSΞτ q
√
π(q + 2) log(1 + q) ≤ 3πΞτκSq

3/2 log q. (8.3)

Step 7. Substitute the values above and get the conclusion

Now we can apply (4.6). We note that α = 1, q(q + 2R − 2ua) ≤ q(q + 2R) ≤
(q +2R)2, and use the rest of the values as computed so far to conclude there exist
{y1, . . . ,yN} ⊂ Sq and numbers a1, . . . , aN such that

∥∥∥∥∥

∫

Sq

G(x,y)dτ(y) −
N∑

k=1

akG(◦,yk)

∥∥∥∥∥
SQ

≤ c2|τ |TV

√
1 + log N

N
1
2+ γ

q + λ
2q

,
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where λ = 2R−2γ
2R−2γ+1 and

c2 = 16
√
πeκS(2π)R[κSq

3/2(3(q + 1)R+1 + 6) log q]
1
2+ R

q

×[(q + 2R + log(κSq
2))(6Ξτ )1/2 + 1].

This proves (5.3) in the case that q = Q.

8.1.2. Proof for q < Q

In this case, the terms r, |G|r, Dk, CX, CT and |G|X,α are the same as those in
the case in Sec. 8.1.1. The main difference here is Ex is no longer an equator of Sq.
In fact, Gx is only γ-smooth for any

x ∈ {x ∈ SQ : x1 = · · · = xq+1 = 0}.

Therefore, for simplicity, we just choose Ex = ∅ for all x ∈ SQ. Then by choosing
R = r = γ, |G|∆,r,0 = |G|r = πγ . So, we can use

|G|G ≤ κSπ
γ .

Apply Theorem 4.2 and substitute those values, we conclude there exists
{y1, . . . ,yN} ⊂ T and numbers a1, . . . , aN with

∑N
k=1 |ak| ≤ |τ |TV such that

∥∥∥∥∥f −
N∑

k=1

akG(◦,yk)

∥∥∥∥∥
X
≤ c2|τ |TV

√
1 + log N

N1+ r
q

,

where

c2 = 16κSπ
γ [κSq

3/2(3(q + 1)γ + 6) log q]1+
γ
q

×
[(

Q(q + 2γ)
2

+ log(κSQ
2)
)1/2

(κSq
3/2 log q)−1/2 + 1

]
.

8.2. Proof of Theorem 5.2

In this proof, q = Q and γ ∈ N. In this case, all the terms are the same as those in
the non-integer case in Sec. 8.1.1 except |G|∆,R,u and DR.

Since G(x, ◦) is exactly a polynomial of degree ≤ γ on ∆(Ex, δ), we can take
ΠR = Πγ for all R ≥ γ, then |G|∆,R,u = 0, DR ≤ (q + 1)γ for all R ≥ γ and u ≥ 0.

In this case

|G|G ≤ (2πκS)γ .
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Take u = R − γ for all R ≥ γ, then

R − ua = R − (R − γ)
2R − 2γ

2R − 2γ + 1
= (R − γ)

(
1 − 2R − 2γ

2R − 2γ + 1

)
+ γ

=
R − γ

2R − 2γ + 1
+ γ ≤ γ + 1.

Therefore, (4.6) implies
∥∥∥∥∥

∫

Sq

G(x,y)dτ(y) −
N∑

k=1

akG(◦,yk)

∥∥∥∥∥
SQ

≤ c′
√

1 + log N

N
1
2+ γ

q + λ
2q

,

where λ = 2R−2γ
2R−2γ+1 and

c′ = 16
√
πeκS(2π)γ [κSq

3/2(3(q + 1)γ + 6) log q]1+
γ+1

q

×[(q + γ + 1 + log(κSq
2))(6Ξτ )1/2 + 1].

This holds for all R ≥ γ, we take R sufficiently large such that

Nλ = N
2R−2γ

2R−2γ+1 ≥ N/2.

Then
∥∥∥∥∥

∫

Sq

G(x,y)dτ(y) −
N∑

k=1

akG(◦,yk)

∥∥∥∥∥
SQ

≤ c′2|τ |TV

√
1 + log N

N
1
2+ 2γ+1

2q

,

where c′2 = 2c′ is the constant in (5.6).

8.3. Proof of Theorem 5.3

For each x ∈ Sq, Ex = {x}. Let ρ̃∗ be the geodesic distance on SQ, we define the
distance ρX on X = SQ as (3.11)

ρX(x,y) =
2
π
ρ̃∗(x,y), x,y ∈ SQ.

Define ρ∗ be the geodesic distance on Y = T = Sq and denote the distance ρY on
Sq as (3.9)

ρY(x,y) =
2
π
ρ∗(x,y), x,y ∈ Sq.

Using the same argument as in Sec. 8.1, we take

CX ≤ κSQ
3/2 log Q ≤ κSQ

2, CT ≤ κSq
3/2 log q.

We take r = 2γ. Using a similar discussion as in Sec. 8.1, we can bound

|G|r ≤ π2γ , |G|SQ,1 ≤ 2πκSγ.

The number R only need to satisfy the condition R ≥ r = 2γ, hence, we can
choose R = r, for which u = 0 and |G|∆,R,0 ≤ |G|r ≤ π2γ . Thus

|G|G ≤ κSπ
2γ .
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In this case

DR + 2 =
(

q + ⌊2γ + 1⌋
⌊2γ + 1⌋

)
+ 2 ≤ (q + 1)2γ+1 + 2.

By (4.9), there exists {y1, . . . ,yN} ⊂ Sq and numbers a1, . . . , aN , such that
∥∥∥∥∥f −

N∑

k=1

akG(◦,yk)

∥∥∥∥∥
SQ

≤ c3|τ |TV

(
1 + log N

N1+4γ/q

)1/2

,

where

c3 = 8κSπ
2γ [κSq

3/2(3(q + 1)2γ+1 + 6) log q]1+
2γ
q

×
[(

Q(q + 2γ)
2

+ log(κSQ
2)
)1/2

(κSq
3/2 log q)−

1
2 + 1

]
.

8.4. Proof of Theorem 5.4

In this example, we take X = BQ, Y = Bq, ρX = ρY be the Euclidean distance in
RQ. Then the diameter of Bq and BQ is 2 (cf. Remark 3.1). We have Ex = {x}.

Let x ∈ X, y ∈ Y. Since Gx = exp(−|x−◦|) is a Lipschitz function, we can take
α = 1, and for any y′ ∈ BY(y, δ)

|Gx(y) − Gx(y′)| ≤ |− |x − y| + |x − y′|| ≤ |y − y′| ≤ δ.

Then

E1(BY(y, δ), Gx) ≤ sup
y′∈BY(y,δ)

|Gx(y′) − Gx(y)| ≤ δ.

Taking R = r = 1, this implies |G|1 ≤ 1. It is a trivial fact that u = 0, and
|G|∆,1,0 ≤ |G|1 ≤ 1.

Using the same argument, we have

|G(x,y) − G(x′,y)| ≤ |− |x − y| + |x′ − y|| ≤ |x − x′| ≤ ρX(x,x′).

Then |G|X,1 ≤ 1. So, we have

|G|G ≤ 1.

Again, we have

D1 + 2 ≤ (q + 1) + 2 = q + 3.

Note that covering a ball of radius 1 by balls of radius ϵ is equivalent to covering
a ball of radius (2ϵ)−1 by balls of radius 1/2, we can conclude by [51, Theorem 3.1]
that there exists an absolute constant κB such that

N(Y, ϵ) ≤ (κBq3/2 log q)ϵ−q, N(X, ϵ) ≤ (κBQ3/2 log Q)ϵ−Q.

This implies CT ≤ κBq3/2 log q and CX ≤ κBQ3/2 log Q.
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Applying (4.9), we conclude for any N ≥ 3(q+1)+6, there exists {y1, . . . ,yN} ⊂
Bq and numbers a1, . . . , aN , such that

∥∥∥∥∥f −
N∑

k=1

akG(◦,yk)

∥∥∥∥∥
BQ

≤ c4|τ |TV

(
1 + log N

N1+2/q

)1/2

,

where

c4 = 8[(κBq3/2 log q)(3q + 9)]1+
1
q

[(
q + 2

2
Q + 2 log Q + log κB

)1/2

×(κBq3/2 log q)−1/2 + 1
]
.
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